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Abstract: The quality of crops is closely associated with their geographical location and yield, which
is reflected in the composition of their metabolites. Hence, we employed GC–MS pseudotargeted
metabolomics to investigate the metabolic characteristics of high-, medium-, and low-yield Nicotiana
tabacum (tobacco) leaves from the Bozhou (sweet honey flavour) and Shuicheng (light flavour) regions
of Guizhou Province. A total of 124 metabolites were identified and classified into 22 chemical
categories. Principal component analysis revealed that the geographical location exerted a greater in-
fluence on the metabolic profiling than the yield. Light-flavoured tobacco exhibited increased levels of
sugar metabolism- and glycolysis-related intermediate products (trehalose, glucose-6-phosphate, and
fructose-6-phosphate) and a few amino acids (proline and leucine), while sweet honey-flavoured to-
bacco exhibited increases in the tricarboxylic acid cycle (TCA cycle) and the phenylpropane metabolic
pathway (p-hydroxybenzoic acid, caffeic acid, and maleic acid). Additionally, metabolite pathway
enrichment analysis conducted at different yields and showed that both Shuicheng and Bozhou ex-
hibited changes in six pathways and four of them were the same, mainly C/N metabolism. Metabolic
pathway analysis revealed higher levels of intermediates related to glycolysis and sugar, amino
acid, and alkaloid metabolism in the high-yield samples, while higher levels of phenylpropane in
the low-yield samples. This study demonstrated that GC–MS pseudotargeted metabolomics-based
metabolic profiling can be used to effectively discriminate tobacco leaves from different geographical
locations and yields, thus facilitating a better understanding of the relationship between metabolites,
yield, and geographical location. Consequently, metabolic profiles can serve as valuable indicators
for characterizing tobacco yield and geographical location.

Keywords: tobacco; geographical region; yield; pseudotargeted metabolomics; metabolic pathway

1. Introduction

Tobacco (Nicotiana tabacum L.) is widely distributed in China’s growing regions and
serves as an important model plant for studying plant genetics, breeding, and biochem-
istry [1]. Tobacco leaves contain abundant metabolites, including saccharides, organic acids,
alkaloids, and free amino acids, which play important roles in determining the quality and
flavour of tobacco [2,3]. These chemical compositions are strongly influenced by environ-
mental conditions and geographical location. Therefore, investigating the geographical
location of metabolites will offer novel perspectives on the formation of regional style
characteristics [4].
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Metabolomics has been extensively used to trace and analyse the quality of agricul-
tural products from various geographical locations; for instance, previous studies have
investigated the bioactive components present in Glycyrrhiza uralensis taproots from differ-
ent locations. Glycycoumarin and licoricone were found predominantly in Jiuquan, while
neoliquiritin, isolicoflavonol, isoisoflavone alcohol, and glycerol were mainly detected
in Lanzhou [5]. Similarly, Zhao et al. identified 43 differentially expressed metabolites,
such as fructose, glycine, and serine, between tobacco leaves originating from Guizhou
Province and those from Yunnan Province. These metabolites exert a substantial impact on
the tobacco leaf flavour [6]. Guizhou tobacco exhibits distinct characteristics in different
geographical regions, such as sweet honey, light, and burnt sweet flavours [7], and distinct
metabolic profiles may be observed for different flavour types. Therefore, it is impera-
tive to investigate the relationship between biochemical components and flavour types
via metabolomics.

Yield, as an important evaluation index of crops, is also closely related to metabolites.
During the formation process, crop yield is affected by the synthesis and degradation of
metabolites, such as carbohydrates, proteins, and fats [8]. Many studies have proposed
improving plant productivity and yield by increasing the photosynthetic rate and capac-
ity [9,10]. The enhancement of rice productivity and stress resistance under favourable
moisture conditions has been demonstrated through the regulation of sugar transport
and metabolism, as well as the improvement in photosynthetic capacity associated with
high-yield rice gene expression, resulting in a remarkable 30% increase in grain yield [11].
Previous research has found a close correlation between carbon, nitrogen metabolism
systems and growth, yield [12]. Therefore, C/N metabolic pathways are intricately as-
sociated with plant yield. Significant variations were observed in the phenotypes of
tobacco leaves with different yields within the same geographical region. Compared with
those of low-yield tobacco plants, the leaves of high-yield tobacco plants are broader and
thicker [13]. Consequently, differences in yield inevitably lead to the redistribution of
metabolites, causing changes in metabolic pathways [14]. However, studies on metabolic
alterations in varying yields are limited. By investigating the metabolic disparities among
high-, medium-, and low-yield tobacco leaves, we can identify distinct profiles, as well as
biomarkers, that influence metabolic pathways and unravel the correlation between yields
and metabolic networks.

In recent years, pseudotargeted metabolomics has emerged as a pivotal tool for inves-
tigating plant disease resistance and cultivating superior varieties [15,16]. This technology
is designed to rapidly, reliably, and sensitively conduct systematic and comprehensive
analyses of characteristic metabolites produced in organisms, tissues, cells, and other
systems by monitoring the dynamic changes in plant metabolites and their metabolic path-
ways [17]. The primary analytical platforms for pseudotargeted metabolomics include gas
chromatography–mass spectrometry (GC–MS), liquid chromatography–mass spectrometry
(LC–MS), and capillary electrophoresis–mass spectrometry (CE–MS) [18]. Among them,
GC–MS is the most widely employed owing to its excellent reproducibility, high precision,
extensive dynamic range, and mature metabolite database [19,20]. In 2012, Li et al. first
proposed the retention time-locking GC–SIM–MS pseudotargeted metabolomics method
and applied it to characteristic metabolites in tobacco leaves from different geographical
locations [21]. Cai et al. utilized GC–MS pseudotargeted metabolomics to accurately anal-
yse metabolites in Oryza sativa soil, and they demonstrated that this approach enhances
the specificity, sample throughput, and coverage of the detected metabolites [22]. This
method combines the benefits of both targeted and untargeted approaches, providing high
sensitivity, precise quantification, and a broad linear range, and represents a promising
technique that has been successfully employed for studying metabolic profiling across
various tissue samples [23,24]. Therefore, the utilization of pseudotargeted metabolomics
enables more accurate and sensitive monitoring of tobacco metabolites from different
geographical locations and yields, with better discerning metabolic characteristics.
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In this study, pseudotargeted GC–MS metabolomics was used to investigate the effects
of the geographical location and yield factors on the metabolic characteristics, aiming to
resolve the following issues: 1. interaction effects of geographical location and yield on
metabolites in tobacco leaves; 2. influence of different geographical regions on tobacco
flavour; and 3. changes in metabolic profiles under different yields.

2. Materials and Methods
2.1. Chemicals and Reagents

The metabolite standards were purchased from Sigma Aldrich (MO, USA), Tokyo Chem-
ical Industry (Tokyo, Japan), Aladdin (Shanghai, China), J&K Chemicals (Beijing, China), and
Toronto Research Chemicals (Toronto, Canada). The extraction solvents methanol and chlo-
roform were obtained from Sinopharm Chemical Reagent (Beijing, China). Methoxyamine
hydrochloride (MEOX, ≥98%), N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA, ≥98%),
and anhydrous pyridine (≥99.5%) were used as derivatization reagents and were obtained
from Sigma. Internal standards (ISs) of phenyl beta-D-glucopyranoside (TCI, ≥99%), hexane-
dioic acid (Aladdin, ≥99%), and L-norvaline (Aladdin, ≥99%) were used.

2.2. Sample Preparation

Guizhou Province is situated in the southwestern region of China and is characterized
by a gradual decrease in elevation from west to east and an increase in average annual
rainfall from north to south. Bozhou and Shuicheng are the primary tobacco-cultivation
areas for sweet honey and light flavours in Guizhou Province, respectively, and exhibit
distinct differences in geographical and climatic conditions. Bozhou is located in the middle
of Guizhou Province and has a higher temperature, abundant rainfall, and shorter daylight
hours, whereas Shuicheng, located in western Guizhou Province, has lower temperatures,
less rainfall, and more intense sunlight. The annual ecological factor data for 2021 were
provided by the Guizhou Meteorological Bureau (Table S1). Thirty-six fresh flue-cured
tobacco samples (cultivar: Yunyan 87) were collected from Bozhou and Shuicheng at three
yield levels in 2021. Samples of low-yield (90–110 kg/mu), medium-yield (120–140 kg/mu),
and high-yield (150–170 kg/mu) flue-cured tobacco were collected from more than 500 mu
of contiguous tobacco fields with six biological duplicates per treatment. During sampling,
the middle leaf was identified as the tenth leaf when counting from top to bottom. The base
and tip of each leaf were removed, and the middle portion was retained. Subsequently,
each leaf was divided into two halves along the main vein boundary, wrapped in tin foil,
and flash-frozen in liquid nitrogen. Then, the samples were freeze-dried and ground into a
powder at a low temperature. After passing through a 40-mesh sieve, the samples were
stored at −80 ◦C in an ultralow temperature refrigerator. In addition, quality control (QC)
samples were obtained by thoroughly blending with the same amount of each sample.

2.3. Metabolite Extraction and Derivatization

The leaf powder (50 mg) was added to a 10 mL centrifuge tube, followed by the
addition of 40 µL of internal standard solution (hexanedioic acid at a concentration of
10 mg/mL, phenylglucoside at a concentration of 8.04 mg/mL, and L-norvaline at a
concentration of 4.9 mg/mL in a methanol–water ratio of 1:1, v/v). Subsequently, 3 mL
of the extract solution (methanol–chloroform–water 2.5:1:1, v/v/v) was added. After
vortexing for 1 min, ultrasound extraction was performed at 4–10 ◦C for 40 min, after
which the mixture was centrifuged at 3000–5000 rpm for 5 min. Three-hundred microlitres
of supernatant were dried under N2 flow at room temperature and then further dried
completely by adding three-hundred microlitres of dichloromethane.

Following this step, the derivatization reaction was carried out by reacting with a
solution containing MEOX/pyridine (40 µL of 25 mg/mL) as an oximation agent (40 ◦C,
120 min), which protected carbonyl groups and reduced the ring reactions of sugars to
minimize isomer formation. Trimethylsilylation was subsequently performed by adding
BSTFA reagent containing TMCS (1%) (81 ◦C, 90 min), after which 90 µL of acetonitrile was
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added (81 ◦C, 90 min) to improve the derivatization efficiency of the amino group. Then,
the samples were centrifuged at 10,000 rpm for 3 min, and the supernatant was subjected
to GC–MS analysis.

2.4. GC–MS Pseudotargeted Metabolomics

GC–MS analysis was performed on an Agilent 7890A-5975C instrument (Palo Alto,
CA, USA) equipped with a CTC PAL autoinjection system. Separation was achieved
utilizing an HP-5 MS (60 m × 250 µm × 0.25 µm film thickness) capillary column. The
injector port temperature was maintained at 280 ◦C, and a sample volume of 1 µL was
injected through the autosampler at a split ratio of 1:10. The flow rate of the helium
carrier gas remained constant at 1.0 mL/min. A temperature gradient program was
employed for the oven, starting at 60 ◦C for 2 min, followed by an increase of 5 ◦C/min
until reaching and holding at 230 ◦C for another 5 min; then, it was further increased
by 8 ◦C/min to reach and hold at 290 ◦C for 21.5 min, for a total run time of 70 min.
The ion source and quadrupole temperatures were set to 230 ◦C and 150 ◦C, respectively,
while the transfer line temperature was maintained at 280 ◦C. The mass spectrometer was
operated in the electron ionization mode (EI) at 70 eV. The full-scan acquisition mode was
adopted for identification within the mass range of 45–600 m/z with a solvent delay time of
11.90 min. Pseudotargeted metabolomics incorporates an algorithm designed to choose ions
for selected ion monitoring (SIM) from identified metabolites. The SIM data were acquired
based on the published literature [21], and AMDIS software version 2.73 (Automated
Mass Spectral Deconvolution and Identification System) was used for the selection of
characteristic ions. The detailed peak table is shown in Table S2. The metabolites in the QC
sample were identified using a standard mass spectrometry database (NIST14 and Willy08
library), the literature, and the linear retention index (LRI). Hexanedioic acid (10.00 mg/mL),
phenyl beta-D-glucopyranoside (8.04 mg/mL), and L-norvaline (4.90 mg/mL) were used
as ISs for quantification, and the correction factor was F = 1 for relative quantification.

2.5. Statistical Analysis

Chemometric analysis included different multivariate data analysis methods, such
as principal component analysis (PCA) and partial least-squares discriminant analysis
(PLS-DA). Simca software 13.0 (Sartorius, Umeå, Sweden) was utilized to construct these
models. Metabolic pathway analysis, a heatmap, and a volcano map analysis were carried
out using metware cloud (https://cloud.metware.cn/) accessed on 16 August 2023. To
normalize the data, log transformation and Pareto scaling were performed. The screening
of highly characteristic metabolites among the samples was conducted according to the
standard of Cai et al. [22]. Chromatograms of the QC samples were generated using Origin
2021 software version SR1 (OriginLab Corp., Northampton, MA, USA).

3. Results
3.1. Metabolite Identification in Tobacco Leaves

A total of thirty-six tobacco leaf samples from different geographical locations and
yields were comprehensively analysed. Figure 1A shows the typical chromatogram of the
QC sample, which represented a ‘mean’ sample containing all possible metabolites. A total
of 124 metabolites, mainly amino acids, saccharides, sugar acids, and sugar alcohols, were
identified (Table S2). These metabolites were identified with standards and LRIs or mass
spectral libraries and were classified into 22 chemical categories (Figure 1B; Table S2). The
top ten chemical classifications were amino acids (25 accounting for 20.2%), saccharides (17,
13.7%), sugar acids (9, 7.3%), phosphate esters or phosphate compounds (9, 7.3%), sugar
alcohols (8, 6.5%), dicarboxylic acids (7, 5.6%), polyhydroxy carboxylic acids (6, 4.8%), and
phenolic acids (6, 4.8%). Short-chain fatty acids, long-chain fatty acids, polyamines, and
saccharolactones contributed 3.2% individually. The amino acid group comprised twenty-
one proteinogenic amino acids, as well as four nonproteinogenic amino acids or derivatives
such as gamma-aminobutyric acid, pyroglutamic acid, 5-hydroxytryptophan, and pipecol-

https://cloud.metware.cn/
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inic acid. The saccharide group consisted of thirteen monosaccharides, including hexoses,
pentoses, tetrose, and triose, along with four disaccharides. The tobacco pseudotargeted
metabolomics approach facilitated the detection of a wider range of metabolites from vari-
ous chemical classes representing key metabolic pathways for tobacco metabolic profiling.
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3.2. Interaction Effect of Geographical Location and Yield on Metabolites

PCA was employed to discriminate between the geographical locations of the tobacco
leaves from Bozhou and Shuicheng (Figure 2A). The first two principal components (PCs)
explained 50.1% of the total variance, with PC1 and PC2 explaining 31.0% and 19.1% of
the variance, respectively. PC1 distinguished the geographical location, while PC2 dis-
tinguished the yield. The QC samples were tightly clustered in the centre of the score
plot, indicating that the sample analysis results were precise. Based on distinct separation,
thirty-six samples were categorized into two groups. Significant differences were observed
between the Shuicheng and Bozhou regions in PC1. However, samples from the same
region, but with different yields, could not be completely distinguished in PC2, such as
medium versus low yields in Bozhou and medium versus high yields in Shuicheng. This
observation was further supported by the conversion of the PCA data into the correspond-
ing metabolic trajectories (Figure 2B), suggesting that the influence of the geographical
location on the metabolite levels may outweigh that of the yield variation.

Based on the loading factor of PCA, the contribution rates of tobacco metabolites to ge-
ographical location and yield differentiation were analysed (Table 1). The metabolites that
contributed significantly to discriminating the geographical location (absolute value > 0.12)
included saccharides, sugar acids, sugar alcohols, and phosphorylated sugars, which indi-
cated that regional factors mainly affected carbohydrate metabolism and phosphorylation.
On the other hand, the metabolites that contributed significantly to discriminating the
yield factors (absolute value > 0.12) were mainly nitrogenous metabolites, such as amino
acids and polyamines, which showed that nitrogen metabolism was a key determinant
for achieving the desired crop yields. In brief, the geographical location had a greater
influence than yield on metabolic changes in tobacco leaves, and these critical metabolites
play crucial roles in plant development and growth regulation.
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Table 1. Metabolite contributions to geographical location and yield factors.

Compounds
Contribution to
Geographical

Location Factor
Compounds Contribution

to Yield Factor

Threitol 0.159 Phenylalanine 0.189
6C sugar acid 0.156 Pyroglutamic acid 0.184
L-rhamnose 0.154 Phytol 0.179

Arabitol 0.153 Threonine 0.171
Ribonic acid 0.152 Glutamine 0.170

Beta-sitosterol 0.151 Arabinose 0.169
Erythritol 0.150 Nicotinic acid 0.165
Maltose 0.149 Linoleic acid 0.158

Oleic acid 0.148 Methionine 0.157
Salidroside 0.145 Pipecolinic acid 0.148

5C sugar acid 0.144 Ethanolamine 0.147
Gluconic acid 0.141 Shikimic acid 0.146

Mannitol 0.139 Sucrose 0.145
L-xylonic acid-1,4-lactone 0.138 Asparagine 0.144

Xylose 0.135 Tryptophan 0.144
Tocopherol 0.134 Aspartic acid 0.143

myo-Inositol-1-phosphate 0.130 Gluconic acid 0.143
Sorbitol 0.129 Tyrosine 0.141

Caffeic acid 0.127 Tyramine 0.140
Cellobiose 0.126 Citric acid 0.136

Glycerophosphoglycerol 0.125 Lysine 0.132
Glyceric acid −0.125 Malic acid 0.130

Monomethyl phosphate −0.124 5-Hydroxytryptophan 0.129
L-Arabonic acid-1,4-lactone 0.124 Proline 0.128

Fumaric acid 0.123 Xylitol 0.121
Ascorbic acid −0.122 Tartaric acid 0.120

Sitosterol 0.121
Salicylic acid 0.121
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3.3. Metabolic Profiling in Different Geographical Locations

To further visualize the differences between the two geographical locations (flavour
types) of the metabolites, we applied PLS-DA for discrimination (Figure 3A). The score
plots of PC1 and PC2 clearly demonstrated the distinct separation between the Shuicheng
and Bozhou samples, accounting for 32.4% and 13.1% of the total variance, respectively.
A volcanic map with variable importance in projection (VIP) was drawn according to
the screening standards of p value < 0.05, FC > 1.5, and VIP > 1.2; thus, 31 characteris-
tic biomarker metabolites were found (Figure S1). These biomarkers included primary
metabolites, such as maleic acid, threonic acid, proline, and phenylalanine, as well as
secondary metabolites, such as caffeic acid and quinic acid. Subsequently, heatmap anal-
ysis was performed on these characteristic metabolites (Figure 3B), which revealed two
distinct groups. Group A mainly consisted of the Bozhou samples with greater abun-
dances of phenylpropane metabolism (salicylic acid, VIP = 1.72; p-hydroxybenzoic acid,
VIP = 1.7; caffeic acid, VIP = 1.69) and the TCA cycle (fumaric acid, VIP = 1.64; maleic acid,
VIP = 1.68), along with sugar acid (6C sugar acid, VIP = 1.58; 5C sugar acid, VIP = 1.32)
and saccharolactones (L-arabonic acid-1,4-lactone, VIP = 1.66). Group B predominantly
comprised the Shuicheng samples exhibiting relatively high levels of sugar metabolism-
and glycolysis-related intermediate products (trehalose, VIP = 1.36; glucose-6-phosphate,
VIP = 1.3; fructose-6-phosphate, VIP = 1.38) and a few amino acids (proline, VIP = 1.33;
leucine, VIP = 1.39), which are all crucial factors influencing the location (flavour type).
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3.4. Characteristic Metabolites and Their Metabolic Pathways at Different Yields

The characteristic metabolites in tobacco leaves with different yields were analysed.
According to Figure S2, the three yields in the Shuicheng area were effectively distinguished,
whereas distinguishing between the middle and low yields in Bozhou was challenging. To
further investigate the differences among these three yields in Bozhou and Shuicheng, the
PLS-DA of VIP > 1.2, FC > 1.5, and p < 0.05 was used to conduct characteristic metabolite
screening (Figures S3 and S4), and metabolite pathway enrichment analysis was subse-
quently conducted at different yields (Figure 4). The main enrichment pathways of the
Bozhou samples were phenylalanine metabolism; phenylalanine, tyrosine, and tryptophan
biosynthesis; starch and sucrose metabolism; glycine, serine, and threonine metabolism;
alanine, aspartate, and glutamate metabolism; and isoquinoline alkaloid biosynthesis
(Figure 4A). The main enrichment pathways of the Shuicheng samples were phenylala-
nine metabolism; arginine biosynthesis; starch and sucrose metabolism; glycine, serine,
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and threonine metabolism; alanine, aspartic acid, and glutamate metabolism; and linoleic
acid metabolism (Figure 4B). These findings suggest that samples from both Shuicheng
and Bozhou exhibited changes in six pathways, four of which were the same and mainly
involved C/N metabolism.
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Further analysis of these metabolic pathways (Figures 5 and S5) revealed higher levels
of intermediates related to glycolysis and sugar metabolism (e.g., glucose, sucrose, fructose,
fructose-6-phosphate, and glucose-6-phosphate) in the high-yield tobacco samples than
in the other samples. However, sugar alcohols exhibited a significant increase in both the
middle-yield and low-yield tobacco samples in the two regions. The content of amino
acid metabolism intermediates, such as serine, threonine, and valine, increased in high-
yield tobacco leaves. Moreover, the levels of phenylalanine, tryptophan, and shikimic
acid were also elevated, indicating that the metabolic pathway of phenylpropane in the
high-yield tobacco leaves of the two regions improved. High-yield tobacco leaves also
improved the urea cycle in both regions, thereby increasing the content of polyamines and
nicotine alkaloids.
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4. Discussion
4.1. Metabolite Identification and Method Evaluation

In general, methanol–chloroform–water is an effective metabolite extraction system
for water-soluble and hydrophobic metabolites in plant matrices [23]. The accurate identifi-
cation of 124 metabolites belonging to 22 chemical categories was successfully achieved
in tobacco leaves. These metabolites play crucial roles as significant contributors to the
C/N metabolic cycle. In addition, the reproducibility of the results is also a crucial aspect
when evaluating the quality of an analytical method [25,26]. All metabolites were subjected
to normalization using an internal standard for relative quantification. As indicated in
Table S2, 97.6% and 87.9% of all metabolites had a relative standard deviation (RSD) below
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20% for repeatability and reproducibility, respectively. The repeatability and reproducibil-
ity were considered acceptable and in line with the values commonly found for plant
metabolomics (ca. 25–35%) [27]. All the results indicated that tobacco pseudotargeted
GC–MS analysis is a dependable approach for metabolic profiling.

Although the precision met the requirements for relative quantification, it is recom-
mended that an appropriate internal standard system with each chemical classification
is needed to effectively improve the accuracy and precision. The isotopic or homologous
internal standard is the best choice for further research [22]. Furthermore, pseudotargeted
analysis cannot detect metabolites that have not been identified. Untargeted metabolomics
is a complementary approach for discovering crucial signals of unknown metabolites
in tobacco.

4.2. Characteristic Metabolites of Different Geographical Locations and Their Effects on
Flavour Type

Previous studies have shown that light-flavoured tobacco is characterized by freshness,
floral notes, and acidity, while fully flavoured tobacco predominantly possesses a high
aroma profile with a rich and pure fragrance [28,29]. Carbohydrates constitute the most
significant precursors of aroma in tobacco, accounting for 40–50% of its weight [30,31].
These compounds generate flavour components and acidic substances in mainstream
smoke that mitigate the harsh taste during smoking while enhancing the overall flavour
characteristics and aroma perception [32]. By screening the characteristic metabolites
of the two geographical locations, the abundances of saccharides and phosphorylated
sugars in the Shuicheng sample were greater than those in the Bozhou samples. Notably,
trehalose, fructose-6-phosphate, and glucose-6-phosphate were identified, two of which
are intermediate products of glycolysis (the oxidation process from glucose to pyruvate).
Additionally, proline and leucine were more abundant in the Shuicheng samples than in
the Bozhou samples; proline contributes to freshness and floral attributes, while leucine
significantly enhances acidic notes [33]. Therefore, these metabolic characteristics may
lead to the formation of light-flavoured tobacco leaves. It is widely recognized that a
decreased nitrogen nutrition level promotes the formation of a delicate aroma profile in
flue-cured tobacco, whereas an increased nitrogen nutrition level enhances the expression
of a strong and abundant aroma style in tobacco [34]. The abundance of organic acids in
the Bozhou samples was much greater than that in the Shuicheng samples. Organic acids
play a crucial role in smoke equilibrium and tobacco pH regulation, ultimately influencing
the aroma quality indirectly [35]. For instance, Bozhou has a higher concentration of oleic
acid than Shuicheng, while high levels of unsaturated fatty acids can enhance the flavour
of acidic wax and fat [34]. Moreover, as intermediate products of the phenylpropane
metabolic pathway (caffeic acid), the abundance of the Bozhou samples was also greater
than that of the Shuicheng samples. Phenylpropanoid biosynthesis in most plants initiates
the conversion of phenylalanine to cinnamic acid, resulting in diverse aromatic compounds
and affecting the aroma of tobacco leaves [36]. Furthermore, a high concentration of ester
compounds leads to a stronger irritant taste, and the L-arabonic acid-1,4-lactone in Bozhou
samples may be one of the reasons for the abundant aroma [37]. Therefore, these metabolic
characteristics may lead to the sweet honey and light flavour types in Guizhou.

4.3. Characteristic Metabolites and Metabolic Pathways of Different Yields

The metabolic pathways involved in C metabolism, such as sugar metabolism, gly-
colysis, the TCA cycle, and shikimate–phenylpropanoid metabolism, play crucial roles in
generating energy that can be utilized by plants for growth and development, simulta-
neously improving the resistance of plants and providing the carbon skeletons necessary
for various biosynthetic processes [38]. It is widely acknowledged that the production
of carbohydrates in source organs and their utilization in sink organs are tightly coordi-
nated processes that ultimately determine the yield [39]. Starch and sucrose metabolism
comprised the main enrichment metabolic pathway, and there was an increase in the
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abundance of glucose, fructose, sucrose, fructose-6-phosphate, glucose-6-phosphate, and
other saccharides in the high-yield tobacco samples from the two regions. The metabolic
pathways of starch and sucrose metabolism are complex biochemical processes that rely on
the synergistic action of multiple enzymes [40]. Phenylpropane metabolism intermediates
are crucial for plant growth and the long-distance transport of water and nutrients while
also aiding plant defence against abiotic and biotic stresses [41,42]. For instance, quinic
acid plays a vital role as an antioxidant by protecting enzyme structures within plants [43].
Notably, low-yield tobacco leaves exhibited increases in caffeic acid, caffeoquinic acid, and
quinic acid levels, indicating an higher expression in the phenylpropane metabolic pathway.
Due to cultivation stress, this pathway can produce abundant antioxidants and protect
tobacco plants from the stress effects. Conversely, high-yield tobacco showed a significant
increase in phenylalanine but a decrease in phenylpropane metabolites due to potential
inhibition of phenylalanine ammonia lyase enzyme activity [44].

The metabolic pathways involved in N metabolism, such as amino acid metabolism,
polyamine metabolism, and the urea cycle, serve as crucial physiological mechanisms that
regulate the synthesis and decomposition of nitrogen-containing compounds in plants [45].
Amino acids serve as precursors for numerous nitrogen-containing compounds [46]. The
content of most amino acids in the Bozhou samples decreased from high yield to middle
yield to low yield. Notably, the altered metabolic pathways included alanine, aspartate, and
glutamate metabolism and glycine, serine, and threonine metabolism in the two regions.
Glycine and serine, which are essential components of photorespiration, contribute to the
provision of one-carbon (1-C) units that actively engage in diverse metabolic pathways,
such as polyamine metabolism and nucleic acid metabolism [47]. Furthermore, high-yield
tobacco in Bozhou significantly enhanced the urea cycle, leading to increased contents of
polyamines and nicotine while altering the isoquinoline alkaloid biosynthesis pathway.
However, the breeding objective of tobacco has always been to reduce the levels of nicotine
and related alkaloids [48]. Furthermore, a previous study indicated that treatment of
tobacco plants with polyamine biosynthesis inhibitors can reduce the polyamine content
and ameliorate the phenotype [49]. Hence, polyamine and nicotine biosynthesis in tobacco
involves complex interactions that affect the quality of tobacco leaves.

To summarize, the variation in plant metabolites is primarily influenced by the geo-
graphical location and yield [50]. Xu et al. reveal that metabolic differences of E. purpurea
were related to geographical location (latitude and longitude) and environmental variables
(climate and soil) with NMR [51], while, Benmahieddine et al. used HPLC-DA to identify
metabolic characteristics of Pistacia atlantica Desf. with gender, organ type (roots, buds, and
fruits), geographical location, and stage of ripening [52]. The factors influencing metabo-
lites are highly complex. Therefore, Further research needs to consider the effect of more
environmental factors and different harvest time on metabolic characteristics and tobacco
flavour types.

5. Conclusions

A total of 124 metabolites were identified in Guizhou tobacco leaves of different
geographical locations and yields by GC–MS pseudotargeted metabolomics and were
divided into 22 chemical categories. Multifactor analysis revealed that the geographical
location had a greater influence on metabolites than the yield factors. A screening of the
characteristic metabolites in tobacco leaves from different regions revealed that the levels
of sugar metabolism- and glycolysis-related intermediate products and amino acids were
greater in the Shuicheng samples (light flavour), and the contents of organic acid, sugar
acid, and glycolactone involved in phenylpropane metabolism and the TCA cycle were
greater in the Bozhou samples (sweet honey flavour). Metabolic pathway analysis revealed
that glycolysis and sugar, amino acid, and alkaloid metabolism were maintained at higher
levels in the high-yield samples, while higher expression of phenylpropane metabolism
was maintained in the low-yield samples.
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