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Abstract: Heat is one of the most fundamental and ancient environmental stresses, and 

response mechanisms are found in prokaryotes and shared among most eukaryotes. In the 

budding yeast Saccharomyces cerevisiae, the heat stress response involves coordinated 

changes at all biological levels, from gene expression to protein and metabolite 

abundances, and to temporary adjustments in physiology. Due to its integrative multi-level-

multi-scale nature, heat adaptation constitutes a complex dynamic process, which has 

forced most experimental and modeling analyses in the past to focus on just one or a few of 

its aspects. Here we review the basic components of the heat stress response in yeast and 

outline what has been done, and what needs to be done, to merge the available information 

into computational structures that permit comprehensive diagnostics, interrogation, and 

interpretation. We illustrate the process in particular with the coordination of two metabolic 

responses, namely the dramatic accumulation of the protective disaccharide trehalose and the 

substantial change in the profile of sphingolipids, which in turn affect gene expression. The 

proposed methods primarily use differential equations in the canonical modeling framework 

of Biochemical Systems Theory (BST), which permits the relatively easy construction of 

coarse, initial models even in systems that are incompletely characterized. 
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1. Introduction 

In most cells, a strong temperature increase in the environmental milieu causes a stress response. 

Much is known about the details of this type of response (e.g., [1]) and yet, we do not have a 

comprehensive picture of how the response is organized, regulated and coordinated. It is well 

understood that heat shock proteins are involved, genes up-regulated, signaling mechanisms triggered 

and metabolic profiles dramatically altered. Some of these changes commence within minutes and 

some may last for hours after the first exposure to heat. All response processes at the various 

hierarchical levels of biological organization are crucial, and significant alterations in any of them have 

the capacity to cause damage and jeopardize survival. The question thus arises of how a cell manages 

to coordinate this complex, multi-level-multi-scale response. Answering this question is quite 

challenging, due to the large number and heterogeneity of the involved molecules and the different 

time scales at which transcription, translation, metabolism, signal transduction, protein turnover, and 

other physiological processes occur. Because our unaided mind is not equipped to assess the 

synergisms and antagonisms between many quantitative, dynamic processes with any degree of 

reliability, the task of answering questions of organization and regulation suggests the use of 

mathematical models that are at the core of computational systems biology. 

Our objective for the work described in this article is the following. We intend to indicate how to 

translate the known details of a heat stress response into a computational structure that can then be 

analyzed and interrogated. Upon sufficient diagnostics and validation, this structure, in the form of a 

systems biological model, is expected to have the capacity of explaining how the response system 

works under physiological conditions and how it responds, or fails, under extreme adverse conditions. 

Specifically, the development of such a model must be capable of genuinely addressing the multi-

level-multi-scale nature of the stress response system, by accounting for the system dynamics with 

respect to changes in gene expression and in the temporal profiles in the abundances of mRNAs, 

proteins and metabolites. A major challenge associated with this task is that any modeling approach 

must depend on the ability to identify the important components of a system and to omit or simplify 

what is less relevant and might distract rather than illuminate. A similarly difficult challenge is the 

appropriate selection of mathematical representations for the governing processes within the system. 

In this project, we focus primarily on the metabolic level of the heat stress response in 

Saccharomyces cerevisiae. The advantages of this slice of the biological hierarchy are the following. 

First, the set of participating metabolites is reasonably contained in size: It consists of only about a 

dozen metabolites. Second, much, although not all, is known about the regulatory mechanisms 

affecting the system. Third, at the protein level, only about thirty enzymes, transporters, transcription 

factors and other proteins are involved and these proteins are encoded by a corresponding number of 
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genes. Thus, the pertinent set of contributors, while being too large for purely intuitive argumentation, 

is manageable with computational means. 

2. Cellular Responses to Heat Stress 

Throughout evolution, recurring changes in environmental conditions have forced organisms to 

develop strategies for maintaining a reasonably well-buffered intracellular milieu, which is characterized 

by a self-regulated steady state and collectively referred to as homeostasis. The strategies for 

maintaining homeostasis consist of finely coordinated combinations of short-term or long-term 

adjustments in the cellular state at different levels of the biological hierarchy. The adjustments 

themselves tend to depend in magnitude on the degree of stress and are typically transient in nature. 

Thus, cells subjected to more pronounced stresses respond with higher magnitudes and/or longer lasting 

adjustments. However, once adapted to the stress situation, gene expression and protein levels tend to 

settle into a new steady state, which is often remarkably similar to the initial, pre-stress steady-state. 

Temperature is an interesting stressor as it occurs frequently in nature, is well characterized, and can 

change rather quickly. It mainly affects two cellular components directly, namely lipids and proteins. 

DNA is prone to heat-induced denaturation as well, but this effect is of minor relevance for heat stress 

studies in yeast, because it occurs only at much higher temperatures of about 75–100 °C [2]. 

Temperature can, however, contribute to increased damage to the DNA molecule, due to reactive 

oxygen species (ROS) [3]. Lipids are affected by heat with respect to their stiffness and mobility, 

which in turn modifies the fluidity of membranes and possibly their proper functioning [4]. However, 

the exact consequences of heat-induced changes on membrane function are not well understood. 

Among the various classes of macromolecules, proteins are thus the main facilitators and conduits 

of a coordinated stress response. Proteins respond to heat with three distinct changes of great importance: 

Temperature affects their production from mRNAs; their dynamics of degradation or deactivation; and 

their folding state, which often translates into changes in activity. These direct alterations in proteins 

lead to changes that secondarily affect other proteins, genes, metabolites, or signal transduction 

systems. Because of the importance of these changes, we discuss them below in greater detail. 

2.1. Protein Production 

Temperature affects the production of proteins at the level of translation. Yeast cells temporarily 

cease growing by reducing ribosome and tRNA synthesis, and they also generally reduce transcription [5]. 

Ribosomal RNAs account for 80% of the total RNA in a growing cell [6]. Therefore, reducing the 

expression of rDNA should be expected to free some of the resources needed for a faster expression of 

proteins that are required to overcome heat-induced problems. Conversely, cells under heat stress  

up-regulate genes that code for proteins and processes of immediate pertinence, including: energy 

production through carbohydrate and lipid metabolism; metabolite transport; respiration; redox balance 

and ROS detoxification; cell wall modification; DNA damage repair; as well as protein chaperones 

that are used for refolding and degradation. 

In addition to affecting the translation rate, heat can alter protein synthesis through changes in the 

stability of mRNAs. Importantly, some mRNAs become more stable during heat stress. Of particular 

pertinence are mRNAs of genes that are associated with the transcription factors MSN2 and MSN4 [7], 
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which are involved in stress responses (see below). By contrast, the half-lives of mRNAs whose 

production depends on heat shock factor HSF1 do not change with or during heat stress [7], whereas 

the mRNA levels of translation-related genes tend to decrease with heat stress [5]. 

2.2. Protein Denaturation and Degradation 

Sufficiently high temperatures induce unfolding, denaturation and aggregation of proteins. This 

change in structure may be reversible or irreversible. Reversible denaturation is corrected by 

chaperonins, which refold un- or misfolded proteins, whereas irreversibly denatured and aggregated 

proteins need to be solubilized and are subsequently removed by proteolysis in the proteasome. The 

processes of complete unfolding, denaturation, and aggregation are typical for higher temperatures. 

2.3. Partial Protein Unfolding 

At lower temperatures, such as 35–40 °C, the first step in the heat response is a passive, partial 

unfolding of proteins. The resulting changes in protein structure are much milder than for higher 

temperatures and, in fact, they are used by the cell for regulatory purposes. In particular, proteins of the 

important sub-group that possesses chemical activity experience changes in their enzymatic activity. 

This combination of increased catalytic activity, due to the Arrhenius effect, and decreased activity, 

due to partial unfolding, leads to something like a bell-shaped response curve of enzyme activity as a 

function of temperature, with the maximum of activity located at the optimal temperature for the 

specific enzyme.  

The slight unfolding of proteins triggers distinct, secondary cellular responses, which target:  

(1) transcription factor activation leading to altered physiological processes; (2) gene expression 

leading to metabolic adjustments; (3) rapid production of protective metabolites; or (4) signaling 

systems triggering tertiary responses. 

(1) Effects of protein unfolding on transcription factor activation leading to altered physiological 

processes. Of particular prominence, the pathway associated with heat shock factor 1 (HSF1) is 

activated in response to heat (Figure 1). Hsf1p is a transcription factor that recognizes and binds to the 

heat shock element HSE (5'-NGAAN-3') [8]. Under normal conditions, Hsf1p exists in two states, 

namely free or bound to HSEs. In both states, Hsf1p is kept repressed through the association with 

repressor proteins like Cpr7p, Hsc82p, or Sse1p. Heat-unfolded proteins affect the response system 

through sequestration of these repressor proteins, which thereby permit the activation of Hsf1p [9]. 

Thus, unfolded proteins free a regulatory protein, HSF1, whose pathway is responsible for the 

production of protein chaperones, such as HSP82, SSAs and SSBs. HSF1 is also involved in cell cycle 

regulation and in protein turnover by regulating the expression of the genes UBC4 and CUP1. 

(2) Effects of protein unfolding on gene expression leading to metabolic adjustments. Heat-induced 

protein unfolding also targets the zinc-finger transcription factors MSN2/MSN4, which control a large 

number of genes that appear to be associated with metabolic stress responses (Figure 2). MSN2 and 

MSN4, collectively called MSN, respond to heat stress and protein kinase A (PKA) in an antagonistic 

fashion [10]. As long as PKA is active, MSN is kept in the cytosol, where it is inactive. Sufficient heat 

induction inactivates the PKA pathway and causes MSN to relocate to the nucleus, where it becomes 

active [11]. Once in the nucleus, the transcription factors bind to specific Stress Response Elements 
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(STRE; 5′-CCCCT-3′) and thereby activate the transcription of downstream genes [12,13]. Genes 

under the control of MSN code for protein chaperons, proteins involved in protective metabolic 

pathways (Hxk1p, Tps1p, Nth1p, Gpd1p) and proteins involved in antioxidant defenses (Ctt1p, Sod2p) [9]. 

Figure 1. Modeling heat shock factor 1 (HSF1) activation. Free HSF1 protein binds to the 

heat shock element (HSE) and helps elicit the heat shock response, by inhibiting cell cycle 

progression and leading to the expression of chaperonins. In the absence of heat-unfolded 

proteins, the HSF1 protein is kept inactive by the CPR7 protein (Hsf1p-Cpr7p). Under heat 

stress, the CPR7 protein is sequestered by heat-unfolded proteins, thus releasing its 

inhibitory effect of HSF1. 

Hsf1p Hsf1p-Cpr7p

Cpr7p Cpr7p-Unfolded protein

Unfolded
Protein

Chaperonin

Cell Cycle

HSE

 

Figure 2. Heat stress affects the localization of MSN protein. The MSN protein (Msnp) is 

produced from its corresponding mRNA (MSN), which in turn is transcriptionally 

activated by heat stress (HS). Heat stress promotes a nuclear localization of the MSN 

protein (Msnpn), while active protein kinase A (PKA) (PKAC) favors cytosolic localization 

(Msnpc). The activity of PKA is dependent on glucose (Glc) metabolism and heat stress. 
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Thus, the HSF1 and MSN pathways play different, complementary roles, indicating a division of 

labor between the two transcription factors. HSF1 controls physiological processes that are temporarily 

dispensable, such as cell cycle activities, and is essential for the cell’s recovery from short, high-

intensity heat shock. By contrast, MSN seems to be primarily in charge of long-term survival at high, 

but tolerable temperatures [14]. A good review, although not recent, can be found in this reference [9]. 

One should note that heat affects the regulation of a number of genes that code for enzymes 

involved in central carbon metabolism. Two modes of action seem to play a role: Some steps are 



Metabolites 2012, 2              

 

 

226

catalyzed by more than one protein paralog, in which case some of the paralogs are heat-inducible 

while the others are not (Table 1). Additionally, all genes coding for producing and degrading enzymes 

in some metabolic cycles (e.g., trehalose or glycogen) are up-regulated, which hints at the existence of 

downstream regulatory processes. 

Table 1. Differentially regulated protein paralogs (adapted from [1]). 

ESR * Genes Non-ESR* Paralogs Function 
HXK1 HXK2 Hexokinase 
GLK1 YDR516C Glucokinase 
PGM2 PGM1 Phosphoglucomutase 
PFK26 PFK27 2-phosphofructokinase 
FBP26 FBP1 Fructose-2,6-bisphosphatase 
GPM2 GPM1, GPM3 Phosphoglycerate mutase 
GSY2 GSY1 Glycogen synthase 
GLG1 GLG2 Glycogen initiator 
GND2 GND1 6-phosphogluconate dehydrogenase 
GPD1 GPD2 Glycerol dehydrogenase 

* ESR–Environmental Stress Response. 

(3) Effects of protein unfolding on the rapid production of protective metabolites. Heat-induced 

protein unfolding, directly affects events at the metabolic level. In particular, temperature alters the 

activity of several enzymes of the trehalose pathway, thereby leading to the accumulation of the 

disaccharide trehalose, which protects proteins, membranes and DNA from damage. Intriguingly, heat 

stress induces a simultaneous increase in the expression of genes coding for both the synthesis and 

degradation of trehalose, glycogen and fructose-2,6-biphosphate [1]. This increased capacity for 

production and degradation of intermediates is at first puzzling, and one might be tempted to conclude 

that it constitutes a futile cycle. However, it rather appears to be evidence of a downstream regulatory 

mechanism. Such a mechanism can be inferred very nicely from the case of trehalose. Here, the 

producing enzymes (trehalose 6-phosphate synthase and phosphatase; Tps1p and Tps2p) have activity 

optima at temperatures of 35–45 °C, whereas the degrading enzyme (trehalase; Nth1p) has its optimum 

temperature at 30 °C [15]. With this discrepancy in optimal temperatures, very little trehalose is 

produced at 30 °C, and because trehalase is at its maximum activity, no trehalose accumulates. 

However, at 40 °C, trehalose production is high and the trehalase activity is reduced by a factor of 

~2.4, which causes trehalose to accumulate. Once the temperature returns to normal values, the direct 

temperature dependence of these enzyme activities allows the cell immediately to degrade all trehalose 

accumulated at the higher temperature. Not to be wasteful, this degraded trehalose enters glycolysis in 

the form of two molecules of glucose. 

In a slightly different mechanism, glycogen production and degradation are regulated by cAMP 

dependent phosphorylation: in the presence of glucose, glycogen synthase is activated and glycogen 

phosphorylase is inactivated; at higher temperatures (35 °C), the glucose effects on these enzymes are 

amplified [16]. 
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(4) Effects of protein unfolding on signaling systems triggering tertiary responses. Heat-induced 

protein unfolding is expected to influence numerous signal cascades. For instance, an initial cascade of 

the cAMP-PKA system (see above and Figure 2) is directly affected by heat stress [17]. 

Another intriguing example is the effect of heat on the activity of enzymes involved in the 

sphingolipid pathway [18]. We will discuss this system later in more detail but, briefly summarized, it 

is known that sphingolipids like ceramide and sphingosine-1-phosphate play direct signaling roles in a 

variety of cell programs [19]. Specifically within the context of stress responses, heat induces changes 

in the enzyme profile of the biosynthetic pathway, which can lead to a significant alteration in the 

concentration profile of these lipids. This altered profile, in turn, evokes secondary changes in gene 

expression. It furthermore causes indirect ripple effects that initially affect the concentrations of other 

lipids, which again may have their own signaling functions. As a particular example, it was recently 

shown that heat stress induces an increase in the concentration of phytosphingosine-1-phosphate, 

which peaks about 10 to 20 min into the stress. The increase in this sphingolipid, in turn, has an effect 

on numerous other sphingolipid species and also regulates genes associated with cellular respiration, 

by affecting the HAP transcription factor complex [20]. 

3. Modeling Heat Stress Responses 

3.1. General Considerations 

As indicated in the previous paragraphs, heat induces a number of direct and mediated responses. 

While these commence more or less immediately when the temperature rises, their dynamics is quite 

different. As a case in point, the unfolding of proteins is very rapid, and if the protein is an enzyme, the 

corresponding change in catalytic activity is just as fast. By contrast, alterations in gene expression 

lead to physiological effects that are delayed by fifteen minutes or more, due to the time it takes to 

execute transcription and translation. 

The human mind tends to have difficulties integrating diverse quantitative information, arising at 

different time scales, into numerical or even semi-quantitative mental constructs, and this shortcoming 

suggests the application of computational modeling. Modeling approaches in these situations are 

challenging as well, again because of differing time scales and because of the heterogeneity of the 

biological components contributing to the response. 

Two generic, successful strategies in such a situation are the separation of time scales and the 

representation of processes in the format of a canonical model. The separation of time scales consists 

of focusing on a single time scale while keeping processes at distinctly different time scales constant. 

For instance, for the short time period where protein unfolding alters the activity of an enzyme, one 

assumes that changes in gene expression are inconsequential. Their effects will be seen later, but not 

during the first few minutes of changes in enzyme activities. 

The use of canonical representations facilitates the initial model design. These representations, 

including uni- or multi-variate linear or power-law functions, permit the immediate translation of a 

dynamic interaction diagram into a symbolic, mathematical construct, which even at this early state 

allows certain diagnoses and analyses [21,22]. We demonstrate these strategies in the following 
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section, starting with the main transcriptional regulators, MSN2 and MSN4. These are partially 

redundant, although MSN4, which is inducible by heat stress, is only mildly affected by it [5]. 

3.2. Canonical Modeling 

The development of a comprehensive mechanistic model of the transcriptional and translational 

processes is infeasible with our current modeling technologies, because the detailed physical and 

chemical events leading to the formation of an intact protein are exceedingly complex. Even within the 

realm of metabolism, which is much better understood, the choice of a mechanistic model is not 

without problems. As a case in point, the Michaelis-Menten approximation is often chosen as a default 

model for enzyme catalyzed reactions, but this rate law is in truth somewhat problematic because its 

underlying assumptions are not satisfied in vivo [23,24]. For instance, the intracellular milieu is 

certainly not homogeneous and well mixed; the total amount of enzyme is likely to change as a 

function of time, and a substrate may not exist in much higher concentrations than its enzyme. Thus, 

one must question whether the Michaelis-Menten representation can be validly used to capture the 

dynamics of enzymatic processes in vivo. Similarly, mass action kinetics is frequently used, but 

approximating the interactions between several proteins and RNAs in a crowded intracellular 

environment with an elementary reaction is probably not truly appropriate. 

At a very coarse level, the biological complexity and the need for relatively unbiased representations 

can be tamed to some degree by the use of canonical modeling representations, such as power-law 

functions, which time and again have been shown to work well for the formalization of complex 

networks or systems. In particular, these functions are well suited as initial default representations for 

different types of interactions that are a priori ill characterized [25]. The use of power-law functions in 

such situations is a good compromise that does not impose linearity between components, is 

mathematically guaranteed to be correct at some nominal operating point, and often provides a 

reasonable approximation within an acceptable range of concentrations [26]. Due to these features, 

power-law functions are the central component of Biochemical Systems Theory (BST) [21,24,26,27], 

which provides a rigorous theoretical framework for modeling and analyzing biological systems. 

One great advantage of power-law representations is that the model design step is in principle 

straightforward: Suppose a process P is directly affected only by a substrate S and a modulator  

M. Then we know immediately that this process is represented as a function of the type  

Here  is a positive rate constant, and the exponents g1 and g2 are real-valued kinetic orders, the first of 

which is positive, because S is the substrate, and the second of which is negative if M is an inhibitor or 

positive if it is an activator. The magnitude of each kinetic order reflects the strength of the effect of 

the variable, with which it is associated, on the process. In fact, if the modulator in Equation (1) has a 

negligible effect on P, its kinetic order g2 is close to 0, M raised to this number is close to 1, and the 

influence of M essentially disappears from the equation. 

In the case of heat stress in yeast, power-law functions may be used to represent the overall 

synthesis of transcripts as well as their degradation. To represent the specific case of a gene under the 

control of MSN, such as TPS1/2 or NTH1, the nuclear form of the Msn protein is included in the 

21 gg MStP  )( . (1) 
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power-law function for gene expression, because it exerts a positive, activating effect (see Figure 2). 

The dynamics of proteins are formulated in canonical models in a similar manner, namely through 

overall production and degradation terms. For example, the power-law term for protein synthesis is 

formulated to depend directly on the abundance of its corresponding transcript. 

As a more complex example, but again of the same mathematical format, Equation (2) shows how 

different factors can be included in a power-law representation (see [28]). In this case, we model a 

reaction step Fi, in which the enzyme activity depends explicitly on the temperature in the milieu. As 

before, we include in the representation the substrates (Sj) and modulators (Mk), and account for their 

respective roles with kinetic orders hi,j and hmi,k. We also specify a rate constant i and explicitly 

account for the amount of enzyme, Pi. If we are justified to assume a direct proportionality between 

enzyme amount and activity, its kinetic order is 1; otherwise a different, more appropriate kinetic order 

would be included. Finally, Qi is the direct effect of temperature (T) on this enzyme (with reference to  

30 °C). It is usually not included in metabolic models, but obviously becomes important for heat-stress 

studies. Therefore, the power-law formulation of the reaction step reads  

Further details can be found in [28]. Thus, setting up a dynamic model in a symbolic canonical 

format is straightforward, because it is clear how different pieces of information are to be converted 

into components of the mathematical model. The real difficulties arise later, namely in the 

determination of appropriate parameter values, which are seldom known. However, as a default, 

experiential values and educated guesses can be employed, at least initially [29]. Upon completion, a 

canonical model of the transcriptional and translational aspects is expected to simulate the effects of 

heat stress on the concentrations of mRNAs and their corresponding proteins, at least in a coarse-

grained manner. 

3.3. Parameterization 

While the proper translation of a biological phenomenon into a computable structure continues to be 

an unsolved challenge, it is relatively straightforward to set up initial canonical models in symbolic 

form, as described before. Yet, achieving the construction of such a symbolic model is only the first 

step of quantitative model design. A second challenge to be addressed is the identification of 

appropriate parameter values, and thus the mining of data and kinetic information. Depending on the 

level of modeling, different types of data and different methods have been proposed, but none of them 

so far is truly satisfactory [30]. 

For aspects of heat stress associated with transcription, Gasch et al. [5] published a seminal paper 

that describes numerous transcriptional responses of yeast to environmental changes. The paper is 

based on data that were made publically available [31] and, among other scenarios, quantifies how 

most of the transcriptome responds to a temperature jump from 25 °C to 37 °C. Indeed transcript levels 

are presented for a period of 80 min after the initiation of heat stress. Two further studies [32,33] also 

induced gene expression patterns under heat stress. Other authors [34–36] published complementary 

datasets for transcript abundances, transcriptional rates and transcript half lives. More recently, 
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Castells-Roca et al. [7] published a genome-wide dataset containing mRNA amounts, as well as 

transcription and decay rates of each mRNA, obtained in a growing culture of yeast cells that were 

heat stressed by a temperature shift from 25 °C to 37 °C; the data were presented for several time 

points up to 40 min. 

Some data are also available at the proteome level, although these are often not as precise and 

reliable as for transcripts. For instance, the literature contains accounts of protein amounts, translation 

rates and protein half-lives, albeit only under control conditions [34,37,38]. Also, more recently, a 

proteome-wide study characterized the changes triggered by shifting a yeast culture from 24 °C to 37 °C, 

but this study contains results for only two time points (0 and 30 min) [39]. In principle, these types of 

datasets render it possible to parameterize the aspects of a multi-level model that are related to 

transcripts or proteins.  

To refine and extend the parameterization of the metabolic aspects of the model, additional data are 

needed. Often these are collected from different sources, which sometimes causes problems, due to 

variations in experimental conditions. Of course, further metabolic studies could be performed under 

essentially the same conditions that were used to study the transcriptome and proteome, so that a 

consistent dataset would characterize the three levels of transcripts, proteins, and metabolites. Some 

kind of standardization has already started to occur in this direction [40], at least for enzyme kinetics. 

3.4. Modeling Gene Expression and Protein Production 

We demonstrate the generic modeling approach by beginning at the gene expression level. Of 

particular importance for heat stress responses are MSN2/4, as discussed before. For simplicity, it is 

useful to model these two transcription regulators as just one MSN gene or protein. This simplification 

seems to be supported by their structural and functional similarity. Associated with this transcription 

factor are a basal level of expression and the provision that heat might slightly increase this expression. 

As discussed previously, the activity of MSN also depends on protein kinase A (PKA), which itself is 

affected by cAMP and stress. A recent model [17] integrates these phenomena. It describes the PKA 

system in great detail and leads to the conclusion that cAMP-PKA and stress may cause an oscillatory 

shuttling of Msn2p between nucleus and cytoplasm. However, the model does not describe 

mechanistically or operationally how heat stress changes the localization of the MSN protein. Thus, by 

adjusting the main concepts of this model to our purposes, one might propose to model the change in 

localization according to the scheme in Figure 2, where heat stress promotes nuclear localization, 

whereas activation of PKA favors cytosolic localization. In this approach, PKA is modeled in one of 

two states, namely, activated (PKAC) or inactivated (PKARC). The conversion to the activated state 

depends on glucose, whereas heat stress inactivates PKA. Once in the nucleus, the Msn protein 

activates the expression of genes coding for some of the enzymes associated with heat stress (TPS1,2; 

HXT5; ZWF1; HXK1; GLK1; PGM2; GPM2; GSY2; GLG1; NTH1) and with generic chaperonins 

that possess refolding functionality (see later and Figure 3). In a canonical model, the qualitative 

description of the various influences is straightforwardly translated into power-law terms that contain 

each contributing factor as a variable with an exponent [21,25]. 

The expression of HSF1 does not seem to change much with heat stress [5], and it is therefore not 

necessary to model its gene expression. Instead, one considers the total amount of protein as constant 
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and partitions this amount into different activity states. Specifically, HSF1p can exist in three states: 

free, bound to HSE, or bound to repressor proteins (Figure 1). Hsf1p is kept inactivated by binding to a 

number of proteins with similar function. Again for the simplicity of an initial, coarse model, one 

representative for these proteins may be chosen, and a good candidate is Cpr7p. Activation of Hsf1p 

secondarily induces the expression of chaperonins and inhibits the cell cycle. A mathematical model of 

these aspects is found in this reference [41]. 

Figure 3. Scheme of the competing forces affecting protein folding and unfolding. Heat 

stress (HS) causes the unfolding of proteins, while chaperonins promote their refolding. 

Trehalose functions as a protein stabilizer preventing denaturation and aggregation; 

however, it also interferes with the proper functioning of heat shock proteins (here 

represented by Chaperonin) in the refolding of denatured proteins. 

Folded Unfolded

HS

Tre

HS
Tre

Chaperonin

Tre

Chaperonin

 

In order to model Hsf1p activation, we consider a pool of yeast proteins that is prone to heat 

denaturation and serves the purpose of providing the signal input to the heat stress response (Figure 1). 

These proteins might be enzymes or structural proteins that tend to unfold at non-optimal temperatures, 

or they might be intrinsically disordered proteins that are known to have signaling functions [42]. These 

types of heat-induced effects can be converted into a canonical model where a folded protein controls a 

heat signaling pathway and where its unfolding triggers—or at least contributes to—a stress response. 

As is typical in nature, the ultimate response to a stress situation is the result of a balance between 

opposing forces. We already discussed the counteracting effects of cAMP-PKA and heat on the 

localization of MSN2/4 (Figure 2). Another example of the balance of opposing forces is the folding, 

unfolding, and refolding dynamics of proteins (Figure 3). The disaccharide trehalose protects proteins 

from unfolding, but interferes with the refolding and degradation of the unfolded protein [43]. By 

contrast, chaperonins (as representatives of heat shock proteins) promote refolding and facilitate the 

degradation of unfolded proteins. If these forces are entered into a model, the degradation of unfolded 

forms has to be balanced with the production of proteins, so that the model may eventually reach a 

steady state. This production term may be made heat stress sensitive, which is in line with the 

observation that many transcripts are simply down-regulated under heat stress [5]. At the same time, 

protein degradation is known to be affected by heat, and inclusion of this effect in the model might 

improve the functioning of this hypothetical signaling pathway under stress.  
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3.5. Modeling Specific Metabolic Events under Heat Stress: The Trehalose Cycle 

Events at the metabolic level are typically easier to model than at other levels, because specific 

kinetic information is often available and phenomena like the conservation of mass in reactions 

provide very valuable constraints that aid the parameter estimation process. As a consequence, several 

models have been proposed to analyze heat stress and its metabolic effects in yeast and other 

organisms (e.g., [44–51]). For example, Voit and Radivoyevitch [48] used a canonical modeling 

approach to study the metabolic consequences of changes in gene expression following heat stress. 

Although quite simplistic, the model suggested an explanation for the observed heat-induced 

expression profile, which is quite counterintuitive, with some genes up-regulated many fold, and other 

genes, even those coding for neighboring reactions, not changed in expression at all. Another study 

demonstrated the design features of the trehalose pathway with controlled comparisons that identified 

the role of every regulatory signal at the metabolic level, as well as the observed gene expression 

patterns [44]. Sorribas and his group refined these types of analyses with sophisticated optimization 

methods that explained why the observed gene expression patterns are metabolically superior to  

a priori imaginable alternatives [45–47,52]. These types of studies have shown that it is indeed 

possible to infer, with a fairly good degree of confidence, the changes in metabolic states from gene 

expression or, conversely, the changes in expression profiles from a metabolic model and a set of 

established physiological criteria based on experimental information. 

Earlier studies relied on a possibly significant simplifying assumption, namely that there is a linear 

correlation between the changes in transcriptomic and proteomic profiles. Maybe more importantly, 

these approaches ignored the direct temperature effects on enzyme catalysis. A more recent model [28] 

takes these aspects into account. In particular, this work joins two dynamic sub-models that represent 

different time scales and shows that canonical models, using power-law functions (as in Equations (1) 

and (2)), can be constructed from experimental data in a top-down manner. The first  

sub-model simulates the time-dependent protein profiles from the network of interactions between 

transcripts and proteins, while the second sub-model is a metabolic model that is capable of simulating 

time-dependent metabolic profiles based on the amounts of enzymes catalyzing each step, which are 

supplied from the first sub-model. 

The main focus of this joint model is the enormous accumulation of trehalose in response to 

elevated temperature. Interestingly, targeted experimental analyses demonstrated that naïve and heat-

adapted cells respond in a qualitatively similar, but quantitatively very different manner. In particular, 

when cells are exposed to heat during their early exponential growth phase, later heat stress leads to 

almost ten times the amount of accumulated trehalose in comparison to naïve cells [28]. To analyze 

this phenomenon, we set up a model in the following fashion. We allowed the naïve and heat adapted 

cells to express different amounts of the enzymes that catalyze each metabolic step in the trehalose 

pathway. This strategy accounted for the fact that cells exposed to heat during growth had the 

opportunity to increase gene expression and thereby the abundance of pertinent mRNAs and proteins. 

Our experimental time series data even allowed us to quantify these changes numerically. 

Additionally, because these data were obtained under two different temperatures (30 °C and 39 °C), we 

were able to quantify some of the direct effects of temperature on the enzymatic activities, while the 

temperature dependence of the activities of the trehalose related enzymes was obtained from literature [15]. 
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By combining this type of a metabolic model with a model capable of predicting changes in enzymes, 

brought about by the heat stress response (see Equation (2)), it is possible to obtain a model that 

predicts metabolic responses and the cell’s adaptation to heat stress exposure quite well. Also, by 

combining the two sub-models, we are in a position to close the trehalose loop, since trehalose production 

is accounted for in the metabolic sub-model, while its effects as protein stabilizer are modeled in the 

transcriptomic/proteomic sub-model. Thus, this modeling strategy allows us to grasp how the various 

components interact synergistically to elicit, regulate, and sustain an appropriate heat stress response. 

3.6. Modeling Specific Signaling Events under Heat Stress: The Role of Sphingolipids 

Sphingolipids form a specific class of lipids that are crucial components of membrane microdomains, 

called lipid rafts, and furthermore play distinct, important roles in the regulation of cellular stress 

responses, differentiation, proliferation, apoptosis and other fundamental cell functions [19]. 

Interestingly, evidence has implicated sphingolipids in the coordination of the heat induced expression 

of genes under the control of the MSN proteins [53]. Sphingolipids have also been shown to be 

necessary for efficient translation initiation during heat stress [54]. Although the pathways of 

sphingolipid biosynthesis and degradation have been characterized over the past decades in some detail 

(see Figure 4), the collective functioning of the pathway is still puzzling, mainly because the unaided 

human mind is unable to integrate its many components and their regulation in a quantitative manner. 

Therefore, with the aid of modeling and computational techniques, we set out to characterize the 

pattern(s) that control the yeast sphingolipid pathway under heat stress. 

We began by developing, over the span of a decade, a series of computational models [55–58]. 

Formulated within BST, the core model contains about 65 variables. The model was tested and 

validated, and it appears that it captures many dynamic features of the sphingolopid pathway quite well. 

An ongoing goal of relevance here is the identification of enzymes that are affected in the pathway 

during a response to heat stress. The analysis, whose technical details will be presented elsewhere, is 

based on time course data of six key sphingolipids, measured at 0, 5, 10, 15, 20, and 30 min after the 

beginning of heat stress (39 °C). We smoothed these data with splines and then applied a piecewise 

optimization approach to estimate the dynamically changing profiles of all enzymes within the 

sphingolipid pathway, by minimizing the distance between the smoothed sphingolipid data and the 

simulation results at each time point from 0 to 30. Using a randomization scheme for the initial 

algorithmic settings, we generated 100 sets of dynamic adjustments in enzyme activities that led to 

metabolite concentration trends consistent with observations. The overall result thus consisted of a 

band for each enzyme activity, within which about 90% of all solutions laid, as well as the average 

trend in each enzyme activity (Figure 5). Details of this analysis will be shown elsewhere. 
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Figure 4. Simplified pathway system of sphingolipid biosynthesis and usage in yeast. 

Sphingolipid biosynthesis is initiated with the condensation of palmitoyl-CoA and serine, 

leading to 3-ketodihydrosphingosine, which is quickly converted into dihydrosphingosine, 

the first simple sphingolipid in the pathway. Dihydrosphingosine is the starting point for 

five other key sphingolipids, namely dihydroceramide, dihydrosphingosine 1-phosphate, 

phytosphingosine, phytoceramide, and phytosphingosine 1-phosphate, which regulate each 

other’s production and degradation extensively. The system has two exit routes. One is the 

formation of complex sphingolipids, which become parts of membranes, and the other is 

the remodeling pathway, which recycles sphingolipids. When heat stress is applied, the six 

key sphingolipids exhibit strong dynamic changes in concentration. Recordings of these 

responses over 30 minutes following a shift in temperature serve as our time course data. 

Pertinent enzymes are shown in italics. Further details are available in [55–58]. 
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The results are quite intriguing in detail, because they reveal the balance of three forces acting, on 

the enzymes, induced by heat: Increased activity according to an enzyme’s Q10 value, as alluded to in 

Equation (2); diminished activity due to partial protein unfolding, an altered half-life of the 

corresponding protein and/or mRNA, and/or a reduced production; and change in enzyme activity due 

to gene expression. As an example for the first category, the activity of phosphoserine phosphatase 

increases about three-fold and remains at this activity level for at least 30 min (Figure 5a). An example 

of the second category is diacylglycerol (DAG) ethanolamine phosphotransferase, whose activity was 

inferred to decrease, after a brief initial increase according to its Q10 (Figure 5b). Sphingoid-1-

phosphate phosphatase falls into the third category (Figure 5c). Initially its activity drops quickly, but 

after about 25 min not only recovers but increases well over its baseline activity. Of note is that these 

results were extracted from the concentration time series data and the dynamic model strictly by 

computational means and without additional information. 
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Figure 5. Examples of three classes of heat-induced changes in enzyme activities within 

sphingolipid metabolism. Heat stress causes the activities of: phosphoserine phosphatase to 

increase (a); diacylglycerol (DAG) ethanolamine phosphotransferase to decrease (b); and 

sphingoid-1-phosphate phosphatase to decrease initially and subsequently to increase 

substantially, presumably due to gene expression that begins to increase as soon as the 

temperature rises (c). Grey bands indicate ranges of responses, while red lines show 

average trends. 
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4. Conclusions 

In the past, the effects of heat stress adaptation in the central carbon metabolism of yeast cells have 

been modeled by forward approaches, that is, by constructing models from their components and 

subsequently assessing the effects of heat. Several of these studies were ultimately based on a steady-

state metabolic model of glycolysis published by Curto et al. [59]. After extensions and adjustments, 

these models were subjected to what-if simulations and to validation tests of the consistency between 

model predictions and known information about the physiology of heat stress adaptation. An example 

of this strategy is [48]. The Sorribas group [45–47,52] improved on these early studies by developing 

rigorous optimization methods to explore the space of reasonable combinations of gene expression 

profiles and study the feasibility of each profile according to a priori established criteria. 

Accounting for the fact that enzyme activities are likely to change simply due to the increased 

temperature, we performed targeted experiments to generate new metabolic data [28]. They consisted 

of time series measurements of naïve and heat-stressed cells and allowed us to construct and 

parameterize a new dynamical model capable of inferring, in an inverse modeling approach, the likely 

enzyme expression profiles from our data. With this approach we were able to show that the inferred 

enzyme expression profile is similar to what is known to happen to the gene expression profile in situ. 

In our sphingolipid work, which was described briefly here and will be presented elsewhere in detail, a 

computational optimization analysis was able to infer changes in enzyme profiles following a shift in 

heat. Intriguingly, the model analysis, without manual intervention or human curation, identified 

enzymes that likely respond to heat simply according to their direct sensitivity to temperature and 

others that seem to respond to changes by targeted gene expression. Together, these two studies 

indicate how heat induces changes in proteins, which are transduced in parallel, directly or via lipid 

signaling, to the level of gene expression, which in turn facilitates a well-coordinated heat response 

and to longer-term metabolic adaptations. 
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While many studies on heat stress responses are available in the literature, it seems that we are 

approaching a situation where many experimental observations can be merged successfully into a 

computational construct that combines the direct and indirect effects of heat, for instance on partial 

protein unfolding, and on gene expression, metabolic state, and cellular physiology. The next steps 

toward such a computational construct will include more complete models of the gene regulatory 

network at the heart of the long-term heat response. Such a model (Figure 6) will have to integrate 

much diverse, and often qualitative, information on the connectivity and regulation of gene expression, 

and combine this information with time series data, characterizing gene and protein expression 

profiles, rates of transcription, and half-lives of transcripts obtained in yeast cells growing under heat 

adaptation. At present, some of the required datasets for such a comprehensive model are available for 

control and stressed cells, but sufficient time series data of protein production (rate of translation) and 

protein half-lives in cells under heat stress are still lacking. The reward of combining, in a fully 

dynamical model, aspects of gene regulation, protein changes, metabolic state changes, and signaling 

events will be a much improved understanding of a paradigmatic control task in biology. 

Figure 6. Schematic overview of the multi-scale regulatory model of the heat stress 

response. Heat stress (HS) increases the expression of the transcription factor MSN, which 

in turn regulates genes that code for enzymes of central metabolism that are involved in the 

cell’s protection against protein unfolding (e.g., hexokinase and trehalose-6P phosphatase). 

Additionally, the expression of these MSN-induced genes is coordinated by sphingolipids 

(SL), whose pathway dynamics is directly affected by heat. Furthermore, heat stress 

increases the half-lives of transcripts, as well as the activity of Tre-6P phosphatase. The 

presence of heat-unfolded proteins releases the inhibitory effects of Cpr7p on Hsf1p, thus 

up-regulating the expression of HSF and of chaperonins, which in turn promotes the 

refolding of unfolded proteins. Trehalose acts as a protein stabilizer. Dashed arrows depict 

degradation processes. 

 

Heat stress responses constitute a particularly well studied multi-scale system, and few other stress 

systems have received similar attention. Nonetheless, other stresses, in particular within the context of 

disease, have been studied with methods of canonical modeling (e.g., [60–64]). In many cases of such 

modeling efforts, the focus was on a single level (such as metabolism), and we are only now slowly 
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addressing truly multi-level-multi-scale systems, because data at several levels and scales are becoming 

available and the modeling community has progressed considerably in recent years. Nevertheless, 

because it seems presently infeasible to capture the essence and details of complex stress or disease 

systems in one grand modeling effort, it appears to be useful to begin with coarse, mesoscopic models 

of intermediate complexity and to use these, on the one hand, for exploring features of natural system 

design and, on the other hand, to move toward realistic disease simulators [65]. 
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