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Abstract: Hepatocellular carcinoma (HCC) accounts for most liver cancer cases 

worldwide. Contraction of the hepatitis C virus (HCV) is considered a major risk factor for 

liver cancer. In order to identify the risk of cancer, metabolic profiling of serum samples 

from patients with HCC (n=40) and HCV (n=22) was performed by 1H nuclear magnetic 

resonance spectroscopy. Multivariate statistical analysis showed a distinct separation of the 

two patient cohorts, indicating a distinct metabolic difference between HCC and HCV 

patient groups based on signals from lipids and other individual metabolites. Univariate 

analysis showed that three metabolites (choline, valine and creatinine) were significantly 

altered in HCC. A PLS-DA model based on these three metabolites showed a sensitivity of 

80%, specificity of 71% and an area under the receiver operating curve of 0.83, 

outperforming the clinical marker alpha-fetoprotein (AFP). The robustness of the model 

was tested using Monte-Carlo cross validation (MCCV). This study showed that metabolite 

profiling could provide an alternative approach for HCC screening in HCV patients, many 

of whom have high risk for developing liver cancer. 
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1. Introduction  

Hepatocellular Carcinoma (HCC) is the most common type of liver cancer and the third leading 

cause of cancer mortality worldwide, especially in China and South East Asia [1]. Although most 

cases (85%) occur in developing countries, the incidence of HCC in the U.S. has tripled over the past 

twenty years [2]. The five-year survival rate is very poor, less than 5% [3]. Early diagnosis can give 

patients an opportunity to receive curative treatments; this then improves outcomes [4]. The current 

diagnostic methods include cross sectional imaging and biopsy in cases where the imaging does not 

meet established diagnostic criteria. Once cancer develops in a hepatitis C infected liver, the disease is 

predictably destructive. For this reason, identification of patients at high risk for the development of 

cancer would allow for: 1) closer surveillance and 2) chemoprevention protocols. The major risk 

factors of HCC include infection with Hepatitis B or C virus (HBV or HCV), with the highest risk 

occurring when patients develop cirrhosis. It is estimated that patients with HCV and cirrhosis have 

much higher risk (15-20 fold) to develop HCC [5].  

Serologic biomarkers such as alpha-fetoprotein (AFP) have been used to help diagnose or assess 

prognosis in HCC for decades. In patients with inflammatory conditions such as hepatitis, the value of 

AFP is limited as AFP levels can be elevated beyond the threshold in the absence of measureable 

cancer and negative in cases of obvious malignancy [6]. For this reason, the physician cannot argue for 

an intervention, such as liver transplant, based on AFP alone. This lack of specificity diminishes its 

value in screening hepatitis patients [6–9]. Other serum markers, such as serum Lens culinaris 

agglutinin-reactive AFP (AFP-L3), des γ-carboxy prothrombin (DCP) and the secreted isoforms of 

ERBB3 (sERBB3) have been observed to have better performance for the diagnosis of HCC [10–14]. 

However, most of these markers have not been integrated into clinical practice. 

Given the importance of liver function in metabolism, metabolite biomarkers might provide 

alternative biomarker candidates. In particular, metabolite profiling provides a broad and systematic 

view of metabolic change in complex biological samples and can be potentially useful for identifying 

metabolite biomarkers. Utilizing high-throughput analytical techniques such as nuclear magnetic 

resonance spectroscopy (NMR) and mass spectrometry (MS), metabolite profiling provides a detailed 

and quantitative analysis of 10s to 100s of metabolites and has therefore been applied to numerous 

areas including drug response, early disease diagnosis, toxicity and nutritional studies. [15–18]. A 

number of biomarker candidates have been proposed for different cancers, including lung [19,20], 

prostate [21], colon [22], breast [23,24] and esophageal [25,26].  

Several metabolite-profiling studies have focused on detecting HCC in different patient 

populations. Yang et al. applied high-resolution magic-angle spinning (HRMAS) in order to study 

adjacent, high-grade and adjacent low-grade liver cancer tissues and found several metabolites that 

clearly differentiated the samples, including lactate and several amino acids [27]. NMR was also used 

to screen urine samples from HCC patients in a Nigerian population [28]. Multivariate, partial least 

squares discriminant analysis (PLS-DA) models, based on markers such as creatinine, carnitine, 

creatine and acetone, were found to differentiate HCC patients from both healthy controls and patients 

with cirrhosis with high accuracy. The use of liquid chromatography (LC)-MS and gas 
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chromatography (GC)-MS has also been made to discover promising metabolite marker candidates, 

including amino acids and lipids [29−33]. These studies have identified metabolites with high 

classification accuracy, revealing metabolite profiling to be a promising approach. However, additional 

studies are needed; specifically, studies focusing on metabolite markers that distinguish patients with a 

risk of developing HCC. Many of the earlier studies have focused on separating HCC patients and 

healthy controls, which is less relevant clinically since healthy subjects are unlikely to develop HCC. 

Second, several of the metabolite marker candidates were discovered based on a limited number of 

samples and lack sufficient validation. Additionally, only a few of these studies focus on the 

population of the U.S. Considering that the risk of HCC differs across regions and ethnic groups, 

studies on different populations are also important. 

In the present work, serum samples from 40 HCC patients with underlying HCV were collected 

before radiation or chemotherapy treatments, and 22 HCV patients with cirrhosis were studied. Most 

of these patients are Caucasians. Metabolite profiles were performed using 1H NMR and analyzed 

statistically using several approaches including partial least squares discriminant analysis (PLS-DA). A 

good model could be built based on the entire NMR spectrum as well as on only three metabolite 

biomarkers, and these results were internally cross-validated. This study is the first to identify good 

serum metabolite biomarkers by NMR to distinguish HCC patients from a population of patients with 

HCV and cirrhosis in the U.S. 

2. Experimental Methods 

2.1. Chemicals 

Deuterium oxide (D2O, 99.9% D) and sodium azide (NaN3) were purchased from Cambridge 

Isotope Laboratories, Inc. (Andover, MA). The sodium salt of trimethylsilylpropionic acid-d4 (TSP), 

used as the internal standard, was from Sigma-Aldrich (Milwaukee, WI). All chemical reagents were 

analytical grade and used without further purification. 

2.2. Serum Sample Collection and Storage 

Human serum samples (n = 62) were obtained from the Indiana University/Lilly tissue bank, and 

consisted of two cohorts: HCC patients (n = 40) with underlying HCV, and HCV patients (n = 22) 

without HCC. A summary of sample information can be seen in Table 1. Frozen samples were 

transported to Purdue University under dry ice and then kept at -80 °C until analysis. The study was 

approved by the Institutional Review Boards at both Purdue University and Indiana University School 

of Medicine. 
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Table 1. Summary of demographic and clinical information for subjects recruited for the study. 

 
HCC (Hepatocellular 

carcinoma) 

HCV (Hepatitis C 

Virus) 

Samples 40 22 

Average Age 54.6 ± 9.8 52.2 ± 8.1 

Gender (F/M) 0.21 0.46 

Ethnicity 

Caucasian 32 20 

African American 1 2 

Hispanic 3 0 

Unknown 4 0 

2.3. Sample Preparation and Acquisition of NMR Spectra  

Samples were prepared by mixing 400 µL serum with 5µL sodium azide (0.01% w/v) and 130 μL 

D2O. The solution (530 µL) was then transferred to a 5-mm NMR tube. A 60 μL, 0.5mM TSP solution 

contained in a capillary insert was used as an internal standard. For the 1D NMR experiments, the 

spectra were acquired at 298 K on a Bruker Avance-500 spectrometer equipped with a TXI gradient 

cryoprobe, using standard 1D NOESY and 1D CPMG (Carr-Purcell-Meiboom-Gill) pulse sequences, 

each coupled with water presaturation. For each spectrum, 128 transients were collected with 16k time 

domain data points and using a spectral width of 6,000 Hz. All spectra were Fourier transformed using 

a 1.0 Hz exponential line broadening. Each acquired spectrum was then phased, baseline corrected and 

aligned with reference to alanine (δ=1.479 ppm) using Bruker Topspin 3.0 software. 

2.4. Statistical Analysis  

After excluding the spectral region δ 4.7–5.2 ppm containing the residual water resonance, each 

spectrum was binned to 4096 points (bin size 0.003 ppm), and then normalized to the area of the TSP 

signal at 0.0 ppm. The spectral data from both the CPMG and NOESY experiments were initially 

mean centered and subjected to orthogonal-signal-corrected (OSC) partial least squares (PLS) analysis 

using Matlab (R2008a; Mathworks, Natick, MA) and the PLS Toolbox (version 4.11, Eigenvector 

Research Inc.).  

In a second, more targeted analysis, a total of 19 metabolites were identified in the CPMG spectra 

by comparing their chemical shifts and multiplicities with the Human Metabolome Data Base [34]. 

The individual spectral regions for each of the 19 metabolite signals were then integrated. After  

auto-scaling, these peak integrals for both the HCC patients (n = 40) and HCV patients (n = 22) were 

subjected to principal component analysis (PCA) as well as partial least squares discriminant analysis 

(PLS-DA) with 7-fold internal cross-validation for model building. A receiver operating characteristics 

(ROC) curve was used to evaluate the performance of the model. Monte Carlo Cross Validation 

(MCCV) with 200 iterations was used to assess the model robustness using Matlab, PLS Toolbox 

version 4.11 and a home-developed code. For each of the iterations, the whole dataset was randomly 
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divided into the training set (60% of the whole data set) and a testing set (40%). A PLS-DA model was 

built on the training set with 7-fold internal cross-validation to predict the validation set. The internal 

cross-validation prediction on the training set and the external prediction of the validation set were 

combined as the predicting result for each MCCV run. The overall true positive and true negative 

numbers were summarized, after which the sensitivity and specificity were calculated and compared 

with the results of a permutation analysis. In the permutation, the sample classification was randomly 

permuted and 200 MCCV iterations were performed as above.  

Third, feature selection using the Student’s t-test was performed for each metabolite between the 

HCC and HCV cohorts to focus the analysis on the most important metabolites for classification. 

Three significant metabolites (valine, creatinine and choline) with low (uncorrected, vide infra)  

p-values (<0.05) were selected as potential biomarkers. A new PLS-DA model was built, followed by 

MCCV and permutation with 200 iterations. Except for using 3 metabolite signals instead of 19, all the 

other procedures are the same as above. PCA analysis was also performed on these 3 biomarkers. 

3. Results 

The CPMG and NOESY spectra, averaged over the samples from each of the HCC and HCV 

patient cohorts, along with a difference spectrum, are shown in Figure 1 (a) and (c), respectively. We 

can observe clear changes in the CPMG spectra from several of the metabolite signals, including those 

from glucose, valine, alanine, lactate and choline. The changes from NOESY spectra are also clear, 

with most contributions coming from broad lipid signals. However, the large variation between 

samples makes it difficult to give any solid conclusion. The metabolic differences in both the NOESY 

and CPMG spectra between HCC and HCV patients can be identified using OSC-PLS analysis. The 

score plot for OSC-PLS analysis of the CPMG spectra is shown in Figure 1 (b). The two patient 

cohorts are separated and clustered in different areas of this score plot, with a few HCC samples 

overlapping the HCV region. The AUC for separation along LV1 was 0.71, with moderate sensitivity 

(0.74) but poor specificity (0.60). The loading plot (Supplemental Figure S1) indicates a number of 

peaks contribute to the separation. The score plot from the OSC-PLS analysis of the NOESY spectra 

shown in Figure 1 (d), shows an even better separation between the two patient cohorts, and the 

loading plot (Supplemental Figure S2) shows mostly lipid peaks. These results show promise for the 

future study of lipids. However, a major challenge in using NOESY to study lipids is that it cannot 

fully distinguish lipids with different fatty acid chains as they overlap. As a result, the following 

analysis will focus on CPMG spectra since they contain a larger number of peaks from identifiable and 

quantifiable metabolites. 
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Figure 1. (a) The averaged Carr-Purcell-Meiboom-Gill (CPMG) spectra (bottom) for the 

HCC patients (blue dashed line, n=40) and HCV patients (red solid line n=22), along with 

the difference spectrum (top, black solid line). Major differences in metabolites are 

indicated in the difference spectrum. (b) Score plot for the OSC-PLS analysis of the 1H 

CPMG NMR spectra for all samples. (c) and (d) are the same as (a) and (b) except that 

they pertain to NOESY spectra. 

Considering the contribution to the loading plots from many low-lying and unidentified metabolite 

peaks, as well as noise, a more targeted approach was also pursued. Individual peaks from 19 known 

metabolites (See Supplemental Information Table S1) were integrated and analyzed to reduce the 

contribution from chemical noise and to focus the analysis on known metabolite species so as to 

provide more mechanistic information. Initially, PCA analysis was performed on the 19 metabolites to 

see the data clustering. The results are shown in Figure S3; as anticipated, clear separation of the two 

groups was not observed in the PCA results. A PLS-DA model was built based on these metabolite 

signals to investigate classification and discrimination. The cross-validated prediction result and ROC 

curve are shown in Figure S4. The two sample classes are somewhat separated by this model, but a 

number of misclassifications still exist. The area under curve (AUC) is 0.71.  

The model was further tested by MCCV, and the results of the classification confusion matrix are 

shown in Supplementary Table S2. The low sensitivity (54%) and specificity (58%) that result from 

the MCCV procedure indicate that the model is not very strong. However, this model is still better than 

the permutation result (these data are provided in Table S2 as the values in parentheses). The 
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sensitivity and specificity of the permutation test are only 50% and 48%, respectively, which is 

essentially a random result, as anticipated. The sensitivity and specificity results for both the true 

model and permutation test from 200 iterations are also plotted (see Supplemental Information Figure 

S5). Although not very impressive there is still some separation, which indicates that the predictive 

model is better than a random one.  

Table 2. Summary of three metabolites having low p-values. 

 

Metabolite 

Chemical 

Shift 

(ppm) 

Multiplicity 
p-valuea 

(HCC vs. HCV) Fold changeb 

Choline 3.20 s 0.0200 1.32 

Valine 1.03 d 5.67 × 10−6 1.53 

Creatinine 3.03 s 0.0279 -1.28 

Notes: a. p-values were calculated using the Student's unpaired t-test for peak integrals with local baseline 

correction and incorporating spectral normalization using TSP; b. A positive fold change indicates 

upregulation in HCC; while a negative fold change indicates upregulation in HCV. 

Figure 2. Box-plots for three metabolite markers in all the samples of this study (HCC vs. HCV). 

 

Analysis of the PLS-DA loading plots (Supplemental Figure S6) indicated that only a few 

metabolites, such as valine, choline, alanine, creatine and asparagine, contributed to the separation. 

Feature selection was therefore used to further filter the metabolite signals and focus the analysis on 

the true differences between the two patient cohorts. P-values from the unpaired Student’s t-test were 
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calculated for all 19 metabolites, and those metabolites with p < 0.05 were selected. Only three 

metabolites (choline, valine, and creatinine) passed this filter, and the p-values, fold changes, NMR 

chemical shifts and multiplicities for these three metabolites are listed in Table 2. Box-plots of the 

intensity data for the three metabolites (Figure 2) indicate that choline and valine are up-regulated in 

HCC, while creatinine is down-regulated. 

A new PLS-DA model was built based on the three metabolites, and the cross validation prediction 

results are shown in Figure 3. A much better result can be seen both in the classification and the ROC 

curve. The new AUC is 0.83, indicating that this is an improved model. A sensitivity of 80% can be 

obtained with a specificity of 71%, outperforming the clinical marker AFP, which has a sensitivity of 

41% to 65% and specificity of 80% to 94% when using AFP level > 20 microg/L as the cutoff for 

HCC vs. HCV [35]. PCA analysis on these three markers showed some separation along PC1 as shown 

in Figure S7. 

Figure 3. PLS-DA results for the model based on 3 potential metabolite biomarkers for 

differentiating HCC and HCV patient samples. (a) Cross-validation predicted class values. 

(b) Receiver operating characteristics (ROC) curve of the prediction result, with AUC  

of 0.83. 

 
 

To better evaluate the robustness of this model, the same MCVV and permutation were used again, 

and the results can be found in Table 3. This time, the average sensitivity and specificity are 71% and 

73% for the true model, a significant increase over the results of the model based on 19 metabolites. 

As expected, the permutation results show essentially a random distribution (sensitivity = 54% and 

specificity = 39%). To better visualize the difference, the results of the MCCV procedure are plotted in 

Figure 4. True model results cluster towards the top-left corner of the plot, representing good 

sensitivity and specificity. The permutation results are spread about the center of the plot and are well 

separated from the true model. 
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Table 3. Confusion matrix calculated from PLS-DA using 3 serum biomarkers for the 

HCC (n = 40) and HCV (n = 22) patients using 200 Monte-Carlo cross validation (MCCV) 

iterations. The numbers in parentheses are the results from permutation analysis. 

  Predicted class 

True class 
Total number of 

samples 
HCC HCV 

HCC 8000 (8000) 5674 (4349) 2326 (3651) 

HCV 4400 (4400) 1195 (2735) 3205 (1665) 

Figure 4. Results of the MCCV results (200 iterations) shown in ROC space for PLS-DA 

models based on the 3 metabolites used to discriminate HCC from HCV. Each blue 

diamond represents an iteration of the true model; each red square represents an iteration of 

the permutation model. 

 

4. Discussion 

A metabolite profiling approach was applied to identify biomarker candidates for distinguishing 

HCC patients within an HCV population. The effectiveness of current HCC surveillance markers or 

methods such as alpha-fetoprotein (AFP) and abdominal ultrasound (US) are limited by low sensitivity 

and specificity. Hence the effectiveness of such approaches in reducing HCC mortality has remained 

modest [36]. Improved detection methods, such as blood-based biomarkers, are needed to improve this 

situation. 

Metabolite biomarkers provide an opportunity to enhance the detection of HCC [29,33].  As shown 

in the present work, the entire 1H NMR spectrum can be used to develop a diagnostic metabolite 

profile with good sensitivity and specificity [20]. This approach is based on the combination of a large 
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number of metabolite signals, many of which have not yet been identified. The use of feature selection, 

based on the Student’s t-test, resulted in 3 relatively strong biomarker candidates. We decided to use 

the uncorrected p-values, in part because each of these biomarker candidates has some precedence in 

cancer metabolism and due to our desire to avoid possible false negatives. In the case of creatinine, a 

gender imbalance in the two patient cohorts may be reducing its significance (vide infra). The resulting 

PLS-DA model based on these 3 metabolites shows good performance, at least better than the model 

based on the entire CPMG NMR spectrum. In contrast, the use of 19 metabolites without the use of 

feature selection performs much more poorly. The OSC-PLS analysis of the full NOESY spectra 

showed a clear separation between HCC and HCV patients, and this approach may be quite useful for 

distinguishing these cohorts. Future studies to validate these findings are planned, including an 

investigation of which types of lipids are contributing to the separation. However, the combination of 

isolated lipid signals and identified metabolites could not provide an improved model compared with 

the one built using the 3 metabolites (data not shown).  

An investigation of age and gender effects on the model was also performed to evaluate possible 

confounding effects. The averages and standard deviations of the age distributions in HCC and HCV 

groups are quite similar, indicating that there is no confounding effect to be anticipated due to age. 

However, the gender distribution differs significantly between the two groups. We, therefore, 

performed a Student’s t-test for the 3 markers between the male and female patients in each of the two 

patient cohorts. All p-values were above 0.05 (see Supplemental Table S3), indicating that any gender 

effect can be neglected for these metabolites in this study. The results also show that the disease effect 

on creatinine levels dominated any gender effect; creatinine increased overall, in males compared with 

females, and in females with HCV compared to those with HCC. Interestingly, the increase in 

creatinine levels for females was highly significant (Table S4).  

The three metabolites identified by feature selection do have some precedence as biomarkers. 

Creatinine was found to decrease in the samples from HCC patients compared to those from patients 

with HCV without cancer. Unique to this study was the ability to show differences within two diseased 

states, as opposed to other studies that focused on differences between diseased states (cirrhosis or 

cancer) compared to normal controls. For example, creatinine was seen to decrease in the urine of liver 

cancer patients compared with healthy controls as detected by MS [37]. In an NMR study focused on 

African subjects, creatinine was lower in urine samples of patients with cirrhosis compared to the urine 

from healthy controls [28]. More recently, creatinine was found to be decreased in the serum of 

patients with HCC compared with healthy subjects [33]. Corroborating its potential role as a cancer 

biomarker, aberrations in serum or urine creatinine levels were also associated with other cancers such 

as lung cancer (in urine) [20], pancreatic cancer (in serum) [38], esophageal cancer (in serum) [25] and 

colorectal cancer (in urine) [39]. Creatinine levels are generally higher in males than in females and 

correlate with muscle mass [40]. It is important to emphasize that studies with unmatched gender 

participation can result in biased results for metabolites that are sensitive to gender. However, in this 

study, we find that the HCC patient group, which does have a significantly larger number of males 

compared to the HCV group, actually exhibits a lower concentration of creatinine, indicating a 

definitive pathological role for creatinine. In fact, among female patients alone the creatinine change 
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from HCV to HCC is quite significant (p=0.003, Supplemental Tables S3 & S4 and Figure S8). One 

can anticipate that better gender-matched cohorts might well increase the significance of creatinine as 

a biomarker for HCC. Nevertheless, the specific molecular mechanism of its association with HCC 

and/or HCV remains to be explored.  

In contrast, valine and choline were found to be upregulated in HCC patients. The elevation of 

valine has been observed in HCC tissue [27] and blood [41], as well as the serum of HBV infected 

cirrhosis patients [42]. An important step of valine catabolism occurs largely in the liver. This step 

involves oxidative decarboxylation of branched-chain α-keto acids generated from valine and other 

branched-chain amino acids in extrahepatic tissues [43,44]. Previous studies showed that methacrylyl-

coenzyme A (MC-CoA), a toxic compound generated in valine catabolism, is less detoxified in HCC 

or cirrhosis patients. MC-CoA induces a change of valine metabolism resulting in increased serum 

valine [45]. It is worth noting that changes in valine levels have been found in some digestive system 

cancers, such as oral cancer [46] and gastric cancer [47].  

Changes in choline metabolism have also been related with HCC previously. The Lin group found 

decreased choline in HCC and cirrhosis patient sera compared with normal sera, although they did not 

compare HCC and cirrhotic patients [48]. In HCC tissue, choline was found upregulated [27], which is 

consistent with previous in vivo MRS studies [49]. Generally, choline is an essential metabolite in the 

synthesis of phospholipids for cancer cell membranes [50]. This metabolism has been studied and 

monitored by NMR previously [51-53]. Choline is also associated with many cancer types. For 

example, it has shown to be associated with colorectal cancer [54], high grade gliomas [55], and breast 

cancer [56]. Thus, the metabolism of the membrane phospholipids caused by accelerated cell 

proliferation could be a reason for elevated choline in the sera of HCC patients [27]. 

5. Conclusions 

1H NMR metabolic profiling of serum samples has been shown to differentiate HCC from HCV 

patients. In addition to a good separation based on broad lipid signals in the NMR spectra, three 

metabolites, creatinine, valine and choline, were found to differentiate the two disease groups and each 

metabolite has some precedence as a potential HCC biomarker in human serum or urine. In addition, 

these metabolites are readily detected in serum by a number of analytical methods, indicating that upon 

further validation they could be straightforwardly translated into clinical practice.  

A distinguishing feature of this study is that it focuses on a particularly challenging patient cohort, 

i.e., those with underlying HCV. It is extremely difficult to differentiate HCC patients with underlying 

HCV from HCV patients for several reasons: 1) mediators associated with inflammation often overlap 

with those associated with cancer and therefore teasing out cancer specific differences is difficult; 2) 

changes associated with fibrosis also overlap with cancer and the majority of HCV patients do not 

develop cancer until the liver has become severely fibrotic; and 3) confirmation of cancer requires 

pathologic evidence that is not found in cases where resection or transplant has not been performed or 

where occult disease is present, but only detected from the most sophisticated tests. Patients with HCV 

were of particular interest for this study since they represent the largest cohort of HCC patients within 

the US and are at the highest risk for developing HCC during their lifetimes. The results of this study 
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indicate the promise of developing metabolite profiles for the detection of HCC. Future studies will 

focus on adding MS detected biomarker candidates and expansion of the studies with additional 

sample cohorts. We anticipate that additional metabolite biomarkers will significantly improve the 

detection model and provide an alternative to current modalities. 
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