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Abstract: The metabolic profiles of breast cancer cells are different from normal mammary 

epithelial cells. Breast cancer cells that gain resistance to therapeutic interventions can 

reprogram their endogenous metabolism in order to adapt and proliferate despite high 

oxidative stress and hypoxic conditions. Drug resistance in breast cancer, regardless of 

subgroups, is a major clinical setback. Although recent advances in genomics and proteomics 

research has given us a glimpse into the heterogeneity that exists even within subgroups, the 

ability to precisely predict a tumor’s response to therapy remains elusive. Metabolomics as 

a quantitative, high through put technology offers promise towards devising new strategies 

to establish predictive, diagnostic and prognostic markers of breast cancer. Along with other 

“omics” technologies that include genomics, transcriptomics, and proteomics, metabolomics 

fits into the puzzle of a comprehensive systems biology approach to understand drug resistance 

in breast cancer. In this review, we highlight the challenges facing successful therapeutic 

treatment of breast cancer and the innovative approaches that metabolomics offers to better 

understand drug resistance in cancer. 
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1. Introduction 

The fact that cellular metabolism of cancer cells is different from that of normal cells has been known 

for several decades [1]. “Warburg effect” or increased rate of aerobic glycolysis, rather than the more 

energy-efficient mitochondrial oxidative phosphorylation, highlights the cancer cell’s needs beyond 

energy. With aberrantly higher rates of cell proliferation, it is not surprising that rates of aerobic glycolysis, 

glutaminolysis or fatty acid synthesis are also abnormally higher in cancer cells to keep up with both 

energy and biomass demands [2,3]. However, our understanding of the complex nature of cellular metabolic 

pathways in cancer remains incomplete. Changes in gene expression and protein translation can cause 

robust changes in the cellular metabolite profiles or metabolome. Therefore, comparing the metabolite 

profile of cancer cells versus normal cells can help researchers identify the metabolic changes that promote 

carcinogenesis. With technological advancement in mass spectrometry, high throughput metabolite profiling 

(metabolomics) of cancer cells or tumors allows researchers to identify and validate cellular metabolic 

pathways that contribute to the malignant phenotype.  

Genomics studies investigate differences in sequences in nucleotides that constitute protein coding 

genes, non-coding DNA and regulatory regions while proteomics studies identify function of proteins in 

cancer cells compared with cancer cells [4]. Gene expression profiles [5–7] and proteomics [8], although 

expensive, in recent years have provided a glimpse into the complex genetic makeup of breast cancer 

subtypes and their correlation with survival, chemotherapeutic response or metastatic spread. Metabolomics 

is the newest layer of “omics” data that is rapidly gaining attention of breast cancer researchers worldwide. 

The metabolome of a cell comprises of the highly complex biochemical pathways with numerous small 

molecules or metabolic substrates that include amino acids, sugars, lipids and other bioactive agents. 

Metabolites serve as chemical byproducts or substrates of naturally occurring biochemical processes and 

pathways, in a biological system. Metabolomics seeks to quantify the metabolites in the metabolome, 

and use this data to (in relation to other “omics” fields) eventually diagnose various diseases. Hence the 

identification of molecular targets that underscore a drug resistant phenotype can be effectively used for 

developing disease modifying therapeutics. Advances in metabolomics technologies have enabled 

researchers to design and implement novel strategies in following cancer prognosis and development of 

customized therapeutics [9–11]. Complex signaling associated with cancer phenotypes occurs in the 

context of interactive networks [12,13] and may be further compounded by drug treatment. Thus, a 

systems approach using both computational and mathematical modeling may be needed to uncover how 

the cancer cell responds to external stress and adapts to acquire drug resistance. Precise prognostic tools 

in personalized medicine are needed not only to identify patients who will benefit from specific treatment 

options but also to determine dosing strategies to improve drug efficacy. In this review, we discuss the 

current challenges in drug resistance in breast cancer and what new opportunities metabolomics can 

provide for researchers. 

2. Breast Cancer 

2.1. Breast Cancer Biology and Therapeutic Options 

Each year, 1.3 million new cases of breast cancer are diagnosed worldwide, and account for almost 

15% of all cancer-related deaths [14]. In the United States, the number of breast cancer cases is projected 



Metabolites 2015, 5 102 

 

 

to increase each year, and therefore, this disease, among other cancers, poses a significant burden to 

health care and the economy [15]. Breast cancer is a heterogeneous disease [6,16,17] with multiple 

subtypes and cellular/molecular characteristics, and thus, one of the major challenges for successful 

treatment in the clinic has been lack of reliable molecular predictors. The standard treatment option for 

localized breast cancer is surgery or mastectomy with or without radiation while systemic adjuvant 

therapies (chemotherapy, endocrine therapy or biologic therapy) are used to control tumor growth and 

improve survival [18]. Various clinical factors including age, menopausal status, lymph node invasion and 

tumor size are essential in determining the best therapeutic option for a breast cancer patient. Other 

essential biochemical information required for therapeutic decisions are hormone receptor status including 

estrogen receptor alpha (ESR1/ER), progesterone receptor (PGR/PR) or growth factor receptor status 

such as HER2/neu (ERBB2) expression or histological grade determined by immuno-histochemical stains 

(IHC) [19]. However, minor differences in review of pathology slides can greatly impact clinical decisions 

and patient care [20]. Moreover, hormone receptor and HER2 status may change with cancer progression 

and treatment [21,22] necessitating the development of precise biomarkers for breast cancer subtypes 

that can be monitored in real-time. Gene expression studies carried out over the last two decades studies 

have recently resulted in the development of gene signatures such as MammaPrint (71-genes) [23] or 

Oncotype DX® Recurrence Score (21-genes) [24] that can help assign a prognostic score in early breast 

cancer to determine benefits of adjuvant treatment. 

Estrogen and estrogen receptors play significant roles in the development of human breast cancer in 

70% of breast cancer cases that are ER-positive [25]. Pharmacological agents and that inhibit estrogen 

signaling are collectively referred to as endocrine therapy and is commonly used as initial treatment 

option for breast cancer that is ER /PR-positive. The purpose of such therapy is to block ER activity with 

antiestrogens such as Tamoxifen or Faslodex/Fulvustrant/ICI [26–29] or to diminish estrogen-mediated 

signaling by reducing estrogen synthesis with aromatase inhibitors [30–32]. In menopausal women, 

aromatase inhibitor such as Letrozole/Femara is superior to Tamoxifen as a first-line treatment [33]. 

HER2-positive breast cancer constitutes about 20% of all types of breast cancer and is characterized by 

aggressive disease progression and poor prognosis. Targeted therapies for HER2-positive tumors include 

trastuzumab or pertuzumab, anti-HER2 monoclonal antibodies [34,35], lapatinib, a small-molecule tyrosine 

kinase inhibitor directed both to HER2 and HER1 [36] or trastuzumab emtansine (T-DM1), an antibody-

drug conjugate [37]. Triple-negative breast cancer (TNBC; ER-/PR-/HER2-) accounts for about 15-17% 

of all types of breast cancer cases but this group has a heterogeneous molecular profile. Antiestrogens 

and anti-HER2 therapeutics are ineffective in treating TNBC, which remains a subgroup of breast cancer 

without any specific target. Some TNBCs can be cured by surgery followed by standard chemotherapy 

(anthracycline/taxane or taxane with carboplatin). Other therapeutic drugs currently in clinical trials for 

TNBC include agents that are anti-angiogenic, anti-EGFR, poly(ADP-ribose) polymerases (PARP) 

inhibitors, anti-Src kinase, PI3K and CDKs [38].  

2.2. Drug Resistance in Breast Cancer 

Regardless of biochemical subtypes or clinical subgroups, drug resistance in all types of breast cancer 

remains an unsolved clinical problem. While a vast majority of breast cancers are treated with endocrine 

therapy, about 40%–50% of these tumors will display de novo or acquired resistance [39,40]. Although 



Metabolites 2015, 5 103 

 

 

various studies using genomics technologies have shed light on the ER-regulated pathways that  

may contribute to the antiestrogen resistant phenotype [41–43], identification of precise biomarkers of 

antiestrogen responsiveness remains elusive. Proteomic studies have recently uncovered ER-associated 

co-regulators and transcription factors as possible targets in endocrine resistant breast cancers [8,44].  

In HER2-positive breast cancer, treatment with trastuzumab along with standard chemotherapy has 

significantly improved survival in the past decade [45]; however, resistance remains a critical setback. 

Increased activity of other HER family members and crosstalk with signaling pathways such as 

PI3K/AKT are among various other factors contributing to trastuzumab resistance in HER2-positive 

breast cancer [38]. Chemoresistant TNBC tend to have an aggressive clinical course with early relapse [46]. 

Master regulators of cellular metabolomics such as MYC, p53 and MTOR are mutated in various subgroups 

of breast cancer [47,48]. Since MYC, p53 and MTOR are known to impact metabolic pathway, therefore, 

critical evaluation of cellular metabolic pathways, along with protein function, should be investigated to 

better understand the pathobiology of breast cancer and drug responsiveness. 

While the molecular basis of drug resistance in breast cancer remains unknown, concomitant deregulation 

of cell death pathways to promote cell survival in response to anti-cancer therapy is evident [13,40,49–51]. 

Research from our group has shown the important role of apoptosis, autophagy and necrosis in cell death 

in ER+ breast cancer induced by antiestrogen or chemotherapeutic agents [52–59]. Programmed cell death 

(PCD) pathway such as apoptosis (PCD1), autophagy (PCD2), or necrosis (PCD3) are closely regulated 

in neoplasia and major molecular inhibitors of these pathways are often overexpressed in tumors.  

For example, BCL2 [54], NFkB (RELA) [56,57], XBP1 [55], HSP5A/GRP78 [53] MYC [60,61] are 

known to be overexpressed in breast cancer cells or tumors that are resistant to antiestrogens. In the cell, 

these molecules not only inhibit cell death, they regulate numerous other processes including cellular 

metabolism [50]. Moreover, overexpression of these pro-survival molecules allows cancer cells to achieve 

rapid recovery from disruptions in glucose/ATP levels or amino acid synthesis induced by therapeutic 

agents. In the normal breast, extensive production of milk proteins is carefully regulated to avoid the 

endoplasmic reticulum (ER) stress due to an excess load of these proteins and induction of the unfolded 

protein response (UPR). The UPR protects the cells under normal conditions and helps restore homeostasis. 

In breast cancer cells, UPR can be triggered by a variety of sources including nutrient deprivation, hypoxia 

and therapeutic interventions. Both cytotoxic and endocrine therapeutics can induce UPR in different 

cancer cells [53,62]. Oncoproteins such as MYC that are master regulators of cellular metabolic pathways 

can also regulate the UPR [63,64]. MYC is increased in antiestrogen resistant cells and tumors [60,61,64]. 

MYC can increase the dependency of breast cancer cells on glutamine and glucose for cell survival [64]. 

However, the presence of glutamine in glucose deprived conditions can initiated an UPR-mediated  

re-programming of metabolic pathways allows cellular adaptation and increased dependency on glutamine 

that is regulated by MYC and the UPR. The endpoint of UPR induction in cancer cells can be either prodeath 

or prosurvival and depends on the nature and duration of the stress. Therefore, a complex regulatory 

mechanism exists to control the UPR in carcinogenesis with key factors from both cell death and survival 

pathways [50].  
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3. Metabolomics as a Promising New Tool in Breast Cancer Research 

3.1. Current Metabolomics Technologies 

Metabolomics is a rapidly emerging field of research that aims to detect and quantify alterations in 

small-molecule abundance that is known collectively as the metabolome [22,65]. Akin to gene and 

protein expression that differs across the various cell types of the body, the metabolome is also context-

dependent, and varies in organs, tissues and cells, and, importantly, in health and disease processes and 

external stimuli [66,67]. Metabolomics is the downstream complement of “omics” technologies that 

span genomics, transcriptomics, RNAseq and proteomics, and thus provides the basis for development 

of a comprehensive systems biology understanding of stress signaling in injury and disease, which is 

relevant to many fields such as pharmacology, diabetes, and cancer [68,69]. Traditionally, Nuclear Magnetic 

Resonance (NMR) was used for metabolomics profiling and early reports of biomarker discovery in 

breast cancer used this technology [70,71]. However, NMR lacked the sensitivity for detection of low 

abundance metabolites that could be used as specific and sensitive biomarkers for early detection  

and staging breast cancer cases. Moreover, in the recent years, there have been dramatic technological 

advancements in mass spectrometry leading to higher sensitivity and resolution for metabolomic profiling. 

Many of the problems intrinsic to the NMR-based metabolomics studies thus can be circumvented through 

the use of liquid chromatography (LC) or gas chromatography in conjunction with high resolution mass 

spectrometry (MS) [72]. One of the main advantages of mass spectrometry is that constituents of the 

biological matrix are usually resolved as discreet peaks in a chromatogram that yields an accurate mass 

and can be subjected to tandem MS that can yield unequivocal identities of large numbers of analytes. 

These ions representing a unique metabolite are readily amenable to quantification. When combined 

with ultra-performance liquid chromatography (UPLC), high resolution MS instrumentation can typically 

yield more than 4000 features that need to be characterized for identification of predictive metabolite 

markers. The ability to analyze the samples in positive and negative electrospray ionization mode yields 

complimentary information thus widening the metabolome coverage. Each of these features possesses a 

characteristic retention time value on the LC column, a mass-to-charge ratio, and an intensity value [73,74]. 

A typical metabolomic experiment performed using these methodologies can easily generate a large number 

of data points with high dimensionality. Comprehensive informatics approaches including multivariate 

data analysis (MDA) methods are then used for data reduction, noise filtration and biomarker selection. 

One of the main advantages of using GC-MS is the ability to use spectral libraries for unambiguous 

metabolite identification [75]. However, since the metabolome is highly sensitive to perturbations several 

aspects have to be carefully considered to minimize variability and low signal to noise that is commonly 

associated with clinical cohort studies. An important aspect of the study design is to control for pre-

analytic variables such as sample collection, storage and the number of freeze thaw cycles that influence 

the downstream results.  

3.2. Metabolites as Powerful Biomarkers of Breast Cancer 

Given the high prevalence and mortality associated with breast cancer, there is an urgent need for 

biomarkers that can be used in the clinic for identifying at risk individuals, for monitoring disease progression 

as well as for assessing the response to therapy [76,77]. An ideal biomarker should be specific, sensitive 
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be assayable in a cost-effective, high through put manner. Metabolomics has several advantages as a 

quantitative, high through put technology that can be used to develop predictive, diagnostic and prognostic 

markers of breast cancer. Early observation by Warburg established that cancer cells switch to a glycolytic 

phenotype thus reprograming metabolism that promotes cell division and proliferation [1,78]. Subsequently, 

several studies have shown the role of glycolytic flux in oncogenesis of breast cancer [79–82]. Given 

the metabolic reprograming in cancer, it is reasonable to assume that some of these alterations would be 

stable and amenable to quantitative measurements for diagnostic and prognostic purposes. Several studies 

have thus used a metabolomic approach to discern alterations in breast cancer that could be potentially 

used for disease stratification [4,83–87]. Budczies et al. found alterations in beta-alanine and glutamine 

metabolism in estrogen receptor positive (ER+) as compared to ER- breast cancer [88]. Using an NMR 

approach, Jobard et al. reported a panel of metabolites including histidine, acetoacetate, glycerol, pyruvate, 

glycoproteins (N-acetyl), mannose, glutamate and phenylalanine that could discriminate patients with 

metastatic breast cancer from those with localized disease with a specificity of 79.8% [89]. Metabolomics 

has also been used for unraveling diagnostic biomarkers of non-invasive breast cancer which has been 

comprehensively reviewed [10]. Qiu et al. used a quantitative mass spectrometry based plasma metabolomics 

to identify a lipid panel that could distinguish breast cancer patients from healthy controls [90]. Metabolomics 

had also been used to study response to neo-adjuvant chemotherapy, tumor microenvironment and 

response to hypoxia breast cancer [91–94]. Metabolomics has also helped further the understanding  

of how central carbon metabolism is altered in tumor tissues as compared to normal [95].  

Martinez-Outschoorn et al. have reported an association of elevated ketones and lactate with increased 

“stemness” of breast cancer cells while other metabolomic studies have reported increased oxidative 

stress in these cells [96]. The term “oncometabolite” is used to describe cellular metabolites that 

abnormally accumulate in cancer cells and tumors and are associated with malignant phenotype [9,97]. 

Oncometabolites such as fumarate, succinate, and D-2-hydroxyglutarate can drive oncogenesis partly by 

regulating epigenetic changes in certain types of cancer [98]. Through metabolomic analysis, Jain et al 

have identified glycine as an important metabolite that promotes rapid cell proliferation in breast cancer 

cells [99]. Although a lot of studies in the recent years have successfully utilized a metabolomics 

approach, future validation studies with independent cohorts would be critical for determining the efficacy 

and clinical utility of these biomarkers. 

3.3. Uncovering New Therapeutic Targets through Metabolomics 

It is well known that although two individuals may be clinically diagnosed with breast cancer,  

their tumors’ response to therapy may vary depending on the intrinsic molecular heterogeneity of the 

tumor [100–102]. Thus, understanding the specific biochemical changes accompanying the disease  

sub type offers an attractive platform for the development of novel therapeutics that can be used  

to customize response thus improving clinical outcomes in breast cancer [103,104]. The ability to 

simultaneously measure thousands of metabolites, allows for identification of key metabolic pathways 

that are under or over represented in breast carcinogenesis. To date, several studies in breast cancer cell 

models, tumors, serum or urine have been used to understand the underlying causes of breast cancer 

progression and response to specific anti-cancer therapy (Table 1). These studies support the idea that 

metabolomics can be a useful tool to differentiate breast cancer subtypes, and also provide a glimpse 
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into the cellular processes in response to anti-cancer therapy. Comparing the changes in metabolites in 

cancer cells and tumors that are sensitive or resistant to commonly used breast cancer therapies, for 

example, antiestrogens or taxol, can help investigators determine the biochemical processes that are 

correlated with cell death or survival.  

Collectively, these studies highlight the importance of metabolomics as a powerful tool to understand 

the biochemical differences between normal and tumors tissue, and between the various sub-typed of 

breast cancer. Development of accurate detection tools with metabolites that can serve as biomarkers for 

disease state or drug responsiveness from serum or urine may provide non-invasive diagnostic approaches 

in the clinic. These studies also underscore the gaps in the field of breast carcinogenesis and drug 

responsiveness. While the recent surge in metabolomics-driven research in cancer is commendable, 

thorough studies involving the contributions of the tumor microenvironment should be included in 

analysis and validation. Thus, more in vivo metabolomics studies for breast cancer subtypes and treatment 

groups are needed to determine the role of the biochemical pathways that may provide essential insights 

into the tumor microenvironment and the mechanism of drug resistance leading to recognition of 

molecular targets that can be used for the development of targeted therapeutics [105]. 

Table 1. Studies involving metabolomics analysis aimed at understanding breast cancer 

progression and identifying new molecular targets. 

Biological materials Approach Specific treatment Metabolic pathways identified Reference 

ER+ and ER- tumor 

tissues 
GC-MS None 

Increase in glutamate, xanthine, beta-

alanine in the ER- disease 
[88] 

MCF7 (ER+) GC-MS adriamycin 
Increase in glycerol metabolism and 

decrease in glutathione biosynthesis 
[106] 

MDA-MB-231 (ER-) NMR hypoxia 

Increase in glutamate, valine, and 

leucine and decrease in proline, 

creatine, alanine 

[107] 

MCF7 (ER+) NMR ascididemin 

Increase in citrate, gluconate and 

polyunsaturated fatty acids and 

decrease in glycerophospho-choline 

and -ethanolamine 

[108] 

serum: early and 

metastatic breast 

cancer 

NMR None 

Increase in histidine, acetoacetate, 

glycerol, pyruvate, glycoproteins (N-

acetyl), mannose, glutamate and 

phenylalanine and decrease in alanine 

[89] 

MCF7 (ER+) and 

MDA-MB-231 (ER-) 
NMR 

curcumin +/- docetaxel 

(dose- and time-

response) 

Changes in glutathione metabolism, 

lipid metabolism, and glucose 

utilization - some biphasic changes 

depending on exposure 

[109] 

MCF7 (ER+) and 

MDA-MB-231 (ER-) 
LC-MS resveratrol 

Increased amino acid and arachidonic 

acid in both cell lines 
[110] 
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Table 1. Cont. 

Biological materials Approach Specific treatment Metabolic pathways identified Reference 

serum: recurrent and 

non-recurrent breast 

cancer 

NMR & 

GC-MS 
None 

Changes in amino acids metabolism 

(glutamic acid, histidine, proline and 

tyrosine), glycolysis (lactate), 

phospholipid metabolism (choline) 

and fatty acid metabolism 

(nonanedioic acid) 

[83] 

urine: early-/late-stage 

breast cancer and 

normal 

NMR None 

Changes in metabolites relating to 

energy metabolism, amino acids, and 

gut microbial metabolism 

[111] 

4. Current Challenges in Metabolomics-Based Breast Cancer Research  

4.1. Metabolomics Complements Other “Omics” Disciplines in a Systems Biology Approach towards 
Precision Medicine 

A systems biology approach to treatment and research facilitates in lending a holistic view of the 

intricate relations of various biological systems, in terms of the population or patient in question. 

Systems biology is a developing research paradigm and has been seen, in some cases, as more effective 

than the previously more habitual, reductionism [112,113]. It embraces the idea of an all-inclusive 

perspective that takes into account all biological pathways at work, in coherence with each other and has 

been reviewed in details [114,115]. It relies on the premise that the pathophysiology of cancer progression 

results from a malfunction of molecular networks and hence [8–10,116–118] a comprehensive understanding 

of pathway based response at different levels of cellular expression, would yield new insights into tumor 

heterogeneity thus augmenting the personalized medicine paradigm [11,119]. Alterations in specific 

metabolic pathways can be used not only for understanding the molecular mechanism of disease 

progression but also for identification of molecular targets that can be used for therapeutic development. 

Qualitative and quantitative assessment of metabolite levels in urine, blood, needle biopsies or ductal 

lavage fluids offers promise in identification of predictive biomarkers of breast cancer that can be used 

for early detection, diagnosis and disease stratification. The challenge of Systems biology lies in 

effective data integration of metabolomics data with other “omics” data as well as clinical correlates to 

understand disease progression [120,121]. Initial biomarker discovery studies need to be followed up by 

large scale validation studies with diverse cohorts, nevertheless metabolomics holds promise for 

improvising strategies for individualized approach and personalized therapy [122]. 

Metabolomics-based research can be divided into two different categories: non-targeted and targeted 

metabolomics. Non-targeted metabolomics tries to uncover and identify new chemical compounds that 

could prove quintessential in understanding the change in a biological systems state of health. These 

new metabolites, for example could be produced because of a change in the state of the being's existence, 

environmental factors, etc., and these changes could lead to a diagnoses of the beings condition [123,124]. 

For example, non-targeted metabolomics of breast tumors from a patient could be a composite of several 

factors, including age, gender, hormone status, drug treatment and pharmacogenetics (Figure 1).  
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Figure 1. Metabolomics analysis of tumors depends on multiple factors associated with an 

individual patient. 

4.2. Targeting Metabolic Pathways in Cancer 

Altered metabolic pathways are rational, potential therapeutic targets. Although the mechanistic 

details remain unclear, it is becoming increasingly evident that oncoproteins regulate cellular metabolism, 

such as glycolysis [125] and glutaminolysis [126], to provide energy and substrates to the highly 

proliferative cancer cell. In addition, increased glycolysis has been linked to drug resistance in cervical 

cancer cells through pyruvate dehydrogenase kinase (PDK) isoforms PDK1 and PDK3 [127] and 

through increased lactate production in colon cancer cells [128]. Inhibiting PDK with dichloroacetate 

(DCA), shifts metabolism from glycolysis to glucose oxidation, inhibits tumor growth and induces 

apoptosis in several types of cancer [129]. Intermediates generated via glycolysis promote the pentose 

phosphate pathway (PPP) to generate NADPH and ribose-5-phosphate that are essential for lipid and 

nucleic acid synthesis, respectively [130]. NADPH is needed to maintain adequate cellular levels of the 

antioxidant glutathione (GSH), a tripeptide of glutamate, cysteine and glycine that is dependent on 

glutaminolysis [131]. High levels of GSH have been implicated in chemoresistance in cancer [132].  

Studies focused on specific enzymes and intermediate metabolites involved in cellular metabolic 

pathways highlight the importance of these biochemical processes on cell survival and resistance to 

anticancer therapy. Transketolase (TKT) or transketolase-like protein 1 (TKTL1), enzymes in the PPP, 

sustains viability of tumor cells [133] and confers resistance to anti-EGFR antibody therapy [134] and 

imatinib [135]. Hexokinase II (HK2), localized to the outer membrane of mitochondria, is highly 

expressed in various cancers and can inhibit apoptosis [136] and promote cell proliferation [137]. 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is overexpressed in cancer [138] and may 

promote resistance to chemotherapy by inducing Bcl-xL overexpression [139]. Expression of an 

embryonic M2 isoform of pyruvate kinase (PKM2) promotes tumorigenesis [140] and is regulated by 

hypoxia-inducible factor-1 (HIF-1) in reprogramming of glucose metabolism in cancer [141]. Specific 

isoforms of lactate dehydrogenase (LDH) and monocarboxylate transporters (MCTs) are differentially 

expressed in ER+ and ER- breast cancer cells depending on the cellular demand for glycolysis [142]. 

Also, the MTOR pathway in cancer cells can detect environmental conditions and adjust cellular 

metabolic processes by sensing intercellular energy levels through AMPK [143]. Enzymes involved in 

serine metabolism has helped identify a potential role of serine metabolism in aggressive TNBC [144]. 

Connecting the expression levels of enzymes widely available gene expression data with metabolites of 

pathways in different breast cancer subtypes and treatment conditions, therefore, allows investigators to 

identify critical metabolic pathways that drive a specific phenotype. Thus, knowledge of the metabolic 
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pathways that sustain cancer cell survival within tumors can be used to design better anti-cancer therapeutics 

to avert drug resistance.  

5. Conclusions 

Breast cancer is a heterogeneous disease and the recent progress in uncovering the molecular makeup 

of the disease has guided researchers and clinicians to reject a one-size-fits-all approach to treatment. 

Successful use of metabolomics in identifying breast cancer biomarkers for specific subtypes or drug 

responsiveness will provide non-invasive methods to accurately define characteristics of a patient’s 

cancer in the clinic from body fluids such as blood, urine, sweat or nipple aspirates. Moreover, identification 

oncometabolites will help target the metabolic pathways that promote cell survival and drug resistance. 

Efficient management and analysis tools for large volume of data from breast cancer cell models or 

patient samples and better mode of integration of metabolomics data with transcriptomics and proteomics 

data to translate the high-throughput information to clinical diagnosis can help accelerate the translation 

of new findings in the laboratory to the clinic. 
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