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Abstract: Genetic improvement of coffee plants represents a great challenge for breeders. Conventional
breeding takes a too long time for responding timely to market demands, climatic variations and new
biological threads. The correlation of genetic markers with the plant phenotype and final product
quality is usually poor. Additionally, the creation and use of genetically modified organisms (GMOs)
are often legally restricted and rejected by customers that demand natural products. Therefore, we
developed a non-targeted metabolomics approach to accelerate conventional breeding. Our main
idea was to identify highly heritable metabolites in Coffea canephora seedlings, which are linked to
coffee cup quality. We employed a maternal half-sibs approach to estimate the metabolites heritability
in open-pollinated plants in both leaves and fruits at an early plant development stage. We evaluated
the cup quality of roasted beans and correlated highly heritable metabolites with sensory quality traits
of the coffee beverage. Our results provide new insights about the heritability of metabolites of C.
canephora plants. Furthermore, we found strong correlations between highly heritable metabolites and
sensory traits of coffee beverage. We revealed metabolites that serve as predictive metabolite markers
at an early development stage of coffee plants. Informed decisions can be made on plants of six
months old, compared to 3.5 to 5 years using conventional selection methods. The metabolome-wide
association study (MWAS) drastically accelerates the selection of C. canephora plants with desirable
characteristics and represents a novel approach for the focused breeding of crops.

Keywords: plant metabolomics; early selection; cup quality; metabolic marker; Coffea canephora;
metabolome-wide association study (MWAS)

1. Introduction

Coffee is one of the most important crops in agriculture around the world since coffee beverages
prepared from roasted and ground beans are the second most popular beverage only after tea [1,2].
More than 100 species have been reported belonging to Coffea genus, but Coffea arabica and Coffea
canephora are the most commercialized. Because of their economic importance, these two species
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have been the main aim of the genetic breeding programs of coffee [3,4]. Traditional genetic breeding
strategies for coffee mainly include traditional clones selection, generational selection, selection of
pure lines following generational selection, generation of F1 hybrids, interspecific and intraspecific
hybridization and selection by backcrossing. The best strategy is chosen according to the behavior of
the coffee species, the aim of breeding (disease resistance, quality, yield) and the kind of variety (clone,
pure line or variety, hybrid) [5–7]. Coffee is a perennial plant, and the first harvest is possible after 3.5
to 5 years. Thus, the selection and breeding of new coffee varieties require at least 25 years, with vast
investments of research and development resources.

Last years, priority was given to the improvement of the cup quality of C. canephora [8]. This
species is considered to have a lower cup quality compared to C. arabica. On the other side, C. canephora
is more resistant against diseases and more tolerant against climatic variations [9–11]. Furthermore,
the content of caffeine and soluble solids extraction yields are significantly higher, which makes C.
canephora the principal raw material in the production of instant coffee [4,12,13]. Bean size, soluble
solids content, cup quality and cup quality-related compounds (the content of sugars, lipids, caffeine,
trigonelline and chlorogenic acids) has been the aim of breeding programs in C. canephora. Despite the
economic importance of coffee growing and breeding, technological progress is limited compared to
other crops [14–19]. Therefore, new methodologies for the selection of coffee varieties with desirable
agronomical and cup quality characteristics are urgently needed.

Plant phenotypes are tightly related to metabolites. Consequently, the employment of metabolites
as predictive markers for complex traits promises to be of high potential. Metabolomics is a powerful
tool for the generation of targeted and non-targeted metabolic profiles. The use of advanced statistical
analysis provides new possibilities for discovering metabolites, which are predictive for phenotypical
characteristics [20,21]. In several crops, such as barley, maize, pine, potato, rice, tomato, wheat and
grape [22–29], metabolomics approaches permitted the identification of metabolic markers as accurate
predictors of key agronomical traits. The chemical composition of food and beverages also has a
direct relation with sensory traits and product quality, such as its nutritional value. Therefore, the raw
material used in food productions has a crucial influence on the satisfaction of the consumer. For this
reason, we developed new breeding strategies to enable the selection of plant varieties with desirable
agronomic and sensory traits.

Metabolome-wide association studies (MWAS) represent a potential tool for the improvement of
plants, regardless of the availability of genomic information. Therefore, we applied a metabolomics
strategy to identify metabolites predicting sensory traits of coffee beverage in the early development
stages of C. canephora plants.

2. Results and Discussion

2.1. Variability of Metabolic Phenotypes and the Relationship Between C. Canephora Parent Plants

Forty families of C. canephora were included in this study, comprising a total of 120 coffee plants.
Three individuals integrated every family: one parental (mother plant) and two mother half-sibs for
every parental (Table 1). The identity of one of the parental was unknown since the coffee plants
sibs were reproduced by open-pollinated seeds. To evaluate the natural variation in metabolite
levels present in plants of C. canephora families, we performed an untargeted metabolomics approach,
Ultra Performance Liquid Chromatography-Ion Trap-Mass Spectrometry (UPLC-IT-MS) of aqueous
methanolic extracts of fruit and leaf tissues. First, we conducted a hierarchical clustering analysis
(HCA) to determine the metabolic variability and relationship between coffee mother plants. We
generated two dendrograms depicting the clustering of samples employing the abundances of 755
metabolites detected in fruits and 527 metabolites for leaf tissue. Then, we generated a tanglegram plot
in order to compare both phylogenies (Figure 1). Our analyses of phylogeny congruence revealed a
high degree (0.81) of entanglement, and comparisons indicated that this was mainly due to the change
of position of regions or entire clades in the tree. Naturally, fruit and leaf tissues show very different
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metabolic profiles. The co-clustering of genetically-related mother plants indicates their metabolic
similarity and supports the strong correlation between genotype and metabolic phenotype.

Table 1. C. Canephora families included in heritability analysis.

Number Mother
Plant ID Sib 1 Sib 2 Number Mother

Plant ID Sib 1 Sib 2

1 MP196 196-1 196-3 21 MP349 349-2 349-3
2 MP203 203-1 203-2 22 MP360 360-3 360-4
3 MP205 205-1 205-2 23 MP390 390-1 390-3
4 MP212 212-1 212-2 24 MP408 408-1 408-4
5 MP292 292-3 292-4 25 MP416 416-1 416-3
6 MP295 295-2 295-3 26 MP418 418-3 418-4
7 MP312 312-3 312-4 27 MP419 419-2 419-4
8 MP315 315-1 315-2 28 MP420 420-1 420-4
9 MP316 316-1 316-2 29 MP430 430-2 430-3

10 MP318 318-2 318-3 30 MP432 432-1 432-2
11 MP322 322-3 322-4 31 MP433 433-2 433-3
12 MP323 323-1 323-4 32 MP434 434-2 434-4
13 MP328 328-3 328-4 33 MP442 442-2 442-3
14 MP333 333-1 333-4 34 MP443 443-3 443-4
15 MP336 336-1 336-2 35 MP449 449-1 449-3
16 MP337 337-3 337-4 36 MP450 450-3 450-4
17 MP339 339-1 339-2 37 MP451 451-1 451-4
18 MP340 340-1 340-3 38 MP452 452-2 452-3
19 MP343 343-1 343-3 39 MP453 453-2 453-3
20 MP346 346-1 346-4 40 MP454 454-2 454-4

2.2. Selection of Highly Heritable Metabolites in Coffee Fruits and Leaves of C. Canephora Families

In coffee fruits, we detected 755 metabolites, which were present in all 120 samples, whereas
a minor quantity of metabolites was detected in leaves (527 metabolites). Metabolites in plants are
tightly associated with phenotypic characteristics and represent a high diversity at a quantitative and
qualitative level within plant species. The application of untargeted metabolomics analysis enables the
detection of a wide range of metabolite classes in plants and support the study of aspects regulating
biochemical variation such as environmental and genetic control and how these compounds influence
complex traits [20,30,31].

To evaluate the variability in metabolite levels and determine the contribution of the genetic
factor, we determined the abundance of every metabolite and estimated the metabolic heritability in
the narrow sense by offspring-parents regression. Heritability levels for traits range from 0 to 1. Scores
less than 0.2 are categorized as low heritability, scores between 0.2 and 0.39 are considered as moderate
heritability and high heritability corresponds to values above 0.4. In fruits, our results revealed a high
percentage of metabolites (mass peaks) with high heritability (59.6%, 450 metabolites), while 97 and
208 metabolites exhibited low and moderate heritability levels, respectively (Figure 2A). In contrast,
for metabolites heritability estimated in leaf tissues, we detected 22.01% (116 metabolites) with high
heritability values, 125 metabolites of moderate heritability (23.72%) and 286 metabolites (54.27%)
were classified as low heritability metabolites (Figure 2B). Highly heritable metabolites identified
from mother plants to F1 progeny: 450 in fruits and 116 in leaves were considered for the posterior
analysis of correlation with sensory traits of coffee beverage. Our results demonstrated that for a
considerable number of metabolites, a high percentage of the observed quantitative variation could be
explained by genetic factors, as demonstrated by their high heritability levels. A study of metabolic
diversity by using metabolomics approaches permits to evaluate natural variation occurring within
and between species [32]. Our findings are relevant for the knowledge of the variability naturally
occurring in the levels of metabolites of coffee tissues and the contribution of genetic factors. Studies
of heritability of qualitative and quantitative characters of the coffee crop have been the basis for
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the genetic improvement of quantitative traits such as yielding, disease resistance, adaptability to
climatic and soil conditions, bean physical quality and sensory traits of coffee beverage [19,33–37]. Our
highlights, together with association studies between metabolites and coffee traits, could be of great
importance to support the classical breeding of coffee plants with desirable traits, especially those that
are associated with the natural variation of metabolite composition and levels.
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consisted of the average of three technical replicates.
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2.3. Metabolites of Roasted Coffee Beans Linked to Sensory Traits of Coffee Beverage

2.3.1. Tasting and Correlation Between Sensory Attributes of Coffee Beverage

For investigating the relationships between sensory traits of coffee beverage, a panel of 11 trained
cup-testers evaluated 21 roasted coffee bean samples. Eleven samples randomly selected corresponded
to C. canephora mother plants (M480–M495) and eight C. arabica and C. canephora samples were used
as reference samples. Ten sensory attributes of coffee beverage were tested, including aromatic
quality, aromatic intensity, astringency, body, flavor, after taste, bitterness, acidity, sourness and
global preference, using a scale ranging of 0 to 5 points (Table 2). First, we performed a correlation
analysis between sensory attributes (Figure 3). Based on a Spearman correlation analysis, the aromatic
intensity attribute only showed a positive correlation with aromatic quality, with a Spearman correlation
coefficient (SCC) of 0.48 and statistical significance (p < 0.05). Aromatic quality was positively correlated
with eight out of nine attributes with the exception of acidity (SCC: −0.55; p < 0.01) and sourness (SCC:
−0.62; p < 0.01) for which negative correlation was observed. We obtained a similar correlation pattern
for flavor, astringency and aftertaste. The latter demonstrated positive correlation with statistical
significance for most of the attributes except for acidity and sourness. Interestingly, for acidity, we
detected negative correlation for six attributes (aromatic quality, flavor, aftertaste, bitterness, body
and global preference) and only for the sourness attribute, we found a high Spearman correlation
coefficient of 0.87 (p < 0.001). Global preference represents the rating of the overall perception of
all the organoleptic characters of coffee beverage. This attribute revealed positive correlation for
aromatic quality, flavor, astringency, aftertaste, bitterness and body. However, we found a high negative
correlation for acidity and sourness attributes (SCC: −0.85 and −0.8; p < 0.001, respectively). The close
relationship between acidity and sourness and the correlation between all the sensory traits assessed is
illustrated in a dendrogram of correlation distances (Figure 4). Altogether, our results demonstrated
the existence of relationships between the majority of the sensory traits, and suggest that attributes do
not only affect coffee quality individually.
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Table 2. Sensory profile of coffee beverages.

Sample Aromatic
Intensity

Aromatic
Quality Flavor Astringency Aftertaste Acidity Bitterness Body Sourness Global

Preference

MP302 3.27 ± 0.52 3.09 ± 0.33 2.73 ± 0.39 2.45 ± 0.49 3.27 ± 0.39 0.64 ± 0.46 3.45 ± 0.49 2.73 ± 0.52 0.27 ± 0.39 2.82 ± 0.29

MP307 2.14 ± 0.33 1.86 ± 0.47 2.23 ± 0.41 2.05 ± 0.33 2.27 ± 0.38 0.55 ± 0.33 3.50 ± 0.54 2.23 ± 0.61 0.36 ± 0.46 2.14 ± 0.24

MP309 3.18 ± 0.44 3.45 ± 0.49 3.09 ± 0.33 2.82 ± 0.29 3.00 ± 0.18 0.45 ± 0.49 2.82 ± 0.29 2.82 ± 0.29 0.55 ± 0.50 3.09 ± 0.16

MP324 2.55 ± 0.49 2.64 ± 0.46 2.18 ± 0.29 2.45 ± 0.49 2.55 ± 0.67 0.55 ± 0.49 3.18 ± 0.47 2.36 ± 0.46 0.45 ± 0.49 2.36 ± 0.46

MP316 2.64 ± 0.46 2.45 ± 0.49 2.91 ± 0.33 2.36 ± 0.46 2.64 ± 0.57 0.64 ± 0.46 3.73 ± 0.39 2.55 ± 0.49 0.45 ± 0.49 2.91 ± 0.16

MP318 2.82 ± 0.29 2.64 ± 0.46 2.36 ± 0.46 3.09 ± 0.16 3.00 ± 0.18 0.55 ± 0.49 3.55 ± 0.49 2.73 ± 0.39 0.45 ± 0.49 2.55 ± 0.49

MP323 3.00 ± 0.18 3.09 ± 0.16 3.09 ± 0.33 1.73 ± 0.39 2.64 ± 0.46 0.36 ± 0.46 3.55 ± 0.49 2.36 ± 0.57 0.18 ± 0.29 3.09 ± 0.33

MP346 2.27 ± 0.39 2.09 ± 0.16 2.00 ± 0.36 2.09 ± 0.16 2.73 ± 0.39 0.45 ± 0.50 3.45 ± 0.49 2.73 ± 0.39 1.00 ± 0.18 2.00 ± 0.18

MP360 2.64 ± 0.52 2.36 ± 0.46 1.82 ± 0.29 2.18 ± 0.29 2.55 ± 0.49 1.27 ± 1.07 2.36 ± 0.82 2.45 ± 0.77 1.27 ± 0.39 1.82 ± 0.29

MP408 3.27 ± 0.39 2.82 ± 0.29 2.36 ± 0.46 2.82 ± 0.29 3.00 ± 0.36 0.27 ± 0.39 3.36 ± 0.46 2.73 ± 0.39 0.36 ± 0.36 2.82 ± 0.29

MP420 2.73 ± 0.39 3.00 ± 0.18 3.00 ± 0.36 2.55 ± 0.49 2.91 ± 0.33 1.18 ± 0.29 3.36 ± 0.46 2.36 ± 0.46 0.55 ± 0.49 2.45 ± 0.49

MP453 2.45 ± 0.49 1.82 ± 0.29 1.82 ± 0.47 2.45 ± 0.49 2.73 ± 0.39 1.00 ± 0.18 3.09 ± 0.16 2.64 ± 0.46 0.55 ± 0.49 1.91 ± 0.16

MP454 2.91 ± 0.33 2.00 ± 0.18 1.91 ± 0.17 2.73 ± 0.39 2.55 ± 0.49 0.73 ± 0.4 2.91 ± 0.33 2.82 ± 0.29 0.64 ± 0.46 1.91 ± 0.16

M495 2.36 ± 0.46 1.45 ± 0.49 1.45 ± 0.49 1.55 ± 0.59 1.73± 0.39 0.29 ± 0.74 2.27 ± 0.39 2.27 ± 0.39 0.91 ± 0.33 1.73 ± 0.52

M498 2.73 ± 0.39 1.91 ± 0.16 1.36 ± 0.46 2.27 ± 0.39 2.09 ± 0.16 3.00 ± 0.18 1.91 ± 0.33 2.27 ± 0.40 2.00 ± 0.36 0.45 ± 0.49

M499 3.09 ± 0.33 1.82 ± 0.29 1.55 ± 0.49 2.18 ± 0.29 1.73 ± 0.39 2.09 ± 0.49 2.18 ± 0.29 2.55 ± 0.49 1.18 ± 0.30 1.18 ± 0.29

M500 3.00 ± 0.25 2.38 ± 0.46 2.25 ± 0.38 2.50 ± 0.50 2.50 ± 0.50 3.38 ± 0.46 2.25 ± 0.37 2.63 ± 0.46 1.63 ± 0.47 1.75 ± 0.37

M502 3.43 ± 0.48 2.29 ± 0.40 1.71 ± 0.40 1.43 ± 0.48 2.43 ± 0.48 3.14 ± 0.24 2.29 ± 0.40 1.86 ± 0.24 1.14 ± 0.24 1.43 ± 0.49

M506 2.88 ± 0.22 1.25 ± 0.38 1.50 ± 0.50 2.00 ± 0.25 2.50 ± 0.50 3.88 ± 0.44 1.75 ± 0.38 2.00 ± 0.25 3.13 ± 0.44 0.75 ± 0.38

M507 2.57 ± 0.49 1.29 ± 0.41 1.57 ± 0.49 2.29 ± 0.69 1.57 ± 0.49 4.00 ± 0.57 1.43 ± 0.61 1.71 ± 0.41 1.43 ± 0.49 0.43 ± 0.49

M508 2.71 ± 0.26 2.18 ± 0.29 2.00 ± 0.18 1.71 ± 0.40 1.43 ± 0.49 3.86 ± 0.24 1.29 ± 0.40 2.14 ± 0.24 1.14 ± 0.24 1.00 ± 0.28

The values represent the average value with the standard deviation of 11 trained cup-testers.
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beverage is depicted. Data with statistical significance levels are indicated with asterisks: p-values ≤
0.05 *, ≤0.01 ** and ≤0.001 ***.

2.3.2. Selection of Marker Metabolites in Roasted Coffee Beans Linked to Sensory Traits

Coffee cup quality is determined by diverse factors, such as the coffee plant genotype,
environmental factors (geographical origin, climate, altitude, temperature, percentage of crop shade,
soil nutrient capacity, fertilization), agricultural practices, post-harvest processing and grain storage, as
well as the basic chemical composition of coffee bean. A wide range of compounds contributes to the
coffee cup quality, including volatile and non-volatile compounds, which determine the organoleptic
quality of coffee beverage [38–42].

Non-volatile compounds of coffee roasted beans include carbohydrates, sucrose, free sugars, cell
wall polysaccharides, lignin, nitrogen compounds (proteins, free amino acids, caffeine, trigonelline),
lipids, minerals (potassium, phosphorus), organic acids, esters (chlorogenic acids, aliphatic acids, quinic
acid derivates) and melanoidins [19,35]. To identify metabolite markers of coffee cup quality present in
roasted coffee beans, we analyzed aqueous extracts of roasted and ground beans by UPLC-Electrospray
(ESI)-MS. We detected 737 metabolites that were present in all 21 samples of C. canephora and C. arabica
samples included for this analysis. We performed a Spearman correlation analysis employing the
levels of detected metabolites versus the scores of each of the 10 sensory traits of coffee beverage
before mentioned. We detected 392 correlations that fulfilled those characteristics, involving 174
metabolites and eight sensory attributes of coffee beverage, with SCC values ranging from 0.5 to
0.813 for positive correlations and −0.5 to −0.849 for negative correlations (see Table S1). The results
indicated no metabolites (with statistical significance) linked to aromatic intensity and astringency
attributes, whereas for all the other sensory attributes, at least 21 correlations were found. To identify
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the metabolites, we compared high-resolution accurate mass and MS data by using the programs XCMS,
MSDIAL and SpiderMass. We putatively identified 91 (52.3%) of the metabolites (Table S1), which
were classified in 11 class compounds, comprising alkaloids, carbohydrates, carotenoids, chlorogenic
acids, fatty acids, flavonoids, hydrocarbons, lipids, organic acids and terpenoids (Figure 5). Several
metabolites of these class compounds have been identified as biochemical compounds playing a role in
roasting chemistry. For example, carbohydrates and free sugars suffer pyrolysis, thermal and Maillard
(with proteins and amino acids) reactions generate aroma precursors such as furanes, carboxylic acids,
pyridines, pyrroles, pyrazines, thiazoles and ketones. Ferulic, caffeic and quinic acids from chlorogenic
acids were degraded to produce phenols, and lipids through oxidation were transformed to alcohols,
ketones and aldehydes [2,43–46].
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Figure 4. Cluster dendrogram of correlation between cup quality attributes of coffee beverage.
Hierarchical clustering was calculated with the ward.D2 method; correlation distances were calculated
by employing the scores of every sensory trait determined by the trained cup-tester panel.

Interestingly, we detected a high number of lipids influencing the sensory attributes of coffee
beverage. Fifty-two metabolites (114 associations) were annotated as lipids comprising four classes:
glycerolipids (GL), glycerophospholipids (GP), prenol lipids (PR), sphingolipids (SP) and sterol lipids
(ST) (Figure S1). Lipids of roasted coffee beans enhance the organoleptic properties of coffee beverage
such as flavor, color and foam. Lipid composition of beans is made mainly of triacylglycerides (75%)
and terpene esters (14%), free fatty acids (1%), free sterols (1.5%), sterol esters (1%) and phospholipids
(PLs) which are present in lower levels [47]. We detected a phospholipids group containing SP and GP
classes. SPs were associated with acidity, aftertaste, bitterness, global preference and sourness, whereas
GPs were negatively or positively linked to all the evaluated attributes (Figure S1). GLs were mainly
associated with acidity and body attributes, for which the majority of lipids were negatively associated
(SCC = −0.50 to −0.584). Although there is much information about compounds present in coffee
roasted beans or coffee beverage, limited information exists about the individual or specific chemical
components that are directly linked to organoleptic characteristics of coffee beverage. Identification
of metabolites linked to several sensory traits is crucial because of their value as marker metabolites
for specific coffee sensory traits. In our study, we successfully identified some metabolites that were
negatively or positively correlated to eight out of 10 assessed sensory attributes.
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putatively identified metabolites were included for compound classification by using KEGG and
Pubchem tools.

Figure 6 shows association levels of sensory traits with metabolites putatively identified as
quercetin 4’-glucoside and trigonelline representing two examples of marker metabolites presented
as critical components which confer specific coffee sensory properties. Quercetin 4´-glucoside is an
organic compound that belongs to flavonoid o-glycosides, which contain a carbohydrate moiety linked
to the 2-phenylchromen-4-one flavonoid backbone by O-glycosidic bond. Quercetin 4´glucoside was
found to have a positive correlation with acidity and sourness (SCC: 0.56 and 0.64; p:0.0089 and 0.0017,
respectively), whereas a negative correlation was observed for bitterness, flavor, aromatic quality,
aftertaste, body and global preference attributes (Figure 6). Some glycosides have been determined
as marker metabolites influencing the sensory profile of the coffee beverage. Mozambioside was
reported as an Arabica-specific bitter-tasting furokauran glucoside detected in roasted coffee beans and
beverage [48], whereas 3-methylbutanoyl glycosides were identified as markers for the quality of coffee
flavors [49]. Trigonelline was linked to seven sensory traits, but a positive correlation was observed only
for acidity, whereas for aromatic quality, bitterness, body, aftertaste, flavor and global preference, we
detected a negative association. It is well-known that 50–80% of trigonelline is degraded by pyrolysis
after the roasting process and contributes to the formation of other compounds such as nicotinic acid,
pyridine, 3-methyl-pyridine, the methyl ester of nicotinic acid and 1-methylpyridinium [50,51]. All
these products of trigonelline degradation finally influence organoleptic features of coffee beverage.
Thus, the trigonelline content in roasted coffee beans represents a predictive marker for more than one
sensory trait.
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Figure 6. Metabolites of roasted coffee beans linked to multiple sensory traits. The figure shows a
significant Pearson correlation (positive and negative) of quercetin 4´glucoside and trigonelline with
multiple sensory traits of coffee beverage.

2.4. Highly Heritable Metabolites in Fruits Linked to Coffee Cup Quality

Some aspects, such as ploidy incompatibility between C. arabica and C. canephora, as well as the
time that elapses from seed germination until the first harvest (3.5 to 5 years), represent a disadvantage
for traditional breeding methods. For these reasons, obtaining an improved coffee variety might take
up to 30 years [52,53]. Responding to the aforementioned, we performed a correlation analysis, which
included the 450 metabolites mentioned, identified as highly heritable metabolites and scores of 10
sensory traits of coffee beverage. We detected 228 correlations involving 158 metabolites that were
associated to at least one sensory trait and fulfilled the following characteristics: values of SCC > 0.5
for positive correlation and < −0.5 for negative correlation, and statistical significance (p < 0.05). 141
associations (61.8%) were negative correlations (SCC: −0.666 to −0.96) whereas 87 associations were
detected as positive correlations (SCC: 0.66 to 0.945) (See Table S2). Aromatic quality, aromatic intensity
and bitterness displayed the highest number of associations to highly heritable metabolites, 39, 29
and 29, respectively. On average, we detected 1.5 significant associations per metabolite feature. In
Table 3, we list the top metabolites of coffee fruits with optimal characteristics, which explicated high
predictive value for sensory traits of coffee beverage and for selection of plants producing coffee beans
with desirable sensory characteristics. In the top metabolites list, we included 2,4-decadienoyl-CoA
(m/z 940.2271), a metabolite constituted by unsaturated fatty acids with trans double bonds and which
is degraded into acetyl-CoA by a beta-oxidation. High levels of this fatty acyl thioester of coffee fruits
were positively associated with aftertaste (heritability: 0.881; SCC: 0.754).
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Table 3. Top metabolites of coffee fruits and leaf with optimal characteristics (high heritability and
strong correlation) linked to sensory traits.

Sensory
Attribute HR m/z Adduct

Ion Name Tissue Heritability SCC p-Value

Acidity 963.4134 n.a. Unknown Fruits 0.96 0.667 4.98 × 10-2

Aftertaste 940.2271 [M+Na]+ 2,4-Decadienoyl-CoA Fruits 0.881 0.754 1.88 × 10-2

Aromatic
intensity 860.5079 n.a. Unknown Fruits 0.999 0.812 7.89 × 10-3

Aromatic
quality 536.0019 n.a. Unknown Fruits 0.656 0.800 9.63 × 10-3

Astringency 601.1263 [M+Na]+ 2,3-trans-proanthocyanidin Fruits 0.957 0.833 5.27 × 10-3

Bitterness 734.4907 n.a. Unknown Fruits 0.817 0.740 2.27 × 10-2

Body 789.1658 [M+H]+ Delphinidin 3-O-glucosyl-5-
O-caffeoylglucoside Fruits 0.949 0.690 3.98 × 10-2

Flavor 598.5406 n.a. Unknown Fruits 0.998 0.740 2.27 × 10-2

Global
preference 791.4983 [M+H]+ Nonaprenyl diphosphate Fruits 0.984 0.728 2.61 × 10-2

Sourness 521.5618 n.a. Unknown Fruits 0.842 0.689 4.00 × 10-2

Acidity 473.3339 [M+H]+ 6-Deoxoteasterone Leaf 0.643 0.783 1.13 × 10-2

Aftertaste 695.4571 [M+Na]+ PA(16:0/18:2) Leaf 0.535 0.737 2.40 × 10-2

Aromatic
intensity 713.317 n.a. Unknown Leaf 0.958 0.803 9.01 × 10-3

Aromatic
quality 251.2095 [M+Na]+ Myristic acid Leaf 0.994 0.766 1.62 × 10-2

Astringency 967.7852 [M]− MGDG(23:0/26:0) Leaf 0.612 0.666 4.90 × 10-2

*Bitterness 473.3339 [M+H]+ 6-Deoxoteasterone Leaf 0.643 −0.857 3.14 × 10-3

*Body 463.3451 [M+Na]+ 4,4-Dimethylzymosterol Leaf 0.891 −0.689 3.98 × 10-2

Flavor 251.2095 [M+Na]+ Myristic acid Leaf 0.994 0.672 4.89 × 10-2

Global
preference 433.1626 [M+K]+ Gibberellin A28 Leaf 0.996 0.677 4.48 × 10-2

Sourness 473.3339 [M+H]+ 6-Deoxoteasterone Leaf 0.643 0.773 1.47 × 10-2

Sensory attributes are presented by alphabetic order and metabolites are showed in decreasing order of heritability
level for positive correlation. In some cases, only a negative correlation was detected. HR: High resolution;
SCC: Spearman correlation coefficient; n.a.: not applicable; * only negative correlation was detected for this
sensory attributes.

The mass peak m/z 791.4983, putatively identified as nonaprenyl diphosphate, demonstrated
a high heritability level (0.984) and positive correlation with global preference (SCC = 0.728). We
identified two compounds that belong to polyphenols/flavonoids class: 2,3-trans-proanthocyanidin
with high predictive value for astringency (heritability: 0.957; SCC: 0.833) and delphinidin
3-O-glucosyl-5-O-caffeoylglucoside which presented a positive correlation with body sensory trait
(heritability: 0.690; SCC: 0.833). Six unidentified mass peaks (m/z 963.4134, m/z 860.5079, m/z 536.0019,
m/z 734.4907, m/z 598.5406, m/z 521.5618) were associated to acidity, aromatic intensity, aromatic quality,
bitterness, flavor and sourness, respectively. Improvement of organoleptic traits in coffee requires
knowledge about the chemical composition of tissues of coffee plants, which contribute to the final
product: roasted beans and coffee beverage [53]. The presented markers assist in the improvement and
manipulation of sensory traits of coffee beverages. In the past, quality improvement of C. canephora
has been performed for bean size, extractable soluble solids, sugars, caffeine, trigonelline, total lipids
content and chlorogenic acids [8]. Here, we reported the first study that combined analysis of high
throughput metabolite heritability in combination with a correlation analysis of sensory traits of coffee
beverage. In other plant species, such as Arabidopsis [30], maize [28], tomato [54–56] and raspberry [57],
the application of metabolomics together with complementary tools, such as genome-wide selection,
has permitted the study of metabolite heritability, the elucidation of factors controlling biochemical
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variability and the purpose for modification of chemical composition by classical breeding. We reported
a considerable number of metabolites linked to sensory traits, which supports the early selection of C.
canephora plants.

2.5. Highly Heritable Metabolites in Leaf Linked to Coffee Cup Quality

To evaluate the link between highly heritable metabolites that have been detected before in coffee
leaves and the values of 10 sensory traits of coffee beverage assessed by the trained cup testers, we
performed a correlation analysis. We found 75 associations between 45 metabolites, which were
linked at least with one sensory attribute of coffee beverage (Table S2). The average of significant
associations per mass peak was 1.7, slightly higher than values found for fruits (1.5). Forty-six
associations, corresponding to 61.3%, were negative correlations (SCC: −0.663 to −0.9746), and the
remaining 38.7% of associations were positive correlations with values of SCC between 0.666 and
0.866) (Table S2). Mass peaks m/z 251.4295, m/z 387.3897, m/z 473.6946, m/z 517.7342, m/z 587.1469,
m/z 695.3553 and m/z 805.7835 are interesting because all presented that they were associated at least
with three coffee sensory traits of coffee beverage. This fact is of great importance, because we can
evaluate multiple sensory traits simultaneously by screening the levels of a single metabolite. In
Table 3, we listed the top metabolites purposed as excellent candidates for early selection of plants
with desirable coffee sensory traits due to their outstanding characteristics of high heritability and
strong positive correlation level to cup quality traits. 6-deoxoteasterone (m/z 473.3339), involved in
brassinosteroid biosynthesis I in coffee plants, was linked to three sensory traits: acidity, sourness and
bitterness. For the last one, a negative correlation (SCC = −0.857) was detected. It was included in the
list, because for bitterness, only negative associations were observed. We found a similar situation
for the ‘body’ attribute: 4,4-dimethylzymosterol (m/z 463.3451) was negatively linked to this trait.
Two lipids, PA(16:0/18:2) (a glycerophosphate: GP) and MGDG(23:0/26:0) (a glycosyldiradylglycerol:
GL05) were found in coffee leaves and presented high predictive values for aftertaste and astringency.
Levels of mirystic acid, a fatty acid (FA) resulted as a suitable predictor for aromatic quality and flavor
(heritability: 0.994; SCC: 0.766 and 0.672, respectively). Global preference was strongly associated with
levels of gibberellin A28, with heritability levels of 0.996 and an SCC of 0.677. A level distribution
analysis of all that metabolites in the 40 C. canephora parent plants (Figure 7) highlights individuals
which can be subject for the breeding of plants with specific sensory characteristics. Therefore, we
provided new knowledge about the inheritance of coffee leaf metabolites, but also information about
the link between metabolite levels in the leaf and complex agronomic traits such as coffee cup quality.
Remarkably, the use of highly heritable metabolite markers for coffee breeding in 6-month-old plants,
instead of waiting for 3.5–5 years until the first coffee fruit harvest, opens perspectives to reduce the
time for generation of coffee varieties with desirable sensory traits. Nevertheless, it is essential to
emphasize that the chemical composition and sensory properties of coffee are not only determined
by genetic factors, but also by cultivation conditions, plant condition, cultivation practices, harvest
and post-harvest processes [19,39,58,59]. Therefore, a strategy for improving traits of interest must
integrate all those non-genetic factors as well. Selecting plants with the proposed strategy would
comprise: a) screening of a parent plant population using marker metabolites, b) selection of plants
with desirable characteristics based in metabolite levels and c) plant propagation.
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Yellow-colored boxplots indicate metabolites found in fruits and blue color represents metabolites from
the coffee leaf.

3. Materials and Methods

3.1. Heritability Analysis

3.1.1. Leaves and Fruits Sampling

Samples for heritability analysis were collected from an experimental farm in Tapachula, Chiapas,
Mexico. We designed a maternal half-sibs approach in order to estimate the heritability of metabolites
in both tissues, leaves and fruits. In this study, 120 C. canephora plants were included, consisting of
40 mother plants and their F1 progeny (two sibs for every mother plant), which was reproduced by
open-pollinated seeds. Leaves of all plants (mothers and sibs) were sampled at 6 months of age for F1
plants and, three years later in a second sampling (at first fruit harvest of F1 plants), completely mature
fruits of both mother plants and sibs were obtained.
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3.1.2. Leaves and Fruits Tissue Metabolite Extraction

Approximately two grams of freeze-dried tissue were ground in a Mixer Mill MM 301 (Retsch®)
at 30 Hz for 15 s and sieved with a mesh for <300 µm particle size. Then, 35 mg of every sample was
extracted twice in 450 µL of solvent (75% methanol/24.85% water, 0.15% formic acid), 25 min in an
ultrasound bath at room temperature. After centrifugation at 15,870× g for 5 min at room temperature,
the supernatants of first and second extraction were collected in the same 1.5 mL tube and filtered
using a 0.2 µm membrane. These fractions were subjected to UPLC-MS analysis.

3.1.3. Estimation of Metabolites Heritability

Narrow sense heritability of metabolites was calculated through offspring-parents regression,
which is suitable for cross-fertilizing crops, and when the estimation of heritability is performed for
half-sib families regressed on a single parent. Measures corresponded to intensity levels of every
metabolite detected. The regression coefficient (Yi), which measures the rate between covariance of
parents to offspring covariance, with its respective standard error was calculated as follows: Yi = β0 +

β1Xi + εi, where: Yi = Average measures of offspring of the X families; β0 = intercept; β1 = regression
coefficient; Xi = Measurement of only one parent (mother plant) per family; εi = Standard error. The
slope of the regression line (β1) represents an estimate of narrow-sense heritability (h2), which depends
mainly on additive genetic values. Narrow-sense heritability (h2) is very important for plant breeding
programs because artificial selection mainly depends on additive genetic variance.

3.2. UPLC-ESI-MS Analysis

Metabolite analysis was performed employing an UPLC-ESI-MS (Ultra Performance Liquid
Chromatography Electrospray Mass Spectrometry) system consisting of an Accela UPLC coupled to
LCQ Fleet Ion Trap (Thermo Finnigan, San José, CA, USA). Separation of compounds was performed
on a Hypersil Gold C18 column (50 × 2.1 mm, 1.9 µm particle size). In the UPLC system, mobile phase
A consisted of 0.1% FA in water and solvent B was MetOH with 0.1% FA. For leaves analysis, the
solvent gradient was as follows: 8% B, 0–0.5 min; 8–65% B, 0.5–6.5 min; 65%–100% B, 6.5–20 min;
100% B during 1 min (20–21 min); 0.5 min for comeback to re-equilibration conditions and finally,
8% B during 3.5 min (21.5–25 min). The gradient standardized for fruit tissues was: 3% B during 1
min; 3–50%, 1–5 min; 50–73% B, 5–5.5 min; 73–100% B, 5.5–19.3 min; 100% B during 1min; 100% B–3%
B, 20.3–21.5; and 3.5 min 3% B for column re-equilibration. For roasted coffee analysis, the solvent
gradient was: 0–1 min, 2% B; 1–6 min, 2–66% B; 6–12 min, 66–88% B; 12–19 min, 88–93% B; 93–97%
B in 1 min; 97–100% B, 20–25 min; from 25 to 27 min was maintained at 100% B; 27–27.5 min, 100%
B–98% A and finally, column re-equilibration for 3.5 min with 2% B. The column oven temperature was
always maintained at 40 ◦C, and the flow rate was 550 µL/min. Spectra were acquired in a range of
50–1000 m/z. The analysis was made for separated in both positive and negative mode. The scan time
was 500 ms (3 micro-scans). The ESI source parameters employed for positive mode were: capillary
temperature 330 ◦C; capillary voltage 35 V; spray voltage 4 kV; Tube lens 80 V; nitrogen sheath gas 30
arbitrary units (AU); auxiliary gas 15 AU. For negative mode, the capillary voltage was −45 V and
−123.38 V for tube lens. For the MS analyses, the collision energy (CID) was normalized to 35.

3.3. Spectra Data Analysis and Putative Identification of Metabolites

Raw mass spectrometry data processing for feature detection was performed in MZmine 2.37
software [60]. A base-line correction filter was applied and peak detection was performed with
GridMass, with the following parameters: 0.32 m/z tolerance, 0.1 to 0.8 min width and a minimum peak
height of 500. Isotopic peaks grouper was applied, and then, RANSAC (Random Sample Consensus)
alignment was conducted with 0.35 m/z tolerance and 1.3 min of retention time. Finally, Gap filling
(same RT and m/z) and duplicate peak filter were applied with 0.35 m/z tolerance. Intensities of features
(m/z values) were employed for all statistical data analysis. Additionally, pools of samples were
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analyzed by high resolution-MS comprising a QTOF Synapt G1 (Waters, UK) in order to get accurate
mass data. Three strategies were used for the putative identification of metabolites: (1) analysis
of high-resolution MS data in XCMS [61] by matching with the METLIN database; (2) matching of
accurate masses list by using a Coffea sp. in-house generated database with SpiderMass software [62];
(3) comparison of tandem MS data from LCQ Fleet Ion Trap with METLIN database, which was
conducted in XCMS Online.

3.4. Cup Quality-Related Metabolite Analysis

3.4.1. Coffee Beans Processing and Sensory Analysis of Coffee Beverage

About five kilograms of fully ripe fruits were harvested for every plant included in the analysis.
Fruit samples were subjected to post-harvest drying processing to obtain green coffee beans free of peel
and parchment with moisture content about 12%. Green coffee beans of C. canephora and C. arabica (as
reference samples) were medium roasted during 7–8 min according to SCAA specifications (Specialty
Coffee Association of America 2015). The degree of roasting was standardized to a value of 55 (medium
roast) in a colorimetric Agtron scale developed by SCAA. The coffee beverage was prepared using 50 g
of roasted beans ground to medium size, and 1000 mL of boiled water (97 ◦C). After cool down to 50 ◦C,
the beverage of all roasted coffee samples were tested by a trained panel of 11 trained cup-testers, who
evaluated 10 attributes related to coffee cup quality: aromatic quality, aromatic intensity, astringency,
body, flavor, after taste, bitterness, acidity, sourness and global preference, employing a scale ranging
of six points (0 to 5) where 0 = no presence and 5 represents the higher intensity of the attribute.

3.4.2. Roasted Beans Metabolite Extraction

35 mg of ground roasted beans were extracted twice in 450 µL of 95 ◦C water in an ultrasound bath
for 25 min. Samples were centrifuged at 15,870× g for 5 min at room temperature, and the supernatant
was filtered through a 0.2 µm membrane and employed for UPLC-MS analysis.

4. Conclusions

Our study represents a comprehensive analysis of the heritability of metabolites in Coffea canephora
plants and reports predictive metabolic markers for the coffee cup quality markers. We proved the
feasibility to use metabolic profiles for the early selection of coffee plants in breeding projects and to
speed up the development of new coffee varieties drastically. Compared to conventional breeding
strategies, a ‘metabolome-wide association study’ (MWAS) permits a shorter time-to-market, and
therefore, enables a more agile development of commercial products. Moreover, the creation of more
resistant plant varieties with adequate cup quality is accelerated. The latter might become critical for
responding to environmental challenges due to the climatic change.

MWAS is applicable to plant collections of any origin: natural varieties, conventional breeding
and genetically modified organisms (GMOs). The analytical and statistical methods are highly scalable.
Thus, MWAS has high potential in the breeding of crops of plants of agricultural or industrial interest.
In further studies, we will test metabolic markers for sensory quality with C. arabica and study other
complex traits, such as fungal resistance.
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sensory traits of coffee beverage.
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