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Abstract: We study the interaction of two discrete pomeron fields while considering mass mixing and
the general structure of the interaction potential for pomerons within the framework for a functional
renormalization group analysis of Reggeon field theory. We find fixed points from the zeros of the
beta function establishing the existence of three groups of solutions: the first corresponds to two
uncoupled pomerons, the second is a solution known as a “pomeron–odderon” interaction, and the
final is a real general solution with an interaction potential. We also study its universal properties
around this fixed point. This analysis allows for a discussion for the first time on the mixing of two
pomerons through renormalization flow paths from the ultraviolet to the non-perturbative infrared
regions. Finally, we comment on its role in high-energy scattering.

Keywords: pomeron; Reggeon field theory; functional renormalization group

1. Introduction

The Regge limit of high-energy QCD remains a topic of high interest. At small
transverse distances, where perturbation theory can be applied, QCD predicts the BFKL
pomeron [1–5], which is characterized by an intercept µP and slope α′P. In this kinematic
region (where the energy is bigger than the transferred momenta), the scattering process is
described through the exchange of pomerons.

In QCD at NLO, when the strong coupling becomes momentum-dependent, an in-
frared cutoff has to be introduced, which, strictly speaking, already goes beyond pertur-
bation theory, and the BFKL pomeron spectrum becomes discrete, even at relatively short
distances. Then, we need to investigate which of them and in what way they will contribute
to the scattering processes at large distances and rapidity.

To study the interactions of these Regge poles, it is convenient to consider a local ap-
proximation for the action and make use of the well-established formalism of Reggeon field
theory (RFT) [6–8], which lives in 2 + 1-dimensions, transverse momenta. This approach
significantly simplifies the inclusion of pomeron interactions, and as a comprehensive QCD
description, pomerons are Reggeized gluons and their interactions are characterized by
non-local vertex functions [9–11]. Then, RFT offers a robust description of strong inter-
actions in the Regge limit and infrared region. In Regge theory, a pomeron appears like
singularities (i.e., cuts and poles) in the angular momentum ω-complex plane. Thus, we
should not find Reggeons between ω = 0 and the ω-cut.

With an infrared cutoff and running αs, the ω-cut segment between the ω-cut and zero
is replaced by an infinite sequence of discrete poles accumulating at zero. This scenario
has been confirmed in numerical studies for various infrared cutoff versions: in [12], an
infrared cutoff is introduced, preserving the BFKL bootstrap property (related to s-channel
unitarity); in [13–15], boundary values of the BFKL amplitude are imposed at a fixed
momentum scale k2

0; in [16–18], a Higgs mass is used as an IR regulator; and in [19], a more
sophisticated regulator is introduced, embedding the BFKL pomeron into Wilsonian exact
renormalization group techniques.
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Furthermore, for this discrete spectrum part, the eigenfunctions have been studied [20,21]:
notably, only for the leading eigenvalue is the wave function centered in the “soft” region
of small transverse momenta, while for the nonleading eigenvalues, the wave functions
become “hard”, i.e., these pomeron states are centered in the UV region of large transverse
momenta. The remaining task is the “unitarization” of this set of pomeron states, requiring,
in particular, the introduction of the triple pomeron vertex [22].

To study the transition from the ultraviolet (UV) to the infrared (IR) regions, to move to
larger distances, we choose the IR-regulated effective action, satisfying functional renormal-
ization group (FRG) equations, as the method to encode the different dynamical regimes.

The finite set of discrete BFKL pomerons (accumulating at ω = 0) was used [23] to
fit the small-x and low-Q2 HERA data, allowing for a good description. In this previous
analysis, no attempt was made to introduce the triple pomeron vertex. In this paper, our
goal is to embed the discrete BFKL pomerons into Reggeon field theory, incorporating
corrections to the BFKL pomeron interaction vertices in the potential, in particular, the
pomeron triple vertex.

The next step is the introduction of an infrared regulator, which later on will allow us
to make use of the exact renormalization group approach. We describe how to implement
this regulator for the effective interaction of the N-discrete BFKL pomeron and derive the
renormalization equation for the parameters defined in the BFKL pomeron effective action
concerning the IR cutoff parameter k. We obtain nonlinear evolution equations for the
intercepts, slopes, and coupling constants.

In this research, we study the interaction of two pomerons as first approximations,
starting with an effective potential with a non-diagonal intercept between the pomerons.
This first approximation is crucial for understanding the necessary steps to derive the
flow equation using the Wetterich flow equation for a general effective action for N-
pomeron interactions. As we know, FRG at a low approximation can be restricted to
one-loop calculations, enabling us to determine the critical properties of the theory at
one loop. However, in a recent paper, Braun [24] studied the renormalization group (RG)
approach for the pomeron–odderon model in two transverse dimensions in the single one-
loop approximation and found similar results to those we obtained using the functional
renormalization approach [25]. One of the important results show that the single-loop
approximation adopted is not sufficient but provides a relatively good understanding of
the theory’s behaviour.

In our papers [19,25], we initiated an analysis of the flow equations of Reggeon field
theory (RFT) and employed the Wetterich formulation of the functional renormalization
group equations [26,27] to directly study the problem in two transverse dimensions. As
the main result of our research is the establishment of a critical theory (fixed point) in this
multidimensional parameter space of the effective potential, there are directions that are IR-
attractive (UV-repulsive), while all other directions are UV-attractive. We have verified that
such a fixed point is related to the same universal class as the percolation model in statistical
physics [28]. This equivalence with models of non-equilibrium physics potentially impacts
the statistical physics of generalized multicomponent-directed percolation models and start
to increase the interested in this theory [29,30].

Self-interactions of the pomeron [31] and interactions between the pomeron and
odderon are naturally present in perturbative QCD analyses [22]. Similar findings have
also been obtained in the Colour Glass Condensate and dipole approaches [32–34].

This paper is organized as follows: We first describe the general setup and then present
our fixed point analysis results as the zeros of the β functions. In the final part, we calculate
the trajectory of the physical parameter for the pomerons around the fixed point, allowing
us to define the pomeron intercepts and offer the first hint at a physical interpretation.

2. The General Setup

To investigate the critical properties of a discrete pomeron interaction, we use the
functional renormalization group approach, which has been successfully applied to dif-
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ferent areas: in statistical mechanics, particle physics, and quantum gravity (for a review,
see [35–37]).

In brief, in this FRG approach, the study of the effective action Γk needs the introduc-
tion of an infrared regulator Rk, which controls the range of modes integrated out. One of
the main goals of this research is to find fixed points of the flow equation which must be
solved using analytic or numerical approximations.

2.1. The Action and the Flow Equation

In 1967, Gribov [38] developed rules for calculating Feynman diagrams in processes
involving Reggeons. Inspired by this work, effective field theories were developed to
derive these rules through an effective action [39].

In the context of QCD, a pomeron is generated as a composite state of two or more
Reggeized gluons; however, in RFT, Reggeons are represented by fields (ψi, ψ†

i ), as pro-
posed in [7,25]. The effective action for N different Reggeons is given by the following
expression:

Γk =
∫

dDxdτ[Zi(
1
2

ψ†
i ∂̂τψi − α′iψ

†
i ∇2ψi) + mi,l(ψiψ

†
l + ψ†

i ψl)− µiψ
†
i ψi − Vk[ψ

†
i , ψi; λj]] (1)

where τ is the time (rapidity); D = 2 is the dimension of transverse space (both variables
are conjugate to Reggeon energy ω and transverse momenta k); Zi is the renormalization
wave function; α′i is the slope of the corresponding Reggeon’s; µi and mi,l are the “mass”
parameters of the fields, related to the intercepts of the Regge trajectories as µi = αi(0)− 1;
λj are the couplings associated with the potential; and j ≡ 1, . . . , n, where n is the number
of couplings in the potential.

In previous works, we have studied actions of the form (1) with mi,l = 0, calculating
the β functions using the Wetterich equation. These studies include a self-interacting
field pomeron [19] and two fields interacting: pomeron–odderon with cubic terms in the
potential [25] that consider the signature and parity constraints of the fields. Both were
expanded using the local potential approximation (“LPA”) for small fields.

The interaction between the two pomerons discrete fields is described by the cubic
potential Vk:

Vk[ψ1, ψ†
1 , ψ2, ψ†

2 ] = iλ1ψ†
1(ψ

†
1 + ψ1)ψ1 + iλ2ψ†

2(ψ
†
2 + ψ2)ψ2 + iλ3ψ†

1(ψ
†
2 + ψ2)ψ1+

iλ4ψ†
2(ψ

†
1 + ψ1)ψ2 + iλ5(ψ

†2
2 ψ1 + ψ2

2ψ†
1) + iλ6(ψ

†2
1 ψ2i + ψ2

1ψ†
2), (2)

and the effective action is as follows:

Γk[ψ1, ψ†
1 , ψ2, ψ†

2 ] =
∫

dDxdτ[Z1(
1
2

ψ†
1 ∂̂τψ1 − α′1ψ†

1∇2ψ1) + Z2(
1
2

ψ†
2 ∂̂τψ2 − α′2ψ†

2∇2ψ2)

+ m(ψ†
1ψ2 + ψ†

2ψ1)− µ1 ψ†
1ψ1 − µ2ψ†

2ψ2 − Vk[ψ1, ψ†
1 , ψ2, ψ†

2 ] ]. (3)

To find the critical properties of the pomeron interaction, we need to determine the
flow equation of the effective action using the FRG.

2.2. Functional Renormalization Group Equation

The functional renormalization group equation, or the Wetterich equation, is given by
the following:

∂tΓk =
1
2

Tr
[
(Γ(2)

k +Rk)
−1∂tRk

]
, (4)

where the renormalization time evolution t is ln(k/k0), Γ(2)
k = Γ(2)

k,0 − Vk, and Tr[. . .] ≡∫ ∫ dDq
(2π)D

dω
(2π)

tr[. . .]. In order to compute the rhs of the flow equations, which results from
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scale t(k)-controlled contributions from quantum fluctuations, we find it convenient to
expand (Γ(2)

k +Rk)
−1 in the following way:

(Γ(2)
k,0 +Rk − Vk)

−1 = −Gk,0(1 + VkGk,0 + VkGk,0VkGk,0 + VkGk,0VkGk,0VkGk,0 + · · · ). (5)

Here, Gk,0 is the inverse of Γ(2)
k,0 +Rk. This matrix is not diagonal, and introducing the

variable z ≡ iω
α′1k2 , the propagator for q2 < k2 is given by the following:

Gk,0 =
(k2+Dα1)

−1

(z + 1 − µ1)(z + r − µ2)− m2


0 Z1(z + r − µ2) 0 −m
0 0 0 0
0 −m 0 Z2(z + 1 − µ1)
0 0 0 0

+

(k2+Dα1)
−1

(−z + 1 − µ1)(−z + r − µ2)− m2


0 0 0 0

Z1(−z + r − µ2) 0 −m 0
0 0 0 0

−m 0 Z2(−z + 1 − µ1) 0

. (6)

Then, we need to consider that the trace in the Equation (4) extends over a 4× 4 matrix,
and needing a regulator, we chose the optimized Litim regulator Rk [40] as follows:

R1(q2) = Z1α′1(k
2 − q2)Θ(k2 − q2), R2(q2) = Z2α′2(k

2 − q2)Θ(k2 − q2), (7)

allowing for a simple analytic integration in the closed form.
The 4 × 4 matrix propagator is written as

Γ(2) +Rk =

(
Γ(2)

1 Γ12

Γ21 Γ(2)
2

)
, (8)

with 2 × 2 block matrices defined as

Γ(2)
1 =

(
Vψ1ψ1 Z1(−iω + α′1q2) + R1 + Vψ1ψ†

1
Z1(iω + α′1q2) + R1 + Vψ†

1 ψ1
Vψ†

1 ψ†
1

)
, (9)

and so on for Γ(2)
2 , Γ12, and Γ21. Finally, the interaction potential matrix Vk in Equation (6)

is defined as:

Vk =


∂ψ1ψ1 V ∂ψ1ψ†

1
V ∂ψ1ψ2 V ∂ψ1ψ†

2
V

∂ψ†
1 ψ1

V ∂ψ†
1 ψ†

1
V ∂ψ†

1 ψ2
V ∂ψ†

1 ψ†
2
V

∂ψ2ψ1 V ∂ψ2ψ†
1
V ∂ψ2ψ2 V ∂ψ2ψ†

2
V

∂ψ†
2 ψ1

V ∂ψ†
2 ψ†

1
V ∂ψ†

2 ψ2
V ∂ψ†

2 ψ†
2
V

, (10)

where the derivatives of the potential with respect to the fields excluded intercept terms.
With all elements defined, we proceed to solve the Wetterich equation for the action

shown in Equation (3). Only Ṙ contains a q dependence for q2 < k2. Therefore, the
momentum integrals considering the Litim regulator are direct. The energy ω-integral is
computed using complex integration. Employing a weak field polynomial expansion and
dimensionless variables, the β functions are obtained by taking derivatives with respect to
field variables in the Wetterich equation and subsequently setting the fields to zero.
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2.3. β Functions

We start by introducing dimensionless variables. The field variables and parameters
are rescaled as follows:

ψ̃1 =
√

Z1k−D/2ψ1 , ψ̃1 =
√

Z2k−D/2ψ2 , Ṽ =
V

α′1kD+2

m̃ =
m√

Z1Z2α′1k2 , µ̃1 =
µ1

Z1α′1k2 , µ̃2 =
µ2

Z2α′1k2

λ̃1 =
λ1kD/2

Z3/2
1 α′1k2

, λ̃2 =
λ2kD/2

Z3/2
2 α′1k2

, λ̃3,6 =
λ3,6kD/2

Z1
√

Z2α′1k2 , λ̃4,5 =
λ4,5kD/2

Z2
√

Z1α′1k2 (11)

which are then substituted into action (3). The β functions will be differential equations

with respect to t ≡ ln(k/k0). It is useful to introduce the new parameter r ≡ α′2
α′1

, and it will
provide us with an additional equation:

ṙ = r(−ζ2 + ζ1), (12)

where ζi = − 1
α′i

∂tα
′
i are some of the anomalous dimensions. Introducing this parameter

and its respective differential equation will allow us to have the same number of differential
equations as variables. We will also define the anomalous dimensions ηi = − 1

Zi
∂tZi,

along with

η1 = − 1
Z1

∂tZ1, η2 = − 1
Z2

∂tZ2, ζ1 = − 1
α′1

∂tα
′
1, ζ2 = − 1

α′2
∂tα

′
2. (13)

The βi = ∂tλi consist of two parts: one canonical part related to a classical term
derived from the dimensional analysis of equations dependent on anomalous dimensions
and couplings and the other from Equation (4) related to radiative corrections dependent
on coupling constants and “mass” terms. After simplifying our results, the general forms
of the β functions are as follows:

µ̇1 =(−2 + ζ1 + η1)µ1 + ∑
i,j

λiλj f1,ij; µ̇2 = (−2 + ζ1 + η2)µ2 + ∑
i,j

λiλj f1,ij (14)

ṁ =(−2 + ζ1 +
1
2
(η1 + η2))m + ∑

i,j
λiλj fm,ij (15)

λ̇1 =(−2 +
D
2
+ ζ1 +

3
2

η1)λ1 + ∑
i,j,k

λiλjλk f1,ijk (16)

λ̇2 =(−2 +
D
2
+ ζ1 +

3
2

η2)λ2 + ∑
i,j,k

λiλjλk f2,ijk (17)

λ̇3,6 =(−2 +
D
2
+ ζ1 + η1 +

1
2

η2)λ3,6 + ∑
i,j,k

λiλjλk f3,6,ijk (18)

λ̇4,5 =(−2 +
D
2
+ ζ1 + η2 +

1
2

η1)λ4,5 + ∑
i,j,k

λiλjλk f4,5,ijk. (19)

where fk,lij ≡ fk,lij(µ1, µ2, m, r) represents certain functions with poles at (1 + r − µ2 − µ1)

and ((1 − µ1)(r − µ2)− m2). The expressions for f ’s (i.e., radiative corrections) in the β
functions have a diagrammatic representation. These expressions are already lengthy and
will not be listed here (they are available at https://www.wolframcloud.com/obj/luis.
cancinoa/Published/FuFunciones_Beta.nb, accessed on 14 February 2024).

The Equations (14)–(19) cannot be solved without the determination of the anoma-
lous dimensions (η1, η2, ζ1, ζ2). To obtain the anomalous dimensions, we proceed in the
following way: first, we determinate the two-point vertex functions.

https://www.wolframcloud.com/obj/luis.cancinoa/Published/FuFunciones_Beta.nb
https://www.wolframcloud.com/obj/luis.cancinoa/Published/FuFunciones_Beta.nb
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Γ(1,1)
1 (ω, q) =

δ2Γ
δψ1(ω, q)δψ†

1(ω, q)
|ψ1= ψ†

1=ψ2=ψ†
2=0 , Γ(1,1)

2 (ω, q) =
δ2Γ

δψ2(ω, q)δψ†
2(ω, q)

|ψ1=ψ†
1=ψ2=ψ†

2=0, (20)

Then, we take derivatives with respect to energy

Z1 = lim
ω→0,q→0

∂

∂(iω)
Γ(1,1)

1 (ω, q), Z2 = lim
ω→0,q→0

∂

∂(iω)
Γ(1,1)

2 (ω, q), (21)

and momentum

Z1α′1 = lim
ω→0,q→0

∂

∂q2 Γ(1,1)
1 (ω, q), Z2α′2 = lim

ω→0,q→0

∂

∂q2 Γ(1,1)
2 (ω, q). (22)

The anomalous dimensions are then given by the following:

ηi = − 1
Zi

lim
ω→0,q→0

∂

∂q2
∂

∂t
Γ(1,1)

k,i (ω, q), (23)

ηi + ζi = − 1
Ziα

′
i

lim
ω→0,q→0

∂

∂q2 Γ(1,1)
2 (ω, q). (24)

To verify this expressions, we take the limit to the pomeron–odderon case and we
obtain expressions that coincide with those found in [25] (more details can be found in this
ref.). Finally, the β functions are obtained by direct calculation. Let us comment that the
evolution equation for r becomes βr = ṙ = r(−ζ2 + ζ1), indicating that at criticality, the
pomeron’s transverse space scaling laws ζi coincide.

3. Numerical Results

In this section, we address the numerical challenges associated with solving the β
functions and identifying fixed points (FPs), which are the zeros of the β functions. To
numerically find FPs, one common method is the Newton–Raphson method or its modified
variants. These methods are required to be close to the FP for high precision. However,
working in a 10-dimensional space can be complex and computationally intensive. We
identified an alternative method with improved convergence properties. The algorithm
developed by Li and Zeng [41] demonstrates good convergence for finding FPs using
random points in the theory space. After identifying the FPs, we linearized the system
around them and calculated the critical exponents using the stability matrix. We then
focused on points of interest, primarily those acting as attractors in the infrared (IR) regime.

3.1. Fixed Points

Therefore, we will present the results of the FPs for the β functions in the case where
all anomalous dimensions are nonzero, verifying that the points are solutions to these β
functions. We found many different fixed points, which can be real or complex and are not
fully IR-attractive. We will concentrate only on the real ones and study their behaviour in
the vicinity of the fixed points.

Now, we turn to the calculation of the fixed points; the zeroes of the β-functions; the
anomalous dimensions η1, η2, ζ1, ζ2; and the degree of stability of each fixed point, which
is determined by the sign of the eigenvalues of the stability matrix (first derivatives of
the β-function: Mi,j =

∂βi
∂λj

), computed at the fixed point. In the phase space, there are
directions of instability for each negative real part of the eigenvalues in the infrared limit
and stabilities for the case of positive real part eigenvalues. We have found several different
solutions (omitting all solutions with negative r).

(a) For the first solution, we have µ1, µ2, and m = 0, and only the two couplings λ1
and λ2 are different from zero: this corresponds to two decoupled pomerons [19]:

µ1 = 0.1333; µ2 = 0.1333; m = 0; λ1 = 1.1676; λ2 = 1.1676; r = 1.0. (25)
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Furthermore, the anomalous dimensions are as follows:

ζ1 = ζ2 = 0.1666 (26)

η1 = η2 = −0.3333 (27)

(b) We find that a second solution—which has the same structure as the “pomeron–
odderon” discussed in [25]—has µ1, µ2, and m = 0, and only the coupling λ1, λ4 is nonzero:

µ1 = 0.1333; µ2 = 0.1316; m = 0; λ1 = 1.1676; λ4 = 1.5943; r = 0.8993. (28)

Furthermore,

ζ1 = 0.1666, ζ2 = 0.1666 (29)

η1 = −0.3333, η2 = −0.3519 (30)

(c) We also found other solutions where we have µ1, µ2, and m, and all the couplings
λi are different from zero, which is given by the following:

µ1 = 0.1384; µ2 = 0.1384; m = −0.0056; λ1 = 1.0118; λ2 = 1.0118;

λ3 = 0.8150; λ4 = 0.8150; λ5 = −0.1967; λ6 = −0.1967; r = 1.0. (31)

For the anomalous dimensions, we found

ζ1 = ζ2 = 0.1768 (32)

η1 = η2 = −0.3503. (33)

The spectral analysis of the stability matrix at this fixed point is able to show the other
universal quantities of the system. This solution has a higher infrared stability, and the
eigenvalues from the stability matrix are

Mi,j =
∂βi
∂λj

|FP → (2.50,−2.23,−2.09,−2.03, 1.94, 1.41, 0.36,−0.11, 0.10, 0.03). (34)

In particular, we found four negative eigenvalues and six positive eigenvalues associ-
ated with six relevant directions. From the stability matrix, there exist six eigenvectors that
span the subspace of the six pomeron parameters, which have positive eigenvalues, i.e.,
this subspace is part of the 10-dimensional critical subspace. Inside this subspace, they are
orthogonal to all other four eigenvectors with negative eigenvalues.

We then analysed, for this special fixed point, the behaviour of the pomerons parame-
ters and studied some trajectories of the flow equation.

We also found more solutions where all couplings are nonzero, and the eigenvalues of
the stability matrix are complex-valued, and their real parts are negative; then, the fixed
points are IR unstable, and we will not consider those solutions.

3.2. Evolution of Two Pomerons and Dynamics around Fixed Points

Our fixed point analysis was conducted in the space of dimensionless parameters,
revealing distinct behaviours for the flow of physical (dimensionful) parameters. For
the two-pomeron system, we performed numerical studies of the flow for dimensionless
parameters. Starting in the UV region within the critical subspace, we end up at the fixed
point in the IR limit, where both pomerons have equal slopes.

The study of flows in the theory space allows us to observe how the system evolves
with respect to t. Identifying two states of the pomeron family and examining the con-
necting flow is crucial for our objectives. However, the challenge lies in working within
a 10-dimensional space. At most, we can visualize projections in three dimensions, with
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numerous possible combinations. Hence, controlling deviations around the fixed point (FP)
is essential. We selected the ones with the most attractive eigenvalues in the infrared since
we are interested in points that may represent a limit in the non-perturbative region.

In exploring the evolution of different pomeron states, we focus on the intercept
subspace’s parameters (µ1, µ2, and m). Each flow associated with these points shows
distinct behaviours for the intercepts (µ1, µ2) and m. After selecting the region for analysis,
we examine the parameter behaviour as each coupling λi varies, generating different
trajectories, which correspond to a different initial conditions of λi. To generate the different
trajectories, we discretize the β functions as λj,new = λj,old + ∆t · β j. The initial conditions
are fixed at t = 0, allowing us to study the behaviour in the UV for positive t values and in
the IR for negative t values. This procedure helps us identify a group of trajectories from
the renormalization group equation.

We have found several stable trajectories, from which we are selecting only six of
them (represented by different colours in Figures 1 and 2), which are generated by adding
a small parameter in each initial condition. The six trajectories allow us to describe the
behaviour of the µ1(t), µ2(t), m(t), and λi(t) near the fixed point, as shown in Figure 1.
Figure 2 displays the evolution of the intercepts for this group of trajectories near the fixed
point. The trajectories approach the fixed point and then diverge as t increases, with the
UV directions starting to dominate.

Figure 1. Graphs represent time evolution of the dimensionless pomeron parameters: µ1(t), µ2(t),
m(t), and λi(t), which are shown at the top of each one of them, in the neighbourhood of the fixed
point (Notice that the time evolution t is dimensionless). The colours of the lines in the graphs
represent different trajectories generated by the procedure of small variations in the initial condition
of λi.
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Figure 2. The graphic shows the time evolution of the dimensionless mass parameter (i.e., µ1, µ2, and
m, which are dimensionless), which is also observed in a projection in the “mass” spaces considering
the behaviour shown in Figure 1. The arrows indicate where the system evolves in the IR limit (i.e.,
negative t).

3.3. Mass Matrix Diagonalization

The primary motivation for studying the flow of the renormalization group equation
in this work, particularly in the context of distinct states for the pomeron, is to find a path
that connects two of these states while changing the scale. Recall the discussion in the
theoretical framework, where it is explained that the soft-pomeron [42] dominates in the
infrared (IR), while the hard-pomeron [19] dominates in the ultraviolet (UV). Due to the
complexity of finding these paths in the 10-dimensional space, we focus on the “mass”
parameters. Then, we analyse how the “mass” matrix diagonalizes when trajectories are
close the FP. We examine the evolution (from the UV) of a state with m = 0 to the fixed
point as it progresses towards the IR (states with m ̸= 0). We concentrate on the action
restricted to the pomerons’ intercepts, which the flow equation indicates are not diagonal.

In the vicinity of the FP, we have a non-diagonal matrix. The final pomeron inter-
cepts are the eigenvalues of this matrix. The evolution of the dimensionfull eigenvalues
M1,2(t) of the intercept matrix are shown in Figure 3, and the value at the fixed point are
M1,FP = 0.1328, M2,FP = 0.144. As an initial condition at t = 0, we use the points defined
in the previous subsection, showing how they evolve towards the IR (t-negative) and the
UV (t-positive).

Figure 3. The graphs show the evolution of the diagonalized dimensionless “masses” (i.e.,
M1(t) ≡ 1

2 (µ1 + µ2 +
√
(µ1 − µ2)2 + 4m2) and M2(t) ≡ 1

2 (µ1 + µ2 −
√
(µ1 − µ2)2 + 4m2)), and

their behaviour is quite similar to that of the intercepts µ1 and µ2 shown earlier.
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The eigenvectors allow us to see the contribution of each original field in terms of the
“masses”, and how each contribution evolves in the theory space.

ψ′
1 = Ck,11ψ1 + Ck,12ψ2 (35)

ψ′
2 = Ck,21ψ1 + Ck,22ψ2. (36)

With this method of generating the eigenvectors, we observe that, in the limit m → 0
(and µ1 ̸= µ2), the new fields are equal to the original ones, i.e., ψ′

1 = ψ1 and ψ′
2 = ψ2.

The points selected in the previous subsection were chosen to observe this behaviour in
more detail.

Finally, to establish a connection between two pomeron states, we diagonalized the
“mass” matrix and identified a configuration where the fields were decoupled (m = 0) in
the UV. We obtained different trajectories that evolved towards the fixed point in the IR, as
shown in Figure 4. These figures illustrate the evolution of the mixing of the pomerons,
starting in the UV with one pomeron state, and they mixed as the trajectories evolved
towards the IR.

Figure 4. The graphs show how different flow lines converge to a state where the dimensionless
“masses” mixed. If we start with the initial condition, the masses do not mix (i.e., m = 0), and through
the flow equations evolving towards the IR, the fields start mixing, passing through the fixed point
and converging into another state in the IR (notice that t is dimensionless too).

4. Conclusions

In this study, we have extended our previous analysis of fixed points in pomeron
Reggeon field theory by incorporating a system of interacting discrete pomeron fields,
especially in the infrared limit. Our results describe significant aspects of these interactions
of two pomerons, which contribute to a deeper understanding of the complex dynamics in
pomeron field theories.

The main result of our investigation is the identification of three different solution:
one corresponds to two uncoupled pomerons, the second solution corresponds to a
pomeron/odderon interaction, and the new real solution corresponds to a full interac-
tion potential. From the spectral analysis of the stability matrix, we found the critical
properties of the theory and we have six relevant directions. These directions exhibit IR
stability, while the remaining eigenvalues indicate UV-stable directions. Particularly, we
observed that, in the effective potential’s parameter space, the relevant directions define a
critical subspace. Starting within this subspace at a nonzero scale k, the system invariably
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approaches the infrared stable fixed point as k tends to zero. Conversely, initiating the sys-
tem outside the critical subspace but in proximity to the fixed point results in an attraction
towards the relevant direction, moving the system away from the fixed point.

Furthermore, from our analysis, we have been able to analyse for the first time the
mixing of two pomerons through the renormalization flow trajectory from the UV to the
nonperturbative IR regions. The IR fixed point structure confirms the persistence of the two
pomerons through the flow from UV to IR. This observation is crucial for understanding
the survivability and robustness of these states under scale transitions. Additionally, our
analysis offers insights into the interactions between two discrete pomeron fields, including
the suppression of one pomeron in favour of another exchange. Such information is critical
for comprehending the competitive dynamics among different Reggeon fields.

Finally, our results can be applied to other physics topics too. For example: Given the
equivalence among RFT and directed percolation models, our analysis could be used to
study the critical property in multifield extensions of those statistical models. In addition,
considering our results about the superposition of the finite set of discrete BFKL pomerons,
another natural application could be to fit small-x and low-Q2 experimental HERA data.
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