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Abstract: We consider f (R, T) modified theories of gravity in the context of string-theory-inspired
dilaton gravity. We deal with a specific model that under certain conditions describes the late time
Universe in accord with observational data in modern cosmology and addresses the H0 tension.
This is done by exploring the space of parameters made out of those coming from the modified
gravity and dilatonic charge sectors. We employ numerical methods to obtain several important
observable quantities.
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1. Introduction

Modern observations in cosmology, performed from Type Ia Supernova (SNIa) [1,2],
Large Scale Structure (LSS) [3,4], Wilkinson Microwave Anisotropy Probe (WMAP) [5–7]
data, Cosmic Microwave Background (CMB) [8,9] and Baryonic Acoustic Oscillations
(BAO) [10,11], indicate that the expansion of the Universe has entered an accelerated
phase. Furthermore, the same observational data show that 95% of the matter and energy
content of the Universe (when described in terms of a fluid effectively entering Einstein’s
equations) is in the form of unknown species called Dark Matter (DM) and Dark Energy
(DE). General Relativity has always been consistent with observational data and one of the
most recent examples is the detection of gravitational waves through LIGO [12]. General
Relativity analyzes the acceleration of the Universe based on dark energy, according to
observations of type Ia supernovae, which counterbalances gravitational attraction. The
Dark Energy [13–20] component (ρx) is characterized by a negative effective pressure,
px < −ρx/3. The simplest candidate for such a dark energy is a positive cosmological
constant Λ, but such an identification raises some difficult questions, such as why Λ is so
small (in particle physics) [21–23]. This is called the fine-tuning problem for Λ. Another
important problem is why Λ = ρx0 in present epoch (where ρx0 is the present value of
the dark energy density of the Universe, in Planck units). This problem is known as
cosmic coincidence [24]. A promising way to solve the above problems is to introduce
a single scalar field, dubbed the quintessence [25], whose potential goes asymptotically
to zero. The potential associated with this scalar field tends to zero as the field goes to
infinity after an infinite (very long) time. On the other hand, we can try to reconcile
the observational data with the acceleration of the Universe through modifications of
the theory of gravity. One way to do this is to start with a modification of the Einstein–
Hilbert action formulation using an arbitrary function of the Ricci scalar, f (R) [26]. In this
context, we assume that at large scales the Einstein gravity model breaks down. Some
specific types of f (R) models have been proposed in the literature (see [27–29] and related
references for a recent review). These theories acquired a lot of interest following the
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work by Starobinsky on cosmic inflation [30]. The late-time cosmic acceleration of the
Universe, in this context, was first explained by a natural modification, adding terms to
the action that are proportional to Rn [31,32]. Quintessence issues by taking into account
generic models with actions containing f (R) terms were addressed in Ref. [33]. Quantum
effects may lead to a generalization of f (R) theories of gravity [34–36]. In Ref. [37], an
unusual coupling between matter and geometry was developed by Harko et al., where the
gravitational sector is given by an arbitrary function of the Ricci scalar and the trace T of the
energy-momentum tensor. This type of theory is known as f (R, T) gravity. Cosmological
and astrophysical consequences of f (R, T) models have been explored in the last few
years. For instance, in Ref. [38], cosmological solutions for a perfect fluid in a spatially
flat Friedmann–Lemàıtre–Robertson–Walker (FLRW) metric is investigated. Other studies
on cosmological applications of f (R, T) gravity, including the inflationary scenario, can
be found in the Refs. [39–45]. An essential component of all superstring models, and
consequently, of the cosmological scenarios based on the string effective action, is the
dilaton field. This field controls the effective strength of all gauge couplings in the context
of “grand-unified” models of all fundamental interactions [46]. This coupling strengths
may drive the Universe towards a phase of strong coupling, which can possibly precede
the standard decelerated evolution. The dilaton can also be geometrically interpreted as
the effective “radius” of the eleventh dimension [47] in the M-theory context. The dilaton
may control the inflationary dynamics and play a role in the generation of the primordial
spectra of quantum fluctuations amplified by inflation. String theory dilaton may provide
a natural implementation of the coupled quintessence scenario, provided the cosmological
running of the dilaton does not stop after entering the weak coupling regime eϕ ≪ 1, as
ϕ → −∞. We shall consider a particular scenario in which the dilaton approaches to zero as
t → ∞. This is possible with an exponentially suppressed (non-perturbative) potential. As
we shall see, because of the loop corrections, the fields inside the matter action are in general
non-minimally and non-universally coupled to the dilaton. This will render dilatonic charge
densities that are fundamental to form the new space of parameters of the model.

In Section 2, we will present the formalism of a theory of gravity modified by f (R, T),
addressing the variation of the modified action, while in Section 3, we will review a scenario
of string theory at low energy ϕ → −∞ with a dilatonic field subject to an effective potential
Ṽ. In Section 4, we will analyze a dilatonic cosmological theory in a scenario of modified
gravity of type f (R, T) for a homogeneous and isotropic FLRW universe. Section 5 is
dedicated to detail the evolution of cosmological relevant quantities through numerical
methods. Our discussions and conclusions are, respectively, present in Sections 6 and 7.

2. Gravitational Field Equations of f (R, T) Gravity

Let us first take the action given in [37]:

S =
1

2κ

∫
d4x f (R, T)

√
−g +

∫
d4xLm

√
−g, (1)

where f (R, T) is an arbitrary function of the Ricci scalar curvature R = gµνRµν, T = gµνTµν

is the trace of the energy-momentum tensor and Lm is the Lagrangian density of matter
and κ = 8πG.

Admitting the definition of the energy-momentum tensor, we can express it in such a
way that the Lagrangian density of matter depends only on gµν, that is:

Tµν = gµνLm − 2
∂Lm

∂gµν . (2)



Universe 2024, 10, 134 3 of 16

By varying the action given in Equation (1) in relation to gµν, we have the field
equations given by:

fR(R, T)Rµν + gµν□ fR(R, T)−∇µ∇ν fR(R, T)

+ fT(R, T)(Tµν + Θµν)−
1
2

f (R, T)gµν − 8πTµν = 0, (3)

so that (Tµν +Θµν) corresponds to the variation of the trace with respect to the metric tensor,

with Θµν ≡ gαβ
δTαβ

δgµν set in [37]. We will denote fR(R, T) and fT(R, T) as the derivatives of

f (R, T) with respect to the Ricci scalar curvature and the trace of the energy-momentum
tensor, respectively.

From the definition of Θµν and using Equation (2), we have:

Θµν = −2Tµν + gµνLm − 2gαβ ∂2Lm

∂gµν∂gαβ
. (4)

In other words, Θµν will depend on the Lagrangian of matter, which can refer to the
case of the electromagnetic field, the massless scalar field and the case of the perfect fluid,
among others.

3. Stringy Cosmology

Let us now consider cosmological scenarios related to the effective action that comes
from low-energy string theory in which the dilaton field exerts influence in the dynamics of
the Universe. We shall focus on the sector of the effective action, coming from a low-energy
string theory, given by the tensor field (the metric g̃µν) and a scalar field (the dilaton ϕ),
where the tilde indicates that we are working on the string frame, and where the dilaton
couples to the Ricci scalar and dilatonic dynamics in an explicit form—see below. Our
starting point is the string-frame, low-energy, gravidilaton effective action, to the lowest
order in the α′ expansion, but including the dilaton-dependent loop and nonperturbative
corrections, encoded in a few “form factors”, due to the loop corrections ψ(ϕ) and Z(ϕ) [48].
V(ϕ) is the effective dilaton potential. The model action is [49,50]:

S = −
M2

P
2

∫
d4x

√
−g̃

[
e−ψ(ϕ)R̃ + Z̃(ϕ)

(
∇̃ϕ

)2
+

2
M2

P
Ṽ(ϕ)

]
+ S̃m(ϕ, g̃, matter). (5)

We can discuss the phenomenology of the relic dilaton background by taking into
account two possibilities. First, massive dilaton is gravitationally more strongly coupled to
macroscopic matter. In strong coupling limit ϕ → ∞, we assume that it is possible to make an
asymptotic Taylor expansion in inverse powers of the coupling constant g2

s = exp(ϕ), similar
to the context of “induced gravity”. In these models, the gravitational and gauge couplings
saturate at small, but finite, values because of the very large number N of fundamental
gauge bosons presents in the loop corrections [49,50]. By this assumption, we can write
exp(−ψ(ϕ)) = c2

1 + b1 exp(−ϕ)+O(exp(−2ϕ)), Z(ϕ) = −c2
2 + b2 exp(−ϕ)+O(exp(−2ϕ))

and Ṽ = V0 exp(−ϕ)+O(exp(−2ϕ)), where c2
1 and c2

2 are dimensionless numbers. To be
consistent with the tree-level relation λP/λS = MS/MP = exp(ϕ/2) (for d = 3), in which
MP ≃ 10MS, as required by a consistent string unification in the context of gravitational
and gauge interactions [51], and we have c2

1 ∼ c2
2 ∼ 102. On the other hand, very light (or

massless) dilaton is weakly coupled to matter. In the rest of this paper we will focus our
attention on this second possibility, where we will consider that the dilaton is weakly coupled.
In this regime, we will admit that ϕ → −∞, while exp(−ψ(ϕ)) = Z(ϕ) = exp(−ϕ).
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We can now characterize the dynamical evolution of the Universe with a metric
minimally coupled to the dilaton. In this frame, the string effective action is also minimally
coupled to perfect fluid sources. Considering the lowest order α′, we have [49,50]:

S = −
M2

P
2

∫
d4x

√
−g̃e−ϕ

[
R̃ −

(
∇̃ϕ

)2
+

2
M2

P
Ṽ(ϕ)

]
+ S̃m(ϕ, g̃, matter). (6)

We can use a more convenient coordinate system, the so-called Einstein frame, in terms
of the metric gµν that is defined by a conformal transformation g̃µν = eϕgµν. In this frame,
the action can be written as:

S = −
M2

P
2

∫
d4x

√
−g

[
R − 1

2
(∇ϕ)2 +

2
M2

P
V̂(ϕ)

]
+ Sm(ϕ, eϕgµν, matter), (7)

where we have defined:
V̂ = eϕṼ. (8)

Because of the loop corrections, the fields appearing in the action Sm are generally
non-minimally and non-universally coupled to the dilaton [52]. The gravitational and
dilatonic “charge densities”, Tµν and σ, are defined as:

δSm

δgµν =
1
2
√
−gTµν,

δSm

δϕ
=

1
2
√
−gσ. (9)

When σ ̸= 0, the effective gravidilaton theory is very different from a typical scalar-
tensor gravity model of the Jordan–Brans–Dicke type.

4. Cosmology in Dilatonic f (R, T) Gravity

Let us now assume that the action in Equation (6) depends not only on R, but on a
function f (R, T), so that R is the Ricci scalar curvature and T is the trace of the energy-
momentum tensor of the dilatonic field. Since we are interested in investigating the dynamics
of the dilaton field in the presence of other sources, we can rewrite this gravidilaton action as:

S = −
M2

p

2

∫
d4x

√
−g f (R, T) +

M2
p

2

∫
d4x

√
−g

[
1
2

gµν∇µϕ∇νϕ − 2
M2

p
V̂(ϕ)

]
+ Sm(ϕ, eϕgµν, matter). (10)

Let us now assume a homogeneous and isotropic Universe described by the Friedmann–
Lemàıtre–Robertson–Walker (FLRW) metric, whose line element is written as:

ds2 = dt2 − a2(t)
(

dr2 + r2dθ2 + r2sin2θ dϕ2
)

. (11)

In what follows, we will also consider M2
P ≡ 1/8πG = 2, except otherwise indicated.

For this model, the dilatonic Lagrangian density Lϕ is given by:

Lϕ =
1
2

gµν∇µϕ∇νϕ − V̂(ϕ), (12)

where V̂(ϕ) = eϕṼ(ϕ) is the effective dilaton potential as previously defined. The scalar
dynamics of the model is governed by the energy-momentum tensor of the dilaton field
and is given by:

Tϕ
µν = ∇µϕ∇νϕ − gµν

[
1
2

gαβ∇αϕ∇βϕ − V̂(ϕ)

]
, (13)

from which we can write:
Tϕ

00 =
1
2

ϕ̇2 + V̂(ϕ), (14)
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Tϕ
ii =

a2

2
ϕ̇2 − a2V̂(ϕ). (15)

By tracing the energy-momentum tensor of the dilatonic field, we are left with:

Tϕ = −ϕ̇2 + 4V̂(ϕ). (16)

The dilaton equation of motion is given by:

ϕ̈ + 3Hϕ̇ +
dV̂
dϕ

+
1
2

σ = 0. (17)

Following (9), σ is the charge associated with the coupling between dilatonic field and
the fluid that makes up the Universe. In the usual way, H = ȧ/a is the Hubble parameter
and a dot denotes differentiation with respect to the Einstein cosmic time. For this model:

ρϕ =
1
2

ϕ̇2 + V̂(ϕ), pϕ =
1
2

ϕ̇2 − V̂(ϕ), (18)

are the energy density and pressure of the dilaton field.
Varying Equation (10) with respect to gµν, we will obtain:

fR(R, T)Rµν −
1
2

f (R, T)gµν + (gµν□−∇µ∇ν) fR(R, T) =
1
2

Tµν − fT(R, T)Tµν − fT(R, T)Θµν, (19)

where Tµν = T f + Tϕ is total energy-momentum tensor of the perfect fluid ( f ) that fills
the Universe (baryonic matter, radiation and dark matter) plus the dilaton field. Using
Equation (4), we can write:

Θµν = −2
(

Tϕ
µν + T f

µν

)
+ gµν

(
Lϕ + L f

)
, (20)

with Lϕ and Tϕ
µν given by (12) and (18), respectively. We assume that the energy-momentum

tensor of the matter and energy is given by Tµν = (ρ + p)uµuµν − pgµν, with conditions
uµuµ = 1 and uµ∇νuµ = 0 satisfied by the four-velocity uµ. Therefore, the Lagrangian
of the perfect fluid becomes L f = −p. In this way, we can write the (0 − 0) and (i − i)
components of Θµν as:

Θ00 = −1
2

ϕ̇2 − 3V̂ − 2ρ − p, Θii = −3
2

a2ϕ̇2 + 3a2V̂ − a2 p. (21)

In the following, we will consider a simple example of f (R, T) theories in order to
study the late time evolution of the Universe with the presence of a single dilatonic field.

4.1. Model f (R, T) = R + αTϕ

This model was first studied by Harko et al. in Ref. [37]. These authors reproduce, in
the context of f (R, T), a relativistically covariant model of interacting dark energy based
on a specific action [53]. Another interesting aspect of this choice is that the gravitational
coupling becomes an “effective time dependent coupling”, depending on the derivative
of f (T) with respect to the trace [37]. In order to reconcile our model with the the evi-
dences which support General Relativity, we will assume a modified gravity model by
f (R, T) = R + αT. Using the expression (19), we have:

Rµν −
1
2

gµνR =

(
1
2
− α

)
Tµν − αΘµν +

1
2

gµναT. (22)
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Thus, using the definitions (14)–(16) and (20) in (22), one can obtain (0, 0) and (1, 1)
components of field equations in a FLRW Universe as being:

3H2 =

(
1
2
− α

)
1
2

ϕ̇2 +

(
1
2
+ 4α

)
V̂(ϕ) +

1
2
(1 + 3α)ρ − 1

2
αp, (23)

2Ḣ + 3H2 = −
(

1
2
+ 3α

)
1
2

ϕ̇2 +

(
1
2
+ 4α

)
V̂(ϕ)− 1

2
(1 + 3α)p +

1
2

αρ. (24)

The combination of (23), (24) and (17) leads to the coupled conservation equations for
the matter (baryonic and dark), radiation and dilaton energy density, respectively:

(1 + 3α)ρ̇b + 3H(1 + 2α)ρb + α

(
12Hϕ̇2 + 10

dV̂
dϕ

ϕ̇

)
= 0, (25)

(1 + 3α)ρ̇d +

[
3(1 + 2α)H − 1

2
(1 − 2α)Qϕ̇

]
ρd + α

(
12Hϕ̇2 + 10

dV̂
dϕ

ϕ̇

)
= 0, (26)(

1 +
8
3

α

)
ρ̇r + 4(1 + 2α)Hρr + α

(
12Hϕ̇2 + 10

dV̂
dϕ

ϕ̇

)
= 0, (27)

ρ̇ϕ + 6H[ρϕ − (1 + 8α)V̂]− 10α
dV̂
dϕ

ϕ̇ +
1
2
(1 − 2α)σϕ̇ = 0. (28)

In the set of equations shown above, we have separate the radiation, baryonic and
non-baryonic (dark) matter components of the cosmological fluid by setting:

ρ = ρm + ρr = ρb + ρd + ρr, pb = pd = 0, pr =
1
3

ρr. (29)

We assume that ordinary matter and radiation have nearly metric couplings, i.e., that σb
and σr vanish as ϕ → −∞. This agrees, for instance, with the precision tests of Newtonian
gravity [54]. In the dark matter sector, we shall assume a specific model to Lagrangian density.
For “cold dark matter”, one has a dilatonic charge σd which gives us the relationship [49,50,55]:

Q(ϕ) =
σd
ρd

= Q0
eQ0ϕ

c2 + eQ0ϕ
. (30)

For large enough values of the constant c2, Q(ϕ) approaches to finite (non-zero) values
in the limit of weak coupling regime, that is, when ϕ → −∞.

Finally, we shall specify the form of the effective (Einstein frame) dilaton potential by
choosing the string frame potential as Ṽ(ϕ) = V0. This allows us to write, quite generically,
the simplest potential:

V̂(ϕ) = V0eϕ, (31)

where V0 is a constant. This potential is in agreement with the assumption of exponential
suppression at weak coupling regime.

It is convenient to parameterize the temporal evolution of all variables in terms of the
logarithm of the scale factor, χ = ln (a/ai). In this relationship, ai corresponds to the initial
scale factor. Thus, the Einstein Equation (23) and the dilaton Equation (17) can be written,
respectively, as:

H2 =
(1 + 3α)(ρb + ρd) + (1 + 8

3 α)ρr + (1 + 8α)V̂

6 −
(

1
2 − α

)(
dϕ
dχ

)2 , (32)

2H2 d2ϕ

dχ2 +

[
(1 + 4α)

(
1
2

ρb +
1
2

ρd +
1
3

ρr

)
+ (1 + 8α)V̂ − 2αH2

(
dϕ

dχ

)2
]

dϕ

dχ
+ 2

dV̂
dϕ

+ Qρd = 0. (33)
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The matter and radiation evolution equations become:

(1 + 3α)
dρb
dχ

+ 3(1 + 2α)ρb + α

[
12H2

(
dϕ

dχ

)2
+ 10

dV̂
dϕ

dϕ

dχ

]
= 0, (34)

(1 + 3α)
dρd
dχ

+ 3(1 + 2α)ρd −
1
2
(1 − 2α)Qρd

dϕ

dχ
+ α

[
12H2

(
dϕ

dχ

)2
+ 10

dV̂
dϕ

dϕ

dχ

]
= 0, (35)

(
1 +

8
3

α

)
dρr

dχ
+ 4(1 + 2α)ρr + α

[
12H2

(
dϕ

dχ

)2
+ 10

dV̂
dϕ

dϕ

dχ

]
= 0. (36)

Finally, the dilaton conservation equation can be written as:

dρϕ

dχ
+ 6[ρϕ − (1 + 8α)V̂]− 10α

dV̂
dϕ

dϕ

dχ
+

1
2
(1 − 2α)σ

dϕ

dχ
= 0, (37)

which is equivalent to Equation (33). Finally, we defined the useful density parameter
Ω = ρ/ρc, where ρc is the critical energy density. Thus, Equation (32) can be rewritten in
terms of different density parameters for each component of the Universe:

1 = Ωr + Ωd + Ωb + Ωϕ, (38)

where:
Ωr =

ρr

3H2 , Ωd =
ρd

3H2 , Ωb =
ρb

3H2 , Ωϕ =
ρϕ

3H2 , (39)

are the density parameters of radiation, dark matter, baryonic matter and dilaton field, respectively.

4.2. Numerics

We can solve the set of Equations (34)–(37) by numerical methods with Equation (32)
as a constraint on the initial dataset. Here, we also recover the 8πG factor, which can be
given in terms of the Planck mass Mp ≡ 1/

√
G = 1.22 × 1019 GeV. We shall use a potential

of the form (31), by assuming V0 = 2.65 × 10−123M4
p, as well as the Q(ϕ) Formula (30) with

c2 = 10 for different values of the charge Q0.
As we shall see shortly, (α, Q0) is the space of parameters that we will explore to

address acceptable cosmological scenarios. To ensure that at the current time χ = 0,
the values of the energy densities are in agreement with the data from current cosmo-
logical measurements, we adjust the initial values of the energy densities of radiation,
dark matter, baryonic matter and dark energy, respectively, as ρri(χi) = 8.58 × 10−93M4

p,
ρdi(χi) = 5.28 × 10−98M4

p, ρbi(χi) = 9.30 × 10−99M4
p and ρϕi(χi) = 1.67 × 10−105M4

p, start-
ing the integration at χi = −20—this corresponds to big bang nucleosynthesis (BBN)
redshift zBBN ∼ 109. Furthermore, the initial value for the dilaton is ϕi = 7 × 10−8Mp.

5. Results
5.1. The Density Parameters Ωr, Ωd, Ωb and Ωϕ

The density parameters (39) are depicted in Figures 1 and 2. The graph in Figure 1
expresses the behavior of the density parameter Ω of each component as a function of χ, by
fixing α = 2× 10−2m−2

p and adjusting scenarios with Q0 = 2 and Q0 = 20. Considering the
radiation component Ωr, we note that it presents a degenerate evolution that starts constantly
between the intervals χ ≈ [−20,−13], decays quickly between χ ≈ [−15,−4] and becomes
null outside both intervals. In other words, Q0 does not interfere with the evolution of Ωr.
Regarding the dark matter component Ωd, we have a degenerate behavior in the interval
χ ≈ [−20,−2] and a minimal influence of Q0 on χ ≈ [−2, 1], in order to present a slightly
more accentuated decay with the decrease of Q0. In this curve, the evolution begins with
Ωd = 0 in the intervals χ ≈ [−20,−13] and a sharp increase in χ ≈ [−13,−2] that precede the
decay; there is also a degenerate maximum point with Ωd(χ = −2) ≈ 0.9. For the baryonic



Universe 2024, 10, 134 8 of 16

matter component Ωb, we have an evolution with a degeneracy in the interval χ ≈ [−20,−1]
and a sufficiently small influence of Q0 outside this interval. The behavior of Ωb starts with a
null value at χ ≈ [−20,−13] followed by a gentle increase, remaining constant at its maximum
point with Ωb = 0.15 at χ ≈ [−5,−2] and ends with a decay outside these ranges. Regarding
the dilaton component Ωϕ, we have a beginning with Ωϕ = 0 that is independent of Q0 in
the interval χ ≈ [−20,−2] and a significant elevation that grows smoothly with the increase
in Q0. Relating the components Ωr, Ωd and Ωb, we note that at χ ≈ −13, the first decreases
while the second and third increase. On the other hand, at χ ≈ −2, Ωr remains null and Ωd
and Ωb decrease while Ωϕ grows significantly, thus presenting an intersection with Ωd at
χ ≈ −0.28 and χ ≈ −0.41 for Q0 = 2 and Q0 = 20, respectively. We also have another point
of intersection relating the components Ωd and Ωr given in χ ≈ −8.01 and χ ≈ −7.97 for
Q0 = 2 and Q0 = 20, respectively.

Ωr

Ωd

Ωb

Ωϕ

Ωr

Ωd

Ωb

Ωϕ

solid line (Q0 = 2)
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Figure 1. The density Ω as a function of χ for fixed α = 2 × 10−2m−2
p and Q0 = 2 and for Q0 = 20.
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Figure 2. (left panel) The density Ω as a function of χ for fixed Q0 = 2 and (right panel) Q0 = 20 for
α = 0 and α = 2 × 10−2m−2

p .

The graphs in Figure 2 (left panel) and Figure 2 (right panel) are similar to each other;
however, in Figure 2 (right panel), we set Q0 = 20 and adjust α for two values as in Figure 2
(left panel). Comparing these graphs with Figure 1, we can observe that the increase in Q0
has minimal influence on the radiation Ωr, dark matter Ωd and baryonic Ωb components.
However, for the dilaton component Ωϕ, we note that there is a more pronounced rise in
the respective evolution curve.
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5.2. The Hubble Parameter H(z)

The graph in Figure 3 expresses the behavior of the Hubble parameter as a function of
redshift z, where we fixed Q0 = 2 and explored different values for α. In this case, we can
observe that in all values admitted for α we have a decay followed by an increase. Note
that the minimum point of each curve has a redshift z that decreases with the increase in
α, that is, for α = 0, α = 5 × 10−3m−2

p , α = 1 × 10−2m−2
p and α = 2 × 10−2m−2

p , we have
z ≈ 0.64, z ≈ 0.61, z ≈ 0.59 and z ≈ 0.54, respectively. On the other hand, the values of
the Hubble parameter at z = 0, i.e., H0 increases with the growth of α, assuming values
between H0 ≈ 67 km s−1 Mpc−1 and H0 ≈ 72 km s−1 Mpc−1.
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α = 5×10-3mp
-2
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Figure 3. The Hubble parameter H(z) as a function of the redshift z for fixed Q0 = 2 and several
values of α.

The graphs in Figure 4 show opposite behavior of the graph shown in Figure 3 with
respect to the parameters, where they have interchanged their roles. More specifically,
Figure 4 (left panel) shows the behavior of the Hubble parameter as a function of redshift
z for different values of Q0, for α = 0 fixed. Notice that in all curves, we have a decay
of H followed by an increase in which there is a degeneracy starting at z ≈ 2.6. For
Q0 = 2, Q0 = 6, Q0 = 10 and Q0 = 20, we have a minimum point at z ≈ 0.64, z ≈ 0.69,
z ≈ 0.76 and z ≈ 0.85, respectively. We also note that the values of z, referring to each
point of minimum, increase with the increase of Q0. It is also worth noting that the
decay of H to the minimum point becomes more pronounced with the increase of Q0;
additionally, for smaller values of Q0, we have slower decays. In this case, the values of the
Hubble parameter at z = 0, i.e., H0 assume values between H0 ≈ 67 km s−1 Mpc−1 and
H0 ≈ 74 km s−1 Mpc−1. Finally, with respect to the graph in Figure 4 (right panel), we
find that it is similar to Figure 4 (left panel), but with α = 5 × 10−3m−2

p fixed. In this case,
we again have a decay followed by an increase that becomes degenerate at z ≈ 2.4. The
curves assume minimum points whose redshift values are z ≈ 0.61, z ≈ 0.67, z ≈ 0.74
and z ≈ 0.82 corresponding to Q0 = 2, Q0 = 6, Q0 = 10 and Q0 = 20, respectively. We
can see that H increases with the increase in α, and consequently, its minimum points take
on greater values for H; however, the corresponding redshift values z decrease. Thus, in
this case, the values of the Hubble parameter at z = 0, i.e., H0 assume values between
H0 ≈ 68 km s−1 Mpc−1 and H0 ≈ 75.5 km s−1 Mpc−1.
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Figure 4. (left panel) The Hubble parameter H(z) as a function of the redshift z for fixed α = 0 and
(right panel) α = 5 × 10−3m−2

p and several values of Q0.

5.3. The Dilaton Field

The graph in Figure 5 details the behavior of ϕ as a function of χ assuming
α = 2 × 10−2m−2

p being fixed and exploring different values for Q0. In this case, there is a
convergence of ϕ(χ) = 0 for each Q0 in the interval χ ≈ [−20,−13], followed by a decay
that ends in ϕ(χ ≈ 1) = −10. Notice that, in the range χ ≈ [−10,−1], ϕ(χ) presents a
decay that becomes more pronounced with the decrease of Q0, that is, the growth of Q0
reflects a slower decay to ϕ(χ). This can be observed more clearly by analyzing the decay
in which Q0 = 20, where ϕ(χ ≈ −7.5) ≈ −1.5 and ϕ(χ ≈ −2) ≈ −2, while for Q0 = 6, we
have ϕ(χ ≈ −8) ≈ −1.5 and ϕ(χ ≈ −7.3) ≈ −2. We also observe that from χ ≈ −1, we
have an expressive decay that is independent of Q0.

Q0 = 2

Q0 = 6

Q0 = 10

Q0 = 20

α = 2×10-2mp
-2

-20 -15 -10 -5 0
-10
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-6

-4
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0

χ

ϕ
(
χ
)
(m
p
)

Figure 5. The dilaton field ϕ as a function of χ for fixed α = 2 × 10−2m−2
p and several values of Q0.

The graphs in Figure 6 are quite similar. In the first case (left panel), we fix Q0 = 2
and explore three values for α. As we can see, the variation of α presents a sufficiently
small change in the behavior of ϕ(χ) that decays in a degenerate way in the interval
χ ≈ [−20,−1], while for the range χ ≈ [−1, 1], we have a decay that becomes smoothly
slower with increasing α. In the second case (right panel), we fix Q0 = 20 and explore three
values for α. Furthermore, we note that the increase in Q0 contributes to a slower decay in
the interval χ ≈ [−20,−1].
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Figure 6. (left panel) The dilaton field ϕ as a function of χ for fixed Q0 = 2 and (right panel) Q0 = 20
and several values of α.

5.4. The Running of Q(ϕ)

The graphic in Figure 7 represents the behavior of Q(ϕ) as a function of χ by consider-
ing different values for Q0 and fixing α = 2 × 10−2m−2

p . Notice that for Q0 = 2, we have a
very slow decay in the interval χ ≈ [−20, 0]; however, it is more pronounced outside this
range. Concerning the other curves, we have a decay that becomes more accentuated with
the increase of Q0 admitting χ ≈ [−20,−1]. Outside this range, we have an even more
significant decay.
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q
(ϕ
)

Figure 7. The evolution of Q(ϕ) as a function of χ for fixed α = 2× 10−2m−2
p and several values of Q0.

The graphs in Figure 8 develops similar behavior. In the first case (left panel), we keep
Q0 = 2 fixed and explore some values of α. We note that Q(ϕ) decays degenerately in the
interval χ ≈ [−20,−1], that is, without any influence of α. Outside this range, Q(ϕ) decays
more slowly with increasing α. In the second case (right panel), we keep Q0 = 20 fixed and
also explore some values of α and we have a degenerate decay that becomes slower with
the increase of Q0 and without the influence of α, in the range χ ≈ [−20,−1]; however,
outside this range, we have a sharp decay that increases smoothly with the decrease in α.
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Figure 8. (left panel) The evolution of Q(ϕ) as a function of χ for fixed Q0 = 2 and (right panel)
Q0 = 20 and several values of α.

5.5. The Energy Densities ρr, ρd, ρb and ρϕ

The graphs in Figure 9 show the evolution of energy density as a function of χ for
each component. In the first case (left panel), we fix Q0 = 2 and consider α = 0 and
α = 2 × 10−2m−2

p . Notice that for α = 0, the components of radiation ρr and dark matter ρd
and baryonic ρb present a linear decay, so that for ρr, we have a more pronounced behavior
in relation to ρd and ρb. On the other hand, assuming α = 2 × 10−2m−2

p , we will have
degenerate models at α = 0 in the intervals χ ≈ [−16,−1], χ ≈ [−20, 1] and χ ≈ [−20, 0.5],
for ρr, ρd and ρb, respectively. Outside these ranges, each component decays more slowly,
so that ρr, ρd and ρb converge their energies after χ ≈ 3. For the dilaton component, ρϕ,
we have a degenerate decay and non-linear scenarios, considering both α. Such decay
becomes slower after χ ≈ −3, thus presenting points of intersection with each of the other
components, that is, at χ ≈ −2.5, χ ≈ −1 and χ ≈ −0.5 we have the points of intersection
between the decays of ρϕ with ρr, ρb and ρd, respectively. Similar behavior can be found for
the second case (right panel) for Q0 = 20.

Furthermore, in relation to the dilaton component ρϕ (right panel), it presents a more
pronounced decay when compared to the graph in (left panel), that is, ρϕ has a more
significant decay with the increase Q0. For the points of intersection between ρϕ and the
other components, we will have the same values corresponding to χ; however, such points
occur at a lower energy density when compared to the graph in (left panel).
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Figure 9. (left panel) The evolution of the energy densities for different components as a function of
χ for fixed Q0 = 2 and (right panel) Q0 = 20 for two values of α.
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6. Discussions

We shall first address the issue of H0 tension. This problem now well known as the
“Hubble tension” is related to the divergence of the measurements of the Hubble constant H0
with respect to different applied techniques. In other words, the measurements of regions
in the recent Universe, such as observations from the Hubble Space Telescope of Cepheid
variables—see Riess et al. [56,57]—present considerable different results for H0 as compared
with its measurements made in the early Universe by the Planck spacecraft—for the 2018
Planck release, see [58]. The main difference between these two techniques is that in the latter
case, the data from Planck CMB observations are processed under the base-ΛCDM model.
This has raised some questions about this model and then some extended models have been
put forward in the literature in order to solve the “Hubble tension”, but according to the
analysis performed in [58], none of the extended models solves this tension in a satisfactory
way. In our present study, we also offer an alternative model to address this problem. We
have considered three region of parameters to accomplish both techniques. We denominate
these sets of parameters as scenarios I, II and III—see Table 1 and Figures 3 and 4.

Table 1. Comparison of the ranges of H0 values obtained by Riess et al. 2019 [56] and Planck
2018 [58] with Scenarios I, II and III obtained by numerical methods through the parameters α = 0,
α = 2 × 10−2m−2

p , α = 5 × 10−2m−2
p , Q0 = 2 and Q0 = 20. The entire range of values of H0 in Riess

et al. 2019 is included in the range of values set out in Scenario III and partially included in the range
of values in Scenario II. As for the range of H0 values for Planck, these partially comprise Scenarios I,
II and III.

Experiments H0 α Q0

Riess et al. 2019 [56] 74.03 ± 1.42 km s−1 Mpc−1 − −

Planck 2018 [58] 67.3 ± 1.20 km s−1 Mpc−1 − −

Scenarios H0 α Q0

I 67 − 72 km s−1 Mpc−1 0 − 2 × 10−2m−2
p 2

II 67 − 74 km s−1 Mpc−1 0 2–20

III 68 − 76 km s−1 Mpc−1 5 × 10−3m−2
p 2–20

Scenarios I and II, following the range of parameters properly chosen, can simulate
the results from Riess et al. [56,57] and Planck-based ΛCDM model. Scenario III simulates
Riess et al. [56,57]. Although this seems to be a reasonable test of viability of our model,
a statistical analysis to find the best fit of α and Q0 according to Planck data should be
addressed elsewhere. A similar behavior in easing the Hubble constant tension has recently
appeared in the context of W3 algebras [59].

Concerning the densities Ωr, Ωd, Ωb and Ωϕ, depicted in Figures 1 and 2 and Table 2,
notice that for the regimes of parameters considered in the Scenario I, II and III, there are
no significant changes in relation to the Planck-based ΛCDM model, although they yield
substantial changes for the Hubble constant H0.

Table 2. The table shows the values of density parameters for radiation, dark matter, baryonic matter
and dilaton field (dark energy) at χ = 0 for different regions in the space of parameters (α, Q0).

Ωr Ωd Ωb Ωϕ α Q0

9.4 × 10−5 0.271 0.049 0.679 0 2

7.7 × 10−5 0.219 0.040 0.740 0 20

16.2 × 10−5 0.302 0.056 0.636 2 × 10−2m−2
p 2

19.7 × 10−5 0.266 0.047 0.701 2 × 10−2m−2
p 20
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The dilaton field is running to achieve the limit ϕ → −∞ in all scenarios discussed
above, as depicted in Figures 5 and 6, which guarantees the weak field field regime as we
have previously assumed. Thus, the dilatonic potential (31) approaches zero at this limit,
as expected in quintessence scenarios.

The initial values of the energy densities adopted above leads to acceptable cur-
rent energy densities. For instance, for fixed parameters α = 0, Q0 = 2, at χ = 0,
we find ρr = 3.44 × 10−51GeV4, ρd = 9.87 × 10−48GeV4, ρb = 1.79 × 10−48GeV4 and
ρϕ = 2.47 × 10−47GeV4. The matter–radiation equality occurs in the redshift zeq. See in
Table 3 different values for such redshift, the Hubble constant H0 and aeq for some region
of parameters.

Table 3. The table shows the acceptable values of redshift of matter–radiation equality zeq ∼ 3000
and corresponding aeq, and the Hubble constant H0 for different regions in the space of parameters
(α, Q0). For α ̸= 0, one finds unacceptable values zeq ≪ 3000. This may be a sign that a statistical
analysis can reveal that the best fit for α is very small or identically zero.

zeq H0 aeq α Q0

3391 67.0 2.9 × 10−4 0 2

3346.6 74.4 3.0 × 10−4 0 20

604.1 68.1 16.5 × 10−4 5 × 10−3 2

425.6 75.5 23.4 × 10−4 5 × 10−3 20

7. Conclusions

We explore a model of string-theory-inspired dilaton gravity in realm of modified
f (R, T) gravity. The numerical analyses were made in the model and revealed several
cosmological quantities to describe dark energy for the late-time Universe. The model
displays linear contributions in T (trace of the energy-momentum tensor) and in this
preliminary approach, it seems to cover the well-accepted behavior of ΛCDM model for
low redshifts, which is in accord with the Planck 2018 data. In this perspective, the model
also mimics extensions of the ΛCDM model due to suitable adjusted space of parameters
that allows to deal with the Hubble constant H0 tension. We have shown in three scenarios
considered in the present study that by varying appropriately some parameters, such as α
and Q0, one can obtain values of H0 in a wide range spanning from the Planck results to
the SHOES results and beyond. The analysis on the redshift of matter–radiation equality
shows better results for α = 0. This may be a sign that a statistical analysis can reveal that
the best fit for α is very small or identically zero. Although this seems to be a reasonable
test of viability of our model, a statistical analysis to find the best fit of α and Q0 according
to Planck data should be addressed elsewhere. As a perspective, we shall address these
and other issues in the future. Further studies with different models should be addressed,
as for instance, one could apply several investigations on the inflationary regime, such as
constraining the parameters through contour plot in the plane made out of scalar spectral
indices and tensor-to-scalar ratio [60].
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