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Abstract: In this article, we start by presenting state-of-the-art methods allowing us to compute
moments related to the globally conserved baryon number, by means of first principle resummed
perturbative frameworks. We focus on such quantities for they convey important properties of the
finite temperature and density equation of state, being particularly sensitive to changes in the degrees
of freedom across the quark-hadron phase transition. We thus present various number susceptibilities
along with the corresponding results as obtained by lattice quantum chromodynamics collaborations,
and comment on their comparison. Next, omitting the importance of coupling corrections and
considering a zero-density toy model for the sake of argument, we focus on corrections due to the
small size of heavy-ion collision systems, by means of spatial compactifications. Briefly motivating
the relevance of finite size effects in heavy-ion physics, in opposition to the compact star physics,
we present a few preliminary thermodynamic results together with the speed of sound for certain
finite size relativistic quantum systems at very high temperature.
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1. Introduction

The weak coupling expansion of the Quantum Chromodynamics (QCD) grand potential density
(which we further call “free energy density”, since both are equivalent in the limit of zero density in
infinite volume systems), is known to be a central quantity for the thermodynamics of a deconfined
system such as those created in Heavy-Ion Collisions (HIC). If computed naively, there are however
certain details that need to be improved, and we are going to discuss them in the following.

First of all, such a weak coupling expansion appears not to converge at phenomenologically
moderate temperatures [1], relevant to the quark-hadron phase transition which takes place around the
pseudo-critical temperature Tc = 154± 9 MeV for vanishing quark chemical potentials µ f [2,3]. Lattice
Monte Carlo simulations cannot be used when the chemical potentials, and more specifically the baryon
chemical potential, are non-zero due to the so-called sign problem of QCD [4,5]. Consequently, a lot of
effort has been put in developing frameworks allowing access to reliable results, from first principles,
by continuing the known perturbative outcome toward the non weakly coupled phase transition
region, including at non-zero density [6–9]. In the light of the current [10,11] and forthcoming [12,13]
experiments, the non perturbative lattice simulations together with these resummation frameworks
allow for further insights in the study of the QCD phase diagram [8,14].

Then, a different issue which unfortunately lacks more thorough investigations, is related to
the fact that the deconfined systems which are briefly created in collider experiments have finite,
and in fact comparatively rather small volumes. For instance, their characteristic sizes are at best
of the order of R ∼ 4–8 Fermis for lead–lead collisions at

√
s = 2.76 TeV [15], and R ∼ 1–2 Fermis

for proton–lead collisions at
√

s = 5.02 TeV [16]. It is then trivial to compare these lengths to a
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temperature T which is typical, say T ∼ 2Tc to be conservative. Moreover, by doing so, one can see
that the relevant dimensionless parameter, namely ∆ = T×R, falls into neither of the extreme regimes:
It indeed ranges in between a few units to roughly ten (it becomes, however, nearly an order of
magnitude smaller if considering an hydrodynamic cell in local equilibrium). For comparison, systems
relevant to the description of a compact star are in a complete different regime, with ∆ = ∞ being
an excellent approximation (accounting for a small, yet non-zero, temperature [17], or evaluating the
dimensionless parameter µ×R instead). Thus, it appears that in the context of a quark–gluon plasma
relevant to the heavy-ion physics, an important question is: Which physical quantities happen to be
sensitive to the finite size of the system, and which are not? In this article, we will first briefly recall
certain aspects of the QCD thermodynamics for infinite size systems, together with the corresponding
fluctuations of globally conserved charges. Next, still relevant to infinite size systems, we will
present two state-of-the-art frameworks for resumming the weak coupling expansion of QCD at
finite temperature and density. Then, we shall move on to briefly introduce the proposed framework
for finite size corrections. After which we will start reviewing results corresponding to the fluctuations
and correlations of conserved charges, comparing the resummed perturbative framework results to
those of lattice QCD collaborations. Finally, we will present a few preliminary results concerning finite
size corrections, using a single non interacting massless scalar field at zero chemical potential as a
toy model. A certain number of points will not be emphasized, and we refer the readers to [7,8,18]
and references therein for further details on the frameworks as well as all the results for finite density
investigations, and to [19] for more details on the finite size preliminary results.

2. Charge Fluctuations in Infinite Size Systems

We start by briefly recalling the link between the Hamiltonian of Quantum Chromodynamics
HQCD and its partition function ZQCD, which in infinite size systems reads:

ZQCD

(
T, µ f ; V

)
≡ Tr exp

[
− 1

T

(
HQCD −∑

f
µ f Q f

)]
= Tr

(
ρQCD

)
, (1)

where Q f and µ f respectively denote the conserved charges and the corresponding chemical potentials.
Furthermore, in the following, 〈ϑ〉 ≡ Tr (ϑ · ρQCD) /ZQCD will denote thermal averages. While we
mainly consider the up, down, and strange quarks with respective chemical potentials µu, µd, and µs,
one can also express the partition function in terms of the baryon charge, the electric charge, and the
strangeness conserved number, with (µB, µQ, µS) instead. From Equation (1), one can see that the
mean and (co)variance of two conserved charges can be expressed in terms of derivatives with respect
to the chemical potentials, following: 〈

Q f

〉
= T

∂

∂µ f
log ZQCD, (2)

〈(
Q f −

〈
Q f

〉)
·
(
Qg −

〈
Qg
〉)〉

= T2 ∂2

∂µ f ∂µg
log ZQCD, (3)

which is straightforwardly related to the first and second order cumulants, respectively. These above
quantities, referred to as susceptibilities, are defined for the quark numbers by:

χui dj sk ...

(
T,
{

µ f

})
≡

∂n pQCD

(
T,
{

µ f

})
∂µi

u ∂µ
j
d ∂µk

s ...
, (4)

with n = i + j + k + ..., and where we recall that equilibrium thermodynamic quantities such as the
pressure follow simple relations in infinite size systems like:
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pQCD =
∂ (T log ZQCD)

∂V
−−−→
V→∞

T
V

log ZQCD. (5)

It should be noted that one may also consider any other conserved charge, instead of the
quark numbers. Furthermore, the number susceptibilities are, in general, important as they give
information on the correlations and fluctuations of the globally conserved quantum numbers.
Therefore, they turn out to be very practical probes for the changes of degrees of freedom across
the transition region, specifically when the conserved charge is the baryon number. They are also
directly related to the corresponding cumulants, and thus provide some crucial information about the
probability distribution of the baryonic degree of freedom, together with insights on the existence and
location of a possible critical point on the QCD phase diagram. For more detail on the use of conserved
charge cumulants in HIC, we refer the readers to [20,21].

3. Resummed Perturbative Quantum Chromodynamics in Infinite Size Systems

3.1. Resummation Inspired from Dimensional Reduction

The Dimensional Reduction (DR) phenomenon at asymptotically high temperature, which can
generally be understood as the appearance of certain effective degrees of freedom in a lower dimension,
is well known to account properly for the dynamics of energy scales up to the order gT in QCD [22,23].
Such a procedure is carried out using an effective field theory which is called Electrostatic QCD
(EQCD), by integrating out the hard degrees of freedom followed by a careful matching of the effective
theory with the original one. EQCD is a three-dimensional SU(Nc) Yang-Mills theory coupled to an
adjoint Higgs field [24,25], which accounts for all the infrared divergences encountered in the weak
coupling expansions [26]. And as such, EQCD provides a rigorous framework for carrying out higher
order loop computations in high temperature perturbative QCD.

Using this knowledge, one can rewrite the QCD pressure as:

pQCD = phard(g) + T pEQCD(mE, gE, λE, ζ), (6)

where the parameters mE(g), gE(g), λE(g) and ζ(g) are also functions of the temperature and the
quark chemical potentials, and admit expansions in powers of the four-dimensional gauge coupling g.
The contribution phard is relevant to the hard scale (∼T), and can be computed through a direct loop
expansion in QCD. The contribution pEQCD is, on the other hand, relevant to the soft (∼gT) and ultrasoft
(∼g2T) scales. This contribution is accessible from the partition function of EQCD, and through a
partial four-loop order even accessible by means of loop expansion only.

In principle, when computing the EQCD pressure in order to be able to access the full QCD
pressure, the entire result (with the EQCD parameters) must be Taylor expanded in powers of g around
small values. However, it was suggested in [1] and then first applied at zero chemical potential in [27],
that one can simply consider both phard and pEQCD as functions of the EQCD parameters. Doing so,
and not re-expanding them in powers of g resums certain higher order contributions while keeping all
correct contributions up to and including the order g6 log(g) [28,29]. As a byproduct, the theoretical
uncertainties through the renormalization scale dependence of the result is substantially reduced,
and the convergence properties are thereby improved.

3.2. Hard-Thermal-Loop Perturbation Theory

The use of a variationally improved perturbation theory framework has been known for
decades to allow important higher order resummations as well [30,31]. The introduction of a certain
relevant term to be added and subtracted from the Lagrangian density, allows for the treatment of
the added/subtracted piece with the non-interacting/interacting part. By doing so, one actually
interpolates between the original theory and a theory having appropriately dressed propagators and
vertices, while recovering the original theory in the end by setting (see below) δ = 1. For QCD,
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the procedure is of course more complicated given gauge invariance, and the relevant term is the
non-local hard-thermal-loop effective action [32,33]. This procedure is called Hard-Thermal-Loop
perturbation theory (HTLpt) [34,35], and the subsequent Lagrangian reorganization reads:

LHTLpt =
[
LQCD + (1− δ) LHTL

]∣∣∣
g→
√

δg
+ ∆LHTL, (7)

where LHTL is the gauge invariant HTL improvement term, and δ a formal expansion parameter set to
one after the expansion. We notice, in the above, that ∆LHTL is a counter term necessary to cancel all
the ultraviolet divergences introduced by the reorganization of the perturbative series, from the ground
state of an ideal gas of massless particles to the ground state of an ideal gas of massive quasiparticles.

4. On the Finite Size Corrections

First of all, we would like to refer the readers to the forthcoming article [19], where all the details
from the conceptual to computational aspects will be exposed to a greater extent.

We wish now to drastically simplify the approach to the quark–gluon plasma created in high
energy collisions, in order to make a first step in accounting for its finite size. To this end, we will
disregard the importance of accounting for the interaction, and consider a zero-density toy model for a
start: We chose a single non-interacting massless scalar field at zero chemical potential. And indeed, it is
worth noticing that such a massless scalar field is, in fact, quite insightful, for it contains information
relevant to a gas of non-interacting gluons—albeit a group theory prefactor (to the free energy), which
is not present in any of the displayed quantities here, since we conveniently show only the appropriate
ratios. We will then solely focus on the corrections due to the small size of our system. Furthermore,
we are not discussing here a real finite volume system, leaving it for [19] and referring to works such
as [36] for other types of finite volume investigations (this time, relevant to hadronic systems).

Instead, we will simply discuss a quantum relativistic system whose dynamics are governed by
the aforementioned field theory, coupled to a heat bath at temperature T and geometrically confined in
between two infinite parallel planes separated by a distance L. More precisely, motivated by physical
arguments [19], we undertake a spatial compactification by assuming Dirichlet boundary conditions
on both infinite planes, and finally arrive, explicitly, to the free-energy density of a neutral, massless,
and non-interacting scalar field, which reads:

f (T, L) ≡ F(T, L, A)/V

= −π2T4

90
+

ζ(3)T3

4πL
− ζ(3)T

16πL3

− T2

8L2 ×
+∞

∑
s=1

[
csch2 (2πTL× s)

s2

]
− T

16πL3 ×
+∞

∑
s=1

[
coth (2πTL× s)− 1

s3

]
, (8)

and where F(T, L, A) is the free energy, A ≡ V/L being the area of each of the infinite parallel planes.
A few comments are now in order, concerning the Equation (8). The above expression is an exact
analytic representation of the free energy density of our system coupled to the heat bath and in between
the parallel planes. Moreover, it is resummed to be exponentially fast in terms of convergence for
practical numerical evaluations (when the sums are then truncated; see [19] for more detail). Finally,
let us notice that the first term in the first line of (8) is the usual (fully) thermal non-compactified result.
Next to it, the two simple terms are part of the thermal corrections to the Casimir (geometric) effect
due to the presence of boundaries inside the heat bath. The last two terms, each containing an infinite
summation, account for both the rest of the thermal corrections to the geometric effect and for the
so-called zero-temperature Casimir result. Indeed, it can be checked that applying the (well defined)
limit T → 0 to the above will give us:

f (T = 0, L) = − π2

1440 L4 , (9)
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which is responsible for the well-known zero-temperature Casimir pressure pCas ≡ −π2/(480 L4).
Thus, our expression is not only a very compact one which converges exponentially fast when the
sums are truncated for nearly any values of T and L, but it rightfully reproduces the two appropriate
limits, namely L = ∞ and T = 0 respectively.

Let us now present all the results, some concerning the (QCD) infinite volume case at finite density
and some being relevant to the (toy model) finite size case at zero density.

5. Results and Discussion

In the present section, we refer the readers to [8] for more detail on the setting of the parameters
in the case of the finite density results, the bands corresponding to conservative variations of all the
resummed perturbative parameters. We also refer to [19] for a forthcoming thorough investigation
concerning the finite size preliminary results which we are presenting. Concerning the finite density
results, the blue band corresponds to the DR result while the red and orange bands are the exact
one-loop and truncated three-loop HTLpt results. The dashed curves inside the bands correspond to
the central values of the renormalization and QCD scales. As for the finite size preliminary results,
all quantities which are presented here are relevant to a system in between two infinite parallel planes
separated by a distance L, and in contact with a heat bath at temperature T.

5.1. Quantum Chromodynamics Infinite Volume Case at Finite Density

5.1.1. Low Order Susceptibilities

First, we display low order quark and baryon number susceptibilities in Figures 1 and 2 (left),
and in Figure 2 (right), respectively. The second- and fourth-order diagonal number susceptibilities are
normalized to their non-interacting limits.

From the width of the bands, we clearly see that the DR scale dependence is extremely small for
perturbatively relevant temperatures. Moreover, both DR and HTLpt are in accordance with each
other, while agreeing quite well with the non perturbative lattice results down to T ∼ 200–400 MeV.

200 400 600 800 1000
0.0
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0.6
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Χ
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HTLpt 1-loop exact
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HTLpt 3-loop truncated

Figure 1. Second-order diagonal quark number susceptibility, normalized to its non-interacting limit.
The truncated three-loop HTLpt result is from [37] and the lattice data from the BNL–Bielefeld [38]
(BNL–B) as well as from the Wuppertal–Budapest [39] (WB) collaborations.
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Figure 2. Fourth-order diagonal quark (left) and baryon (right) number susceptibilities, normalized to
the non-interacting limits. The truncated three-loop HTLpt result is from [37] and the lattice data from
the BNL–Bielefeld [40–42] (BNL–B) as well as the Wuppertal-Budapest [43] (WB) collaborations.

5.1.2. Kurtoses

Next, we are presenting the kurtosis, a certain ratio of the fourth and second order quark or
baryon susceptibilities. It is a measure of how strongly peaked a quantity is, most often used to
measure how a critical point is approached during a phase transition [44].

In Figure 3 (left), we plot the DR and HTLpt results together with lattice data which seem to
agree with the one-loop HTLpt band at temperatures of T ∼ 300–400 MeV, however approaching
the DR prediction at higher temperatures. The latter reproduces the overall trend of the lattice data
better. On the right hand figure, both the three-loop HTLpt and DR predictions seem to agree with the
lattice data at around T ∼ 350 MeV, albeit the DR prediction is much more predictive. Both resummed
perturbative results converge to the Stefan Boltzmann limit faster than for the result relevant to quark
numbers. This tends to comfort the expectation that the medium should be less sensitive to the
hadronic degrees of freedom in this range of temperatures.
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Figure 3. Ratios of low order susceptibilities for the quark (left) and baryon (right) numbers. The lattice
data is from [40,41] (BNL–B) and [43,45] (WB). The three-loop HTLpt result is obtained from the
corresponding cumulants of [37]. The black dashed (straight) lines denote the Stefan Boltzmann limits.

5.2. Toy Model Finite Size Case at Zero Density

5.2.1. Finite Size Corrections to the Thermodynamics

We start by plotting the ratio of the free energy with its non-compactified limit (i.e., for which
L → ∞). Even though the intrinsic asymmetry of such a finite size system implies that the actual
pressure along the planes may not be the same as the pressure across them, we recall [19] that in the
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non-compactified limit, both pressures reduce to minus the free energy density. Such a quantity is then
quite convenient for understanding the effect of finite size corrections.

Finite Size correction

S–B limit

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

T (in unit of 1/L)

F

Fideal

Figure 4. Correction to the free energy of a system at temperature T due to the compactification along
one direction with length L. The result is normalized to its non-compactified, non-interacting limit,
and plotted as a function of T in unit of 1/L.

In Figure 4, we notice a sharp increase at low temperature which is simply a consequence of the
fact that the function is normalized to the fourth power of temperature. Indeed, the zero temperature
limit of the free energy is finite at fixed L: It is the so-called Casimir value (9).

5.2.2. Non Additivity of the Equation of State “Entropy Versus Temperature” in Finite Size Systems

We now wish to bring to the attention of the readers that a finite size system may not only be
asymmetric, as mentioned previously, but will also lose some of the property of additivity.

ΔS := S(V1+V2) - [ S(V1)+S(V2) ]

0 5 10 15 20

0.0

0.1

0.2

0.3

0.4

T (in unit of 1/L)

ΔS

T
3
V1

( V2 / V1 = 2 )

Figure 5. Non additivity of the entropy as a function of the temperature, due to the spatial
compactification. The quantity is plotted as a function of T in unit of 1/L, but goes to zero in the limit
L→ ∞, and is normalized to appropriate powers of the temperature and volume. One subsystem (V2)
is twice as large as the other.

In Figure 5, we notice that in the large L limit the system becomes fully additive, with for example
the equation of state S(T) being additive, as it is expected. However, this happens in the asymptotically
small T limit too. But this is merely a consequence of the fact that at zero temperature, the total entropy
function vanishes (in the thermodynamic limit, i.e., at present since the volume is infinite, this is called
the third law of thermodynamics). We further notice that both subsystems with volumes V1 and V2

have the same temperature, in agreement with the zeroth law of thermodynamics.

5.2.3. Finite Size Corrections to the Speed of Sound

Finally, we wish to present the squares of the two possible isochoric speeds of sound in between
infinite parallel planes: the one that is transverse to the planes (c2

s1
), and the one that is longitudinal
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(c2
s2/3

). We also refer to [19] for much more detail on the derivation of such a quantity. This sound,
propagating in an asymmetric manner, can be understood as due to variations in the pressures
(both longitudinal and transverse) and the energy density as a consequence of a certain heat transfer
from/toward the system.

Both Figure 6 (left and right) have a number of interesting features, and we also refer to [19] for a
more complete interpretation of the result. However, it is already noteworthy that the average of the
isochoric speeds of sound in the three directions (cs1 , cs2 , and cs3 ; the black line on the left Figure 6)
is identically equal to the well known non-compactified limit of cs = 1/

√
3. For both velocities,

the correction seems not to be negligible anymore, starting at about 6–10 % for system sizes relevant to
lead–lead collisions at a few hundred MeV. On Figure 6 (right), we display the total energy of such a
system, as a function of both isochoric speeds of sound. The negative region for the total energy is
simply the consequence of a certain Casimir effect, notifying the fact that the thermal contribution to
the energy is not dominant anymore.

cs1
2

cs2/3
2

〈csi
2 〉

0 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0

T (in 1/L units)

csi
2

↘
S–B value

E (cs1
2 )

E (cs2/3
2 )

0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

csi
2

E

T
4
V

S–B value

Figure 6. Left figure, we display the two isochoric speeds of sound in between infinite parallel planes,
as a function of T in unit of 1/L. Right figure, we display the total energy of the system as a function
of each of the isochoric speeds of sound: The transverse one (cs1 ), and the longitudinal ones (cs2/3 ).

6. Conclusions

Despite tremendous advances, with various analytic and numerical methods, in the understanding
of the thermodynamics of quark–gluon plasmas as created in HIC, we have presented a few preliminary
results that suggest the need for a further refinement in the overall picture. This need of improvement
seems to be valid, as far as can be understood at present, for quantities related to the thermodynamics
of the systems. They seem nevertheless to play an important role in understanding the degrees of
freedom at work across the quark–hadron phase transition better. However, the question remains
whether or not more dynamical quantities could be less sensitive to the finite size of the system.
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