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Abstract: A spherically symmetric space-time solution for a diffusive two measures theory is studied.
An asymmetric wormhole geometry is obtained where the metric coefficients has a linear term for
galactic distances and the analysis of Mannheim and collaborators, can then be used to describe
the galactic rotation curves. For cosmological distances a de-Sitter space-time is realized. Center of
gravity coordinates for the wormhole are introduced which are the most suitable for the collective
motion of a wormhole. The wormholes connect universes with different vacuum energy densities
which may represent different universes in a “landscape scenario”. The metric coefficients depend on
the asymmetric wormhole parameters. The coefficient of the linear potential is proportional to both
the mass of the wormhole and the cosmological constant of the observed universe. Similar results are
also expected in other theories like k-essence theories, that may support wormholes.
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1. Introduction

One of the most challenging questions in astrophysics is the mismatch between the measurements
of the velocities of stars in galaxies, and the predictions for galaxy rotation curves from the standard
general theory of relativity. This question led the astrophysicists arguing about the existence of dark
matter. Other theorists instead have tried to modify General Relativity (GR) or the Newtonian laws.
The most prevailing belief is that for explaining the galaxy rotation curves, the galaxy has to be soaked
in a dark matter halo [1–3]. Regardless of this question, a theoretical spherically symmetric solution for
GR, called a wormhole, where two different universes can be causally connected through a “wormhole
throat” and where a physical traveller can go in principle from one universe to the other and be
observed doing this from an observer located in one of the universes, gives a concept of a non-trivial
topological structure linking separate points in space-time [4–7]. This property of the space-time is
different from black holes solutions, which may also connect two universes, but possess event horizons,
so that the trajectory of the traveller cannot be followed by an external observer beyond the point
where the observer crosses the horizon.

The existence of a multi universe, each of them with different vacuum energy density, has been
widely discussed in both string theory and in inflationary cosmology. One possibility is that these
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universes were initially connected in the early stages of evolution but are now totally disconnected.
Another possibility that appears more interesting is that some of these universes are now still
connected through a wormhole and may be this connection leads to observable consequences. In this
letter, we propose a modified theory of gravity, which for spherically symmetric solutions produces
asymmetric wormholes. The asymmetry is a consequence of the fact that in our case the wormholes
connect universes with different vacuum energy densities, and therefore are necessarily asymmetric.
For large distances the solution produces gravitational potentials that can be suitable for the explanation
of galaxy rotation curves. The parameters that defines the asymmetry of the wormhole hole determine
linear gravitational potentials and therefore could provide an explanation for the rotation curves in
galaxy halos. It is interesting to note that the possibility that the massive object detected at the centre
of our galaxy is a wormhole rather than a black hole has been discussed together with some possible
observational consequences related to the effect of this on the geodesics produced by this object [8].
These effects are indeed even more acute in the case of the solutions discussed in this paper due to the
generation of the linear potentials.

1.1. Two-Measures Theory

Many modified theories of gravity have been formulated for explaining phenomena beyond GR.
One example is the two-measures theory [9–17] where in addition to the regular measure of integration
in the action

√−g, includes another measure of interaction which is also a density volume and a total
derivative. In this case, one can use for constructing this measure 4 scalar fields ϕa, where a = 1, 2, 3, 4.
Then, we can define the density Φ = εαβγδεabcd∂α ϕa∂β ϕb∂γ ϕc∂δ ϕd, and then we can write an action
that uses both of these densities:

S =
∫

d4xΦL1 +
∫

d4x
√
−gL2 . (1)

As a consequence of the variation with respect to the scalar fields ϕa, assuming that L1 and L2

are independent of the scalar fields ϕa, we obtain that

Aα
a ∂αL1 = 0 , (2)

where Aα
a = εαβγδεabcd∂β ϕb∂γ ϕc∂δ ϕd. Since det[Aα

a ] ∼ Φ3, then for Φ 6= 0, (2) implies that
L1 = M = const. This result can be expressed as a covariant conservation of a stress energy
momentum of the form Tµν

(Φ)
= L1gµν, and using the 2nd order formalism where the covariant

derivative of gµν is zero, we obtain that ∇µTµν

(Φ)
= 0 implying ∂αL1 = 0. This suggests the idea of

generalising the two-measures theory by imposing the covariant conservation of a non-trivial kind of
energy-momentum tensor, which we denote as Tµν

(χ)
[18]. Therefore, we consider an action of the form

S = S(χ) + S(R) =
∫

d4x
√
−gχµ;νTµν

(χ)
+

1
2κ2

∫
d4x
√
−gR , (3)

where semicolon; denotes covariant derivative, κ2 = 8πG and χµ is the dynamical vector field. If we
assume Tµν

(χ)
to be independent of χµ and having Γλ

µν being defined as the Christoffel connection

coefficients, then the variation with respect to χµ gives a covariant conservation: ∇µTµν

(χ)
= 0. A full

phenomenology for using these theories is described in [19,20].

1.2. Diffusive Energy Theory from Action Principle

Calogero [21] proved that the diffusion equation in a curved space-time implies a non-conserved
stress energy tensor Tµν, which has some current source f µ:

∇νTµν = 3σ f µ , (4)
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where σ is the diffusion coefficient of the fluid. This generalisation is Lorentz invariant and the current
f µ is a time-like covariantly conserved vector field and its conservation tells us that the number of
particles in this fluid is constant. This non-conservative stress energy tensor can emerge from variations
in the action (3), by replacing the dynamical time vector field for a gradient of a scalar field ∂µχ:

S(χ) =
∫

d4x
√
−g (∂µχ);νTµν

(χ)
. (5)

The variation with respect to χ gives a covariant conservation of a current f µ

∇µTµν

(χ)
= f ν , ∇ν f ν = 0 , (6)

which it is the source of the stress energy-momentum tensor. Equation (6) has a close correspondence
to (4). By taking variations with respect to χµ, we obtain 4 equations of motion which correspond to a
covariant conservation of the energy-momentum tensor ∇µTµν

(χ)
= 0. By changing the 4 vector to a

gradient of a scalar ∂µχ, we change the conservation of energy-momentum tensor to an asymptotic
conservation of energy-momentum tensor (6) which corresponds to a conservation of a current
∇ν f ν = 0. From a variation of the action with respect to the metric, we get a conserved stress energy
tensor Tµν

(G)
:

Tµν

(G)
=

1√−g
δ(
√−gLM)

δgµν , ∇µTµν

(G)
= 0 . (7)

By considering Tµν

(χ)
being equal to L1gµν, the original measure Φ is modified to a Galileon

measure Φ(χ) = ∂µ(
√−ggµν∂νχ), and the action (5) gets the following form

S(χ) =
∫

d4xΦ(χ)L1 . (8)

Here if we take variation with respect to the scalar χ, the equation of motion gives 2L1 = 0.
This idea was also used in the context of string theory in [22,23].

2. The Action

Let us start with the following two-measure action

S =
1

2κ2

∫
d4x
√
−gR +

∫
d4x
√
−g (Λ(φ, X) + V1(φ)) +

∫
d4xΦ(χ)Λ(φ, X) , (9)

where; represents covariant derivative with respect to the Levi-Civita connection and φ is a scalar field.
The first two terms in the above action represents standard k-essence theories whereas the last term
has another contribution with a different Galilean measure.

Then the variation with respect to the scalar χ gives 2Λ(φ, X) = 0, which for a cosmological
solution leads to an interactive unified DE/DM scenario [18,24,25]. The second term on this action
depends on Λ(φ, X) which is a function of a scalar field φ and a kinetic term

X = −1
2

ε ∂µφ∂µφ (10)

that contains any k-essence theory. If ε = +1, the scalar field φ represents a canonical scalar field,
whereas when ε = −1 represents a phantom scalar field. The third term in the action (9) also depends
on an energy-momentum tensor Tµν

(χ)
that couples to the vector field and it is assumed to be independent

of it. In [18], the authors studied the specific case where the function Λ(φ, X) is defined as follows

Λ(φ, X) = K−V2(φ) = −
1
2

ε ∂µφ∂µφ−V2(φ) , (11)
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where V2(φ) is an energy potential, which in general is different than the potential V1(φ). Note that
the potentials are coupled with different measures. In [18], the special case where V1(φ) = V2(φ) = 0
was studied.

Variations of the action (9) with respect to the metric gives us the following field equations

Gµν = gµν(Λ + χλΛ,λ)− jµφ,ν + χµΛ,ν + χνΛ,µ − gµνV1(φ) , (12)

where we have assumed that commas denote differentiation, κ2 = 1 and the vector field is equal to the
gradient of the scalar field χ that appears in the Galileon measure, namely

χµ = ∂µχ . (13)

From a variation with respect to the scalar φ we obtain a non-conserved current, which is given by

jα = 2(χλ
;λ + 1)φ,α . (14)

If we vary the action (9) with respect to the scalar field φ and the vector field χµ, we respectively get

ε

2
∇λ jλ =

dV1(φ)

dφ
+

dV2(φ)

dφ

(
χλ

;λ + 1
)

, (15)

�Λ = �(K−V2(φ)) = 0 . (16)

Here, � = ∇α∇α is the d’Alambertian. In the next section, a spherically symmetric space-time of
this model will be introduced in order to then analyse the special case of asymmetric wormholes.

3. Spherically Symmetric Space-Time

3.1. General Equations

Let us start with the most general spherically symmetric space-time metric given by

ds2 = −A(r)dt2 + B(r)dr2 + C(r)dΩ2 , (17)

where A(r), B(r) and C(r) are the metric coefficients which depend on the radial coordinate and
dΩ2 = dθ2 + sin2 θdφ2. In this space-time, the field Equation (12) become

4BCC′′−2CB′C′−BC′2−4B2C
4B2C2 + εφ′2

2B + V1(φ) + V2(φ)

+ φ′

2B3

(
εB′φ′ − 2B2V′2(φ)− 2εBφ′′

)
χr = 0 ,

(18)

2CA′C′+AC′2−4ABC
4ABC2 − εφ′2

2B + V1(φ) + V2(φ)− εχ′rφ′2

B2

+ φ′

2AB2C

(
2A (BCV′2(φ)− ε(Cφ′)′)− εCA′φ′

)
χr = 0 ,

(19)

AC(BA′C′+C(2BA′′−A′B′))−BC2 A′2−A2CB′C′+2A2BCC′′−A2BC′2

4A2B2C2

+ εφ′2

2B + V1(φ) + V2(φ) +
φ′

2B3

(
εB′φ′ − 2B2V′2(φ)− 2εBφ′′

)
χr = 0 .

(20)

Here, prime denotes differentiation with respect to the radial coordinate r and χµ = (0, χ′, 0, 0) :=
(0, χr, 0, 0). Clearly, when χr = 0, one recovers standard scalar-tensor theory. The modified
Klein-Gordon Equation (15) becomes
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− εA′φ′
2AB + εB′φ′

2B2 + dV1(φ)
dφ + dV2(φ)

dφ − ε(C′φ′+Cφ′′)
BC

− 1
B3

[
εB
(

A′φ′
A + 2C′φ′

C + φ′′
)
− 2εB′φ′ − dV2(φ)

dφ B2
]

χ′r −
εχ′′r φ′

B2

+ χr
4A2B4C

[
εB2CA′2φ′ + 2AB

{
2εCA′B′φ′ + dV2(φ)

dφ B2CA′ − εB (CA′′φ′ + A′ (2C′φ′ + Cφ′′))
}

−A2
{

2B2
(

dV2(φ)
dφ CB′ + 2ε (C′′φ′ + C′φ′′)

)
+ 5εCB′2φ′

−2εB (CB′′φ′ + B′ (4C′φ′ + Cφ′′))− 4 dV2(φ)
dφ B3C′

}]
= 0 ,

(21)

and the constraint (16) gives us

d
dr

[√A/BCφ′
(
εB′φ′ − 2B2V′2(φ)− 2εBφ′′

)
B

]
= 0 , (22)

which can be directly integrated yielding

√
A/BCφ′

(
εB′φ′ − 2B2V′2(φ)− 2εBφ′′

)
B

= C2 , (23)

where C2 is an integration constant. There are four independent equations since the modified
Klein-Gordon Equation (21) can be also obtained by using (18)–(20) and (22). The constraint (22)
is an additional equation that does not appear in standard k-essence theory. This equation comes
directly by assuming that the vector field is a divergence of a scalar field. Note that if one subtracts (18)
with (20), one gets

A′′

AB
− A′B′

2AB2 +
A′C′

2ABC
− A′2

2A2B
+

B′C′

2B2C
− C′′

BC
+

2
C

= 0 , (24)

which is an equation which does not depend on the scalar fields. Moreover, this equation is valid for
any k-essence theory as it pointed out in [26]. The latter comes from the fact that in those theories
Tt

t = Tθ
θ and then all the contribution coming from the scalar field disappears.

3.2. Asymmetric Wormholes Triggering Linear Potentials Describing Galaxy Halos

In this section, we will choose that the metric coefficients are related as follows

B(r) =
1

A(r)
. (25)

It should be noted that one can define a new radial coordinate (see Equation (2.4) in [27]) and
rewrite the metric only with two independent functions. Hence, choosing (25) is not an assumption,
it is just a gauge choice [27].

By replacing the above equation into (24), one gets

d
dr

(
AC′ − A′C

)
= − d

dr

[
C2 d

dr

(A
C

)]
= 2 , (26)

which is the same equation reported in [26]. Then, the global geometric structure would be the same
as described in the latter mentioned paper. Then, one can easily integrate once to obtain

d
dr

(A
C

)
=

2(r0 − r)
C2 , (27)

where r0 is an integration constant. This result is generic for any scalar field φ, χr and also for any
energy potential V1(φ) and V2(φ).
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Let us further assume an asymmetric wormhole geometry with the following metric
coefficient function

C(r) = r2 + b2 + ar , (28)

where b and a are the wormhole parameters. The parameter a measures the asymmetry of the
wormhole throat under r → −r and therefore the asymmetry between the two sides of the wormhole,
although as we will see, there is another radius in the wormhole with respect to which one can look at
its asymmetry, which we will argue is more relevant, which is the centre of gravity sphere (since it
correspond to a certain radius, but the angles are arbitrary). Then, one can directly solve (27) yielding

A(r) = A0
(
ar + b2 + r2)+ 1

c2

[
4(a+2r0)(ar+b2+r2) arctan( a+2r

c )
c

+2
(
a(r + r0) + 2b2 + 2rr0

) ]
,

(29)

where A0 is an integration constant and for simplicity we have defined c =
√

4b2 − a2. πc measures the
circumferential radius of the wormhole at its neck. The parameters must satisfy −2b < a < 2b which
also ensures that the zeros of the equation C(r) = 0 will be imaginary making that the wormhole exists.
In general, the space-time can be either a wormhole or a black hole depending on the parameters.
Let us here emphasise again that the above solutions are very general since they do not depend on the
matter/scalar field chosen. Equation (24) is a purely geometric equation which arises directly from the
field equations (by subtracting (18) with (20)). The latter equation is valid for any k-essence theory and
also for any two-measure theory, independently of the source.

Let us study some special limit cases for our model. If one assumes that 2r + a � c and r � a,
we can expand the metric coefficient up to second power-law orders in r, obtaining

A(r) ≈ 1 + A0b2 +
ac(λ− A0)

π
+

r(πaA0 − 2A0c + 2cλ)

π
+ A0r2 +O(r3) . (30)

Here, we have used the expansion arctan(x) ≈ x for x � 1 and for simplicity we have introduced
the following constant

λ = A0 +
2π(a + 2r0)

c3 . (31)

Now, let us explore the limit case at very large scales. In this case, one can assume that 2r + a� c
and r � a and then one can expand the metric function (29) as follows

A(r) ≈ 1 + b2λ + λr2 + aλr +
c3(A0 − λ)

6πr
+O

( 1
r2

)
, (32)

where we have used the expansion arctan(x) ≈ π/2− 1/x for x � 1. Then, λ can be interpreted as a
cosmological constant and the term λr2 will be important at cosmological scales. At galactic scales,
the leading terms will be proportional to linear potential and inverse potential, namely

aλr− c3(λ− A0)

6πr
. (33)

One can directly see from Equation (32) that the space-time could be a wormhole if

A0 >
2π(a + 2r0)

c3 . (34)

This condition tells us that at r → ±∞, the metric coefficient A(r) will have the same sign, if in
these two asymptotic limits r → ±∞ the metric coefficient A(r) has different signs, we are guaranteed
that the metric coefficient A(r) goes through zero at some point, and therefore we have a black hole
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solution, but if at those two limits A(r) has the same sign, the solution could be a wormhole. This is
a necessary but may be not sufficient condition. As examples for this, Figure 1 shows the metric
coefficient A(r) for some specific values of the parameters which give asymmetric wormhole for some
choices of the parameters, or alternatively a black hole. Three different cases are displayed: The red
line shows the case where the inequality (34) does not hold, therefore, it does not describe a wormhole.
In this case, the function is describing two black holes with an asymptotically de-Sitter space for
the first one (positive r) and an anti de-Sitter space on the other side (negative r). On the contrary,
when (34) holds, one has that A(r) is describing an asymptotically de-Sitter space of one side of the
wormhole (positive r) and also a de-Sitter space on the other side (negative r). This case is shown in
blue and black lines which clearly, represents an asymmetric wormhole.

-100 -50 0 50 100

0

5000

10000

15000

20000

25000

30000

r

A(r)

Figure 1. Plots of the coefficient A(r) versus r for different values of A0. The red, blue and black solid
lines represent A0 = 1.3, A0 = 1.7 and A0 = 5 respectively. We have chosen the parameters a = 0.001
and b = r0 = 1 and A0 = 1. Negative values of r are also plotted which represent the other universe.

As we will see in the next section, to see the physical implications one should express these
results in terms of the centre of gravity of the wormhole. Calculations in classical mechanics are often
simplified when laws are formulated with respect to the centre of mass. In this case, the centre of mass
is a hypothetical sphere where entire mass of an object may be assumed to be concentrated to visualise
its motion. In other words, the centre of mass is the single radius equivalent for the application of
Newton’s laws similar to the case of ordinary non-relativistic mechanics. We now go on to define the
analogous of this concept for the case of an asymmetric wormhole.

4. Centre of Gravity Coordinates

The wormhole has two special radii. The first one is the neck, where C(r) is a minimum, and from
(28) we obtain that the radial coordinate for this is rm = −a/2. The second one is the centre of gravity
radius, or the equilibrium radius, where the Newtonian gravitational force vanishes. In general,
when one considers an extended object, one defines a worldline on the basis of the centre of mass,
as discussed by Pound [28]. So here also, for analysing the behaviour with respect to this special
location, we have to use the coordinates of the centre of gravity by considering a shift

r = r′ + ∆ . (35)

The coordinates of the centre of mass are a type of collective coordinates used when one is
dealing with extended objects, and therefore since a wormhole is an extended object, it is natural to
use them. So if the wormhole interacts with another wormhole or with a point particle, the use of
coordinates that vanish at the centre of gravity is preferable since the centre of gravity coordinate truly
describes the collective motion of the extended object. Then, other coordinate choices will not be so
physically correct.
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Demanding that for small r′, A(r′) does not contain linear terms in r′ and inserting (35) into (29),
we obtain that the linear term of A(r′) is cancelled for the following choice of ∆,

∆ =
c
π
− a

2
− cλ

A0π
. (36)

Now, by expressing the small r′ limit in terms of the centre of gravity coordinates, we find

A(r′) = 1 + A0b2 +
ac(λ− A0)

π
+ A0r′2 − A0∆2 . (37)

where we see that the linear terms are now cancelled. We can see that for positive values of A0 that
the Newtonian potential produces attraction towards the centre of gravity point r′ = 0 for small r′,
so the radius r′ = 0 is indeed the radius towards where test particles are attracted to. This is therefore
the centre of gravity radius. Notice that r′ = 0, with whatever constant angles we choose, represent a
geodesic motion. To ensure that the metric has the correct signature for small r′, we require also that

1 + A0b2 +
ac(λ− A0)

π
− A0∆2 > 0.

In the case where r′ � c( 1
2 −

c
π + λ

A0π ), we obtain that the 00 component of the metric becomes,

A(r′) = (1 + λb2 + aλ∆ + λ∆2)− 2λc(λ− A0)

A0
r′ + λr′2 − c3(λ− A0)

6πr′
. (38)

In the 00 component of the metric, the coefficient of the 1/r′ term equals to −2M, where M is the
mass of the wormhole. Therefore one has that

M =
c3(λ− A0)

12π
(39)

and from Equation (31) we can get the dependence of the mass in terms of a and r0

M =
a + 2r0

6
. (40)

The linear term of A(r′) for large r′ can be expressed in terms of M, obtaining,

A(r′) = (1 + λb2 + aλ∆ + λ∆2)− 24λM
A0c2 r′ + λr′2 − 2M

r′
. (41)

The coefficient that multiplies r′2 for large |r′| identified the values of the cosmological constant at
the two sides of the wormhole. Because of:

λ± = A0 ±
2π(a + r0)

c3 = −Λ±
3

. (42)

The discontinuity of the cosmological constant between the two asymptotic sides of the wormhole is:

Λ+ −Λ− = −72M
c3 . (43)

A combination of a Newtonian potential with linear r′ and inverse of r′ can provide an
explanation for flat rotation curves without introducing dark matter. Moreover, in four different
recent studies [29–32], the authors found that this combination fits well with 110 different spiral
galaxies and also 25 dwarf galaxies. Furthermore, there is only one free parameter for each galaxy,
viz., the mass to light ratio of each galaxy, and yet with no flexibility the fit capture the essence of
the data. Hence, invoking the presence of dark matter may be nothing more than an attempt to
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describe global effects in purely local galactic terms. On the contrary, the standard NFW profile or
other dark matter profiles have more parameters for each galaxy. In order fit the same 138 galaxies
data studied in [30] as fitting parameters, one needs two additional free parameters for each galactic
halo. This gives us 276 free parameters to fit for a dark matter profile approach. Thus, these kinds of
potentials are physically very well motivated and describe galaxy rotation curves in good agreement
with observations. An interesting point arises here. The wormhole parameters a, r0 and b appear in
the constants which are related to the flat rotation curves described in [30,33]. Thus, the asymmetric
wormhole is acting as a trigger of a dark matter behaviour. Notice that the linear term in the Newtonian
potential r′(4Λ+M)/(A0c2) is proportional to the mass of the wormhole M. For positive values of
M, A0, Λ+ we obtain that the Newtonian potential produces an attractive force. Notice that using the
coordinates of the centre of gravity r′, the linear term and the 1/r′ term are both proportional to the
mass M, as is the discontinuity in the cosmological constant across the wormhole. So the mass appears
as the source of gravitational attraction, at both large and small distances. As well us being the source
of the discontinuity of the cosmological constant across the wormhole.

Notice that the linear potential that appears in (41) is in fact proportional to λ and the mass of the
gravitating objects. Since λ is connected with the Hubble constant H0, we see that there is a connection
between the linear potential governing the dark matter sector and the Hubble constant governing the
acceleration of the universe. This seems to be related to Milgrom’s idea (MOND) [34], who advocates
a relation between the minimal acceleration a0 and the Hubble constant H0.

This solution and also this interpretation would be also valid for any other k-essence theory.
Then, one can say that if ones assumes an asymmetric wormhole geometry, the potential could describe
dark matter and dark energy in a unified form.

Let us finish this section by noticing that according to [29], it was shown that by having linear
and inverse potential terms, one can derive from first principles, the Tully-Fisher relation.

5. The Behaviour for the Scalar Potentials

In this section, we will assume a canonical scalar field (ε = +1). In order to find solutions for our
specific diffusive two measures theory, one needs to impose an additional ansatz since we have more
variables than remaining equations. As an example and completeness, let us assume that the scalar
field behaves as

φ = φ0 arctan
( a + 2r

c

)
. (44)

Here, φ0 is a constant. Then, by replacing this form into (22), one can easily find that the potential
takes the following form

V2(φ) =
1

8πc2φ0

[
− 2φ2

0 cos
(

2φ
φ0

) (
2c2φ(λ− A0) + πφ0

(
A0c2 + 4

))
+c
(
− 4φ

(
cφ2

0(λ− A0) + 4πC2
)
+ 2cφ3

0(A0 − λ) sin
(

2φ
φ0

)
+cφ3

0(A0 − λ) sin
(

4φ
φ0

) )
− 2πφ3

0 cos
(

4φ
φ0

) ]
+ V0 ,

(45)

where V0 is an integration constant. Now, the scalar field χr can be directly solved by using (18);
however, it depends implicitly on V1(φ). In order to find V1(φ) one needs to solve the remaining
Equation (19). This equation is an ordinary first order equation which in principle has a solution but
analytically, it can be easily solved. One can then solve that equation numerically to see the behaviour
of the potential V1(φ). As one can see form Figure 2, the potential V1(φ) behaves with well defined
asymptotic properties. We present this to show the existence of solutions. A variety of other solutions,
starting from an ansatz different than (44) could be explore also. As it can be seen from Equation (9),
the potential V1(φ) is coupled with the standard volume measure

√−g and acts like a vacuum energy
potential (as can be seen in Equation (12)). In contrast, V2(φ) is coupled with the modified volume
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measure Φ(χ) and gives an equation on how the function Λ(φ, X) evolves in space-time. In our
model, V2(φ) was easily found analytically but V1(φ) only was found numerically. Note that these
potentials act like matter supporting the wormhole and they are not related to the metric which gives
the gravitational potential of the wormhole.

0 1 2 3 4 5

0

500

1000

1500

r

V1(r)

Figure 2. Plot of the potential V1(r) versus r for φ0 = 1, b = 2.5, a = 0.001, λ = 0.00001, C2 = 0.1,
V0 = 100 and A0 = −1.

6. Conclusions

In this paper we have explored wormholes solutions in a particular DE/DM unified model
described in [18,25]. In this case and for asymmetric wormholes, we have found that the asymmetry
between the two universes connected through a wormhole induces a linear term in the gravitational
potential, and have calculated the coefficient of these linear term in the coordinates of the centre of
gravity of the wormhole. These coordinates are expected to be the most suitable ones if we are interested
in the collective motion of the wormhole as is the coordinates of the centre of gravity in non-relativistic
mechanics. As discussed in [33], these linear gravitational potentials can be used to explain the
behaviour of galactic rotation curves. The idea that the massive object at the centre of our galaxy is
a wormhole rather than a black hole has been discussed together with some possible observational
consequences related to the effect of this on the geodesics produced by this object, if it is indeed a
wormhole [8]. These effects are indeed even more accurate in the case of the solutions discussed in
this paper due to the generation of the linear potentials, which as have argued, could represent effects
of dark matter. Let us stress here that even though we focused our study in wormhole geometries,
the coefficients of the space-time (28) and (29) can also describe black hole solutions with a linear
potential. This can be directly seen from Figure 1 since if Equation (34) is not valid, the geometry will be
a black hole. This happens since A(r) crosses zero showing the horizon at this point. Hence, effectively,
the geometry can describe either a wormhole or a black hole in the centre of a galaxy.
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