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Abstract: On extending the Standard Model (SM) Lagrangian, through a non-linear Born–Infeld (BI)
hypercharge term with a parameter β (of dimensions of [mass]2), a finite energy monopole solution
was claimed by Arunasalam and Kobakhidze. We report on a new class of solutions within this
framework that was missed in the earlier analysis. This new class was discovered on performing
consistent analytic asymptotic analyses of the nonlinear differential equations describing the model;
the shooting method used in numerical solutions to boundary value problems for ordinary differential
equations is replaced in our approach by a method that uses diagonal Padé approximants. Our work
uses the ansatz proposed by Cho and Maison to generate a static and spherically-symmetric monopole
with finite energy and differs from that used in the solution of Arunasalam and Kobakhidze. Estimates
of the total energy of the monopole are given, and detection prospects at colliders are briefly discussed.
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1. Introduction

It is a curious fact that Maxwell initially wrote as one of his eponymous equations:

curl ~A = µ~H. (1)

The magnetic field is denoted by ~H; ~A is the electromagnetic vector potential; and µ is the
magnetic permeability. If ~A is a non-singular vector, then:

~∇ · ~H = 0. (2)

In 1931, Dirac [1] considered a singular ~A field. If ~n is a constant unit vector in the z-direction,
then the vector potential has the form:

~A (~r) = gm ~r×~n
r (r−~r ·~n) , (3)

with gm the magnetic charge [1], which has a singularity along the positive z-axis known as a Dirac
string.1 On calculating curl ~A, we find a magnetic field of a monopole:

1 It is also useful to consider the expression for ~A in spherical polars (with the co-ordinates r, θ, φ):

~A (~r) = (1 + cos θ)
i
e

U−1~∇U
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~B (~r) = gm ~r
r3 (4)

except along the string. In classical physics, the string should play no role in the dynamics of particles
because of its infinitesimal nature. In quantum theory, the situation is different since the wave function
Ψ of a non-relativistic particle with charge e and mass m in a monopole background satisfies:

i
∂

∂t
Ψ = −

(
~∇− ie~A

)2

2m
Ψ (5)

which has the stationary solution:

Ψ (~r) = Ψ0 (~r) exp

ie
~r∫

0

d~x.~A (~x)

 . (6)

The wave function Ψ (~r) is single valued, and so, there should be no change in Ψ (~r) for a small
circuit C around the string. The change in the argument of the exponential in Equation (6) along C
should be of the form 2nπi, where n is an integer. This leads to the condition:

e
∮

C
d~x · ~A (~x) = 2πn. (7)

Since the magnetic flux through the circuit C is 4πgm, from Equation (7), we deduce the celebrated
Dirac charge quantisation condition [1]:

egm =
n
2

, n ∈ Z , (8)

or, equivalently:

gm =
1

2 α
n e = gDn, gD ≡

1
2 α

, n ∈ Z , (9)

where α is the fine structure constant, which at low (strictly speaking, zero) energy has the value
α ' 1/137, and gD = 68.5 is the fundamental Dirac charge.

The standard model of particle physics has been developed subsequent to the original work of
Dirac. It describes the weak, electromagnetic, and strong interactions of leptons and hadrons. It is
important to ascertain how monopoles may fit into the electro-weak sector of the SM, in part because
of the possible detectability of electro-weak monopoles (of a mass of a few TeV) at colliders in the
near future. The work of ‘t Hooft and Polyakov [2,3] provides a detailed paradigm on magnetic
monopole soliton solutions, which arise in quantum field theories with simple gauge groups (such as
SU(3) and grand unified groups SU(5)), under spontaneous symmetry breaking. In such solutions,
Dirac’s quantisation arises as a topological property of mappings associated with the solution and not
because of a Dirac string.

The SM does not have a simple group, as the gauge group of the electroweak sector is
SU(2)×UY(1), with UY(1) the weak hypercharge gauge group. This was one of the arguments against
any attempts to find a topological monopole solution within the SM. Nevertheless, Cho and Maison
(CM) [4] presented a monopole solution within the SU(2)×UY(1) electroweak theory, by arguing that
a non-trivial topology of the solutions was still possible due to an underlying CP1 structure. Specifically,
Cho and Maison view the normalised Higgs doublet field of the SM in the symmetry broken phase as
a CP1 field, which is known to have a non-trivial second homotopy Π2(CP1) = Z; it was argued [4]
that this homotopy would lead to a charge quantisation of the monopole as in the ‘t Hooft–Polyakov
case. In Ref. [4], the monopole and dyon solutions (characterised by both electric and magnetic charges)

where U = exp (−iegm φ). U is a singular gauge transformation.
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suffer, however, from ultraviolet infinities in their total energy. This casts serious doubts on the existence
of consistent soliton solutions (which by definition have finite energy).

The considerations above suggest that the model needs a modification before any physical
conclusions can be drawn. Examples of a modification of the theory beyond the SM are the inclusion
of non-minimal couplings of the Higgs field with the hypercharge kinetic terms in the effective
Lagrangian [5,6], or through higher derivative extensions, such as a non-linear Born–Infeld gauge
field theory, which notably arises as a low energy field theory limit of strings [7,8]. Although in
string theory, the full standard model gauge group admits such non-linear extensions, nonetheless,
it suffices for our phenomenological purposes to restrict our attention only to the Born–Infeld extension
of the hypercharge sector and seek monopole solutions of the CM type, following Arunasalam and
Kobakhidze in Ref. [9] 2.

The finiteness of the monopole solution in Born–Infeld-type theories is an immediate consequence of
the finiteness of the electromagnetic field energy density in Born–Infeld non-linear electrodynamics [11].
The identification of finite energy consistent monopole solutions in (extensions of) the SM represents not
only an important theoretical advance, but also an important step towards a consistent phenomenology
since one can provide estimates of the total energy/mass of monopoles and thus check the feasibility
of their production at colliders [12]. Recently, experimental efforts to discover monopoles have
redoubled [13–15]. In particular, searches for magnetic monopoles of lowest magnetic charge are ongoing
in the ATLAS-LHC experiment [13]. In addition, the MoEDAL (“Monopole and Exotics Detector At
the LHC”) experiment at the LHC [14,15] is geared toward the detection of highly-ionising particles,
among which are magnetic monopoles, using a variety of experimental techniques, which allow for
monopoles of high magnetic charge to be searched for the first time in an experiment. From the
arguments of Dirac, the monopole magnetic charge would be an integer multiple of gD (= 68.5) (9).
Consequently, magnetic monopoles interact strongly with photons and are highly ionising, making TeV
mass monopoles candidates suitable for detection at MoEDAL [14,15]. However, as argued in Ref. [16],
structured monopoles, such as the ones mentioned above (which arise as consistent solutions of specific
quantum gauge field theories with spontaneous symmetry breaking), might exhibit extremely suppressed
production cross-sections. This suppression would eliminate any prospect for the detection of structured
monopoles. Dirac (structureless) monopoles do not suffer from suppressed production cross-sections.
Nonetheless, finite-energy structured monopoles might be produced abundantly from the vacuum via a
thermal version of the Schwinger pair production, as advocated in Ref. [17], and, hence, can still be of
great relevance to heavy ion collisions at LHC. If they have sufficiently low mass, the monopoles can
be potentially detected by the deployment of magnetic monopole trapping and nuclear track (NTD)
detectors (of the type used in MoEDAL [14,15]) in such environments [18].

We now remark that the monopole solutions discussed in Ref. [9] and also in the previous
literature of the electroweak monopole [4,5] (and its finite energy extensions [6]) are based on matching
numerical solutions using shooting methods. Such solutions, however, appear not to be in agreement
with next to leading order analytical solutions near the monopole centre. It is the purpose of this
work to discuss a new class of solutions, which match an analytic asymptotic behaviour at both
small and large distances from the monopole centre. The solutions are slightly different near the
monopole centre from the standard electroweak monopole solutions appearing in the literature [4–6,9].
Nevertheless, as we demonstrate in the present article, the order of magnitude of the associated
total energy (of crucial importance for their phenomenology) remains the same as in the standard
CM-like case [9]. Current experimental lower bounds of the Born–Infeld mass parameter then imply
monopole masses of at least 11 TeV, which makes such solutions relevant for potential detection only
at future colliders [19], or at high-altitude monopole-searching experiments like SLIM (“Search for
LIght magnetic Monopoles”) [20], or, say, cosmic upgrades of the MoEDAL experiment [21].

2 Prior to the work of Ref. [9], monopole solutions within the framework of Born–Infeld electrodynamics, but different from
the CM case, had been discussed in Ref. [10].
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The structure of the article is as follows: in the next Section 2, we introduce the model and give the
dynamical equations that will be associated with monopole solutions (but not dyon solutions). In the
following section, Section 3, we discuss our new solutions, which have not appeared before in the
literature. We discuss analytic forms of the solutions for short and large distances from the monopole
centre and the associated interpolating functions, found by using Padé approximant methods [22,23].
Energy estimates and thus detection prospects are discussed in Section 4. Finally, our conclusions and
outlook are presented in Section 5.

2. Born–Infeld Electroweak Monopole: The Setup

A string-inspired extension (ESM) of the SM, considered in Ref. [9] and used in the current work,
arises when the standard kinetic energy of the hypercharge gauge field is replaced by a non-linear
Born–Infeld term [11]. The resultant Lagrangian is:

LEW = −(DµH)†(DµH)− λ
2

(
H† H − µ2

λ

)2
− 1

4 Fa
µνFµν,a + β2

(
1−

√
1 + 1

2β2 BµνBµν − 1
16β4 (Bµν B̃µν)2

)
(10)

where: Aa
µ and Bµ are the SU(2) and UY(1) gauge fields, respectively; Bµν is the UY(1) field strength

tensor; B̃µν = 1
2 εµνρσ Bρσ (with εµνρσ being the covariant Levi–Civita fully-antisymmetric tensor);

Fµν,a (a = 1, 2, 3) is the SU(2) field strength tensor; Dµ = ∂µ − i g
2 τa Aa

µ − i g′
2 Bµ is the covariant

derivative with τa, a = 1, 2, 3, the Pauli 2× 2 matrices; τa
2 , a = 1, 2, 3 are the SU(2) generators; H is the

electroweak Higgs doublet. The SU(2) and UY(1) couplings are given by g and g′, respectively, with:

g′ = g tanθW , (11)

where θW is the SM weak mixing angle. The Born–Infeld parameter β has dimensions of [mass]2.
The ESM Lagrangian reduces formally to the SM Lagrangian for β→ ∞. In the context of microscopic
string theory models, the parameter

√
β ∝ Ms is the string mass scale. In our phenomenological

approach here, we deviate from this restriction and treat β as a free parameter to be constrained by
experiment, as we shall discuss in Section 4.

We shall be interested in finite energy classical monopole solutions of the Cho–Maison (CM)
type [4], for the Euler–Lagrange equations of ESM for finite β. In the limit β→ ∞, one would recover
the formal CM monopole solution with divergent energy. The equations of motion, stemming from
Equation (10), read:

Dµ(DµH) = λ
(

H† H − µ2

λ

)
H, (12)

∂µFµν,a + g f abc Ab
µFµν,c =

ig
2

[
H†τa(DνH)− (Dν H)†τa H

]
, (13)

∂µ

[ Bµν − 1
4β2 (Bαβ B̃αβ)B̃µν√

1 + 1
2β2 BαβBαβ − 1

16β4 (Bαβ B̃αβ)2

]
= i

g′

2
[
H†(Dν H)− (DνH)† H

]
. (14)

The following ansatz is used to determine the energy of the charged solutions to this
Lagrangian [4]:

H =
1√
2

ρ(r)ξ

Aa
µ =

1
g
A(r)∂µt φ̂a +

1
g
( f (r)− 1) εabc φ̂b(∂µ φ̂c) (15)

Bµ = − 1
g′
B(r)∂µt− 1

g′
(1− cos(θ))∂µψ
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where:

ξ = i

[
sin(θ/2)e−iψ

−cos(θ/2)

]
.

Here, ra = (t, r, θ, ψ) are spherical polar coordinates (with 0 ≤ θ ≤ π, 0 ≤ φ < 2π) and:

φ̂a = ξ†τaξ = −r̂a,

where the circumflex denotes unit vector.
The ansatz (15) is best physically understood if one performs a gauge rotation to the unitary

gauge [4,5]:

ξ → U ξ =

(
1
0

)
, with U =

(
cos(θ/2) sin(θ/2) e−iψ

− sin(θ/2) eiψ cos(θ/2)

)
, (16)

under which the non-Abelian field transforms to 3:

~Aµ =
1
g

− f (r) sin(ψ) ∂µθ + sin(θ) cos(ψ) ∂µψ

f (r) cos(ψ) ∂µθ − sin(θ) sin(ψ) ∂µψ

A(r) ∂µt−
(
1− cos(θ)

)
∂µψ

 . (17)

The physical fields, the electromagnetic potential Aem
µ , and the neutral Z0

µ gauge boson field
involve the weak mixing angle θW , and are given by Ref. [4]:(

Aem
µ

Z0
µ

)
=

(
cos(θW) sin(θW)

− sin(θW) cos(θW)

) (
Bµ

A3
µ

)
=

1√
g2 + (g′)2

(
g g′

−g′ g

) (
Bµ

A3
µ

)
, (18)

upon taking into account (11). In summary, the ansatz (15) yields the physical fields of the SM [4]:

W±¯ ≡ 1√
2

(
A1

µ ∓ iA2
µ

)
=

1
g
√

2

(
∓ i f (r) ∂µθ exp (∓iψ) + sin(θ) ∂ψ exp (±iψ)

)
Aem

µ = e
( 1

g2 A(r) +
1

(g′)2 B(r)
)

∂µt− 1
e

(
1− cos(θ)

)
∂µψ, (19)

Z0
µ =

e
g′ g

(
A(r)−B(r)

)
∂µt,

with:

e = g sin(θW) =
g g′√

g2 + (g′)2
, (20)

the electron charge. As can be seen from Equation (19), the spherically-symmetric (static) monopole
solution of Ref. [4] is characterised by:

A(r) = B(r) = 0. (21)

In this case, the electromagnetic potential resembles a Dirac point-like monopole,

Aem
µ = −1

e

(
1− cos(θ)

)
∂µψ, (22)

3 We use the vector notation to denote the SU(2) gauge field.
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but the magnetic charge gm is twice the fundamental Dirac charge; so:

gm =
4π

e
=

4π
√

g2 + (g′)2

g g′
, (23)

where in the last equality, we used Equation (20).
If Equation (21) is valid, from Equation (19), the Z0

µ configuration vanishes,

Z0
µ = 0. (24)

and moreover, the expressions (15) reduce to:

H =
1√
2

ρ(r)ξ

Aa
µ =

1
g
( f (r)− 1)εabc φ̂b(∂µφ̂c) (25)

Bµ = − 1
g′
(1− cos(θ))∂µψ.

and the equation for the hypercharge gauge boson (14) is trivially satisfied. 4 From Equation (25),
we also note that the hypercharge-sector “magnetic field” BY

i = εijk ∂jBk corresponding to Bµ assumes
the following for the monopole solution:

~BY =
(4π

g′
)2 ~r

r3 . (31)

This has the same singular form (as r→ 0) as the monopole magnetic field (27), but with the magnetic
charge being replaced by the ‘hypermagnetic charge gm

Y ≡
4π
g′ . We shall make use of Equation (31) when

we evaluate the total energy of the Born–Infeld–Cho–Maison-like solution in Section 4.
From now on, we will concentrate on the equations of motion for the Higgs field and SU(2) gauge

field, Equations (12) and (13), respectively; these equations coincide with those in the ordinary CM
case [4]. Upon using Equation (25), these become:

4 The right-hand side (RHS) of (14), upon using (25), is the same as for the CM case [4,5] and vanishes on account of (21):

RHS of (14) = − (g′)2

4
ρ(r)2

(
A(r)−B(r)

)
(21)→ 0 . (26)

The monopole solution is characterised by a zero electric field and a spherically-symmetric static, radial magnetic field,

Br(r) ∝
gm

r2 , Bθ = Bψ = 0 , (27)

with gm the magnetic charge (23). Moreover, given (24), one obtains from (18) for the monopole solution:

A(r)em mono
µ =

√
g2 + (g′)2

g
B(r)mono

µ . (28)

Equation (28), implies that only the spatial components of Bµν are non-zero and proportional to the magnetic field Bk:
Bij ∝ εijk Bk , with εijk the totally-antisymmetric Levi–Civita tensor. Moreover, since the electric field is zero in the monopole
case, one has:

BαβBαβ ∝ +~B(r)2, Bαβ B̃αβ = 0. (29)

Hence, the left-hand side (LHS) of (14) involves the derivative of a static function that depends solely on the radial-coordinate
r; the only potentially non-zero contribution should come when µ = r. From this, we obtain for the LHS of (14) (retaining
only the potentially non-zero terms in the argument of the derivative):(

LHS of (14)
)j

∝ ∂i

[ εijk Bk(r)√
1 + 1

2β2 BαβBαβ

]
(27)→ 0, (30)

since, as already mentioned, the only potentially non-trivial component of the derivative is i = r. Thus, Equation (14) is
trivially satisfied for the monopole solution with (21) in the Born–Infeld case (and the reader should recall that this is also
what happens in the CM case [4,5]).
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ρ′′ +
2
r

ρ′ − f 2

2r2 ρ = λ
(ρ2

2
− µ2

λ

)
ρ (32a)

f ′′ − f 2 − 1
r2 f =

g2

4
ρ2 f , (32b)

A′′ + 2
r
A′ − 2

f 2

r2 A =
g2

4
ρ2
(
A−B

)
(32c)

where the prime denotes differentiation with respect to r. For the monopole solution, for which (21)
is valid, the third of the above equations is trivially satisfied, yielding zero on both sides. The trivial
solution of the equations of motion (32), which yields the Dirac monopole, has no
W±µ -bosons, that is:

f (r) = 0 , and ρ = ρ0 =

√
2µ2

λ
6= 0, (33)

with ρ0 the Higgs field vacuum expectation value (vev) in the broken symmetry phase.

3. New Solutions for Born–Infeld-Inspired Electroweak Dressed Magnetic Monopoles

We shall consider new solutions of Equation (32) where we still have Equation (21), but f (r) and
ρ(r) are allowed to be non-trivial. Such solutions can be interpreted as Dirac monopoles dressed by
W±µ -bosons and have not been discussed so far in the literature.5 We seek solutions of Equation (32)
for ρ(r) and f (r) that satisfy the following boundary conditions:

f (r = 0) = 1, ρ(r = 0) = 0,

f (r = ∞) = 0, ρ(r = ∞) = ρ0 =

√
2µ2

λ
6= 0. (34)

Before further analysis, we will rewrite Equation (32) in terms of dimensionless quantities:

ρ̃ =
ρ

ρ0
,

ε =
g2

2λ
,

and:
x = µr.

Hence, the dimensionless forms of the first two equations of (32) are6:

ρ̃′′ (x) +
2
x

ρ̃′ (x)− f 2 (x)
2x2 ρ̃ (x) = ρ̃ (x)

(
ρ̃2 (x)− 1

)
(35)

and:

f ′′ (x)− f 2 (x)− 1
x2 f (x) = ερ̃2 (x) f (x) (36)

where ′ denotes d
dx . The boundary conditions for ρ̃ (x) are ρ̃(x = 0) = 0 and ρ̃(x = ∞) = 1. It is

important to note that, from (35), f 2 (x) is determined in terms of ρ̃ and its derivatives.
The system of Equations (35) and (36) is usually solved numerically [4,9]; however, there is a

delicate interplay in the small x behaviour of f (x) and ρ̃ (x), which purely numerical solutions can
miss. Equations (34)–(36) represent a boundary value. Unlike initial value problems, boundary value
problems are not guaranteed to have a unique solution; in some instances, there may be no solution at
all. Coupled boundary value problems pose an additional challenge since approximations for ρ̃ and f

5 The case A(r) 6= 0, and B(r) 6= 0 leads to the CM dyon solution [4].
6 There is a slight abuse of notation since we still use the notation f and ρ̃ for functions of x.
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cannot be made independently. We will first obtain asymptotic expansions as x → 0 and as x → ∞.
From these asymptotic expansions and a smooth interpolating function, we can evaluate the energy of
the monopole within ESM.

The matching of the asymptotic expansions for large and small x would result in an interpolating
solution; this matching is, however, not straightforward. Consequently, we will take a different
approach to determining a suitable interpolating function based on a Padé approximant for a
small x asymptotic series. We take ε ∼ 0.81, which is obtained from values of the parameters
phenomenologically relevant for SM, namely g ' 0.65 and λ ' 0.26.

3.1. Large x Asymptotics

Respecting the boundary conditions (34), we write ρ̃ (x) = 1 + δ̃ (x) with
∣∣δ̃ (x)

∣∣� 1. To leading
order, then Equation (36) becomes:

f ′′ (x) +
f (x)
x2 = ε f (x) . (37)

Similarly, Equation (35) becomes:

δ̃′′ (x) +
2
x

δ̃′ (x)− 2δ̃ (x) =
f 2 (x)
2x2 . (38)

3.1.1. Behaviour of f (x)

The leading behaviour of Equation (37) is governed by:

f ′′ (x) = ε f (x) (39)

and the solution compatible with the boundary conditions is f (x) = f1 exp
(
−
√

εx
)

. In order to
include the subleading behaviour, we write f (x) = f1 exp

(
−
√

εx
)
+ ∆ (x) where:

∆′′ (x)− ε∆ (x) = − f1

x2 exp
(
−
√

εx
)

. (40)

A particular solution ∆p (x) of this inhomogeneous second order differential equation (using the
method of the variation of parameters) is:

∆p (x) =
exp

(
−
√

εx
)

2
√

ε

x∫
dt

f1

t2 −
exp

(√
εx
)

2
√

ε

x∫
dt

f1

t2 exp
(
−2
√

εt
)

(41)

and the resultant f (x) = f∞(x) is:

f∞ (x) ∼ exp
(
−
√

εx
) [

d1 −
f1

2
√

εx

(
1− 1

2
√

εx
+ O

(
1
x2

))]
. (42)

3.1.2. Behaviour of δ̃ (x)

We shall now consider the inhomogeneous Equation (38). In terms of:

F (x) ≡ f 2
∞ (x)
2x2

a particular solution δ̃p (x) of Equation (38) is given by:

δ̃p (x) = 1
2
√

2

(
− exp

(
−
√

2x
) x∫

t exp
(√

2t
)

F (t) dt + exp
(√

2x
) x∫

t exp
(
−
√

2t
)

F (t) dt
)

. (43)
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The asymptotic expansion of ρ̃(x) is then given by 1+ δ̃p (x) + d2
exp(−

√
2x)

x where we have added
a solution of the homogeneous equation and:

δ̃p (x) = − d1

2
√

2x

 f1

2
√

ε
exp

(
−2
√

εx
)
+

√
2 f1

(√
2ε− 1

)
+
√

εd1

2
√

2ε
(√

2ε− 1
) exp

(
−2
(√

2−
√

ε
)

x
) . (44)

The dominant exponential in Equation (44) as x → ∞ is exp
(
−2
(√

2−
√

ε
)

x
)

.

3.2. Small x Asymptotics

We write f (x) = 1 + ∆0 (x) with ∆0 (x)→ 0 as x → 0, and the leading behaviour in this limit is
determined by:

∆0
′′ (x)− 2

x2 ∆0 (x) = ε ρ̃2 (x) . (45)

For our solution, it is important to note that ρ̃2 (x) is not assumed to be small in comparison with
∆0 (x). The remaining equation to be considered is:

ρ̃′′ (x) +
2
x

ρ̃′ (x) +
(

1− 1
2x2

)
ρ̃ (x) = 0 (46)

which has a solution ρ̃ (x) ∝ jδ (x)
(
≡
√

π
2x Jδ+ 1

2
(x)
)

where δ =
√

3−1
2 . From the power series for

Bessel functions, we have:

jδ (x) =
√

π

2
xδ

∞

∑
m=0

(−1)m

m!
(x/2)2m

Γ (δ + m + 3/2)
.

To low order in x:

ρ̃ (x) ' c1xδ

(
1− x2

2 (2δ + 3)

)
. (47)

From Equations (45) and (47), we deduce that:

∆0
′′ (x)− 2

x2 ∆0 (x) = ε c2
1x2δ

(
1− x2

2 (2δ + 3)

)2

. (48)

The relevant particular solution ∆0p (x) of Equation (48) is 7:

∆0p (x) =
ε c2

1
3

x2+2δ

[
3

2δ (3 + 2δ)
− 3x2

2

(
15 + 31δ + 20δ2 + 4δ3

)−1
+ O

(
x4
)]

. (49)

3.3. Summary of Leading Asymptotic Solutions

We shall for convenience gather together the results of our asymptotic analysis.
For small x:

ρ̃ (x) ∼ c1xδ

(
1− x2

2 (2δ + 3)

)
,

f (x) ∼ 1 +
ε c2

1
2

x2+2δ

(
1

δ (3 + 2δ)
− x2

15 + 31δ + 20δ2 + 4δ3 + O
(

x4
))

. (50)

7 Since ignoring the right-hand side of Equation (48) is not consistent, we need to just consider the particular solution.
See the Appendix A.
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It is interesting to note that our asymptotic analysis has revealed a “bump” in f (x) for small x.
For large x:

f (x) ∼ exp
(
−
√

εx
) (

d1 −
f1

2
√

εx

(
1− 1

2
√

εx
+

1
2εx2

))
, (51)

ρ (x) ∼ 1 + d2

exp
(
−
√

2x
)

x
− 1

2
√

2

 d1 f1
2
√

εx exp
(
−2
√

εx
)

+
exp(−2(

√
2−
√

ε)x)
x

d1(
√

2 f1(
√

2ε−1)+
√

εd1)
2
√

2ε(
√

2ε−1)

 . (52)

3.4. Higher Order Small x Asymptotic Analysis

The structure of the small x-behaviour for f and ρ found from the linearised asymptotic analysis
for small x in Equation (50) suggests the following ansatz for the nonlinear analysis:

f (x) = 1 +
∞

∑
m=1

∞

∑
n=2

amnx2m+nδ (53)

and:

ρ̃ (x) =
∞

∑
m=0

∞

∑
n=1

bmnx2m+nδ. (54)

We plug in the expressions (53) and (54) into the coupled differential Equations (35) and (36) and
equate the coefficients for powers of x. We shall give algebraic expressions (in terms of δ) for some of
the coefficients occurring in Equations (53) and (54). However, many coefficients become unwieldy
and simplify upon putting δ = 0.36602540378(≈ 0.4). The series in Equations (53) and (54) will be
truncated at m = mu = 6 and n = nu = 6 and so will give a refined small x asymptotic analysis,
which will form the basis for a Padé-style analysis8 The coefficients will be given in the Appendix A.

Because of the powers in y (y ≡ xδ) in Equations (53) and (54), a conventional Padé approximation
(PA) is not possible. However, since δ ' 2

5 , it is possible to approximate y by ỹ ≡ x
2
5 . For convenience,

let us introduce z ≡ x2(= ỹ5). From Equation (54), we can write down the following small
x-approximation for:

ρ̃ (x) ' b01y + z
(

b11y + b13y3
)
+ z2

(
b21y + b23y3 + b25y5

)
+z3

(
b31y + b33y3 + b35y5

)
+ z4

(
b41y + b43y3 + b45y5

)
.

(56)

Before we find a PA, we will substitute y with ỹ (and replace z by ỹ5). The PA will be in the variable
ỹ. We shall construct a diagonal PA in order to be able to satisfy ρ̃(ỹ = ∞) = 1. It is straightforward to
show that the (5, 5) PA, ρP(ỹ), has the form:

ρP(ỹ) =

b01b13
2 ỹ5

b11
2 − b01b13 ỹ3

b11
+ b01ỹ

− b11 ỹ5

b01
+ b13

2 ỹ4

b11
2 −

b13 ỹ2

b11
+ 1

. (57)

Clearly, ρP(∞) = − b01
2b13

2

b11
3 , and by requiring this to be one, we obtain b01 ≈ 0.725704. With this

value of b01, ρP(y) will have the correct small x behaviour and the correct constant asymptotic value.
However, a PA (generically) cannot accurately reproduce the exponential fall off in Equation (52).

8 The Padé approximation [23] consists of converting the formal power series ∑n cnxn to a sequence of rational functions:

PN
M (x) = ∑N

n=0 Anxn

∑M
m=0 Bmxm

. (55)

The advantage of constructing PN
M (x) is that in many instances, PN

M (x) is a convergent sequence as N, M→ ∞ even when
∑n cnxn is a divergent series.
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Since our aim is to find an interpolating solution, which correctly reproduces both the leading
asymptotic behaviour for small and for large x, we will construct the interpolating function ρ̃I to be:

ρI (x) = ρP (y) exp
(
−2
[√

2−
√

ε
]

y
1
δ tanh

(
y

1
δ

))
. (58)

Clearly, this modifying factor has the correct large y exponential decay and also for small y
does not affect the leading small y behaviour. The Padé approximant should determine the correct
behaviour of ρ at intermediate values of y.

The corresponding interpolating function f I(x) for f (x) is determined by Equation (35):

f 2
I (x) = 2x2 ρ′ ′I (x)

ρI (x)
+ 4x

ρ′I (x)
ρI (x)

− 2x2
(

ρ2
I (x)− 1

)
. (59)

3.5. Interpolating Functions

Equations (58) and (59) are the primary interpolating functions. They are in the form of explicit
analytic expressions. However, for numerical estimation of the energy of the monopole, they are
not efficient in terms of computer time. From the plots for the interpolating functions, it is clear that
the range [0.1, 12] for x is sufficient for the asymptotic values to have been essentially reached. It is
numerically more efficient to consider a discrete set of points (x, ρ̃(x)) and (x, f (x)) at a spacing of 0.1
in x for the range [0.1, 12]. We can fit these discrete points with a polynomial and produce interpolating
functions that are more efficient for the evaluation of the energy of the monopole.

We will now give the plots for the primary interpolating functions for f (x) and ρ̃ (x) in Figures 1–3.

f(x)		

x	
0	

0	

Figure 1. Interpolating function for f (x).
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1.000001	

1.000000	

f(x)		
	

x	
0	

Figure 2. Interpolating function for f (x) with x small.

ρ(x)	~	

x	

0	

Figure 3. Interpolating function for ρ̃(x).

4. Estimates of the (Finite) Monopole Energy

In this section, we estimate the energy of the monopole solution, as this is of importance for
phenomenological searches. Form the theory (10), one may evaluate the stress tensor and from this
the total energy of the monopole solution. The latter consists of two parts: the first E1 pertains to the
kinetic energy of the electromagnetic field (associated with the hypercharge sector) in the non-linear
Born–Infeld theory and the second E2 to the non-Abelian SU(2) gauge and Higgs sectors of the theory.
In terms of our parametrisation (25), (32), and (33), one has [9]:
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Emono
total = E1 + E2,

E1 = 4π β2
∫ ∞

0
dr

[√
r4 +

1
(g′ β)2 − r2

]

E2 = 4π
∫ ∞

0
dr
(

1
g2

( f 2 − 1)2

2r2 +
1
2

(
r

dρ

dr

)2
+

1
g2

(d f
dr

)2
+

λr2

8

(
ρ2 − ρ2

0

)2
+

1
4

f 2ρ2
)

, (60)

where we took into account that in the Born–Infeld hypercharge sector of the monopole
solution, only the hypermagnetic field ~B is non-zero (31), implying a Born–Infeld energy

E1 =
∫

4πr2dr(β2
√

1 + (BY)2

β2 − β2). The result of the integration in E1 can be done analytically by

changing integration variable r = w√
g′ β

[10,11], and using elliptic integrals:

E1 = 4π
( β

g′ 3
)1/2 ∫ ∞

0
dw
[√

w4 + 1− w2
]
= 4π

( β

g′ 3
)1/2 (Γ(1/4))2

6
√

π
' 15.53

( β

g′ 3
)1/2

. (61)

From (61), we thus observe that E1 is finite for any β < ∞, as a consequence of the non-linearities
of the Born–Infeld sector [11]. It was this part that produced the infinities in the energy on the
Cho–Maison monopole/dyon solutions [4]. Using the SM value g′ = 0.357, we then obtain:

E1 ' 72.81
√

β. (62)

The quantity E2 in Equation (60) is also finite and has been finite also in the CM case [4]. Using our
parametrisation, this quantity can be written as:

E2 = 4πµ
∫ ∞

0
dx

[(
f 2 − 1

)2

2g2x2 +
x2

λ
ρ̃′ 2 +

f ′ 2

g2 +
1

2λ
x2
(

ρ̃2 − 1
)2

+
1

2λ
f 2 ρ̃2

]
, (63)

where the ′ denotes d
dx . By inserting our interpolating solutions into (63) and using the values of the

parameters of the standard model, g′/g = tanθW (11), g′ = 0.357, sin2θW = 0.2312, ρ0 ' 246.39 GeV,
µ = 88.39 GeV, and λ ' .26, we obtain:

E2 = 7617 GeV, (64)

which is nearly double (but still of the same order of magnitude as) the value in the CM case [4,5,9].
The increase in the value of E2 is a consequence of the difference of our solution as compared to that of
CM, as seen fro Figures 1 and 3.

From Equations (62) and (64), then, we obtain for the total energy (60) of the monopole:

Emono
total = (72.81

√
β

(GeV)2 + 7617) GeV (65)

In Ref. [19], it was argued that the relatively recent measurements of light-by-light scattering by
the ATLAS Collaboration [24,25], exploiting Pb-Pb collisions at LHC, impose a lower bound on the
Born–Infeld parameter of the model (10): √

β ≥ 90 GeV. (66)

From Equations (65) and (66), then, we obtain the following lower bound for the
Born–Infeld–Cho–Maison-like monopole mass (= total energy at rest):

Mmono ≥ 14.17 TeV. (67)
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Since monopoles are produced in pairs with antimonopoles in colliders, on account of (magnetic)
charge conservation, our monopole lies out of the detection range of the LHC, but is of potential
relevance to future colliders or high-altitude monopole-searching experiments, like SLIM [20],
cosmic upgrades of the MoEDAL experiment, and other future cosmic searches [21,26].

At this stage, we stress that β is a phenomenological parameter, to be constrained by experiment.
However, in the context of microscopic string theory models, though, where the Born–Infeld
Lagrangian (10) is expected to arise naturally in the low-energy limit, the parameter β ∼ M2

s , where
Ms is the string mass scale. The latter has been constrained by current collider experiments to
be at least of O(10) TeV, thus making the term E1 (62) dominant over E2 in such a case, leading
to a significant increase of the monopole mass Emono

total ≥ 728 TeV. Such monopoles could be of
cosmological relevance and be potentially detectable in cosmic monopole searches [26] (for instance,
in future cosmic versions of the MoEDAL experiment [21]). If the monopole masses are in the
range 9.3 · 103 TeV ≤ Mmono ≤ 2.3 · 104 TeV (with the upper bound associated with constraints
on the monopole abundance imposed by Big Bang nucleosynthesis (BBN)), then according to the
analysis in [9], such cosmic monopoles may have interesting consequences for the early universe,
including dynamical generation of matter-antimatter asymmetry.

5. Conclusions and Outlook

In this article, we have discussed some novel semi-analytic (static) monopole solutions in the
framework of the phenomenological Lagrangian (10), which constitutes an extension of the SM by
a non-linear Born–Infeld Lagrangian for the hypercharge sector only. The solutions we found are
consistent with asymptotic analysis for the functions f (x) and ρ̃(x) characterising the solution (25),
but in contrast to the standard Cho–Maison-like [4] solutions in the literature [9], they do exhibit
some non-monotonic behaviour for x values near x = 0. This deviation from the standard numerical
solutions though is relatively mild and does not affect the order of magnitude estimates for the
total monopole energy and the associated phenomenology [19]. Nonetheless, from a mathematical
point of view, our solution is a novel finite-energy monopole solution. Our solutions are analytic,
but approximate, as they interpolate between known behaviour for small and large x regions
(via appropriate Padé approximants). Establishing the existence of finite energy monopole solutions
is important from the experimental point of view, since such solutions can be of relevance for future
colliders (but not the current ones, due to the range of the induced monopole mass, which lies outside
the capabilities of the LHC).

Our analysis in this work should be extended to include dyon solutions, carrying both magnetic
and electric charge, following the formalism developed in Refs. [4,9]. Since the functions A(r) and
B(r), characterising the solution (19), are non-zero, the analysis is much more involved than in the
monopole case. We leave the study of the dyon case for future work.

Before closing, we would like to make an important remark, concerning the finite energy (60).
In the context of the model (10), the Born–Infeld nature of the hypercharge sector decouples from the
SU(2) and Higgs sectors, in the sense that the monopole solution is formally the same as that in the SM
case of Cho and Maison [4]. It is only the non-linear nature of the Born–Infeld energy E1 that is finite and
proportional to the parameter

√
β, which becomes infinite only in the SM limit β→ ∞. Finite monopole

(solitonic) solutions therefore exist for any value of β in this case. However, if one considers effective
low-energy field theory models derived from phenomenologically-realistic microscopic string theories,
then the Born–Infeld non-linear nature is expected to encompass the entire non-Abelian gauge group
SU(2) × UY(1) and not only the hypercharge UY(1). In such cases, the gauge and Higgs sectors
mix non-trivially with the hypercharge, and the resulting monopole/dyon solutions are much more
complicated than then solutions considered here and in Ref. [9]. Moreover, as discussed in Ref. [27],
in the context of SU(2) Born–Infeld gauge theories, the solitonic monopole/dyon (numerical) solutions
exist only for values of the Born–Infeld parameter above a critical value, β ≥ βc, estimated numerically
in Ref. [27], i.e., the energy diverges for β < βc. Although the analysis in Ref. [27] has been done for
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simple non-Abelian gauge groups SU(2), one expects the above feature to persist in the case where the
Born–Infeld sector is extended to include the full standard model non-Abelian group SU(2)×UY(1).
At present, such a (non-trivial) extension of the analysis of [27] is pending. In this respect, however,
we should also mention for completeness the model considered in Ref. [28], according to which two
independent Born–Infeld sectors, one for the SU(2) and one for the hypercharge UY(1), have been
considered, with different parameters βi, i = 1, 2. In the analysis of Ref. [28], sufficiently large values
of the parameter β2 for the non-Abelian Born–Infeld sector have been implicitly assumed, and in this
sense, the existence of a critical value of βc

2 cannot be seen. Moreover, this is an effective field theory
that is however different from the one in a string theory framework, where the two sectors cannot
be separated, and they are both characterised by a common β. We hope to be able to study in detail
monopole/dyon solutions in such realistic string-inspired SM extensions, using our semi-analytic
methods, in the future.
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Appendix A. Coefficients in Small-x Asymptotic Analysis

The b coefficients in (54):

b11 = − 2b01

11 + 10δ + 2δ2

b12 = 0 = b14 = b15 = b16

b13 =
b3

01
(
4δ2 + 6δ + ε

)
δ(2δ + 3) (18δ2 + 30δ + 11)

b21 =
4b01

(2δ2 + 10δ + 11) (2δ2 + 18δ + 39)

b22 = 0 = b24 = b26

b23 =

2b3
01

(
− ε

δ(2δ+3)(2δ2+10δ+11) −
2ε

(2δ2+7δ+5)(2δ2+10δ+11) −
2
(

ε
2δ(2δ+3)+1

)
18δ2+30δ+11 −

6
2δ2+10δ+11

)
3 (6δ2 + 18δ + 13)

b25 = (0.00625575 + 0.00323926ε + 0.00292336ε2)b01

b31 = − 8b01

(2δ2 + 10δ + 11) (2δ2 + 18δ + 39) (2δ2 + 26δ + 83)

b32 = 0 = b34 = b36

b33 = (0.0015303 + 0.00014715ε)b3
01

b35 = (−0.00174278− 0.00067203ε− 0.000413624ε2)b5
01

b41 = 1.61775× 10−6b01

b42 = 0 = b44 = b46

b43 = (−0.0000986062− 4.70038× 10−6ε)b3
01
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b45 = (0.000248585 + 0.00007087280ε + .000030011ε2)b5
01

b51 = −1.37892× 10−8b01

b52 = 0 = b54 = b56

b53 = (4.64828× 10−6 + 1.24034× 10−7ε)b3
01

b55 = (−0.0000239827− 4.97425× 10−6ε− 1.5915× 10−6ε2)b5
01

b61 = 8.368× 10−11b01

b62 = 0 = b64 = b66

b63 = −(1.67851× 10−7 + 2.86179× 10−9ε)b3
01

b65 = (1.74488× 10−6 + 2.5867× 10−7ε + 6.95189× 10−8ε2)b5
01

We will now list the a coefficients in (53):

a12 = εb2
01/(2δ(3 + 2δ))

a13 = 0 = a14 = a15 = a16

a22 = −2εb2
01/((5 + 7δ + 2δ2)(11 + 10δ + 2δ2))

a23 = 0 = a25 = a26

a24 = (0.00732333ε + 0.0369758ε2)b4
01

a32 = 0.000809972εb2
01

a33 = 0 = a35 = a36

a34 = −(0.00115918ε + 0.00361289ε2)b4
01

a42 = −0.0000277424εb2
01

a43 = 0 = a45

a44 = (0.000105727ε + 0.000261013ε2)b4
01

a46 = −(0.0000845209ε + 0.000354434ε2 + 0.000438062ε3)b6
01

a52 = 6.94301× 10−7εb2
01

a53 = 0 = a55

a54 = −(6.89031× 10−6ε + 0.0000140244ε2)b4
01

a56 = (0.0000114343ε + 0.0000421252ε2 + 0.0000383327ε3)b6
01

a62 = −1.31163× 10−8εb2
01

a63 = 0 = a65

a64 = (3.4889× 10−7ε + 6.014× 10−7ε2)b4
01

a66 = −(1.0851× 10−6ε + 2.57347× 10−6ε3 + 3.56687× 10−6ε2)b6
01
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