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Abstract: Particle production in high energy hadronic/nuclear collisions in the Bjorken limit
Q2,
√

s → ∞ can be described in the collinear factorization framework of perturbative Quantum
ChromoDynamics (QCD). On the other hand in the Regge limit, at fixed and not too high Q2 with√

s → ∞, a k⊥ factorization approach (or a generalization of it) is the appropriate framework.
A new effective action approach to QCD in the Regge limit, known as the Color Glass Condensate
(CGC) formalism, has been developed which allows one to investigate particle production in high
energy collisions in the kinematics where collinear factorization breaks down. Here we give a brief
overview of particle production in CGC framework and the evolution equation which governs energy
dependence of the observables in this formalism. We show that the new evolution equation reduces
to previously known evolution equations in the appropriate limits.
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1. Introduction

Quantum chromodynamics (QCD) is the fundamental theory of strong interactions describing
interactions of colored quarks and gluons and their binding into colorless hadrons. QCD is amazing
rich but complex theory; perhaps the most well-understood aspect of it is its high Q2 limit due to the
phenomenon of asymptotic freedom: the coupling constant αs(Q2)→ 0 when Q2 → ∞. This allows
a systematic expansion of physical observables in terms of a small parameter, the coupling constant.
Nevertheless the smallness of the coupling constant is often spoiled by appearance of logarithmic
divergences arising from the singular nature of correlators of field operators in quantum field theories.

Parton Model [1] in the context of Operator Product Expansion (OPE) and collinear factorization
theorems [2] provide a useful platform for calculating particle production in high energy hadronic
collisions. Collinear factorization allows one to cleanly separate long distance (low momentum)
physics from that of short distance (high momentum). The long distance physics is contained
in non-perturbative parton distribution and fragmentation functions while short distance physics
containing the hard scattering is calculable in perturbation theory to any order in the coupling constant.
The emerging singular logarithms are absorbed into parton distribution and fragmentation functions
and lead to their scale (Q2) dependence, usually referred to as evolution of distribution or fragmentation
functions. The power of collinear factorization theorems relies on the fact that the non-perturbative
distribution and fragmentation functions are process independent i.e., universal. As such they can
be measured in one process and used in any other. This formalism has been extremely successful in
describing high pt particle production in proton-proton collisions as well as structure functions (total
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cross section) in Deep Inelastic Scattering (DIS). For example, neutral pion production cross section in
high energy proton-proton collisions can be symbolically written as

E
dσpp→π0 X

d3 p
= f1(x1, Q2)⊗ f2(x2, Q2)⊗ dσ

dt
⊗ D(z, Q2) (1)

where f1(x1, Q2), f2(x2, Q2) are parton distribution functions of the incoming protons and D(z, Q2)

is the parton-pion fragmentation function. Here x is the fraction of the energy of a proton carried
by a parton while z is the fraction of the energy of a parton carried by the produced pion. The scale
factorization scale Q is usually taken to be equal or proportional to the produced particle’s transverse
momentum pt in order to avoid the need for resummation of additional logs of the form log Q2/p2

t .
Very roughly the factorization scale can be thought to arise from radiation of extra partons by the
incoming or outgoing partons. If the momentum of the radiated parton is less than this scale then
this (potentially divergent) contribution is absorbed into the parton distribution or fragmentation
functions. Radiated partons with momenta larger than this scale are real and are part of higher order
(in αs) corrections to the partonic cross section dσ

dt . It is important to realize that there are corrections to
Equation (1) which break this factorization but are suppressed by powers of the scale Q2 so that this
relation becomes exact in the limit pt → ∞. Furthermore and in the context of collinear factorization,
distribution and fragmentation functions are defined as expectation values of bi-local operators of quark
(or gluon) fields between the relevant states. These bi-local operators are divergent, renormalization
of which leads to the scale dependence of the distribution and fragmentation functions. This scale
dependence is governed by the Dokshitzer-Gribov-Lipatov- Altarelli-Parisi (DGLAP) equation [3–5]
which can be written as (for one quark flavor)

d
d log Q2

(
q(x, Q2)

g(x, Q2)

)
=
∫ 1

x

dz
z

(
Pqq(z, αs) Pqg(z, αs)

Pgq(z, αs) Pgg(z, αs)

) (
q(x/z, Q2)

g(x/z, Q2)

)
. (2)

The splitting functions Pab(z, αs) give the probability for radiation of a parton of type a by
another parton of type b carrying a fraction z of its energy. These splitting functions are calculable in
perturbation theory and in addition to energy fraction z also depend on the coupling constant (and
hence implicitly on scale Q ∼ pt). There is also an explicit dependence on the scale Q when one goes
beyond Leading Order (LO) approximation.

Collinear factorization formalism in pQCD has been extremely successful in describing and
predicting transverse momentum and rapidity dependence of particle production in high energy
hadronic collisions at high transverse momentum pt. On the other hand as one consider production of
particles in lower momenta, the power suppressed become important and even dominant at lower
pt. These corrections are known as higher twist corrections which lead to a break down of collinear
factorization in pQCD. Furthermore, it is an experimental fact that parton (specially gluon) distribution
functions grow rapidly as x gets smaller. Given the kinematic relation between center of mass energy√

s, transverse momentum and rapidity of produced particle pt, y and energy fraction x

x1,2 =
pt√

s
e±y (3)

we see that at least one of the energy fractions x1,2 in parton distribution functions becomes very
small. Due to the fast growth of parton distribution functions [6] as x → 0 this leads to a proton
wave function that is densely populated with gluons and sea quarks [7]. Noticing that the essence of
collinear factorization is treating partons inside a proton as uncorrelated and non-interacting (with
each other) high parton density effects also lead to a breakdown of collinear factorization formalism.
Therefore one would need a new formalism for particle production at very high energies as long as the
transverse momentum of produced particles is not too high.
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2. Particle Production in Color Glass Condensate Formalism

The Color Glass Condensate (CGC) formalism [8,9] is an effective action approach to QCD at
high energy. Rather than considering individual partons of a proton participating in a high energy
collision, it treats the wave function of a high energy proton as a classical color field. This is justified
due to the presence of large number of color charges carried by quarks and gluons of a proton at small
x (equivalently high energy at fixed transverse momentum). Therefore, instead of thinking of a high
energy collision proton-proton collision as a collision of one parton from one proton on another parton
from the other proton one thinks of collision of classical color fields of the colliding protons. This is
the so-called classical approximation which is then modified due to quantum corrections. Due to
the kinematics of interest (small x) one is interested in quantum corrections which result in large
logarithms of x (αs log 1/x) which then need to be resummed, analogously to the resummation of large
logarithms of Q2 as done by the DGLAP evolution equation. The CGC formalism has been applied
to many processes [8,9] including high energy heavy ion collisions where one expects formation of
a Quark-Gluon Plasma [10]. In order to illustrate the methods and techniques of CGC formalism here
we focus on the simple case of scattering of a quark parton from a dense system of gluons, treated as a
classical color field representing a high energy proton (or nucleus).

2.1. Scattering in High Energy Limit: Classical Approximation

We consider scattering of a quark from the color field Aµ
a (x) of the target proton

(or nucleus) [11–17]. This is meant as a sub-process for proton-nucleus scattering at high energy
and in particular in the forward rapidity region where the values of target x are very small and the
approximations inherent in the CGC formalism are best satisfied. The classical field Aµ

a (x) represents
the small x gluons of the target radiated coherently by the large x color charges (valence quarks, large
x gluons and sea quarks). This is due to the fact that small x gluons have small momentum p+ and
equivalently a large longitudinal wave length, much larger than the longitudinal spacing between the
large x color charges. Therefore they can not resolve the individual color charges along the longitudinal
direction and couple to them coherently. Furthermore and in the high energy limit and due to the vast
difference between the natural time scales between the high x and low x degrees of freedom, one treats
the color sources as light-cone time (x+) independent. Specifically, for large x degrees of freedom the

natural time scale is x+ ∼ 1
p− ∼

p+

p2
t

while for the small x modes we have x+ ∼ 1
p− ∼ x p+

p2
t

so that the

relevant time scale for the small x gluon modes is much smaller than the corresponding time scale for
the large x modes when x � 1. This means that small x gluon modes see the large x color modes as
static, i.e., “frozen” (in light cone time x+) [18,19]. With this approximation one can solve the classical
equation of motion in the presence of a static color charge for a target proton/nucleus moving in the
negative z direction while the quark is moving in the positive z direction,

Dµ Fµν = Jν (4)

where due to the high energy kinematics (large boost in the negative z direction) the current Jµ has
only one large component, Jµ

a = δµ− ρa and is independent of x− coordinate (suppressed by the boost
factor γ). Furthermore if we work in the light cone gauge A+ = 0 (equivalent to covariant gauge in
the classical approximation) the component of the equation of motion with the source reduces to

∂+ F+− = J−(x+, xt) (5)

whose solution is independent of x− coordinate,

A−(x) = A−(x+, xt) (6)
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with the other components of the field being zero. Our problem then reduces to calculating the
amplitude for multiple scattering of the high energy quark projectile on this background color field.
Since the color field A−(x+, xt) is independent of x− one gets a light cone energy conserving δ(p+1 −
p+2 ) for each scattering vertex where p+1 , p+2 are the energies of the incoming and outgoing quark.
Furthermore and assuming the incoming quark has positive p+, contour integration over the ith
intermediate momentum p−i results in a theta function forcing a path ordering in the longitudinal
coordinate x+ along the direction of propagation of the quark. One also ignores all terms of the form
pt
p+ which then allows one to perform the integration over the intermediate transverse momenta which
results in all the transverse coordinates of the fields being equal. For the jth scatterings we get

iMj = 2πδ(p+ − q+) ū(q) /n
∫

d2xt e−i(qt−pt)·xt{
(ig)j (−i)j(i)j

∫
dx+1 dx+2 · · · dx+j θ(x+j − x+j−1) · · · θ(x+2 − x+1 )[

A−(x+j , xt) A−(x+j−1, xt) · · · A−(x+2 , xt)A−(x+1 , xt)
] }

u(p) (7)

where nµ is a light-like vector pointing in the− direction so that /n = γ+. Summing over all j scatterings

(iM =
∞
∑

j=1
iMj) gives

iM(p, q) = 2πδ(p+ − q+) ū(q) /n
∫

d2xt e−i(qt−pt)·xt [V(xt)− 1] u(p) (8)

where the Wilson line V in the fundamental representation is defined as

V(xt) ≡ P̂ exp
{

ig
∫ +∞

−∞
dx+ A−a (x+, xt) ta

}
(9)

and describes propagating of a high energy quark in the background color field and multiply scattering
from it at longitudinal coordinates x+i while staying at the same transverse coordinate xt. This is
the standard eikonal approximation. To get the scattering cross section one needs to multiply the
amplitude∼ V by the complex conjugate amplitude∼ V† which gives the so-called T matrix, the quark
anti-quark pair (called a dipole) scattering total cross section T (this is the imaginary part of the forward
scattering amplitude for the quark anti-quark pair scattering from the background color field),

T(xt, yt) ≡
1

Nc
< Tr

[
1−V(xt)V†(yt)

]
>ρ (10)

where <>ρ means one needs to average over all color charge configuration with some weight for ρ,
usually taken to be a Gaussian. The result so far is a classical result (multiple scattering generalization
of a tree level calculation). We now consider quantum corrections in the one-loop approximation.

2.2. Scattering in High Energy Limit: Quantum Corrections

In the collinear factorization approach one would look for quantum corrections to a tree level
process which results in large logarithms of Q2. Since here we are interested in the kinematics
where logarithms of 1/x are the largest we need to look for quantum corrections which results in
large logarithms of 1/x gluon radiation is ordered in the + momentum. This is the so-called Regge
kinematics where one considers the high energy limit

√
s→ ∞ but where the momentum exchanged

√
t

is small but still large enough to be perturbative, s� t� ΛQCD such that αs log s/t ∼ αs log 1/x ∼ 1.
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One loop correction to the T matrix results in the so called BK [20,21] evolution equation (this is the
large Nc, mean field approximation to the JIMWLK evolution equation [22–26]),

d
d log 1/x

T(x, xt − yt) =
Ncαs

2π2

∫
d2zt

(xt − zt) · (yt − zt)

(xt − zt)2(yt − zt)2[
T(x, xt − zt) + T(x, yt − zt)− T(x, xt − yt)− T(x, xt − zt) T(x, zt − yt)

]
(11)

where xt, yt and zt are two-dimensional coordinate vectors in position space. We have also assumed
translational invariance on the transverse plane of the target proton/nucleus and (in case of BK
equation) made a large Nc approximation. This equation allows a simple interpretation in terms of
multiple scattering of a quark anti-quark system (hence the name dipole) on the target proton/nucleus.
Initially the quark is at space coordinate xt and the anti-quark is at coordinate yt. Both quark and
anti-quark are multiply scattering from the target as encoded in the Wilson line. To calculate a one-loop
correction to this scattering one consider radiation of one gluon, either from the quark or the anti-quark
which can then be either real (crossing the cut line) or virtual ( ending on the same side of the cut).
The radiated gluon is at transverse coordinate zt and in the large Nc limit can be thought of as a new
quark anti-quark (both at zt) system. The first term in (11) corresponds to the case when the original
quark with the new anti-quark forming a dipole scatter from the target. The second term corresponds
to the original anti-quark forming a new dipole system with the new quark and scattering on the target.
The third term is the virtual correction where the radiated gluon does not cross the cut line and is not
produced. The last term corresponds to both dipole multiply scattering from the target and is a new
term which appears due to high gluon density effects in the target proton/nucleus. In the low gluon
density regime one can disregard the last term (non-linear) in (11) which is essential in the high gluon
density regime. We are then left with a linear equation known as the BFKL equation [27,28] which has
been studied for a long time. It is known that the solution to BFKL equation has a power dependence
on energy and grows without bound hence violating perturbative unitarity. The non-linear correction
to BFKL in the high gluon regime restores perturbative unitarity such that scattering probability is
never larger than one.

The BFKL equation can be understood as describing the energy dependence of cross sections due
to exchange of Reggeized gluons in the t channel. This can be done by expanding the Wilson line to
the first non-trivial power in the gluon field. The resulting equation is then for the energy dependence
(evolution) of two-point function of gluon fields. This singlet state of two Reggeized gluons is known
as a (hard or perturbative) Pomeron. It is also possible to study energy dependence of states of higher
number of Reggeized gluons to which we turn now.

2.3. Scattering in High Energy Limit: JIMWLK Equation and Higher States of Reggeized Gluons

The BK equation is the large Nc approximation to the JIMWLK equation, which in its original
formulation, describes the evolution of a high energy proton or nucleus wave function as one decreases
x. It can be written as

d
d log 1/x

W[ρ] = HW[ρ] (12)

where the weight functional W[ρ] describes distribution of color charges ρ in the proton or nucleus
wave function andH is the Hamiltonian. This is then used to write down the evolution equation for
any operator in the CGC effective theory, for example, the two-point function of Wilson lines as in (11).
To be specific, for any operator O we have

d
d log 1/x

〈O〉 = 1
2

〈∫
d2xt d2yt

δ

δαb
x

ηbd
xy

δ

δαd
y

O

〉
, (13)
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where αa
x ≡

∫
dx+ A−,a(x+, xt) and

ηbd
xy =

1
π

∫ d2zt

(2π)2
(xt − zt) · (yt − zt)

(xt − zt)2(yt − zt)2

[
1 + U†

xt Uyt −U†
xt Uzt −U†

zt Uyt

]bd
. (14)

and U is a Wilson line in the adjoint representation. In general higher correlators of Wilson lines appear
in production cross sections, for example, the quadrupole defined as

Q(xt, yt, zt, rt) ≡
1

Nc
< Tr V(xt)V†(yt)V(zt)V†(rt) >ρ , (15)

which appears in the production cross section for dijets in Deep Inelastic Scattering as well as in high
energy proton-nucleus collisions [11]. Using (13) for the quadrupole operator defined in (15) we get

d 〈Q(r, r̄, s̄, s)〉
d log 1/x

=
Nc αs

(2π)2

∫
d2z

{〈
[

(r− r̄)2

(r− z)2(r̄− z)2 +
(r− s)2

(r− z)2(s− z)2 −
(r̄− s)2

(r̄− z)2(s− z)2

]
Q(z, r̄, s̄, s) S(r, z)

+

[
(r− r̄)2

(r− z)2(r̄− z)2 +
(r̄− s̄)2

(r̄− z)2(s̄− z)2 −
(r− s̄)2

(r− z)2(s̄− z)2

]
Q(r, z, s̄, s) S(z, r̄)

+

[
(r̄− s̄)2

(r̄− z)2(s̄− z)2 +
(s− s̄)2

(s− z)2(s̄− z)2 −
(r̄− s)2

(s− z)2(r̄− z)2

]
Q(r, r̄, z, s) S(s̄, z)

+

[
(r− s)2

(r− z)2(s− z)2 +
(s− s̄)2

(s− z)2(s̄− z)2 −
(r− s̄)2

(r− z)2(s̄− z)2

]
Q(r, r̄, s̄, z) S(z, s) (16)

−
[

(r− r̄)2

(r− z)2(r̄− z)2 +
(s− s̄)2

(s− z)2(s̄− z)2 +
(r− s)2

(r− z)2(s− z)2 +
(r̄− s̄)2

(r̄− z)2(s̄− z)2

]
Q(r, r̄, s̄, s)

−
[

(r− s)2

(r− z)2(s− z)2 +
(r̄− s̄)2

(r̄− z)2(s̄− z)2 −
(r̄− s)2

(r̄− z)2(s− z)2 −
(r− s̄)2

(r− z)2(s̄− z)2

]
S(r, s) S(r̄, s̄)

−
[

(r− r̄)2

(r− z)2(r̄− z)2 +
(s− s̄)2

(s− z)2(s̄− z)2 −
(r− s̄)2

(r− z)2(s̄− z)2 −
(r̄− s)2

(r̄− z)2(s− z)2

]
S(r, r̄) S(s̄, s)〉}

where the S matrix is defined as
S(r, r̄) ≡ 1

Nc
trVr V†

r̄ (17)

so that S = 1− T and all the coordinates appearing above are two-dimensional transverse coordinates.
Clearly this is a complicated equation which can only be solved by approximate methods, the most
common one being Gaussian approximation after which all opetarors can be written in terms of the
dipole operator T or S. One can also study this equation numerically in various kinematics as in cite
papers. Of particular interest is the low gluon density limit where all the Wilson lines can be expanded
with only the first non-trivial term kept. It can be shown that the JIMWLK evolution equation for the
quadrupole (15) reduces [29,30] to the known BJKP equation [31–34] for the energy dependence of a
state of four Reggeized gluons given by

d
d log 1/x

T̂4(l1, l2, l3, l4) =
Nc αs

π2

∫
d2 pt

[
pi

p2
t
−

(pi − li
1)

(pt + l1)2

]
·
[

pi

p2
t
− (pi − li

2)

(pt + l2)2

]
T̂4(pt + l1, l2 − pt, l3, l4)

+ · · · (18)

− Nc αs

(2π)2

∫
d2 pt

[
l2
1

p2
t (l1 − pt)2

+ {l1 → l2, l3, l4}
]

T̂4(l1, l2, l3, l4)

where T̂4 is the quadrupole operator with each Wilson line expanded to first order in the gluon
field and written in terms of the color charge density ρ and . . . denotes a cyclic permutation of the
external momenta. This equivalence between the BJKP equation for energy dependence of a state of n
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Reggeized gluons and the low gluon density limit of JIMWLK evolution equation is quite general and
can be shown to be true for any n. Finally it also seems possible to go beyond small x approximation
and include large x contributions which become dominant at high transverse momentum [35,36].

3. Summary

The JIMWLK evolution equation describes the energy (or equivalently x) dependence of operators
appearing in multi-particle production cross sections in high energy hadronic collisions. It reduces to
the previously known evolution equations such as BFKL and BJKP in the low gluon density limit, where
it can be understood to describe the energy dependence of states containing 2n Reggeized gluons.
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