
universe

Article

On the Causal and Topological Structure of the
2-Dimensional Minkowski Space

Kyriakos Papadopoulos 1,* , Nazli Kurt 2 and Basil K. Papadopoulos 3

1 Department of Mathematics, Kuwait University, PO Box 5969, Safat 13060, Kuwait
2 Faculty of Science, Open University, PO Box 297, Milton Keynes MK7 6BJ, UK; nazkrt.96@gmail.com
3 Department of Civil Engineering, Democritus University of Thrace, 67 100 Xanthi, Greece;

papadob@civil.duth.gr
* Correspondence: kyriakos@sci.kuniv.edu.kw

Received: 17 December 2018; Accepted: 28 February 2019; Published: 5 March 2019
����������
�������

Abstract: A list of all possible causal relations in the two-dimensional Minkowski space M is
exhausted, based on the duality between timelike and spacelike in this particular case, and thirty
topologies are introduced, all of them encapsulating the causal structure of M. Generalisations of
these results are discussed, as well as their significance in a discussion on spacetime singularities.

Keywords: Minkowski space; causal relations; interval topology; Alexandrov topology; intersection
topology

1. Preliminaries

Throughout the text, unless otherwise stated, we consider the two-dimensional Minkowski
spacetime M, which is the two-dimensional real Euclidean space equipped with the characteristic
quadratic form Q, where for x = (x0, x1) ∈ M, Q(x) = x2

0 − x2
1.

We denote the light cone through an event x by CL(x), and define it to be the set CL(x) = {y :
Q(y− x) = 0}. Similarly, we define the time cone as CT(x) = {y : y = x or Q(y− x) > 0} and the
space cone as CS(x) = {y : y = x or Q(y− x) < 0}. We call causal cone the set CT(x) ∪ CL(x) and we
observe that the event x partitions its time/light/causal cone into future and past time/light/causal
cones, respectively, while it divides the space cone into − and +, respectively.

In [1] (Paragraph 1.4), we intuitively (i.e., in a topological sense, invariantly from a change in the
geometry) partitioned the light-cone so that, apart from future and past, we also achieved a spacelike
separation of + and −. This space-like separation is more obvious in the two-dimensional Minkowski
spacetime M. Let x ∈ M be an event. Then, we consider the future and past time-cones, CT

+(x)
and CT

−(x), respectively, as north and south in a compass, while the space-cones CS
+(x) and CS

−(x),
respectively, as east and west.

We denote the Euclidean topology on R2 by E; this topology has a base of open sets which are
open balls Bε(x), of radius ε and centre x. Arbitrary unions of such open balls give the open sets in R2

under E.
Zeeman [2] (as a result of his previous work [3]) questioned the use of Topology E in

four-dimensional Minkowski space, as its “natural” topology, listing a number of issues, including
that the Euclidean topology is locally homogeneous (while M is not) and the group of all
homeomorphisms of (four-dimensional) Euclidean space is of no physical significance. Zeeman
proposed a topology, his “Fine” topology, under which the group of all homeomorphisms is generated
by the (inhomogeneous) Lorentz group and dilatations. In addition, the light, time and space cones
through a point can be deduced from this topology. Göbel [4] generalised Zeeman’s results for
curved spacetime manifolds, and obtained that, under a general relativistic frame, the Fine topology
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gives the significant result that a homeomorphism is an isometry. Hawking, King and McCarthy [5]
introduced the “Path” topology, which determines the causal, differential and conformal structure of
a space-time, but it was proven by Low [6] that the Limit Curve Theorem under the Path topology
fails to hold, and thus the formation of basic singularity theorems. Given that the questions that
were raised by Zeeman [2] are of a tremendous significance for problems related to the topological,
geometrical and analytical structure of a spacetime, the topologisation problem for spacetimes is still
open and significant.

In this article, we examine all possible (ten in number) causal relations that can appear in the
two-dimensional Minkowski spacetime and the thirty topologies they induce. All these topologies
incorporate the causal structure of spacetime, and we believe that a generalisation to curved
four-dimensional spacetimes will equip modern problems of general relativity and cosmology with
extra tools that can be used in attempts, for example, to describe the structure of the universe in the
neighbourhood of the spacetime singularities that are predicted by the singularity theorems of general
relativity (ambient cosmology) or contribute to the description of the transition from the quantum
non-local theory to a classical local theory.

2. Causal Relations in the Two-Dimensional Minkowski Space

We consider the two-dimensional Minkowski spacetime M, equipped with the following relations:

1. �: The chronological partial order, defined as x � y, if y ∈ CT
+(x). We note that� is irreflexive.

2. →: The relation horismos, defined as x → y, if y ∈ CL
+(x). Horismos is a reflexive relation.

3. <: The chorological (“choros” is the Greek for “space”, similar to “chronos” is the Greek for “time”)
partial order, defined as x < y, if y ∈ CS

+(x). We note that < is irreflexive.
4. →irr: We define the irreflexive horismos in a similar way as we defined →, this time without

permitting x to be at horismos with itself.
5. �=: We define the reflexive chronology as we defined �, but this time we permit x to

chronologically precede itself.
6. ≺: The causal order is a reflexive partial order defined as x ≺ y if y ∈ CT

+(x) ∪ CL
+(x).

7. �→irr
: We define the irreflexive causal order as we defined ≺, this time excluding the case that

x ≺ x.
8. ≤: We define the reflexive chorology as we defined <, but this time we permit x to chorologically

precede itself.
9. �c: The complement of chronological order is a reflexive partial order defined as x �c y if y ∈

CS
+(x) ∪ CL

+(x).

10. <→
irr

: We define the irreflexive complement of chronological order as �c excluding the case that
x �c x.

Definition 1. Let f : M→ M be a one-to-one (and not necessarily continuous or linear) map. We say

1. f is a causal automorphism, if both f and f−1 preserve�, i.e., x � y iff f (x)� f (y); and
2. f is an acausal automorphism, if both f and f−1 preserve <, i.e., x < y iff f (x) < f (y).

The causal automorphisms form the causality group and the acausal automorphisms form the
acausality group.

The proofs of Lemmas 1 and 2 can be found in [3].

Lemma 1. Let f : M→ M be a one-to-one map. Then, f , f−1 preserve� iff f , f−1 preserve→.

Lemma 1 does not hold for <, for the obvious reason that x → y, iff either x does not
chronologically precede y or y � z implies x � z. Consequently, Lemma 1 does not hold for
Relations 8, 9 and 10, while it holds for Relations 2, 6 and 7.
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Lemma 2. A causal automorphism maps:

1. light rays to light rays;
2. parallel light rays to parallel light rays;
3. each light ray linearly; and
4. parallel equal intervals on light rays to parallel equal intervals.

Lemma 2 does not hold for an acausal automorphism, for similar reasons that < fails to satisfy
Lemma 1.

The orthochronous Lorentz group consists of all linear maps of M which leave Q invariant, preserve
time orientation (south-to-north) but possible reverse space orientation. In the two-dimensional
Minkowski space M, the orthochorous Lorentz group consists of all linear maps of M which leave Q
invariant, preserve space-orientation (west-to-east) but possibly reverse time orientation.

3. Thirty Causal Topologies on the Two-Dimensional Minkowski Space

Consider an order relation R defined on a space X. Then, consider the sets I+(x) = {y ∈ X : xRy}
and I−(x) = {y ∈ X : yRx}, as well as the collections S+ = {X \ I−(x) : x ∈ X} and S− =

{X \ I+(x) : x ∈ X}. A basic-open set U in the interval topology Tin (see [7] and [8]) is defined as
U = A ∩ B, where A ∈ S+ and B ∈ S−; that is, S+ ∪ S− forms a subbase for Tin.

The four-dimensional Minkowski space in particular (and spacetimes in general) is not
up-complete, and a topology Tin is weaker than the interval topology of [7], but for the particular case
of two-dimensional Minkowski spacetime, Tin under the ten causal relations that we stated above is
the actual interval topology defined in [7].

The Alexandrov topology (see [9]) is the topology that has basic open sets of the form I+(x)∩ I−(y),
where I+(x) = {y ∈ M : x � y} and I−(y) = {x ∈ M : y� x}. In general, a spacetime manifold M
is strongly causal iff the Alexandrov topology is Hausdorff iff the Alexandrov topology agrees with
the manifold topology.

Finally, If T1 and T2 are two distinct topologies on a set X, then the intersection topology Tint (see [10,11])
with respect to T1 and T2, is the topology on X such that the set {U1 ∩U2 : U1 ∈ T1, U2 ∈ T2} forms a
base for (X, T).

Below, we list all possible order topologies that are generated by the ten causal relations above,
either by defining the topology straight from the order (in a similar way the Alexandrov topology is
induced by�-open diamonds) or as interval Topologies Tin or as intersection topologies (in the sense
of Reed) between the natural Topology E of R2 and Tin.

1. The chronological order� induces the Topology T�, which has a subbase consisting of future
time cones CT

+(x) or past time cones CT
−(y), where x, y ∈ M. The finite intersections of such

subbasic-open sets give “open timelike diamonds”, which are basic-open sets for the Alexandrov
topology.

2. � also induces the interval Topology T�in , with subbase consisting of sets M \ CT
+(x), which

are complements of future time cones or sets M \ CT
−(x) which are complements of past time

cones. This topology has basic-open sets of the form CS(x) ∪ CL(x) and it is easy to see that it is
incomparable (neither finer, nor coarser, nor equal) to the natural Topology E, on M.

3. The Topologies E and T�in , on M, give the intersection Topology Z�in , which has basic-open sets
of the form Bε(x) ∩ [CS(x) ∪ CL(x)] and is finer than the Topology E.

4. The relation horismos→ induces the Topology T→, which has a subbase consisting of future light
cones CL

+(x) ∪ {x} or past light cones CL
−(y) ∪ {y}, where x, y ∈ M. The finite intersections of

such subbasic-open sets give the boundaries of “open diamonds” that we examined in topology 1.
5. → also induces the interval Topology T→in , with subbase consisting of sets M \ [CL

+(x) ∪ {x}],
which are complements of future light cones union {x} or sets M \ [CL

−(x) ∪ {x}] which are



Universe 2019, 5, 70 4 of 8

complements of past light cones union {x}. This topology has basic-open sets of the form
[CS(x) ∪ CT(x)] \ {x} and it is incomparable to the natural topology of M.

6. The Topologies E and T→in , on M, give the intersection Topology Z→in , which has basic-open sets
of the form Bε(x) ∩ [(CS(x) ∩ CT(x)) \ {x}] and is a finer topology than E.

7. The chorological order < induces the Topology T<, which has a subbase consisting of +-oriented
(and deleted by definition, i.e., not including x) space cones CS

+(x) or −-oriented (deleted) space
cones CS

−(y), where x, y ∈ M. The finite intersections of such subbasic-open sets give “open
diamonds” that are spacelike.

8. < induces the interval Topology T<
in , with subbase consisting of sets M \ CS

+(x), which are
complements of +-oriented space cones or sets M \ CS

−(x) which are complements of −-ve
oriented space cones. This topology has basic-open sets of the form CT(x) ∪ CL(x) (causal cones)
and it is easy to see that it is incomparable to the natural topology of M.

9. The Topologies E and T<
in , on M, give the intersection Topology Z<

in, which has basic-open sets of
the form Bε(x) ∩ [CT(x) ∪ CL(x)] and is a topology finer than E.

10. The irreflexive horismos →irr induces the Topology T→irr , which has a subbase consisting of
deleted (that is, without {x} future light cones CL

+(x) \ {x} or deleted past light cones CS
−(y) \ {y},

where x, y ∈ M. The finite intersections of such subbasic-open sets give deleted boundaries of
“open diamonds”.

11. →irr induces the interval Topology T→
irr

in , with subbase consisting of sets M \ [CL
+(x) \ {x}], which

are complements of deleted future light cones or sets M \ [CL
−(x) \ {x}] which are complements

of deleted past light cones. This topology has basic-open sets of the form [CT(x) ∪ CS(x)] ∪ {x}
and it is easy to see that it is incomparable to the natural topology of M.

12. The Topologies E and T→
irr

in , on M, give the intersection Topology Z→
irr

in , which has basic-open
sets of the form Bε(x) ∩ [(CT(x) ∪ CS(x)) ∪ {x}] and is a topology finer than E.

13. The reflexive chronology�= induces the Topology T�= , which has a subbase consisting of future
time cones CT

+(x) ∪ {x} or past time cones CT
−(y) ∪ {y}, where x, y ∈ M. The finite intersections

of such subbasic-open sets give “closed diamonds”, in the sense of a closed interval containing
its endpoints.

14. �= induces the interval Topology T�
=

in , with subbase consisting of sets M \ [CT
+(x)∪{x}], or sets

M \ [CT
−(x) ∪ {x}]. This topology has basic-open sets of the form [CS(x) ∪ CL(x)] \ {x} and it is

incomparable to the natural topology of M.
15. The Topologies E and T�

=

in , on M, give the intersection Topology Z�
=

in , which has basic-open sets
of the form Bε(x) ∩ [(CS(x) ∪ CL(x)) \ {x}] and it is a topology finer than E.

16. The irreflexive causal order�→irr
induces the Topology T�→irr , which has a subbase consisting

of (deleted) future causal cones [CT
+(x) ∪ CL

+(x)] \ {x} or (deleted) past causal cones [CT
−(y) ∪

CL
−(y)] \ {y}, where x, y ∈ M. The finite intersections of such subbasic-open sets give

“causal diamonds” which are open (causal diamonds, i.e., together with their light boundaries),
but without the endpoints.

17. �→irr
induces the interval Topology T�

→irr

in , with subbase consisting of sets M \ [CT
+(x)∪CL

+(x) \
{x}], which are complements of deleted future causal cones or sets M \ [CT

−(x) ∪ CL
−(x) \ {x}]

which are complements of deleted past causal cones. This topology has basic-open sets of the
form CS(x), that is space cones, and it is easy to see that it is incomparable to the natural topology
of M.

18. The Topologies E and T�
→irr

in , on M, give the intersection Topology Z�
→irr

in , which has basic-open
sets of the form Bε(x) ∩ CS(x) (bounded space cones) and it is finer than E.

19. The causal order ≺ induces the Topology T≺, which has a subbase consisting of future causal
cones CT

+(x)∪CL
+(x) or past causal cones CT

−(y)∪CL
−(y), where x, y ∈ M. The finite intersections

of such subbasic-open sets give “causal diamonds”, containing the endpoints.
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20. ≺ induces the interval Topology T≺in , with subbase consisting of sets M \ [CT
+(x) ∪ CL

+(x)], which
are complements of future causal cones or sets M \ [CT

−(x) ∪ CL
−(x)] which are complements of

past causal cones. This topology has basic-open sets of the form CS(x) \ {x} and it is easy to see
that it is incomparable to the natural topology of M.

21. The Topologies E and T≺in , on M, give the intersection Topology Z≺in, which has basic-open sets of
the form Bε(x) ∩ [CS(x) \ {x}] and it is finer than E.

22. The reflexive chorological order ≤ induces the Topology T≤, which has a subbase consisting
of +-oriented space cones CS

+(x) or −-oriented space cones CS
−(y), where x, y ∈ M. The finite

intersections of such subbasic-open sets give “closed diamonds”, that is diamonds containing the
endpoints, that are spacelike.

23. ≤ induces the interval Topology T≤in , with subbase consisting of sets M \ [CS
+(x) ∪ {x}], or sets

M \ [CS
−(x) ∪ {x}]. This topology has basic-open sets of the form [CT(x) ∪ CL(x)] \ {x} and it is

easy to see that it is incomparable to the natural topology of M.
24. The Topologies E and T≤in , on M, give the intersection Topology Z≤in, which has basic-open sets of

the form Bε(x) ∩ [(CT(x) ∪ CL(x)) \ {x}] and it is a finer topology than E.
25. The irreflexive complement of the chronological order, namely <→

irr
, induces the Topology

T
<→irr , which has a subbase consisting of +-oriented (deleted) space cones with their light

boundary [CS
+(x) ∪ CL

+(x)] \ {x} or −-oriented (deleted) space cones with their light boundary
[CS
−(y) ∪ C−L(y)] \ {y}, where x, y ∈ M. The finite intersections of such subbasic-open sets give

deleted “open diamonds” that are spacelike.

26. <→
irr

induces the interval Topology T<→
irr

in , with subbase consisting of sets M \ [CS
+(x)∪ CL

+(x) \
{x}], or sets M \ [CS

−(x) ∪ CL
−(x) \ {x}]. This topology has basic-open sets of the form CT(x), i.e.,

time cones, and it is easy to see that it is incomparable to the natural topology of M.

27. The Topologies E and T<→
irr

in , on M, give the intersection Topology Z<→
irr

in , which has basic-open
sets of the form Bε(x) ∩ CT(x). This intersection topology is the special relativistic analogue of
the Path topology, introduced in [5] and it is finer than E.

28. The complement of the chronological order, namely�c, induces the Topology T≺a , which has
a subbase consisting of +-oriented space cones with their light boundary CS

+(x) ∪ CL
+(x) or

−-oriented space cones with their light boundary CS
−(y) ∪ C−L(y), where x, y ∈ M. The finite

intersections of such subbasic-open sets give “closed diamonds” that are spacelike.
29. �c induces the interval Topology T�

c

in , with subbase consisting of sets M \ [CS
+(x) ∪ CL

+(x)],
which are complements of +-oriented space cones with their light boundary or sets M \
[CS
−(x) ∪ CL

−(x)] which are complements of −-ve oriented space cones with their light boundary.
This topology has basic-open sets of the form CT(x) \ {x}, i.e., deleted time cones, and it is easy
to see that it is incomparable to the natural topology of M.

30. The Topologies E and T≺
a

in , on M, give the intersection Topology Z≺
a

in , which has basic-open sets
of the form Bε(x) ∩ (CT(x) \ {x}) and it is finer than E.

4. Discussion

4.1. Curved Spacetimes

A first question is: Can one generalise the thirty above mentioned topologies to curved spacetimes?
The answer is positive. Indeed, from a topological perspective, and without any extra condition
or restriction, one can consider the general relativistic analogue of each one of the mentioned
Topologies 1–30, since as soon as there exists spacetime there are events and for each event there are
time/light/causal cone assigned to it; the point-set topology is independent of the curvature and the
tilt of the cones and, since the mentioned topologies are generated from the causal relations of the
spacetime, one has to only choose an arbitrary Riemannian metric h, on the spacetime manifold M.
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For example, the Path topology of Hawking–King–McCarthy (see [5]) will be the generalisation of
Topology 3 of our list, as follows.

Consider the chronological order�, on a relativistic spacetime manifold M. Then,� will induce
the interval Topology T�in , with subbase consisting of sets M \CT

+(x), which are complements of future
time cones, or sets M \ CT

−(x), which are complements of past time cones. This topology, exactly as
with our Topology 3 of the list, has basic-open sets of the form CS(x) ∪ CL(x). Now, consider the
manifold TopologyM and for a Riemannian metric h consider the base ofM-open sets of the form
Bh

ε (x), the open balls centered at x and radius ε with respect to h. Then, a basic-open set for the Path
topology will be of the form T�in ∩ Bh

ε (x). Low (see [6]) has shown that the Limit Curve Theorem fails
to hold for the Path topology, thus the formation of a basic contradiction present in the proofs of all
singularity theorems fails as well (for a more extensive discussion see [12–14]).

4.2. Singularities

Furthermore, we observe that the Limit Curve Theorem holds for Topologies 2, 3, 8, 9, 14, 15, 23, 24
of our list, but not for Topologies 5, 6, 11, 12, 17, 18, 20, 21, 26, 27, 29, 30. Following the argument of Low
([6], Paragraph V), we can easily see if U is a basic-open set of one of Topologies 2, 3, 8, 9, 14, 15, 23 or
24, then this set does not contain the light cone of the event which defines it. Consider a sequence of
null vectors pn converging to p in the usual topology. Let γn be the null geodesic through the origin
with tangent pn and γ the null geodesic through the origin with tangent vector p. Clearly, γ is the
unique limit curve of the sequence {γn} in the usual topology, for all n. However, γn intersected
with an open set (not containing the origin) of either of the basic-open sets defined in Topologies
2, 3, 8, 9, 14, 15, 23 or 24 will give empty set, thus γ will be not a limit curve of the sequence γn under
specified Topologies 2, 3, 8, 9, 14, 15, 23, and 24 and so the Limit Curve Theorem will fail for each of
these topologies. On the contrary, following the same argument, the Limit Curve Theorem will hold for
Topologies 5, 6, 11, 12, 17, 18, 20, 21, 26, 27, 29 and 30, since each of them has basic-open sets containing
the light-cone for each event.

4.3. Ambient Cosmology

The significance of the above remarks is that, unlike the manifold topology (which merely
characterises continuity properties according to Hawking et al.), there are thirty topologies (those
listed in this article) that determine the causal and conformal structures of spacetime and are most
appealing than the Fine topology of Zeeman (which does not admit a countable base of open sets).
In addition, there are no other topologies that can be defined immediately from the causal relations
in spacetime.

A question that is now raised is: Which topology is the most appropriate one, if one can set
it in this way, or the most physical one? The remark that for eight of these topologies the Limit
Curve Theorem fails to hold, could bring the discussion on the need for an Ambient Cosmology to
a different level. For example, the very own construction of the ambient boundary-ambient space
model (see [15]) was an attempt to consider a four-dimensional spacetime as the conformal infinity of
a five-dimensional ambient space, to show that singularities are absent and the Cosmic Censorship
becomes valid by construction. In the frame of topologies such as some ones that we mention in this
paper, however, this is achieved without the need of working in extra dimensions (all due to the reason
that LCT fails under them).

Finally, the topologies from our list could be linked to the study of sliced spaces (see [16]).
In particular, a sliced spacetime V can be considered as a product of a smooth manifold M of dimension
3 times the real line R, where V is equipped with with a four-dimensional Lorentzian metric that splits
in a particular way with respect to a shift and a lapse function. Thus far, global hyperbolicity has been
studied with respect to the Alexandrov topology and the natural Product topology of V, but not with
respect to causal topologies. This would be particularly interesting in the case of Ambient Cosmology,



Universe 2019, 5, 70 7 of 8

since one can consider M as a four-dimensional spacetime, the conformal boundary at infinity of an
ambient space V = M×R.

4.4. Girders and Twistor Spaces

Lastly, Topologies 4 and 10 seem to fit well in spaces consisted of girders, hypergirders and links
(see [17]). Although they depend on the structure of the light cone, the question that has to be addressed
is how they could be used in a description of the transition from quantum non-local theory to a classical
local theory. Certainly, there is not a definite answer to this question at present but we believe that
methods of point-set topology will contribute significantly, as one can work using topological tools
invariantly from the geometry of a spacetime. Topologies that are constructed through light-rays, e.g.,
Topologies 4 and 10 in our list, could also place a role in twistor theory (see [18]). More particularly,
two points P, R in the Minkowski space that are incident with the same non-zero (null) twistor Z
must be null-separated by each other which means that Z defines a light ray in the Minkowski space.
This gives an inside of how one could transfer topological properties from the Minkowski space to the
twistor space T or, better, to the projective twistor space PT.

4.5. On Abstract Conformally Invariant Boundary Constructions in Relativity Theory

Some other possible applications of the topologies in the list in Section 3 might appear for
abstract conformally invariant constructions in Relativity theory, namely boundaries of Low, Geroch,
Kronheirmer and Penrose (see, for example, [19–24]). These topologies are based purely on the causal
structure of the spacetime, but it is not clear which one would be the canonical choice of the topology.
Low proposed a new such topology in [21], where the causal boundary has been developed further
in relation to the classical conformal boundary. A further study could be based, for example, on the
thorough study in [22], through links with deep constructions in pure mathematics in [23] and on a
recent revision in [24].
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