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Abstract: The observer’s frame is the more elementary description of the gravitational field than
the metric. The most general covariant, even-parity quadratic form for the frame field in arbitrary
dimension generalises the New General Relativity by nine functions of the d’Alembertian operator.
The degrees of freedom are clarified by a covariant derivation of the propagator. The consistent
and viable models can incorporate an ultra-violet completion of the gravity theory, an additional
polarisation of the gravitational wave, and the dynamics of a magnetic scalar potential.

Keywords: teleparallel theory of gravity; nonlocal theories of gravity

1. Introduction

Gravitational waves, a prediction of General Relativity (GR) that was only recently directly
confirmed in the experimental data [1], are most often discussed in terms of fluctuations of the metric
field. However, at a more fundamental level, the gravitational field in GR has to be understood
as the frame field. It has been established long ago that the frame field, in four dimensions a.k.a.
the vierbein, or the tetrad, is necessary for the consistent gravitational coupling of the electron [2].
Moreover1, the frame field formulation of GR facilitates the covariant definition of gravitational
energy-momentum complex [8].

A frame field is a set of n orthonormal vector fields {@a}a=0,1,...,n−1 defined on an n-dimensional
Lorentzian manifold that is interpreted as a model of spacetime. All tensorial quantities on the manifold
can be expressed using the frame field @a and its dual coframe field ea. In particular, the components of
the contravariant metric tensor, gµν, are obtained from the components @a

µ of the frame field @a = @a
µ∂µ

using the Cartan-Killing form ηab that is interpreted as the Minkowski metric in the tangent space,
as gµν = ηab@a

µ@b
ν. The generic frame field has n2 independent components, and it gives rise to

the 1
2 n(n + 1) independent components of the symmetric rank-2 tensor gµν. In the case of GR, the

remaining 1
2 n(n− 1) components are eliminated by Lorentz invariance.

It is of interest to consider more general theories that may be formulated in terms of the frame
field. During the past hundred years, a plethora of alternatives and extensions to GR have been

1 The teleparallel theory of the frame field has been considered as the gauge theory of the group of translations [3–5]. The main
difficulties of this interpretation (that the connection is not generated by translations, nor minimally coupled to matter) are
resolved in the recently “purified gravity” [6] which is not however considered in this paper, but see [7].
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introduced, and such are currently under extensive investigation especially motivated by the problems
of modern cosmology [9]. One of the first things to check in a new theory of gravity is its inherent
consistency and observational viability in the limit of Minkowski space. Our aim is to classify the
possible theories for the frame field in this limit by the properties of the propagator. The poles of the
propagator determine the particle content of the theory.

We shall study the most general frame field action that is Poincaré and parity invariant. The main
conclusion will be that there exist viable frame field theories which are not captured by the generic
metric theory either in Riemannian [10] or non-Riemannian [7] geometry. When restricting to
the second order in derivatives, the action reduces to the well-known Møller-Pellegrini-Plebański
theory [8,11] a.k.a. the New GR [12], whose linearisation has been often considered previously [13–20].
The most general action, at the relevant quadratic limit, extends the three-parameter case of New
GR by nine functions of the covariant derivative operator, and can accommodate also the ghost-
and singularity-free structure that has been previously realised in the metric theories [7,10]. Besides
the spin-2 graviton with the infinite-derivative structure and the spin-0 dilaton-like particle that are
expected in the closed string field theory, the spectrum of a consistent frame field theory may also
feature the spin-0 Kalb-Ramond-like particle.

In the remainder of this brief paper, we shall report the most general quadratic action, Equation (2),
and the field Equations (16) and (17) in Section 2, the propagator, Equation (31), in Section 3, and then
present our conclusions in Sections 4 and 5.

2. Field Equations

The motivation is to uncover the possible properties of gravitation that may not be described
by solely the metric. We are interested in the most general theory for the (co)frame field ea

µ,
but the properly invariant formulation [21] also includes the spin connection ωa

b, though it is purely
inertial [5,21,22]. The field strength of the coframe field is written in the differential form notation as
Ta = Dea = dea + ωa

b ∧ eb, but we shall be explicit with the components such as the Ta
µν in

Ta =
1
2

Ta
µνdxµ ∧ dxν =

(
∂[µea

ν] + ωa
b[µeb

ν]

)
dxµ ∧ dxν . (1)

The most general theory that is quadratic in this field strength can be parameterised by nine
independent functions of the d’Alembertian operator 2 = gµν∇µ∇ν. We write action for the theory as

I = −
∫

dnxeL + I(M) , (2)

where e = det ea
µ =

√
det gµν, I(M) is the action for the matter fields, and the gravitational

Lagrangian is

L = Tαµν
{

c1(2)Tαµν + c2(2)Tνµα + gανc3(2)Tµ

+ 2−1
[
c4(2)∇α∇βTβµν + c5(2)∇α∇βTµνβ + c6(2)∇α∇βTµνβ + c7(2)∇ν∇βTµαβ + gανc8(2)∇µ∇βTβ

]
(3)

+ 2−2c9(2)∇α∇µ∇ρ∇σTρσν

}
.

We have defined the trace Tµ = Tα
µα. This action reduces to the three-parameter New GR [12]

when c1(2) = c1, c2(2) = c2 and c3(2) = c3 are constants, and the rest of the functions are zero.
Assuming the quadratic torsion is modulated by analytic functions, the five terms in the second line
are at least fourth derivative and the one term in the third line are at least sixth order derivative2.

2 The inverse operators are included only for the convenience of keeping the ci dimensionless. Thus, we assume that c1, c2
and c3 are analytic, as well as ci/2, where i = 4, 5, 6, 7, 8, and c9/22. Therefore all the apparent inverse d’Alembertians
actually cancel from the action and the field equations as well.
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The pure-gauge connection ωa
b is given by a Lorentz transformation Λa

b of the Weitzenböck connection
(ωa

b = 0) as ωa
b = (Λ−1)a

cdΛc
b. The spin connection ωab is antisymmetric. Thus, the action principle

(2) is understood as L = L(ea, Λa
b) [21]. We expand the connection as

ωa
bµ = ∂µ Aa

b +O(A2) , Λa
b ≈ δa

b − Aa
b +O(A2) , where Aab = A[ab] , (4)

and the coframe field as
ea

µ = δa
µ + Ba

µ , (5)

which implies for the inverse

@a
µ = δa

µ − Bµ
a +O(B2) , Bµ

a = δb
µδa

νBb
ν . (6)

At the lowest order, the metric perturbation is given by the symmetric part,

gµν ≡ ηabea
µeb

ν = ηµν + hµν +O(B2) , hµν ≡ 2B(µν) , Bµν ≡ δaµBa
ν , (7)

and for the antisymmetric part we define invariant combination

bµν ≡ 2
(

B[µν] − A[µν]

)
, (8)

in terms of the antisymmetric perturbations of the frame field, Bµν, and of the pure-gauge field,
Aµν = δaµδb

µ Aa
b. It is then straightforward though tedious to expand the action (2) to the second order

in the perturbations. Describing the matter action IM with the linear source term τµν, we obtain

I = −1
4

∫
dnx

(
L(h2) + L(hb) + L(b2)

)
+ 2

∫
dnxBµντµν +O(B3) , (9)

where the purely metric part is (we denote the trace h = ηµνhµν)

L(h2) = hµν

[
a(2)2hµν + 2b(2)∂α∂µhνα + c(2)

(
∂µ∂νh + ηµν∂α∂βhαβ

)
+ ηµνd(2)2h +

f (2)

2
∂µ∂ν∂α∂βhαβ

]
, (10)

there appears the one possible interaction term

L(hb) = −2hµνx(2)∂µ∂αbαν , (11)

and the part involving only the antisymmetric perturbation is

L(b2) = bµν
[
y(2)2bµν + 2z(2)∂µ∂αbαν

]
. (12)

The functions in (10) read (omitting the arguments of 2 from now on)

a = 2c1 + c2 − c6 − c7 , (13a)

b = −c1 −
1
2
(c2 − c3 + c4 − c5 − c6 − 2c7 + c9) , (13b)

c = −c3 + c8 , (13c)

d = c3 − c8 , (13d)

f = c4 − c5 − c7 − c8 + c9 . (13e)

The rest of the functions are specified as

x = 2c1 + c2 + c3 − c4 + c5 − c6 − c9 , (14)
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and

y = −c1 +
3
2

c2 +
1
2
(c3 − c4 + c5 + c6) + c7 −

1
2

c9 , (15a)

z = 2c1 − c2 − c6 − c7 . (15b)

The field equations for the symmetric part, including a source term, are

− 2τ(µν) = a2hµν + 2b∂α∂(µhν)α + c
(

∂µ∂νh + ηµν∂α∂βhαβ − ηµν2h
)
+

f
2

∂µ∂ν∂α∂βhαβ − x∂(µ∂αbν)α , (16)

and the antisymmetric components of the field equations are

2τ[µν] = y2bµν − 2z∂[µ∂αbν]α + x∂[µ∂αhν]α . (17)

The divergence of the symmetric source becomes

− 2ηµρ∂µτ(ρν) = (a + b)2hµ
ν,µ + (b + c + f )hαβ

,αβν −
1
2

x2∂µbµν =
1
2

x
(
2hµ

ν,µ − hαβ
,αβν −2∂µbµν

)
. (18)

In the second equality we have taken into account the relations a + b = −(b + c + f ) = x/2
that follow identically from the definitions (13) and (14). Thus, if the coupling of the hµν and the bµν

vanishes, x = 0, the usual covariant conservation of energy-momentum is recovered. The divergence
of the antisymmetric source is

− 2ηµρ∂µτ[ρν] = (y + z)2∂µbµν −
1
2

x
(
2hµ

ν,µ − hαβ
,αβν

)
=

1
2

x
(
2∂µbµν −2hµ

ν,µ + hαβ
,αβν

)
. (19)

In the second equality, we have used that y + z = x/2, as dictated by the coefficients (14) and (15).
Combining the two divergences shows that, to the linear order in perturbations, we have simply
∂µτµ

ν = 0. Another consistency check is that the connection equations of motion are redundant with
the equations of motion for the antisymmetric frame field perturbation.

3. Propagator

The field B̃µν ≡ Bµν − Aµν decomposes into the spin parts

B̃µν = (2+)⊕ (1+)⊕ (1−)⊕ (1−)⊕ (0+)⊕ (0+) ≡ (g)⊕ (b)⊕ (m)⊕ (e)⊕ (s)⊕ (w) . (20)

Thus, in terms of the irreducible representations of the rotational group, a rank-2 tensor consists of
a tensor piece, one vector and two pseudovector pieces, and two scalars. Along the lines of Refs [13,23],
they could be referred to as “gravity”, “magnetic”, “momentum”, “electric”, “stress” and “work”,
respectively. To construct the spin projection operators [13,14,16,23] into the respective subspaces,
we define, in terms of the wavevector kµ, the two bases

θµν = ηµν − kµkν/k2 , σµν = kµkν/k2 . (21)

The projection operators we need for the symmetric sector can then be defined as

P(g)
µνρσ = θµ(ρθσ)ν −

1
n− 1

θµνθρσ , (22)

P(m)
µνρσ = θµ(ρσσ)ν + θν(ρσσ)µ , (23)

P(s)
µνρσ =

1
n− 1

θµνθρσ . (24)
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It turns out that we need only one scalar projector, since the (w)-subspace is empty in any possible
pure-torsion theory. When taking into account the antisymmetric sector, the following operators need
to be introduced.

P(e)
µνρσ = θµ[ρσσ]ν − θν[ρσσ]µ , (25)

P(b)
µνρσ = θµ[ρθσ]ν , (26)

P(m×e)
µνρσ = θµ[ρσσ]ν + θν[ρσσ]µ , (27)

P(e×m)
µνρσ = θµ(ρσσ)ν − θν(ρσσ)µ . (28)

The two first operators form the complete set of orthogonal projectors, and the two last ones mix
the symmetric and the antisymmetric sectors. Then we can rewrite the total field equation using the
projections as follows:

k2
[

aP(g)
µνρσ + (a− 3c)P(s)

µνρσ + yP(b)
µνρσ +

1
2

x
(

P(e)
µνρσ + P(m)

µνρσ + P(m×e)
µνρσ + P(e×m)

µνρσ

)]
B̃ρσ = 2τµν . (29)

Remarkably, the spin-1 parity-odd electric-momentum subspace (m) ⊕ (e) has always a
degenerate propagator, even when the function x is non-vanishing. This degeneracy reflects the
propagation of an n-vector. The symmetry that eliminates it is

B̃µν → Bµν + ∂µVν , (30)

whose symmetric part is the diffeomorphism and the antisymmetric part the two-form gauge
redundancy. We have one iff we have the other. Interestingly, this Vµ can be identified as the Cartan’s
radius vector. It cannot be fully confined into any of the spin subspaces, but it corresponds to some
of the components of the “momentum” and some of the components of the “electric” vector pieces
from the symmetric and the antisymmetric sectors, respectively. In n = 4 we may understand that the
4 components of Vµ are separated into the 2+2 transverse modes of the 2 massless 3-vectors which can
only be unleashed in unison. In fact, in terms of the spin projectors (omitting their indices from now
on), we can rewrite P(m×e) + P(e×m) = P(m) + P(e) above, apparently eliminating the degeneracy and
the coupling. For these non-trivial reasons, we can invert (29) into the propagator Π that becomes:

Π =
P(g)

ak2 +
P(s)

(a− 3c) k2 +
P(b)

yk2 +
P(m) + P(e)

xk2 . (31)

We have arrived at the main result of this paper.

4. Applications

Let us then look at the implications of (31) in a few different contexts of frame field theories.

• The teleparallel equivalent of GR [5,24] corresponds to c1 = 1
4 , c2 = 1

2 , c3 = −1, and vanishing
higher order terms. These imply a = c = 1 and x = y = 0. From the formulas (13) and (14) it
appears that we may reproduce equivalent theories by many other choices of parameters, but it is
important to note that this would require non-analytic functions of the form ci ∼ 1/2 for i > 3.
Thus, the action of the teleparallel equivalent of GR is unique (up to irrelevant boundary terms)
already at the linear order. For further convenience we define this action as I = −

∫
dnxeT,

introducing the torsion scalar T ≡ Tαµν

(
1
4 Tαµν + 1

2 Tµαν
)
− TµTµ.

• The modified teleparallel f (T) gravity [25,26] is given by a nonlinear function of the torsion
scalar. Such models have received considerable attention in the literature [27,28], but nevertheless
the nature of their degrees of freedom remains undisclosed, see e.g., [29,30] for current discussion.
There is evidence [31,32] that the f (T) models would, in general, contain a propagating extra
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degree of freedom [33] or more [34], but here we confirm the well-known fact that in flat space the
propagator reduces to that of GR. That could imply that this class of modified gravity models has
a strong coupling problem. Indeed there are disturbing bifurcations in the characteristics [32] and
constraint structure [33].

• The modified teleparallel f (T, B) gravity [35,36], where we have the boundary term B = DµTµ

in terms of the metric Levi-Civita connection Dµ, has been motivated by the relation of the metric
Ricci curvature R and the torsion invariants, R = −T + 2B, due to which these models can
be also considered as f (T,R) gravity [37,38]. Indeed, we obtain the four functions as a = fT ,
c = fT − fBB2, x = y = 0, implying that they propagate an extra scalar degree of freedom, in an
analogy to the well-studied f (R) models. The scalar field has the mass ∼1/

√
fBB, and therefore

one should have fBB > 0 to avoid a tachyonic instability.
• The New GR [8,11,12] was considered at the linear order in e.g., Section 4.6 of [15], and its field

content can be deduced from detailed analyses in the more general context of the Poincaré gauge
theory [14,16,20]. The one-parameter class of theories 2c1 + c2 + c3 = 0 i.e., x = 0 involves (n2 −
3n)/2 components of bµν due to the symmetry bµν → bµν + ∂[µvν], where vµ is an arbitrary vector.
However, note that though originating from the “magnetic” pseudovector, the Kalb-Ramond field
has helicity 0 since at the massless limit, oppositely to the Maxwell field, it is the longitudinal
mode that remains while the transverse modes decouple.

• The generic theory (4) is a higher-derivative New GR. One should set a = 1 to obtain the canonical
normalisation for the graviton. Now the gravitational wave also may possess a breathing mode,
which propagates healthily, given that either c > 1 or c < 1/3. It is possible to give a mass to
this scalar, but not to the graviton nor the scalar particle associated with the Kalb-Ramond field,
without introducing ghosts or non-analytic functions ci. Again, the crucial symmetry (30) requires
x = 0, and the Kalb-Ramond field is not a ghost given that y > 0. The phenomenological viability
of these models might be worth investigations.

• From the perspective premetric teleparallelism, the prescription (4) can be seen as the
specification of the constitutive law that is reversible and linear but nonlocal. Recently a thorough
analysis was performed for teleparallel gravity theory defined by a linear and local constitutive
law [39]. From that analysis we can see that by setting the irreducible component “principal-1”
of the constitutive law [39] to vanish gives a = c = y = c2 and x = 0, thus eliminating precisely
effects of the vector V from the spectrum. Constitutive laws with infrared nonlocality have been
proposed [40,41].

• The prototype infinite-derivative gravity [10,42,43] is given by a = c = e
−2
M2 , x = y = 0, where M2

is the energy scale of non-locality. Such gravity theories could avoid both ghosts and singularities,
and indeed they are often studied both at classical [44–46] and quantum [47] levels. We note that

the teleparallel prototype theory can be realised simply as I = −
∫

dnxee
−2
M2 T, whereas in the

purely metric formulation the action requires the superposition of the Einstein-Hilbert and a more
complicated term that is quadratic in the Riemann curvature [10].

To consider even more general frame field theories, it might be interesting to relax our main
assumptions of (1) metric-compatibility (2) parity-invariance or (3) analyticity3. To proceed towards
nonlinear orders, a natural first step would be to repeat the computation in an (a)dS background.
Of course, one can also add further fields besides the frame field. We will present one interesting
example, wherein we add a scalar field φ for the purpose of promoting the previous example into a
scale-invariant theory.

3 Our results can be used to immediately read off the field content of the many models considered in e.g., [48].
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• An example of a scale-invariant teleparallel theory is given (in n = 4 for simplicity) by

L = φ2
(1

4
Tαµν +

1
2

Tµαν − 1
3

gανTµ
)

e−φ22Tαµν − 6
(

Dµφ
)
(Dµφ) , (32)

where the covariant derivative involves the torsion Dµ = ∂µ − 1
3 Tµ [49,50]. This action is invariant

under the conformal transformation of the coframe ea
µ → eθea

µ accompanied by the rescaling
φ→ eθφ. We can choose the gauge φ = 1/M in order to explicitly recover the previous case. It is
not possible to adjust the coefficients above without either breaking the scale-invariance or the
symmetry (30).

5. Conclusions

To summarise our derivations, we deduced that the most general quadratic torsion action contains
nine free functions, and found that four of them are independent at the linear order and appear in the
propagator (31). The purely metric sector of the theory is determined by the two independent functions
a and c which describe the propagation of the graviton and the dilaton. Now there is also the function
y which determines the propagation of the Kalb-Ramond field, and the function x which controls the
non-conservation of matter energy-momentum and the propagation of the Cartan radius vector.

An issue we did not touch on in this paper was raised recently in [29]. The degrees of freedom
depend upon the background geometry. Which is now the geometry that defines a physical observer?
We have assumed here that fluctuations around the vacuum @a = δa occur in the Weitzenböck geometry
ωa

b = 0. It appears to be consistent as well to consider that observations take place, say, in the properly
parallelised geometry ωa

b = dδb(Ba). The results in this prescription would be obtained from the
above simply by erasing the antisymmetric fluctuations.
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