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Abstract: We argue that the problem of calculating retention time scales in young black holes is a
problem of relative state complexity. In particular, we suggest that Alice’s ability to estimate the
time scale for a perturbed black hole to release the extra n qubits comes down to her decoding the
Hilbert space of the Hawking radiation. We then demonstrate the decoding task Alice faces is very
difficult, and in order to calculate the relative state complexity she would either need to act with an
exponentially complex unitary operator or apply an extremely fine-tuned future precursor operator
to the perturbed state in SU(2K).
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1. Introduction

In recent years both quantum complexity and quantum information theory have had a substantial
presence in quantum black holes.

In gauge/gravity duality a deep connection between holographic quantum complexity and
the horizon geometry has been proposed [1–4]. In the framework of anti-de Sitter/conformal field
theory (AdS/CFT), and assuming Einstein–Rosen = Einstein–Podolsky-Rosen (ER = EPR) [5], quantum
complexity has been argued to ensure infalling observers safe travels. The question of whether or not
high energy quanta are present behind the horizon reduces to the question of whether Alice can decode
a subfactor of the Hilbert space of the Hawking radiation before the complexity bound is saturated.
So in the case of a two-sided AdS black hole, firewalls are present if either Alice acts with a maximally
complex (i.e., exponential in the entropy) unitary operator or if she waits for classical recurrence time.

Two important holographic duals have been proposed [4,5], namely the “complexity = action”
and “complexity = volume” conjectures. The former relates the complexity of a boundary conformal
field theory (CFT) to the action of the dual Wheeler–DeWitt patch in AdS, while the latter relates
the complexity of a holographic state to the volume of a maximally extended spacelike hypersurface
behind the horizon.

On the other hand, delocalization of quantum information between random subsystems with
respect to the Hilbert space factorization, and the subsequent growth of entanglement is a central
point for studying the interior black hole region. Black holes with interior dynamics described as a
quantum circuit [6] have been proved to be fast scramblers. In this framework they have been shown
to scramble quantum information in time logarithmic in the number of the degrees of freedom. That is,
the dynamics take an initially localized perturbation and make it undetectable to an observer who fails
to study a significant part of the initial degrees of freedom. In turn, there is a growing consensus that
the scrambling time is the appropriate time scale associated with release of quantum information.
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In light of these advancements, we argue that calculating retention time scales is actually a
question of relative state complexity. We claim that in such scenarios Alice cannot calculate the relative
state complexity before the complexity bound is saturated. Alice has two options, she could either act
with a maximally complex unitary operator or act with a future precursor operator to the perturbed
(late time) state, and rely on extreme fine-tuning. Both options are shown to be computationally
unrealizable for evaporating black holes.

2. Black Holes as Random Quantum Circuits

In the current section we describe black holes as random quantum circuits [6–8]. These are systems
composed of K degrees of freedom, and have discrete time-step evolution ∆τ, which is dictated by a
universal gate set of two-local gates. A gate set is a collection of gates (simple unitary transformations)
which at each time-step act on the qubit system. For simplicity, we choose our gate set to consist of
two-local gates, where each gate can act on no more than two qubits per time-step.

2.1. Fast Scramblers

Black holes have been proven to be the fastest scramblers [6,9,10]. Scrambling, a form of
strong thermalization, is a process which stores information in highly nontrivial correlations between
subsystems. When chaotic thermal quantum systems of large number of degrees of freedom undergo
scrambling, their initial state, although not lost, is very computationally costly to be recovered. In this
paper we assume that although the modes are scrambled, they are still localized in a certain way
across the horizon, as seen in Figure 1. However, because of the strong thermalization, they remain
indistinguishable from the rest of the black hole degrees of freedom as far as Alice is concerned.
Suppose Alice is outside the black hole, and throws a few qubits inside. From her perspective,
those extra modes will be effectively diffused, i.e., smeared across the horizon in a scrambling time

t∗ ∼
β

2π
log N2, (1)

where β is the inverse temperature, and N is the number of degrees of freedom.
As a result, a scrambling time after perturbing the black hole, Alice will not be able to distinguish

those extra qubits. This statement is similar to the upper chaos bound for general thermal systems in
the large N limit [11]. In particular, the large N factor is what initially keeps the commutators small.
However, for t > t∗, scrambling yields rapid commutator growth, and so the distance between the
initial and perturbed states in complexity geometry increases non-trivially, Equations (12) and (13).

In strongly coupled thermal quantum systems chaos and scrambling are intimately related,
which is why (1) is of particular interest to both quantum cloning, and retention time scales,
i.e., the minimum time for information to begin leaking via Hawking radiation.

Imagine Bob crosses the horizon carrying a qubit, and Alice hovers outside the black hole. It was
shown [6] that by the time Alice recovers the perturbed qubit by collecting the outgoing modes,
and enters the black hole, Bob will have already hit the singularity. So retention time scale of order the
logarithm of the entropy (2) is just enough to save black hole complementarity from paradoxes

tret ≥
β

2π
log N2 (2)

Thus quantum cloning cannot be verified given the above bound is respected.
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Figure 1. Depiction of a black hole as an (K + n)-qubit system. Imagine the region inside the circle
is the black hole interior, and the one outside of the circle is the exterior region. The red dots are the
scrambled extra n qubits embedded into the horizon. The present figure was inspired by Figure 10
from [2].

Recent studies of quantum information and quantum gravity [6–8,12–16] support the scrambling
time as the appropriate time scale at which black holes begin releasing information via Hawking
radiation. Note that in such generic early evaporation scenarios where quantum information begins
leaking out of order the scrambling time, not every Hawking particle carries information as this would
make the retention time scale tret ∼ log rS, which would violate the no-cloning bound (2).

2.2. Qubit Description of Black Holes

A quantum circuit is composed of gates, and describes the evolution of a quantum system of
qubits. The gates may be defined to act on an arbitrary number of qubits, and to couple any given pair
of them. The gates may act in succession or in parallel, where series-type quantum circuits are not
good scramblers.

Here, we present a random quantum circuit with time-dependent Hamiltonian which has been
proved to scramble in time logarithmic in the entropy [17,18].

Consider a K-qubit analog of a Schwarzschild black hole in 3 + 1 dimensions, where

K ∼ SBH ∼
A

4GN
(3)

here A is horizon area, and GN is Newton’s constant.
Let the K qubits be in some initial pure state of the form

|ψ〉 = ∑
i

αi |i〉 , (4)

where αi is the amplitude, and |i〉 is the Hilbert space basis. The state lives in a Hilbert space of
2K dimensions.

In this framework the Hamiltonian is given as [17]

Hi = ∑
l<m

3

∑
αl ,αm=0

σ
αl
l ⊗ σαm

m ∆Bi,l,m,αl ,αm , (5)

where ∆Bi,l,m,αl ,αm denote the independent Gaussians, σi are Pauli matrices, and the eigenenergies live
in a 2K dimensional state space.
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Thus the evolution between two successive time-steps is

e−iHi∆τe−iHi+1∆τ (6)

Here, there is an inverse relation between the time-step and the strength of the interactions. It was
thus demonstrated by Hayden et al. in [17] that the time required to scramble an arbitrary number of
degrees of freedom scales like log k.

The evolution of the K-qubit system is controlled by a random quantum circuit, composed of
a universal gate set of two-local gates, where we assume the gate set approximates Hamiltonian
time evolution

U = {gi} . (7)

Suppose k-local gates with k > 2 are strictly penalized. In addition to the k-local restriction,
we assume the gates have non-zero couplings only with respect to the nearest qubits, similar to
ordinary lattice Hamiltonians. Of course, in principle, nothing demands this particular locality
constraint, and we could have easily allowed any arbitrary pair of qubits to couple.

The evolution is divided into time steps ∆τ, where at each time-step a random gate set is
chosen. The choice is random because at each time-step the gate set is picked via a time-dependent
Hamiltonian governed by a stochastic probability distribution. Furthermore, the random choice has to
also determine which k qubits the gate set will act on. Note that the random quantum circuit that we
use is bounded from above by K/2 gates which are allowed to act in parallel every time-step.

We suggest a natural time scale to associate with the time intervals between successive time steps
would be the Schwarzschild radius ∆τ ∼ rS (i.e., light crossing time). One does not have to look further
than elementary black hole mechanics to see why this is the case. For instance, in a freely evaporating
black hole, rS is adiabatically decreasing. Consequently, the time intervals between successive time
steps are shorter, and thus black hole evaporates at a faster rate. This fits well with classical black
hole thermodynamics

rS ∼ T−1 ∼ β, (8)

where β denotes the inverse temperature.
Since this random quantum circuit scrambles information logarithmically, throughout the paper

we consider it to be an effective analog of general early evaporation models.

2.3. Relative State Complexity

In this section we argue that calculating retention time scales for systems controlled by random
quantum circuits is a question of relative state complexity. We show that calculating relative state
complexity is extremely difficult, and in order for Alice to carry out the computation she would need
to either act with an exponentially complex unitary operator or apply a future precursor operator to
the perturbed state, and rely on extreme fine-tuning.

We can simply define circuit (gate) complexity as the minimum number of gates required to
implement a particular state. The evolution of a quantum state via time-dependent Hamiltonian
resembles the motion of a non-relativistic particle through the homogeneous SU(2K) space [19].
That is, the particle defines a trajectory between a pair of points, where one point corresponds to
some initial state |ψ〉, while the second point corresponds to a perturbed state |ψ′〉, where |ψ〉 , |ψ′〉
∈ SU(2K). The particle thus moves on a 2K dimensional state space. Without loss of generality, the
state evolution can be straightforwardly given by the Schrodinger equation

i
∂ |ψ〉

∂t
= H |ψ〉 (9)

Given two states are different to begin with, their relative state complexity naturally increases
with time.
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A compelling argument was made in [19] that the naive way of defining the distance between
two states does not capture the whole story. The classical Fubini metric bounds the state distance as
d ∈ [0, π/2]. Obviously, the upper bound can be easily saturated and we need a different measure
to quantify the relative state complexity between two states. Due to the exponential upper bound of
complexity, Cmax = eK, quantifying relative state complexity necessitates the use of complexity metric.
That is the notion of distance between states on the non-standard SU(2K), see refs. [20,21]. Intuitively,
the farther apart two states are on SU(2K), the higher their relative state complexity is. Geometrically,
we can think of relative state complexity as the minimum geodesic length in SU(2K) which connects
two states.

In light of the proposed random quantum circuit, and following the definition of circuit complexity,
we define relative state complexity as the minimum number of time steps required to go from one
quantum state to another.

Keep in mind that every time step a random set of two-local gates is chosen following a
time-dependent Hamiltonian controlled by a stochastic probability distribution. So essentially,
using Nielsen’s approach [20], we are interested in assigning a notion of distance (geodesic length) to
the gate sets. Here the minimum length increase in complexity geometry sets a lower bound for the
minimum complexity growth, which corresponds to acting with a single 2-local gate.

More precisely, suppose Alice perturbs the K-qubit system immediately after its formation by
n qubits, where n � K, Figure 1. We ask: what is the relative state complexity of |ψ〉 and |ψ′〉?
In other words, what is the minimum number of time steps N(∆τ) in which Alice could time-reverse
the perturbation

|ψ〉 = U1U2U3...UN(∆τ)

∣∣ψ′〉 , (10)

where |ψ〉 ∈ K-qubit system, |ψ′〉 ∈ (K + n)-qubit system.
Let us now turn to the main objective of this paper which is to address the question:

In a young black hole, can Alice calculate the relative state complexity of |ψ〉 and |ψ′〉 in time less
than 2K?

In our case calculating the relative state complexity means counting the number of time steps in
which the extra n qubits are radiated to infinity.

Our claim is that in implementing U, Alice cannot beat 2K because of the causal structure of
the black hole spacetime. Alice does not have access to all the relevant degrees of freedom which
dramatically increases the computational complexity. Therefore, the inability of implementing U faster
than 2K not only renders the computation unrealizable for astrophysical black holes, but also takes
away Alice’s predictive power.

We will now look at the two ways Alice could hope to estimate (9). Namely, she could either
apply gate sets to the radiated qubits, or act with an extremely fine-tuned precursor.

2.3.1. How Fast Can Alice Calculate the Relative State Complexity?

In this subsection we consider the Harlow–Hayden reasoning [15] but for the case of a young
black hole. Recall that in [15] Harlow and Hayden argued that Almheiri, Marolf, Polchinski and
Sully (AMPS)’ conjectured violation of the equivalence principle after page time is computationally
unrealizable for black holes formed by sudden collapse since it requires complicated measurements
on the emitted Hawking cloud. We now study the limit of the proposed 2k+m+r complexity bound,
and demonstrate that it is strong enough to hold even for the case where (i) entanglement entropy is
still low, and (ii)HR � HBH .

Here we employ a standard Hilbert space decomposition where k are the black hole qubits
in HBH , m are the qubits of the black hole atmosphere in HB, and r are the emitted qubits in HR,
whose dimensionality grows as the black hole evaporates. We assume Alice can only manipulate the r
qubits, and that all outside observers must agree onHB ⊗HR. For her this is essentially a decoding
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problem, where she acts with the unitary transformation U to HR. Alice’s goal is to decode HR in
search for the extra n qubits, and count the number of time steps in which they were radiated away.

To demonstrate more clearly the robustness of the 2k+m+r complexity bound, suppose we violate
the fast scrambling conjecture [17]. The violation is in the sense that Alice can recognize the perturbed
n qubits easier, and does not need to decode a significant part of all the system’s degrees of freedom.
Even in this case, however, we argue there is an overwhelming probability Alice cannot beat 2k+m+r.

Since the scrambling time is the shortest time-scale compatible with the no-cloning bound (2),
one might naively expect Alice can time-reverse the perturbation in time comparable to the scrambling
time. Considering the exponentially high upper bound of complexity, however, we can easily see
that this is not the case [2]. Even though the scrambling time is negligible compared to the time-scale
associated with reaching maximum complexity, in a scrambling time the complexity of the system
scales as

C∗ = S log S (11)

Although nowhere near the upper bound of Cmax = eK, the scrambling complexity is high enough to
make the computation extremely difficult. From a geometry perspective, by the scrambling time, due
to quantum chaos, the trajectories of the two points on SU(2K) diverge exponentially, Figure 2.

Figure 2. A pair of points and their trajectories on complexity geometry SU(2K). They are initially
arbitrarily close, i.e., low relative state complexity. At the scrambling time, however, their trajectories
diverge, and the distance between them grows exponentially.

Despite being initially arbitrarily close, given they are separated to begin with, in just a scrambling
time the distance (i.e., relative state complexity) between them grows exponentially.

Let us further illustrate the point with the use of an out-of-time-order correlator (OTOC) C(t).
OTOCs are used for measuring quantum chaos [22,23]. In particular, OTOCs describe how initially
commuting operators develop into non-commuting ones. Suppose A(0) and B(t) are simple Hermitian
operators, where B is just a time-evolved A. Initially, for t� t∗ the correlator is approximately constant.
Then at the scrambling time, due to quantum chaos [11]

C(t) = −
〈
(B(t), A(0))2

〉
β

(12)

After the scrambling time, regardless of A and B, the correlator takes the form

C(t) = 2 〈BB〉 〈AA〉 (13)
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This exponential decay is associated with the initial rapid growth of the commutator,
which becomes highly non-trivial at the scrambling time. Note that for small t, the large number of
black hole degrees of freedom suppress the commutator. Therefore, the scrambling time is enough
to make the operators very complicated, and thus the distinguishablity between them non-trivial.
So what can Alice do?

The obvious thing to do would be to brute-force. In this case Alice will have to first artificially
group the r qubits in HR into different sets, and then apply a complex unitary transformation to
those sets in search for the extra n qubits. The difficulty here is to have a unitary transformation
which acts on a particular set of qubits [15]. Unlike the Harlow-Hayden argument where Alice tries to
decode a subfactor ofHR in order to verify entanglement withHB, here the decoding task is especially
complicated given Alice will have to engineer multiple such unitary transformations because of the
monotonically growing dimensionality ofHR. It seems that even with the assumption we made that
Alice need not probe a significant part of all the initial degrees of freedom to recognize the extra qubits,
the computation remains extremely non-trivial.

Of course, Alice could try to use some clever tricks to carry out the computation faster than
2k+m+r. For instance, she could try to impose some special structure to the unitary transformation,
and in particular, on how it evolves with time. She could engineer U to allow specific sequences of
gate sets to act every time-step on preferred qubit sets. However, such modifications can only account
for very small changes which are not enough to speed up the computation to reasonable time scales.

Another possibility is for Alice to manipulate the adiabatically growing number of r qubits
and make them interact in a preferred manner. By making use of the smaller dimensionality ofHR,
she could form sets of qubits, establish certain connection between them, and choose which sets
to interact every time step. However, despite r � k engineering such a connection between the r
qubits would obviously require introducing additional degrees of freedom which would scale like
an exponential in r. Thus the computation becomes very complex even for relatively small r. In fact,
by trying to fine-tune the qubits in this way, Alice makes her decoding task harder.

Clearly, even in the case of a young black hole, and making the unphysical assumption that
Alice need not decode a large part of the entropy, the computation remains very hard. Even though
there is nothing, in principle, that prevents the first n emitted qubits to be the perturbed one, this is
exponentially unlikely. So even with weak violations of the fast scrambling conjecture the 2k+m+r

bound holds with an overwhelming probability.
What about black holes which have evaporated more than half of their initial degrees of freedom?

One could hope to speed up the computation by letting the black hole evaporate passed its Page time,
and apply certain gate sets onHR. For example, onceHR > HBH , ancillary qubits could be introduced
and entangled with subfactors of HR. Then one could apply gates to those subfactors in effort to
implement U faster than 2k+m+r. Unfortunately, as long as the extra qubits scale like r, the computation
does not get any faster.

Therefore, unless Alice finds a way to calculate the relative state complexity in a way which does
not involve exponential number of gates, the 2k+m+r time-scale remains solid.

2.3.2. Precursors and Extreme Fine-Tuning

Here we examine Alice’s second attempt of calculating the relative state complexity which now
involves applying a future precursor operator to the late-time state. For simplicity, we study the
case using a generic time-independent Hamiltonian but expect the main conclusions to hold for the
time-dependent ones, too.

Alice’s task here is to adjust the late-time state and time reverse it. Effectively, this means running
the chaotic black hole dynamics backwards. We show that this process of time-reversing (10) by
applying a future precursor operator to the perturbed state is notoriously difficult, and Alice still
cannot beat 2k+m+r. The particular argument should be considered in the context of complexity
geometry on SU(2K).
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The laws of physics are time-reversible, so any state perturbation that we introduce could be
reversed. Naturally, however, for t > t∗ complexity tends to increase linearly in K until it saturates the
bound of Cmax = eK. Therefore, after the scrambling time we expect linear increase of the relative state
complexity between |ψ〉 and |ψ′〉 as t grows. Geometrically, this corresponds to a linear growth of the
minimum geodesic length connecting the two states in SU(2K).

Let us analyze the same example of Alice perturbing the K-qubit system immediately after its
formation with n qubits. As we already saw, whatever Alice does, she cannot carry out the computation
faster than 2k+m+r. Determined to calculate the relative state complexity before the complexity bound
is saturated, however, imagine she now acts with a specific operator, namely a future precursor
operator [24].

A future precursor operator P+
p is a highly non-local operator which when applied at a certain

time simulates acting with a local operator P at an earlier time

P+
p = U(t)PU†(t), (14)

where U(t) = e−iHt.
Generally, calculating a precursor operator for ∆t ≥ t∗ is extremely difficult as one has to keep

track of all the interactions of the degrees of freedom of the system. The computational costs grow
immensely in cases involving black holes because they not only have a large number of degrees
of freedom but also saturate the chaos bound [11]. For the first scrambling time after perturbing
a black hole, the complexity growth is governed by the Lyapunov exponent, and hence grows
exponentially [25]. Black holes are the fastest scramblers in Nature, and due to their chaotic dynamics,
only a scrambling time after the perturbation, all of the degrees of freedom (K ∼ 1077 for a solar
mass black hole) will have indirectly interacted. Evidently, the precursor operator quickly becomes
extremely difficult to calculate. Whatever Alice does to implement the precursor, she must time-reverse
all of the interactions between the degrees of freedom of the black hole which requires an extreme
degree of fine-tuning. Regardless of the exponential complexity, however, individual interactions
remain well defined.

In our case acting with the precursor operator takes the general form

|ψ〉 = e−iHtPeiHt ∣∣ψ′〉 . (15)

Similar to the evolution of a quantum state via a time-dependent Hamiltonian, the action of a
future precursor resembles a backward motion of a particle through complexity geometry.

The high complexity of (14) corresponds to the complexity associated with constructing a
thermofield-double state using only t < 0 degrees of freedom, see Ref. [24]. In both cases, due to the
large number of degrees of freedom an extreme fine-tuning is required. Even a mistake of order a single
qubit will accumulate, and result in a completely different end-state. The system only becomes more
sensitive to errors as the time separation increases. Therefore, unlike regular unitary operators which
need not always be complex, precursors are typically extremely complex and unstable to perturbations
(the butterfly effect) whenever the time separation is at least of order the scrambling time.

Expanding (15) for ∆t ∼ t∗ yields

|ψ〉 = e−iH(t∗−ti)PeiH(t∗−ti)
∣∣ψ′〉 , (16)

where ti is the initial time when the K-qubit system was perturbed.
Notice we have restricted our analysis not to include cases when either ∆t � t∗ or ∆t � t∗.

The former case was discussed in ref. [25], where it was argued that before the scrambling time the
distance in complexity geometry between the initial and perturbed states remains approximately
constant. Initially, for t < t∗, the large N terms keep the commutators relatively small. So scrambling
is what drives the rapid distance growth in SU(2K). On the other hand, the latter case is unnecessary
since, as we showed, the computation becomes unmanageable in just t∗.
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Therefore, due to the chaotic black hole dynamics, and the great deal of fine-tuning required,
the probability of Alice implementing the precursor (and thus calculating the relative state complexity)
without making a mistake of even a single qubit is exponentially small.

In conclusion, we can see that due to the causal structure of the black hole geometry, and the
chaotic dynamics there is nothing Alice can do that would allow her to calculate the relative state
complexity faster than 2k+m+r. This exponential time scale, however, is only applicable for AdS black
holes since astrophysical black hole evaporate much before the complexity bound is saturated. So in
the case of black hole formed by a sudden collapse there are two very general scenarios, associated
with minimum and maximum retention time scales, tmin and tmax, respectively. Obviously, the fastest
retention time possible which obeys the no-cloning bound (2) is

tmin ∼ O
(

β

2π
log N2

)
, (17)

up to some constant.
This is similar to the Hayden–Preskill result [6] concerning the mirror-like dynamics of an old

black hole. On the other hand, the longest retention time for astrophysical black holes would be of
order the evaporation time tev

tmax ∼ O(M3) (18)

Usually, such retention time scales are associated with remnants which have been seriously
questioned due to the apparent violation of the Bekenstein entropy bound.

3. Conclusions

The goal of this paper was to argued that calculating retention time scales is a decoding
task, and a problem of relative state complexity. Our claim was that Alice cannot calculate the
relative state complexity between an initial and perturbed states before the complexity bound is
saturated. We considered a quantum system of K qubits whose interactions are dictated by a random
quantum circuit, and assumed the gate sets approximate a Hamiltonian evolution. In this framework,
at every time-step the quantum circuit implements a random set of two-local gates according to a
time-dependent Hamiltonian with stochastic probability distribution. In this setting we perturbed the
K-qubit system with n qubits, and assumed that (i) HR � HBH , (ii) the black hole begins releasing
information a scrambling time after its formation, and (iii) nothing in principle prevents the first n
emitted qubits to be the perturbed ones.

We examined several techniques Alice could use to decode HR, and showed she cannot beat
2k+m+r. We demonstrated there is an overwhelming probability Alice cannot decodeHR in time less
than 2k+m+r, unless she acts with an exponentially complex unitary operator or apply an extremely
fine-tuned future precursor operator to the perturbed state in SU(2K), which renders the computation
unrealizable for evaporating black holes. In summary, we made the case that the 2k+m+r bound
proposed by Harlow and Hayden [15] holds strong even for young black holes.
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