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Abstract: Recent results of the LARASE research program in terms of model improvements and
relativistic measurements are presented. In particular, the results regarding the development of
new models for the non-gravitational perturbations that affect the orbit of the LAGEOS and LARES
satellites are described and discussed. These are subtle and complex effects that need a deep
knowledge of the structure and the physical characteristics of the satellites in order to be correctly
accounted for. In the field of gravitational measurements, we present a new measurement of the
relativistic Lense-Thirring precession with a 0.5% precision. In this measurement, together with
the relativistic effect we also estimated two even zonal harmonics coefficients. The uncertainties of
the even zonal harmonics of the gravitational field of the Earth have been responsible, until now,
of the larger systematic uncertainty in the error budget of this kind of measurements. For this
reason, the role of the errors related to the model used for the gravitational field of the Earth in these
measurements is discussed. In particular, emphasis is given to GRACE temporal models, that strongly
help to reduce this kind of systematic errors.

Keywords: satellite laser ranging; LAGEOS satellites; perturbations; models; general relativity;
Lense-Thirring effect

1. Introduction

Geodetic satellites, such as the two LAGEOS (LAser GEOdynamic Satellite), represent powerful
probes for the study of the Earth’s gravitational field, so to derive significant information on its internal
structure, but also to test fundamental physics, such as the tiny relativistic precessions that produce
secular effects in some of their orbital elements. Laser ranging to Corner Cube Retroreflectors (CCRs)
is a technique used since 1964 to track both Earth’s orbiting satellites and the Moon (via the CCRs
placed on its surface by the Apollo and Luna missions). It has provided a number of impressive
results in the study of both Earth and Moon geophysics, as well as in gravitational physics and in
General Relativity (GR). These powerful laser tracking techniques are known, respectively, as Satellite
Laser Ranging (SLR) [1,2] and Lunar Laser Ranging (LLR) [3–5]. The observable is represented by
the round-trip time of short laser pulses measured by means of very precise time devices down to
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a precision of about 10 ps or less in the case of the SLR, and about 100 ps in the case of the LLR1.
The root-mean-square (RMS) precision for the corresponding range measurements is as small as 1 mm
for SLR and about 10 mm for LLR.

It is worth mentioning that both SLR and LLR are two relevant techniques, among others, of the
observational space geodesy. Indeed, Very Long Baseline Interferometry (VLBI), Global Navigation
Satellite Systems (GNSS), Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS),
together with SLR and LLR constitute the Global Geodetic Observing System (GGOS) [6]. Within GGOS,
improvements in technology and in modelling will produce advances in geodesy and geophysics
as well as in GR measurements. Therefore, space geodesy and GR are not independent, but tightly
related, and improvements in either field produce benefits in the other in a positive loop. For instance,
an improvement of one order of magnitude is expected, in the near future, on the accuracies of the
observational components of space geodesy [7]. This would imply a tenfold advancement in a series
of closely related fields, such as: modelling, measuring techniques and their accuracy, reference frames
and their realization, ground stations position.

In recent years there has been a renewed interest in the geophysical and geodetic applications
of the predictions of GR, thanks to increasingly precise gravimetric measurements and the ease of
dissemination of precise time measurements via atomic (transportable) clocks and GNSS. In fact,
relativistic geodesy [8] is becoming increasingly important and with applications more and more close
to everyday life [9–14]. Consequently, from these advances, the final accuracy of fundamental physics
measurements using the main space geodesy techniques will also benefit.

In this paper we deal with SLR. In particular, we will focus on the main issues regarding the
GR measurements by laser tracking to geodetic and passive satellites [15–24]. These issues concern
the models and the estimate of the systematic sources of error in view of new measurements and
tests of gravitational physics that can be achieved in the future with this powerful technique [25].
SLR accuracy is currently limited by uncertitude on the satellite centers of mass offset, atmospheric
refraction modelling and stations biases. Improvements in these fields will allow a sub-mm precision
in the RMS of the SLR range measurements with significant benefits in both geophysical and GR
measurements. A fundamental role in this context is played by the dynamical models used for the
reconstruction of the satellite orbits. In particular, modelling both gravitational and non-gravitational
perturbations in a reliable manner constitutes a delicate task, due to the subtle and complex effects
they produce. Moreover, understanding the perturbations is an important prerequisite for an estimate
of the systematic errors—in the case of new measurements of relativistic effects—that will need to be
reliable, robust and accurate.

The activities of the LARASE (LAser RAnged Satellites Experiment) research program are
here described and discussed. The final goal of LARASE is to measure relativistic effects in the
weak-field, slow-motion limit and to compare the predictions of GR with those of alternative theories
of gravitation in near-Earth environment [26–28]. In particular, we devote special attention to the
precession of the orbital plane of a satellite produced by the so-called Lense-Thirring effect [29,30].
The Lense-Thirring effect is a consequence of the gravitomagnetic field of Einstein’s GR, which takes
part in generating spacetime curvature, together with the gravitoelectric field produced by mass [31].
Indeed, in GR mass currents contribute, along with mass, to determining the trajectory of a test body,
that is, to its motion along geodesics in spacetime. Gravitomagnetism [32,33] plays a special role in
the astrophysics of compact objects [34] and it has (possible) cosmological consequences linked to
Mach’s Principle [35]. To reach this objective, and to exploit at best the available precise and accurate
laser range measurements, we started a deep review of the non-gravitational perturbations (NGP) that
act on the orbit of the two LAGEOS and LARES (LAser RElativity Satellite) satellites, as well as an
analysis of the various models that can be used for the main gravitational perturbations.

1 See the ILRS site https://ilrs.cddis.eosdis.nasa.gov/ for further information.

https://ilrs.cddis.eosdis.nasa.gov/


Universe 2019, 5, 141 3 of 32

The paper is organized as follows: in Section 2, we describe the main NGP and the actions taken to
improve the dynamical models used to describe their subtle effects. We focus on the spin model of the
satellites, the drag from the neutral atmosphere and the Yarkovsky-Schach thermal effect. In Section 3,
our recent results for the precise orbit determination (POD) of the considered satellites are shown.
In Section 4, a new measurement of the Lense-Thirring effect is presented with recent results regarding
the evaluation of the errors related to the gravitational field modelling. In Section 5, the state of the art
of the relativistic measurements performed so far by means of laser-ranged satellites is summarized.
Finally, in Section 6 our conclusions and recommendations on the topics discussed are provided.

2. Models for the Non-Gravitational Perturbations

In this Section we introduce and discuss some of the improvements achieved in the development
of new models for the main NGP that perturb the orbits of the two LAGEOS [36] satellites as well as
that of LARES [37]. We focus on a more detailed description of the internal structure of the satellites,
in particular on their moments of inertia, on the spin dynamics and, finally, on the perturbations
due to neutral drag and Yarkovsky-Schach effect. It is important to stress that the improvements in
the modelling of the NGP are not only important in themselves—for a better understanding of the
dynamics of orbits and the interaction of the satellites with the surrounding environment—and for
the institutional applications of the considered geodetic satellites in the fields of geodynamics and
geophysics. A further improvement of their modelling, in particular of the effects due to the thermal
thrust perturbations, is essential to limit the overall error budget to a fraction of a percent compared to
the current state of the art in the case of relativistic measurements and, in particular, in the case of the
Lense-Thirring effect. This will align the accuracy of the relativistic measure, that is, the estimation of
the systematic errors related to the main gravitational and non-gravitational perturbations, with the
precision of the measurement itself. The key point in this regard is related to the possibility of using,
as observable, the argument of pericenter ω of the satellites—in particular of LAGEOS II because of its
larger eccentricity—in addition to the right ascension of their ascending node Ω, see Sections 2.4 and 4.

2.1. Internal Structure

Starting from the original technical documentation of the LAGEOS and LARES satellites,
we succeeded in reconstructing information about their structure, materials, and moments of
inertia [38]. Through this re-analysis, we obtained an independent estimate of the moments of inertia
of the satellites. The amount of deviation from spherical symmetry of a satellite is a relevant quantity
that needs to be calculated (no measurements were made or released for the two LAGEOS), since it
produces a gravitational torque, similar to the Hipparchus precession of the Earth, that contributes to
the spin evolution of the satellite (see Section 2.2). The analysis reported in Reference [38] also impacts
on the development of a improved thermal model, needed to properly account for the perturbation
produced by the thermal thrust effects (see Section 2.4) which, in turn, depend on the spin evolution.

In Table 1 we show the moments of inertia of the LAGEOS and LARES satellites, as computed in
Reference [38]. As we can see, the two LAGEOS have almost the same oblateness, about 0.04.

Table 1. Principal moments of inertia of LAGEOS, LAGEOS II and LARES in their flight arrangement.

Satellite Moments of Inertia (kg m2)

Izz Ixx Iyy

LAGEOS 11.42± 0.03 10.96± 0.03 10.96± 0.03

LAGEOS II 11.45± 0.03 11.00± 0.03 11.00± 0.03

LARES 4.77± 0.03 4.77± 0.03 4.77± 0.03
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A reconstructed section view of the two LAGEOS satellites is shown in Figure 1, where the two
aluminum hemispheres are visible with the section of the cavities containing the CCRs together with
the internal brass cylinder and the copper-beryllium shaft.

Figure 1. The LAGEOS satellites assembly as we obtained in Reference [38]. The main parts of the
structure are shown: (i) two aluminum hemispheres containing the Corner Cube Retroreflectors (CCRs),
(ii) the brass core, which increases the satellite mass, (iii) the copper-beryllium shaft that fastens the
different parts of the satellites. Dimensions are in mm. This figure was redrawn to be similar to the
historical one reported in Reference [36], well known in the literature of the older LAGEOS, but the
quotes are different, as derived by our analysis [38].

Our re-analysis was also instrumental to understand and solve some persistent disputes found
in the historical literature of the older LAGEOS about some of its characteristics, such as the internal
dimensions, the material of the inner cylinder and that of the shaft. We refer to Reference [38] for
further details. In the case of LARES, adopting for its mass the official value of 386 kg and assuming a
spherical mass distribution, we obtained moments of inertia of 4.77± 0.03 kg m2. An oblateness as
small as 0.002 is however possible.

2.2. Spin Dynamics

The spin of the satellites plays a major role in the modelling of thermal effects, since these depend
on the satellite attitude with respect to the radiation sources (see Section 2.4). Models for the spin
evolution of the LAGEOS satellites have been developed since 1991 [39–41], but they work successfully
only in the fast-spin approximation: they provide solutions based on averaged equations, that are
valid as long as the satellite rotation period is much smaller than the orbital one. A new comprehensive
model, named LASSOS (LArase Satellites Spin mOdel Solutions), describes the evolution of the spin
of the LAGEOS and LARES satellites [42], providing solutions for the spin evolution valid for any
value of the satellite rotational period. In the fast-spin limit, LASSOS correctly reproduces the results
of previous models.

In Figures 2 and 3 we show, as an example for LAGEOS II, the two equatorial components
(Sx, Sy) of the spin direction of the satellite at different times, the time evolution of the projection Sz

of the spin direction along the vertical axis, and the time evolution of the satellite rotational period
P, respectively. The time span considered is about 20 years since the launch of LAGEOS II. In these
figures we compare the predictions of the model (blue dots) with the available observations (in red
those spectrally determined from the SLR data [43], and in black the collection of previous observations
as reported in Reference [44]).

The agreement between our model and the experimental data is quite good over the time span
where the observations of spin orientation and rate are available. Both the observations (when
available) and the model prediction show no evidence of chaotic behaviour. We refer to Reference [42]
for further details on the LASSOS model as well as for the results regarding LAGEOS and LARES.
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Figure 2. Spin evolution of LAGEOS II on the basis of the LASSOS model (blue dots), compared with
observations (red and black). Left: Projection of the satellite spin direction on the equatorial plane
(Sx, Sy). Right: Time evolution of the satellite spin direction along the vertical axis (Sz). Both projections
are in the J2000 reference frame, time is expressed in Modified Julian Date (MJD).
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Figure 3. Spin evolution of LAGEOS II on the basis of the LASSOS model (blue dots), compared with
observations (red and black). Rotational period (P) of the satellite as a function of time expressed in
Modified Julian Date (MJD).

2.3. Neutral Drag

Since the orbit of LARES is much lower than that of the two LAGEOS, with a height of about
1450 km vs 5900 km, a stronger impact of the drag from the atmosphere on its orbit is expected [25,45].
Therefore, an improved analysis of the effects of the neutral atmosphere on the orbit of LARES was
necessary. To this purpose, we used as a benchmark the evaluation of the decay of the semi-major
axis of the satellite. In this particular analysis we used both the software packages GEODYN II [46]
and a modified version of SATRAP (SATellite Reentry Analysis Program) [47,48]. The main feature of
SATRAP is the use of different models for the Earth’s atmosphere together with the appropriate
geomagnetic and solar activity indices. In this way we directly investigated the impact of the
neutral drag on the orbit of LARES, using several of the best available models for the Earth’s
atmosphere [24,49].

We performed a POD of LARES over a time span of about 3.7 years (from 6 April 2012 to
25 December 2015). In the set of dynamical models of GEODYN we did not include the neutral
drag, nor the thermal effects. We measured an orbital decay of the satellite semi-major axis of about
2.74 mm/d (i.e., close to 1 m/yr) with a 2σ error of about ±0.02 mm/d. Such decay corresponds
to a transversal mean acceleration T of about (−1.444± 0.011)× 10−11 m/s2. We then included the
neutral drag in the dynamical model and, by means of a linear least-squares fit of the tracking data,
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we estimated the drag coefficient CD of the satellite. We obtained for this coefficient a mean value of
3.9 on the time span of the analysis.

An additional analysis was then performed, using SATRAP, over the same time span with the
goal of obtaining an independent estimate of the drag coefficient. Among the numerous atmospheric
models available, we considered the Jacchia-Roberts 1971 model (JR-71) [50], the Mass Spectrometer
and Incoherent Scatter radar 1986 model (MSIS-86) [51], the Mass Spectrometer and Incoherent Scatter
radar Extended 1990 model (MSISE-90) [52], the NRLMSISE-00 model [53], developed at the US
Naval Research Laboratory (NRL) and the GOST-2004 model [54], issued by the State Committee on
Standardization and Metrology of the Russian Federation. Two of these models, MSIS-86 and JR-71,
are also implemented in GEODYN.

In this analysis the measured decay was accounted for through the unmodeled transversal
acceleration previously estimated with GEODYN; here, considering 3 independent atmospheric models
we obtained CD = 4.0± 0.2, as discussed in Reference [49]. The error provided takes into account
the variability of the result according to the atmospheric model considered in the analysis. However,
considering the same models implemented in GEODYN, that is, MSIS-86 and JR-71, the differences
were of the order of 1% or less.

This analysis proves that the current models developed to describe the neutral atmosphere can
successfully reproduce the observed decay of LARES, within their intrinsic errors (around 15%) and
their range of applicability. However, after modelling the neutral drag in GEODYN, a very small decay
(≈ −0.04 mm/d) was still present in the integrated residuals (measured values minus predicted ones)
of the LARES semi-major axis, corresponding to a residual, unaccounted for, transversal acceleration of
about −2× 10−13 m/s2 [49]. Therefore, while, for the two LAGEOS, the Earth-Yarkovsky thermal drag
and charged particle drag [55,56] are known to account for ≈ 90% of the observed decay, our analysis
shows that the drag from the neutral atmosphere can explain ≈ 99% of the observed decay of the
LARES semi-major axis. In this context, a new analysis is needed to determine the contribution of the
drag and of the thermal effects to the residuals of the orbital elements of LARES. We have recently
undertaken this study, extending it also to the two LAGEOS satellites. In Figure 4, a new measurement
for the decay of LARES semi-major axis is shown over a period of about 5.8 years, from 13 April 2012
(MJD 56030). The measured decay is about 2.44 mm/d (±0.02 mm/d at 2σ) and corresponds to an
average transversal acceleration of about (−1.289± 0.011)× 10−11 m/s2.
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Figure 4. Semi-major axis decay of LARES over a time span of 2135 days (about 5.8 years). The black
dots represent the integrated residuals of the satellite semi-major axis. The residuals have been
determined [57] by comparing the measured values with the predictions of a precise orbit determination
(POD) obtained with GEODYN II. The dynamical model of GEODYN neither includes the neutral and
charged atmosphere drag, nor the thermal effects. The red line represents a linear fit to the integrated
residuals and yields a decay of about 2.44± 0.02 mm/d.
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The value obtained for the semi-major axis decay over the longer time span of this analysis
is smaller than that determined in the first analysis of about 3.7 years: this is easily explained by
correlating these measurements with solar activity: indeed, the first was found during a maximum
of the Sun activity, while the extended time span is characterized by a sharp decrease, that is
probably approaching the deepest minimum since these measurements are performed2, see Figure 5.
This indirectly confirms, once more, how sensitive these measurements, based on SLR data, are.
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Figure 5. Solar activity since the launch of LARES. Daily observed solar flux at 10.7 cm and its 81-day
values averaged over three solar rotations: from 1 January 2012 to 15 May 2018.

Since we are interested in the Lense-Thirring effect measurement, the performed analysis on the
satellites orbit allows us to explicitly compute the effects of the neutral drag perturbation on the orbit
of the considered satellites and, in particular, on the right ascension of the ascending node (RAAN) of
each satellite. It is the out-of-plane component W of the neutral drag acceleration that affects directly
this orbital element. Equation (1) provides the corresponding Gauss equation for the precession of
the RAAN:

Ω̇ =
W

H sin i
r sin(ω + f ), (1)

where H represents the osculating angular momentum per unit of mass, r the satellite distance
from the Earth’s geocenter, while i and f are, respectively, the satellite inclination and true anomaly.
In Figures 6 and 7, the out-of-plane acceleration and the corresponding perturbing effects on the RAAN
of LARES on a time span of about 5.8 years after the launch of the satellite are shown.

The time evolution of the perturbing acceleration has been computed with SATRAP, as previously
described, using the MSIS-86 model for the neutral atmosphere. As we can see, this component of
the drag perturbing acceleration is very small. It is characterized by a main oscillation at the orbital
period of the satellite (about 1.9 h), further modulated by a long period oscillation of about 133 days.
The maximum peak amplitude is a few pm/s2, with a mean value (on the considered time span) of
about −5.3× 10−15 m/s2, negligible with respect to the average value obtained for the transverse
acceleration T. The effects produced by the out-of-plane acceleration on the precession of the RAAN
of LARES are negligible. The oscillations at half of the orbital period of the satellite are characterized
by amplitudes not larger than a few 10−3 mas/d, with a mean value on the considered time span
of about −1.4× 10−6 mas/d. As shown in Figure 7, a smoothing at 1 day (the yellow line) clearly
highlights this very small impact, with a mean value practically coincident with the one computed
with the non-smoothed data.

2 The daily values of the observed solar flux can be found at the following address https://www.ngdc.noaa.gov/stp/space-
weather/solar-data/solar-features/solar-radio/noontime-flux/penticton/penticton_observed/tables/ of the NOAA’s
National Centers for Environmental Information.

https://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-features/solar-radio/noontime-flux/penticton/penticton_observed/tables/
https://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-features/solar-radio/noontime-flux/penticton/penticton_observed/tables/
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Figure 6. Out-of-plane acceleration [m/s2] on LARES due to the neutral drag perturbation as computed
with SATRAP in the case of the MSIS-86 atmospheric model.
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Figure 7. Neutral drag effects [mas/yr] on the precession of LARES right ascension of the ascending
node (RAAN) computed by means of Equation (1).

Beside this direct effect on the satellite’s node due to the out-of-plane acceleration produced by the
neutral drag perturbation, it is worth of mention that there are also two indirect effects to be considered.
One of these arises from the effects of the drag perturbation on the satellite inclination i. As well known
in the literature, the inclination is subject to a secular effect produced by the out-of-plane acceleration
due to the neutral drag [58–61]. However, this effect enters in Equation (1) by means of a trigonometric
function and, consequently, does not produces any secular effect in the time behaviour of the precession
of the RAAN of the satellite [62]. A second indirect effect on this observable, and in principle more
significant than the one produced by the secular variation of the inclination, is that produced by the
decay itself of the satellite semi-major axis. We shall return on this feature in Section 4.2.

2.4. Thermal Effects

An intricate role, among the NGPs, is played by the thermal effects produced by the radiation
emitted from the satellite surface as consequence of the non-uniform distribution of its temperature.
In the literature of the older LAGEOS satellite this problem has been considered since the early
1980s to explain the (apparently) anomalous behaviour of the along-track acceleration of the satellite,
characterized by a complex pattern [44,56,63–74]. The solution of this dynamical problem is non trivial
and requires taking into account the following main aspects:

• a complete physical characterization of the various elements that constitute the satellite, that
is, emission and absorption coefficients, thermal conductivity, heat capacity, thermal inertia, . . .;
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• knowledge of the rotational dynamics of the satellite, that is, of its spin orientation and rate;
• a reliable model for the radiation sources: Sun and (especially) Earth.

We have tackled the problem following and expanding the two approaches considered in the past:
we first developed a simplified thermal model based on averaged equations, as in References [65–67,70],
then we developed a general thermal model not restricted to time averages, as in References [44,69].

In the first, simplified case, the thermal model is mainly based on the energy balance on the
satellite surface, plus a linear approximation for the distribution of the temperature over the satellite
surface (restricted to its CCRs, due to their larger thermal inertia) with respect to its equilibrium (mean)
temperature. Conversely, in the second (more general) case the thermal model assumes (i) a satellite
(metallic structure) in thermal equilibrium, (ii) the CCRs rings at the same temperature of the satellite
metallic body, and (iii) for each CCR, the thermal exchange with the satellite is considered.

In the case of the two LAGEOS, in agreement with the description of Section 2.1, for the metallic
structure we considered both the external aluminum surface and the internal brass core, plus the
copper-beryllium shaft. For both the simplified and general thermal model, a reliable model for
the evolution of the spin vector of the satellite (as outlined in Section 2.2) is necessary. Two main
thermal perturbations must be taken into account: the solar Yarkovsky-Schach effect [55,67–70] and
the Earth-Yarkovsky (or Rubincam) effect [55,56,64].

The first effect is characterized by an anisotropic emission of thermal radiation that arises from
the temperature gradients across the surface; such gradients are produced by the solar heating and
the thermal inertia of the various elements of the satellite (mainly the CCRs). This perturbation is
responsible for long-term effects on the orbit of a satellite due to modulation of thermal radiation by
the eclipses. For the second effect, the temperature gradients responsible for the anisotropic emission
of thermal radiation are produced by the Earth’s infrared radiation. Most of the effect is due to the
CCRs and their thermal inertia. This perturbation is also responsible for long-term effects on the orbital
elements of a satellite.

In particular, the Yarkovsky-Schach effect strongly influences the argument of pericenter of
the LAGEOS [72] and LAGEOS II [74,75] satellites, and this is the reason why this observable is
not currently used in the measurements of relativistic effects. Indeed, as briefly highlighted in the
introductory part of Section 2, a significant improvement of the model for this perturbation will allow
the reintroduction of the satellite(s) argument of pericenter [15,19,76–79] in the analysis of the orbit
residuals that have to be performed for the measurement of the relativistic precessions [21,22,80–83].
In this context, the benefit will be twofold: (i) it will reduce the contribution of the unmodelled periodic
effects in the orbital residuals, allowing for a better separation of the periodic contribution arising from
the non-gravitational and the gravitational perturbations, and (ii) it will reduce the overall error budget
allowing to remove one more unknown related to the non perfect knowledge of the gravitational field
of the Earth, see Section 4.

In the following, we provide as an example our new results for LAGEOS II in the case of the
simplified thermal model applied to the solar Yarkovsky-Schach thermal effect. The analysis was
performed on a time span of 4080 days, starting from 25 October 1992 (MJD 48920). The LASSOS
general (non averaged) model has been used for the satellite spin evolution [42], see Section 2.2.
In Figure 8 we show the perturbing accelerations in the Gauss reference frame, that is, the radial
(green), transversal (blue) and normal, or out-of-plane (red), components of the Yarkovsky-Schach
acceleration. These results are in agreement with those obtained by Reference [44] and based on a
more general thermal model, but with an averaged spin evolution.
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Figure 8. Perturbing accelerations on LAGEOS II due to the Yarkovsky-Schach effect over a time span
of about 11.2 years. These results have been obtained by our simplified thermal model.

In Figures 9 and 10, the perturbing effects on the satellite eccentricity and argument of
pericenter are shown and compared with the residuals in these orbital elements we obtained by
an independent POD.
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Figure 9. Yarkovsky-Schach effect on the rate of change of LAGEOS II eccentricity. The predictions of
the simplified thermal model (red line) are compared with the residuals in the eccentricity (black line)
obtained by means of a POD performed over the same time span of 4080 days.

In this analysis, the EIGEN-GRACE02S solution was used as model of the gravitational field
of the Earth [84]. The arc length was 7 days, no empirical accelerations3 were used and the thermal
effects (Yarkovsky-Schach and Earth-Yarkovsky) were not modelled. General relativity was modelled
with the exception of the Lense-Thirring effect. More details on the analysis strategy can be found
in Section 3.

Figures 9 and 10 show a qualitative agreement between the computed effect and the residuals:
indeed, the agreement cannot be perfect since, besides the signature of the Yarkovsky-Schach effect,
these residuals also contain the signature of the Earth-Yarkovsky effect, as well as that of the asymmetric
reflectivity of the satellite’s hemispheres [85,86]. Details of both the simplified and the general thermal

3 Empirical accelerations are kinematic terms introduced to absorb unmodeled effects.
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model deserves further analysis, applying them to both LAGEOS satellites and comparing the results
with independent analyses performed with GEODYN4.
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Figure 10. Yarkovsky-Schach effect on the rate of change of LAGEOS II argument of pericenter.
The predictions of the simplified thermal model (red line) are compared with the residuals in the
argument of pericenter (black line) obtained by means of a POD performed over the same time span of
4080 days.

3. Precise Orbit Determination (POD)

The powerful SLR technique provides tracking data for the two LAGEOS and LARES satellites
with a RMS precision at the mm level. These range data are known as normal points, and are obtained
providing a mean value with a corresponding RMS value by means of an average of the tracking data
(full rate data) on a bin size of 120 s, in the case of the LAGEOS satellites, and on a bin size of 30 s for
LARES5. Consequently, a comparable precision is needed for the models included in GEODYN and for
the models used, a posteriori, for the analysis of the orbital residuals, as in the case of the thermal thrust
forces, see Section 2.4. A reliable POD of the two LAGEOS and LARES satellites represents an essential
prerequisite for the LARASE objectives. The outcome of this procedure is a precise description of the
orbit of each satellite obtained by fitting the tracking data with a suitable set of dynamical models,
along with a series of estimated parameters. The orbit so determined is the starting point to compute
the residuals in the Keplerian elements [57] of the satellites and then build with them the physical
observables that contain the imprint of all unmodeled effects, including the GR ones [76].

Within LARASE, our strategy is to extract the relativistic effects, in particular the GR precessions,
not from the range residuals of the satellites—which indeed represent the true observables that
we obtain from the data reduction of the SLR data— but from the residuals in the orbit elements.
This approach, which is the one followed in all previous measurements of the GR effects with the
LAGEOS satellites, has the main advantage of explicitly measuring the orbital effects predicted by
GR or by other theories of gravitation [26–28]. Traditionally, the first approach is preferred if one is
more interested to estimate a (solve-for) parameter related with an effect explicitly modelled in the
dynamical model [87].

We used a computation strategy, as customary in the space geodesy community, that consists
in splitting the entire analysis time period in smaller intervals, called arcs; for each arc, a POD is
performed and the residuals in the Keplerian elements computed as described in Reference [57]. We

4 It is worth of mention to underline that in GEODYN the asymmetric reflectivity effect is not included in the dynamical
model, while the models for the thermal thrust effects are obsolete.

5 This is known as the Herstmonceux Algorithm for the normal point formation. See https://ilrs.cddis.eosdis.nasa.gov/data_
and_products/data/npt/npt_algorithm.html for further details.

https://ilrs.cddis.eosdis.nasa.gov/data_and_products/data/npt/npt_algorithm.html
https://ilrs.cddis.eosdis.nasa.gov/data_and_products/data/npt/npt_algorithm.html
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underline once more that, in this strategy, the relativistic part need not be included in the set of
dynamical models, and the corresponding effect on the orbital elements is measured analyzing the
time series of the residuals, as stated above.

The modelling setup we are currently using is shown in Table 2. It accounts for: (i) the satellite
dynamics, (ii) the measurement procedure and (iii) the reference frames transformations. In this context,
our models comply, wherever possible, with the international resolutions and conventions, such as the
International Astronomical Union (IAU) 2000 Resolutions [88] and the IERS Conventions (2010) [89].

Table 2. Models currently used, within the LARASE research program, for the analysis of the orbit
of the two LAGEOS and LARES satellites. The models are grouped in gravitational perturbations,
non-gravitational perturbations and reference frames realizations.

Model For Model Type Reference

Geopotential (static) EIGEN-GRACE02S/GGM05S [84,90,91]
Geopotential (time-varying, tides) Ray GOT99.2 [92]
Geopotential (time-varying, non tidal) IERS Conventions 2010 [89]
Third–body JPL DE-403 [93]
Relativistic corrections Parameterized post-Newtonian [88,94]

Direct solar radiation pressure Cannonball [46]
Earth albedo Knocke-Rubincam [63]
Earth-Yarkovsky Rubincam [56,64,65]
Neutral drag JR-71/MSIS-86 [50,51]
Spin LASSOS [42]

Stations position ITRF2008 [95]
Ocean loading Schernek and GOT99.2 tides [46,92]
Earth Rotation Parameters IERS EOP C04 [96]
Nutation IAU 2000 [97]
Precession IAU 2000 [98]

In Table 3, we provide our estimate of the mean orbital elements for LARES and the two LAGEOS
satellites, computed from the satellites ephemerides obtained from a POD.

Table 3. Mean orbital elements of LAGEOS, LAGEOS II and LARES.

Element Unit Symbol LAGEOS LAGEOS II LARES

Semi-major axis [km] a 12 270.00 12 162.07 7 820.31
Eccentricity e 0.004433 0.013798 0.001196
Inclination [deg] i 109.84 52.66 69.49

In Figures 11–13 we show the results of the POD for the three satellites in two cases: (i) when
empirical accelerations have been estimated for each arc (label 0001), and (ii) with no empirical
accelerations included in the data reduction (label 0002). These are two of the standard runs that are
routinely performed by the LARASE collaboration6. Neither the Lense-Thirring effect nor the thermal
effects were modeled. With the colors blue, red and green are shown, respectively, the results for
LAGEOS (L1), LAGEOS II (L2) and LARES (LR). The two analyses cover a time span longer than 25
years in the case of the two LAGEOS satellites, from 30 October 1992 (MJD 48925) to 31 August 2018
(MJD 58361).

The first plot of each figure shows the range residuals of the three satellites, while the second plot
shows their RMS. The range residuals are computed as mean values over each arc for all the stations

6 In these particular analyses, we used the EIGEN-GRACE02S model for the gravitational field of the Earth, an arc length of 7
days and all tracking stations have been weighted equally. Usually, the radiation coefficient CR of the satellites is estimated
along with the empirical accelerations.
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that perform the tracking of the satellite. The RMS represents, again for each arc, the weighted RMS
(i.e., taking into account the number of observations and the degrees of freedom) of the corresponding
(mean) range residual. Clearly, for the second evaluation, with no empirical accelerations, the scatter
of the residuals is larger, and so their RMS is.

Figure 11. LAGEOS POD results. Top: Range residuals. Bottom: RMS of the range residuals.

Figure 12. LAGEOS II POD results. Top: Range residuals. Bottom: RMS of the range residuals.
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Figure 13. LARES POD results. Top: Range residuals. Bottom: RMS of the range residuals.

This comparison underlines two main aspects that we need to account for. First, empirical terms
(accelerations in the case of GEODYN: in term of a constant acceleration and of once-per-revolution
acceleration over each arc), must be used very carefully during a POD performed to extract geophysical
parameters and/or relativistic effects. The risk is to absorb the physical quantities to which we are
interested to. Second, the observed (and significant) discrepancy in both the range residuals and in
their RMS clearly shows the importance of improving the dynamical model used in the code that
performs the data reduction. In Table 4, the statistics of the two different analyses for the three satellites
in terms of mean (M) and standard deviation (σ) of the (mean) range residuals and of their (weighted)
RMS is given. For the two LAGEOS, the statistics refers to the entire period of the analysis, that
is, to about 25 years.

Table 4. POD statistics over the time span of the analyses. The mean (M) and the standard deviation (σ)
of the range residuals and of their RMS are provided for the two analyses performed with and without
the use of empirical accelerations (EA)

With EA (0001) Without EA (0002)

Residuals [cm] RMS [cm] Residuals [cm] RMS [cm]

M σ M σ M σ M σ
LAGEOS −1.38 6.13 1.58 0.56 15.25 39.09 4.40 1.87

LAGEOS II −0.77 3.50 1.48 0.39 21.77 46.09 4.44 1.71
LARES 0.30 4.31 3.32 0.57 90.67 148.10 22.63 9.47

The data of Table 4 clearly show the effectiveness of the empirical accelerations to absorb the
effects of unmodeled processes, allowing to fit the orbits of the satellites with an RMS of about 1 or
2 cm for the two LAGEOS and & 3 cm for LARES. It should also be noted that over shorter, selected
time spans—and when all the GR effects are modelled—the RMS level of the POD for the two LAGEOS
satellites is better by a factor of two, in the range 0.5–1 cm. We can see from Table 4 that the use of
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the empirical accelerations is also effective in reducing the range residuals of the PODs to values
compatible with a null average.

On the other hand, when no empirical terms are used, the relative inadequacy of the modelling
becomes apparent, especially in the case of LARES, whose orbit is not determined to any better than
a meter. However, the use of empirical accelerations represents, as said, a workaround to handle
unexplained phenomena that affect the POD. These, however, should be carefully evaluated and
contextualized from the physical point of view; we believe that it is in the best interest of science
(geodesy, geophysics, relativity etc.) to try to understand and model these phenomena, rather than
fitting them away. Therefore, we set the goal to improve the dynamical model of the orbit of the
satellites, especially for the non-gravitational forces: reliable models will allow us to reduce the use of
the empirical accelerations.

4. A New Measurement of the Lense-Thirring (LT) Effect

The goals of the LARASE program in terms of relativistic measurements in the near-Earth
environment have been described in Reference [25]. Among these, as mentioned in the Introduction,
we devote special attention to the precession of the orbital plane of a satellite produced by the so-called
Lense-Thirring (LT) effect [29,30]. This orbit precession, measurable both on the right ascension of
the ascending node Ω and on the argument of pericenter ω, is produced by the Earth’s rotating mass
distribution, i.e by Earth’s angular momentum. This effect is also known as frame-dragging effect,
as originally Einstein named it [35].

Concerning the experiments proposed for the measurement of this purely relativistic precession
on the orbit of a satellite around the Earth, it is worth mentioning that Yilmaz, in 1959, made the
first proposal to launch a dedicated satellite in a polar orbit in such a way to cancel the classical
precession of the orbit that arises from the Earth’s oblateness [99], whose uncertainty could mask the
small relativistic precession. In 1976, van Patten and Everitt proposed to launch two drag-free and
counter-orbiting satellites in nearly polar orbits to measure their (combined) LT precession on the
two nodes [100]. Two years later, Cugusi and Proverbio suggested to use the existing laser-ranged
satellites—and among them (for the first time) the LAGEOS satellite—for the measurement of the LT
precession of their ascending node [101]. A few years later, in 1986, Ciufolini proposed the use of two
non-polar satellites in supplementary orbital configuration (i.e., with i1 + i2 = 180◦) and with all the
other orbital elements equal [102]. This was later on named the LAGEOS III proposal [103].

Finally, in the context of the past measurements of the terrestrial gravitomagnetic field, a special
consideration deserves the Gravity Probe B (GP-B) experiment, a NASA and Stanford University space
mission [104,105]. The goal of GP-B was the measurement of the frame-dragging effect on a gyroscope
in orbit around the Earth. This is also known as the Schiff effect [106,107]. Indeed, a gyroscope in polar
orbit around the Earth, as was the case for the GP-B experiment, is subject to two main relativistic
precessions: (i) a frame-dragging effect perpendicular to the orbital plane, and (ii) a drift in the orbital
plane, that is, the de Sitter (or geodetic) precession [108]. The core of this cryogenic experiment was
based on four gyroscopes mounted in a superfluid helium Dewar at 1.8 K and a telescope (star-tracker).
Each gyroscope was constituted by a fused quartz sphere coated with a thin layer of niobium and
suspended electrically, spun up by the helium gas, and with a magnetic read-out based on the SQUID
technology. GP-B has provided a measurement of the frame-dragging effect with an accuracy of about
19% after an intense and extended analysis effort to remove classical disturbances due to a patch effect.
The original goal of GP-B was a ≈ 1% measurement of the frame-dragging effect.

In the following, we will first focus our analysis upon the knowledge of the Earth’s gravitational
field and its relationship with the LT effect measurement. Then we will return to the neutral drag
perturbation and discuss its impact on the LT effect measurements that involve the RAAN as observable.
Finally, we will describe our last measurement of the LT effect with the new elements introduced with
respect to the previous measures.
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4.1. On the Role of the Background Gravitational Field

In the case of two satellites in exactly supplementary orbital configuration, the relativistic
LT precession on the right ascension of their ascending node are equal, while the corresponding
secular precession due to the Earth’s deviation from the spherical symmetry are equal and opposite,
because they are both proportional to the cosine of the orbit inclination i, see Equations (2) and
(4). Indeed, the even zonal multipolar moments of the Earth gravitational potential [109–111]—that
measure the deviation of the Earth’s mass distribution from spherical symmetry—produce a Newtonian
precession of Ω with the same signature of the sought for effect [15,20,76,78,112]. These moments are
described by the even zonal harmonics C̄`0; for instance, in the case of the quadrupole moment (C̄20)
we have [109]:

Ω̇class =
3
2

n
(

R⊕
a

)2 cos i

(1− e2)
2

√
5C̄20, (2)

where R⊕ represents the Earth’s mean equatorial radius, n the satellite mean motion and C̄20 the
normalized quadrupole coefficient7. Uncertainty on these moments can then obscure, as said, the LT
signal. Although such experiment with two satellites with supplementary inclinations has not
yet been carried out8, the approach based on the use of more than one satellite has proven to be
effective, over time. Indeed, the analysis of the combined orbits of the two LAGEOS satellites
and of the two LAGEOS plus the LARES—that allow a partial cancellation of the effects of the
background gravitational field—have provided the currently best measurements of the relativistic LT
precession [19,23,24].

These previous measurements of the LT effect with laser-ranged satellites have been proven to be
precise, that is, with a small relative error of the measurement. However, an intense debate exist in
the literature (see for instance References [20,112–114] and References [115,116]) regarding whether or
not they are characterized by a robust and reliable evaluation of the main systematic error sources,
in particular those of gravitational origin that ultimately strongly influence the measurement accuracy.

We believe that this was mainly due to the imperfect knowledge of the gravitational field of
the Earth, as also highlighted by other authors, but with some differences with respect to previous
considerations on the subject [117]. In particular, we believe that the main problem in this context is the
inadequate modelling of the time evolution of the even zonal harmonics. This also strongly influence
the correct comparison between different models for the gravitational field of the Earth, producing
wrong conclusions on their reliability. Moreover, also the non-linear fits performed (in previous
measurements of the LT effect) on the integrated residuals of the combined orbits, have contributed
to absorb part of the errors due to the uncertainties of the even zonal harmonics. For instance, in
Reference [24] we have shown that the sensitivity to the number of periodic effects removed by a
non-linear fit was significant, between a minimum of about 3% to a maximum of about 7% of the
relativistic LT precession. In what follows, we will show that this result was mainly due to the static
value of the third even zonal harmonic, C̄60, of the GGM05S model on the the considered time span.
Moreover, if the time span of the analysis of the satellites orbit (i.e., their data reduction during the
POD) is long enough, it will be preferable to perform a simple linear fit of the integrated residuals of
the combined right ascensions of their ascending nodes, instead of a more complex non-linear fit.

4.2. On the Role of the Neutral Drag

As briefly introduced in Section 2.3, an indirect effect on the RAAN of a satellite and, in particular,
in the case of LARES, is that originates from the decay of the satellite semi-major axis produced by

7 More generally, Ω̇class = ∑` Ω`0C̄`0, where Ω`0 are the coefficients of the expansion that depend from the orbital elements.
8 The Italian Space Agency (ASI) has recently approved the LARES 2 experiment [118,119]. This represents a new version

of the old LAGEOS III experiment. LARES 2 will be launched with the new VEGA C lunch vehicle of ASI, ESA and ELV,
and will have a supplementary inclination with respect to LAGEOS.
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the neutral atmosphere. This decay couples with the classical precession produced by the even zonal
harmonics coefficients, in particular by the larger quadrupole coefficient, see Equation (2), producing
an additional precession of the RAAN that may mask (in principle) the relativistic LT precession.
This effect was highlighted in Reference [120]. Therefore, considering the observed decay of LARES
semi-major axis (a(t) = a0 + ȧt), we must modify Equation (2) by adding a corrective term:

δΩ̇class = −7
2

ȧ
a0

Ω̇classt. (3)

This result for the correction to the rate of Ω agrees, once integrated, with the correction term
in Equation (10) of Reference [120] for the satellite right ascension. However, we derive different
conclusions with respect to that paper: the effect considered has only a very small impact on the LT
measurement, for the following two main reasons.

First, during the orbit determination, the data reduction is performed by means of a least-squares
fit to the SLR data on (many) arcs not causally connected, with a length of 7 days in our analysis.
This means that the time t in Equation (3) is equal to 7 days, and should not be considered as a single
arc many years long as in Reference [120], see for instance Figure 1 of that paper. Consequently,
the multiplicative coefficient to the classical precession provoked by the quadrupole coefficient in
Equation (3) is as small as ≈ −8× 10−9 in the case of LARES (considering the entire decay, that
is, without modelling the effect during the orbit determination), and smaller for the two LAGEOS
because of the smaller decay rate and the larger semi-major axis. Second, since the gravitational field
is (of course) modelled in our analysis, it is not the quadrupole coefficient that must be considered for
the evaluation of the bias produced in the nodal rate (as implicitly assumed in Reference [120]), but its
error or uncertainty. This means that the estimate of Reference [120] for the impact of the considered
effect on the nodal rate of the satellites must be re-scaled by a factor of δC̄20/C̄20 ≈ 10−7, that is with a
null impact (in practice) in the measurement of the LT secular precession with the two LAGEOS and
LARES satellites.

4.3. A Precise Measurement of the LT Effect

As already anticipated, the RAAN is the observable to be carefully modelled in the POD, being less
perturbed by the long-term effects produced by the thermal thrust forces [74,75,121]. Successively,
after the data reduction, the residuals in this element [57] have to be computed and analyzed for
measuring the relativistic precession produced by the LT effect. For this orbital element (rather, for its
rate, or time derivative) the predicted secular term of the LT precession is [29,30]:

Ω̇LT =
2GJ⊕

c2a3(1− e2)3/2 , (4)

where G is the gravitational constant, J⊕ the Earth’s angular momentum and c the speed of light.
In Table 5, the value of the relativistic precession on the RAAN of each satellite is given. These rates
have been computed using Equation (4) and the mean values of the orbital elements shown in Table 3.

Table 5. Rate (mas/yr) for the secular Lense-Thirring precession on the RAAN of the two LAGEOS
and LARES satellites.

Orbital Element LAGEOS LAGEOS II LARES

Ω̇LT 30.67 31.50 118.48

From the above discussion on the errors related to the knowledge of the Earth’s gravitational
field, it is clear that combining the measurements of three satellites we can improve the determination
of the relativistic precession, strongly reducing the impact of these errors, if we can be confident
of the overall accuracy for the background gravitational field. Therefore, following the procedure
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outlined in Reference [76], we constructed a linear combination of the three (node) observables in
such a way to cancel out the effects of two of the lowest even zonal harmonic coefficients [122]: these
(` = 2, 4, 6...) carry the largest uncertainty, related both to the static and, partially, to the dynamic part
of the Earth’s gravitational field. So, we will compare a derived observable, the linear combination of
the rate residuals, δΩ̇res

comb:
δΩ̇res

comb ' δΩ̇res
LI + k1δΩ̇res

LII + k2δΩ̇res
LR, (5)

with the GR prediction for the combined LT precession, Ω̇LT
comb:

Ω̇LT
comb = Ω̇LT

LI + k1Ω̇LT
LII + k2Ω̇LT

LR = 49.66 mas/yr. (6)

The two coefficients k1 ' 0.387314 and k2 ' 0.057262 are obtained from the solution of a linear
system of three equations in three unknowns in such a way to remove from the solution the effects (and
the errors) of two, low-order even zonal harmonics. Previous analyses based on the same observables
have pursued this strategy by cancelling out the first (` = 2, quadrupole) and second (` = 4, octupole)
moment. In this work we have investigated, along with the above-mentioned traditional strategy,
also the alternate choice of combining these elements in such a way as to cancel, instead, the errors
related to the first, C̄20, and third, C̄60 (` = 6, hexadecapole moment), even zonal harmonics. Indeed,
from the results of preliminary analyses on available measurements we found that the estimate of the
third even zonal harmonic of GGM05S is affected by a larger uncertainty than the second one, C̄40,
at least on the time interval of our analysis9. Figure 14 shows the time evolution of both coefficients
in the considered time span, as provided by three independent Analysis Centres10: the discrepancies
with respect to the static values in GGM05S (horizontal line in either plot) are of comparable amount
≈ (2.5− 4)× 10−6, but the error for C̄60 is leveraged by a larger coefficient, Ω60, in the solution of
Equation (5).

We believe that this aspect has negatively impacted on the results (and on the precision) of
previous analysis and measurements of the LT effect. At least on those based on the use of the static
values for the low-degree even zonal harmonics of GGM05S and on the application of the combination
that removes the uncertainties of C̄20 and C̄40, instead of those of C̄20 and C̄60 as in this work (see
Equation (5)). We also believe that the non-linear fit to the combined orbital residuals, performed for
example in both Reference [23] and Reference [24], and done appositely to remove (a posteriori) a
few unmodelled periodic terms, has actually helped to mask the effective precision of the relativistic
measurement, providing an apparently more precise result than it actually was.

It is well known in the literature that the low-degree coefficients of the gravitational field
of the Earth, and in particular the quadrupole coefficient C̄20 because of its greater amplitude,
are characterized by a significant time dependence, due to several phenomena that contribute to
the variation of the Earth moments of inertia, with long-period effects of annual and inter-annual
periodicity [91,123–125]. For this reason (and this is another element of novelty of this work), we used
in our POD (unlike the current recommendations of the 2010 IERS Conventions [89]) a value for C̄20

that accounts for a time dependence, as described by a fit to the solutions provided by the Center for
Space Research (CSR) of the University of Texas at Austin [91,125]. The CSR time series from GRACE
RL05 are based on monthly estimates11.

9 That starts after the launch of the LARES satellite and, consequently, involves only a part (the last few years) of the
GRACE data.

10 We considered the monthly solutions for these coefficients provided by CSR, GFZ, and JPL. See the International Centre for
Global Earth Models (ICGEM): Gravity Field Solutions for dedicated Time Periods: Release 05, http://icgem.gfz-potsdam.
de/series (2018).

11 A needed improvement for the upcoming future will consist in providing more accurate values for other even zonal
harmonics, fitting the available time series.

http://icgem.gfz-potsdam.de/series
http://icgem.gfz-potsdam.de/series
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Figure 14. Time evolution of the zonal coefficients C̄40 (left) and C̄60 (right), as estimated on a monthly
basis by CSR, JPL and GFZ, compared with their static values provided in GGM05S (horizontal,
black line). For the coefficient C̄60, the GGM05S static value not only fails to describe the secular trend
(and the oscillations), but it predicts a value not even close to the mean value over the analysis period.
The same is true also for the C̄40 coefficient, but with an overall smaller impact in the performed POD.

Independent PODs for each satellite were performed over a time span of about 4.6 years, starting
from 6 April 2012 (MJD 56023). The arc length was set to 7 days, no empirical accelerations were
used and the thermal effects were not modeled12. For the Earth gravitational field the GGM05S
model [90,91] was used. This is the model currently used by the International Laser Ranging Service
(ILRS) community for their analyses, and does not rely on data from the LAGEOS satellites13, in this
way we avoid undue correlations in the analysis. The residuals of each POD were combined as shown
in Equation (5). In Figure 15 we show the integrated residuals for the combined right ascensions of the
ascending nodes, that is, of the observable δΩ̇res

comb.
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Figure 15. Combined residuals (red dots) of the RAAN longitude of LAGEOS, LAGEOS II and LARES.
The continuous red line represents a linear fit to these combined residuals. The continuous black line
represents the corresponding prediction of GR for the Lense-Thirring precession.

12 As we stressed in Section 2, the thermal models in GEODYN are not up-to-date.
13 Actually, for the published GGM05S model, it is explicitly written that the value for the quadrupole coefficient C̄20 has been

replaced with a value derived from satellite laser ranging. However, as described above, in our analysis we replaced this
constant value with a linear trend that fits data from the GRACE mission, and with no contribution from the two LAGEOS
or other SLR satellites.
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In the analysis we used the residuals in the RAAN of the satellites to evaluate the coefficients C̄20

and C̄60 together with the relativistic precession, in such a way to cancel the effects of their uncertainties
on the measurement of the GR precession, as discussed above. The combined residuals shown in
Figure 15 are clearly characterized by the presence of unmodelled periodic effects. A spectral analysis of
the residuals in the RAAN of the three satellites refers these periodic effects to the unmodelled thermal
forces (in part) and to some mismodelling of the gravitational effects, due both to the background field
and to tides [126,127]. Some of the main spectral lines are summarized in Table 6.

Table 6. Periodic effects on the RAAN of the LAGEOS and LARES satellites. The periods have been
rounded to the closest integer number of days (the different phases were not considered). The rate
λ̇ refers to the time variation of ecliptic longitude of the Earth around the Sun. Some of the thermal
spectral lines are also common to solid and ocean tides.

LAGEOS LAGEOS II LARES

Thermal effects Period [days] Period [days] Period [days]

Ω̇ 1052 570 211
2Ω̇ 526 285 105
λ̇ 365 365 365

2λ̇ 183 183 183
2(Ω̇− λ̇) 280 111 67

Ω̇ + λ̇ 271 953 497

Solid tide 165.565 911 622 217

Ocean tide 163.555 221 138 98

The inclusion of some of these unmodeled periodic terms in a more general, non-linear, fit does
improve the ability to reproduce the time series of the residuals. However, as long as we lack a
satisfactory model for such effects, in particular of the thermal effects, this does not improve our
understanding of the observed phenomena14 and, in particular, our capability to disentangle efficiently
the contribution to the periodic effects due to the non-gravitational perturbations from those that
have a gravitational origin. Therefore we shall focus, in this paper, on the simple linear fit of the
integrated residuals.

In Figure 15, we also compare the time integral of the δΩ̇res
comb observable for the right ascensions

of the ascending nodes with its relativistic prediction: the black line in the plot represents the GR
prediction for the combined nodes, that is, the integration in time of Equation (6), while the red line is
the result of a linear fit to the residuals. In the scale of the plot, the two lines almost overlap. For the
measured precession Ω̇meas

comb, that is, for the slope of the fitting line, we obtained:

Ω̇meas
comb ' 49.98± 0.51 mas/yr, (7)

where the error is at 2σ, and with a fractional discrepancy from the GR prediction of Equation (6)
smaller than one percent:

Ω̇meas
comb − Ω̇LT

comb

Ω̇LT
comb

' 6.4× 10−3. (8)

This result represents a precise measurement for the Lense-Thirring precession achieved by means
of a simple linear fit to the residuals of a POD15.

14 As shown in Section 2.4, a goal of our project is to improve the modelling of such subtle perturbations to perform both more
reliable PODs and non-linear fits of the satellites residuals.

15 The accuracy of a linear fit increases if the time interval covered by the measurement includes integer numbers of full cycles
of the unmodelled periodic effects.
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The technique of combining the relativistic observables [76], as summarized by Equation (5),
allows for a reduction of the impact of some of the errors related to both the static and dynamic part of
the Earth gravitational field. However, applying the same combination to the errors associated with
the remaining (and not cancelled) coefficients of the Earth gravitational field, is not sufficient in general
to provide a robust and reliable error budget for the relativistic measurement, even if we deal with
calibrated and not simply formal errors. This is true, in particular, when using a static solution for the
gravitational field, whose coefficients represent an average, over a certain time interval, of the temporal
trends of the same coefficients measured by GRACE. Therefore, sensitivity analyses in dedicated PODs,
and with different input conditions for the background gravitational field, must be performed to have
a reliable estimate of the accuracy related to the knowledge of the gravitational field of the Earth [128].
Obviously, the use of the combination of Equation (5), applied to well-calibrated errors, will have to
provide a result in agreement with that of a well-executed sensitivity analysis, when the dynamic
model includes the time dependency for the gravitational field coefficients. Of course, a careful and
thorough analysis of the various sources of systematic errors is therefore mandatory.

Indeed, within the LARASE activities, we have undertaken a number of actions to provide a
correct estimate of these systematics that will result in a robust and reliable error budget [24,25,129].
For instance, we started an activity based on a wider use of GRACE data to account for the time
dependence of the main even zonal harmonics. In particular, we are fitting the GRACE monthly
solutions for these coefficients and use these fitted values in our PODs16. Preliminary results in this
sense show a good agreement between the results of the sensitivity analyses and the error estimated
by means of the calibrated errors of GGM05S [128]. Under these circumstances, we are confident that
the application of Equation (5) to the calibrated errors of GGM05S provides a reliable result for the
accuracy of the errors related to the background gravitational field for the measurement of the LT
effect described above. By applying Equation (5) to the calibrated errors of GGM05S up to the degree
` = 20 (computed conservatively as sum of their absolute values) we obtain, for the static errors:

δΩ̇LT-stat
comb ' 1.8%Ω̇LT

comb, (9)

when the third harmonic C̄60 is removed along with the first one C̄20.
Finally, in the post-fit analysis we are performing (after the SLR data reduction) to measure the LT

precession, we are also estimating the corrections to the low degree even zonal harmonics coefficients
removed by the adopted combination together with their degree of correlation with the measured LT
effect [128]. In Figures 16 and 17 we show, for the analysis and measurement described in this paper,
the correlations plots among the three estimated parameters, that is, a LT parameter µ (with µ = 1 if
GR is correct and µ = 0 in Newtonian physics), and the corrections δC̄20 and δC̄60 to the quadrupole
and hexadecapole coefficients17.

In Table 7, we conversely show the values obtained for the correlations coefficients among the
three estimated quantities.

As we can see from these results, while the correlation between the LT parameter and the
correction to the quadrupole coefficient is small, neither the correlation between the two corrections to
the even zonal harmonics coefficients nor the correlation between the LT parameter and the correction
to the hexadecapole coefficient is negligible. However, the values obtained for the degree of correlation
among the three parameters represent an improvement if we compare them with those we obtained
in previous analyses [24,45,129], and these correlations are further reduced in the analyses we are
currently performing with a greater number (in the a-priori dynamical model) of time dependent
coefficients for the even zonal harmonics [128].

16 We are also extending these analyses to the other coefficients (the non zonal ones) of the Earth’s gravitational field.
17 The parameter µ is a solve-for parameter that multiplies the relativistic LT precession, see Equation (4), and was first

introduced in Reference [76].
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Table 7. Correlations among the three estimated quantities obtained from the solution of a system of
three equations in three unknowns: the correction δC̄20 to the quadrupole coefficient, the correction
δC̄60 to the hexadecapole coefficient and, finally, the Lense-Thirring parameter µ.

δC̄20 δC̄60 µ

δC̄20 +1.000 +0.354 −0.024
δC̄60 +0.354 +1.000 +0.278

µ −0.024 +0.278 +1.000
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Figure 16. Correlation plots between the LT parameter µ and the corrections to the first and third
even zonal harmonics. Left: quadrupole correction δC̄20 vs the LT parameter µ. Right: hexadecapole
correction δC̄60 vs the LT parameter µ.
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Figure 17. Correlation plot between the corrections to the quadrupole coefficient C̄20 and to the
hexadecapole coefficient C̄60.

5. State-Of-The-Art of Relativistic Measurements with Laser-Ranged Satellites

In this section we summarize the main results obtained so far for the relativistic measurements
performed by the use of the SLR technique18. This technique has been successfully employed since the
1990s to pursue relativistic tests in the weak-field and slow-motion limit of metric theories [26].
The main achievements have been the measurements of the precession of the orbit of satellites

18 Of course, efforts are also devoted to providing independent measurements of the LT effect in a different scenario [130,131].
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produced by both the gravitoelectric and gravitomagnetic field of the planet. Both effects, that
involve two of the three Euler angles defining the orbit orientation with respect to an inertial frame,
have been successfully measured: the former is the gravitoelectric, or Einstein, or Schwarzschild
precession [21,22,80], while the second is the gravitomagnetic, or Lense-Thirring precession, the main
topic of the current paper, measured since 1996 [15].

From the historical point of view, it is worth of mention that Rubincam, in 1977, was the first
who proposed the analysis of LAGEOS orbit to provide a direct measurement of the Schwarzschild
precession on an Earth-orbiting satellite [132]. Unfortunately, at that time, the overall accuracy (due to
observations plus models) was not enough to extract from the data analysis the sought for precession.
Indeed, a long time elapsed with, in the meantime, several works focused upon this argument [80–82],
before the first reliable measurement was finally achieved in 2010 [21].

The results of these measurements, compatible with the predictions of GR, have also allowed to
constrain a number of alternative theories for gravitation. These alternative scenarios involve possible
violations of the inverse-square law [133–135], that is, the existence of a new long-range interaction
at the scale of the orbit of the satellites [83], but also the existence of non-symmetric or torsional
contributions to the gravitational interaction [136–138].

In Table 8 the best measurements obtained so far for both the LT and Schwarzschild precession
are shown. The results are expressed in terms of normalized parameters: µ for the Lense-Thirring
precession and ε in the case of the Schwarzschild precession. The Table also indicates the background
gravitational field used for the considered measurements of the LT effect. In the case of the two
measurements of the Schwarzschild precession, the EIGEN-GRACE02S model was used.

Table 8. Measurements of the Lense-Thirring secular precession due to the Earth gravitomagnetic field
and of the Schwarzschild secular precession due to the Earth gravitoelectric field. The normalized
Lense-Thirring precession µ was obtained: combining the nodes of the two LAGEOS with the pericenter
of LAGEOS II in the case of the measurement (1); combining the nodes of the two LAGEOS for the
measurements (2) and (3); combining the nodes of the two LAGEOS with that of LARES for the other
measurements. In the case of the Schwarzschild precession ε, the pericenter of LAGEOS II was used as
the relativistic observable.

Lense-Thirring Precession Schwarzschild Precession

µ − 1 δµ Year Model Ref. ε − 1 δε Year Ref.

(1) +0.10 ±0.03 1998 EGM96 [18] +0.28× 10−3 ±2.14× 10−3 2010 [21]
(2) −0.01 ±0.02 2004 EIGEN-GRACE02S [19] −0.12× 10−3 ±2.10× 10−3 2014 [22]
(3) −0.01 ±0.01 2004 EIGEN2S [77,79]
(4) −0.006 ±0.002 2016 GGM05S [23]
(5) −0.001 ±0.001 2017 GGM05S [24]
(6) +0.006 ±0.005 2019 GGM05S This paper

In the case of the LT effect measurements, the reported errors δµ are derived by the authors from
a non-linear fit to the residuals and have to be considered as 1σ formal errors. The only exceptions are
the measurements (3) and (6), where a simple linear fit has been performed. In the case of the present
measurement (6), the error δµ has been scaled at 1σ to better compare with previous measurements.
All the above measurements have been also supplemented with an estimate of their systematic errors19.
These estimates are however not completely reliable, as discussed above, and were not included
in Table 8.

For this reason, and on the basis of previous discussion in Section 4.3, we believe that the precisions
of the last two measures, respectively 0.2% for measurement (4) and 0.1% for measurement (5), are to be
considered optimistic. In fact, in both measurements the C̄60 was not cancelled, and the bias introduced

19 The interested reader can refer to the cited literature for details.
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in the slope of the integrated residuals was accidentally absorbed by the amplitude of the periodic
terms removed by the non-linear fit. We are particularly confident in the correctness of this analysis on
the precision of previous measurements in the case of the measurement (5), that was performed by
our team 20.

In the case of the measurements of the Schwarzschild precession, the error δε is based on a
sensitivity analysis of all the parameters involved in the non-linear fit performed, that is, it is not a
simple formal error. For these measurements, a detailed error budget of the systematic errors due to
the main gravitational and non-gravitational disturbing effects has also been provided [22], at the level
of 2.5%.

In Table 9, the constraints obtained in Reference [22] for possible alternative theories of the
gravitational interaction are shown and compared with previous results. The physical parameters
included in this Table are responsible, if they exist in nature, for a secular effect on the argument of
pericenter of a satellite. For the measurement of the LAGEOS II pericenter advance, it was possible
to carry on an accurate analysis of the systematic errors [22]: we can therefore provide (see Table 9),
besides the errors obtained from a sensitivity analysis of the parameters of the fit, as previously
described, also the error budget for each constraint: the last of the three values given for each constraint.

Table 9. Summary of the constraints on fundamental physics obtained in Reference [22] with their
corresponding errors. The constraints are compared with previous results [80,82,139,140].

Parameter Values or Uncertainties Previous Values or Uncertainties

|α| ' |(0.5± 8.0)± 101| × 10−12 ±1× 10−8

C⊕LII ≤ (0.003 km)4 ± (0.036 km)4 ± (0.092 km)4 ±(0.16 km)4; ±(0.087 km)4

|2t2 + t3| ' 3.5× 10−4 ± 6.2× 10−3 ± 7.49× 10−2 3× 10−3

The parameter α refers to the strength of a Yukawa-like potential predicted by some (possible)
new long-range force21 for a characteristic range λ of the order of half the semi-major axis of LAGEOS
II, that is, close to the radius of the Earth. The parameter C⊕LII refers to a possible additional interaction
between the Earth and the satellite that comes to play in the case of a non-symmetric gravitation
theory [136]. If a non-vanishing torsional tensor is present, because of non-symmetric connection
coefficients [141,142], a modification of spacetime will be produced22. The parameters t2 and t3 are
two of a set of parameters that allow to test for torsion and which appear in the metric [138]. We finally
remark that the measurement of the Schwarzschild precession, reported in Table 8, corresponds to a
measurement of a combination of the post-Newtonian parameters β and γ [26]: ε = |2+2γ−β|

3 .

6. Conclusions and Perspectives

Since its final formulation, in 1916, Einstein’s GR [143] has passed an incredible number of
observational and experimental tests [28], and with still impressive results in recent years. In 2016,
the first century of GR [144] was celebrated with the first direct detection of gravitational waves by the
LIGO interferometers [145], that is, with the last of the many predictions of the theory and providing
insight into the dynamical regime of gravitation. This result opens the way to the gravitational
astronomy, thus enriching more and more the fields of cosmology and astrophysics. In 2017, a new
era of multi-messenger astronomy arose with the first observation of gravitational waves from the
merger of a binary system of two neutron stars [146]. Therefore, although several open problems are

20 As mentioned in Section 4, work is in progress to deliver a more accurate result with a detailed estimate of the
systematic errors.

21 This is possible, in principle, if the metric tensor of GR is not the only field involved in the description of the gravitational
interaction, but other fields (either scalar, vector, or tensor) are present [135].

22 This represents a generalization of Einstein’s GR when a Riemann-Cartan spacetime is considered.
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still there, we can continue to state that GR still represents the standard model for gravitation [147].
The Lense-Thirring effect we have considered in this paper, and more generally gravitomagnetism,
plays a special role among the many predictions of Einstein’s theory [35], since it describes the
gravitational effects produced by mass-currents that have no classical counterpart.

We have presented some of the results of the LARASE research program which are developed
with the final goal to provide precise and accurate measurements of the gravitational interaction in the
field of the Earth by means of laser measurements to passive satellites. In this framework, we have
undertaken an activity aimed at improving the models of non-gravitational forces.

We completed a new general model (named LASSOS) for the spin evolution of the two LAGEOS
satellites and of LARES (Section 2.2) that is used in a new, detailed thermal model of the satellites
to properly account for the thermal thrust effects. These perturbing effects are mainly due to
the Sun visible radiation (the Yarkovsky-Schach effect) and to the Earth’s infrared radiation (the
Earth-Yarkovsky effect) and critically depend on the spin evolution of each satellite.

We presented the results of a simplified thermal model, based on averaged equations: it provides
interesting results when its predictions for the evolution of the orbital elements of a satellite are
compared with the results for the residuals in the same elements independently obtained by a POD.
In Section 2.4, the results for LAGEOS II in the case of the solar Yarkovsky-Schach effect have been
shown. Further work is required for a detailed and comprehensive description of both the simplified
and the general thermal models.

As highlighted in previous Sections, an improved model for the thermal thrust forces, especially
for the solar Yarkovsky-Schach effect, is mandatory to "clean" the LAGEOS II argument of pericenter
from the disturbing effects related with these NGP. This result will allow the introduction of one
more observable, whose residuals will help in a further reduction of the impact, in the relativistic
measurements, of the errors related with the gravitational field of the Earth.

Among the NGP, special attention was devoted to the effects of the atmospheric neutral drag.
This perturbation is particularly important for LARES, because of its lower height with respect to the
LAGEOS satellites. In Section 2.3, our results for the decay of the semi-major axis of LARES have been
shown. The correlation between the decay rate and the varying solar activity has been higlighted.
We have shown that almost all of the observed decay of the satellite semi-major axis can be explained
by the drag of the neutral atmosphere. Anyway, it seems that a very small residual decay . 1% is
still unaccounted for. This may be due to the thermal effects [148,149] and/or to the effects of the
Coulombian interaction between the satellite potential and the charged particles in its surrounding
environment. These issues are currently under investigation. We have also shown that the neutral drag
perturbation has no significant impact in the measurement of the Lense-Thirring effect, see Section 4.2.

We presented in Section 4.3 a preliminary result for our last measurement of the Lense-Thirring
effect. This new measurement is based on a simple linear fit to the integrated and combined residuals
of the two LAGEOS and LARES satellites. A measurement with a discrepancy of 0.6% with respect to
the prediction of GR was obtained. In terms of the Lense-Thirring parameter µ, our result is:

µ− 1 = 0.006± 0.005± δµsys, (10)

where the 2σ error of Equation (7) has been re-scaled to 1σ for a direct comparison with previous
measurements, see Section 5. On the basis of the discussion presented in Section 4, we retain this 0.5%
precision reliable.

With regard to the systematic sources of error, δµsys, Sections 4.1 and 4.3 were also devoted to a
discussion of the systematic error in the Lense-Thirring effect measurement related to the knowledge
of the gravitational field of the Earth. This represents, for relativistic measurements with laser-ranged
satellites, the main source of error and also one of the most complex to manage in a reliable way. In this
regard, we have shown the importance of the inclusion in the dynamical model of GRACE temporal
solutions for the even zonal coefficients, starting from the quadrupole one. The error was set to about
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2% of the relativistic precession predicted by GR for the analysed combined orbits, see Equation (9).
The GGM05S model was used to model the gravitational field of the Earth.

In this context, a final robust and reliable error budget also needs a correct evaluation of
the contribution of the periodic effects that are currently not modelled in the POD and, probably,
some improvements in the dynamical model related with the gravitational effects that are responsible
of periodic signatures in the right ascension of the ascending node of the two LAGEOS satellites
and in that of the LARES one. Consequently, we have prepared a line-up of improvements in the
analysis techniques, such as introducing time-dependent models for the zonal harmonics, performing
sensitivity analysis runs and improving the thermal models, that will further improve the quality of
the measurement for the Lense-Thirring precession, and reduce its error bar. One more important
aspect is the estimate of the coefficients of the gravitational field together with the Lense-Thirring effect
parameter µ, see Section 4.3. Other sources of systematic errors to be included in the error budget are
the uncertainties in the tidal model and in the de Sitter precession.

Concerning tides, both solid and ocean, we have considered their effects and errors in the case
of the Lense-Thirring effect measurement in Reference [127]. Solid tides have a negligible impact
in this relativistic measurement, while ocean tides may impact (conservatively) at a level of about
. 0.5% of the relativistic precession. The de Sitter precession was modelled in our POD following [94].
Assuming conservatively an upper bound error of 0.64% [150], the impact in the Lense-Thirring effect
measurement is about 0.3% of the relativistic precession.

We conclude underlying that thanks to the efforts of the ILRS, the precise measurements offered
by the SLR technique cover a very important role for fundamental physics measurements, beside their
“institutional” role in space geodesy, geodynamics and geophysics. Consequently, it is very important
that the wealth of the SLR ranging observations be guaranteed and, possibly, improved in the future.
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