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Abstract: Teleparallel geometry utilizes Weitzenböck connection which has nontrivial torsion but
no curvature and does not directly follow from the metric like Levi–Civita connection. In extended
teleparallel theories, for instance in f (T) or scalar-torsion gravity, the connection must obey its
antisymmetric field equations. Thus far, only a few analytic solutions were known. In this note, we
solve the f (T, φ) gravity antisymmetric vacuum field equations for a generic rotating tetrad ansatz in
Weyl canonical coordinates, and find the corresponding spin connection coefficients. By a coordinate
transformation, we present the solution also in Boyer–Lindquist coordinates, often used to study
rotating solutions in general relativity. The result hints for the existence of another branch of rotating
solutions besides the Kerr family in extended teleparallel gravities.

Keywords: teleparallel theory of gravity; scalar-torsion gravity; rotating black holes

1. Introduction

The observation of gravitational waves engendered by the merger of two black holes [1] and the
very recent capture of the first image of a supermassive black hole [2] underscores the importance
of black hole research for the progress in fundamental physics [3]. Determining the waveforms and
shadows can allow for distinguishing black holes from their more exotic dark compact cousins [4,5],
and probing the extensions and modifications of general relativity [6–8]. The issue is whether the Kerr
solution of a rotating black hole in general relativity (GR) can give a sufficiently good account of the
observations, and how well we can test and rule out the possible alternatives. A systematic study to
understand the properties of black holes and other compact dark objects in GR and beyond is therefore
very much a call of the day.

In its geometric perspective, GR assumes metric and torsion free Levi–Civita connection,
and attributes the phenomenon of gravity to the curvature. However, the choice of connection
is a mathematical convention and not an independent property of spacetime. It is actually possible to
rewrite the Einstein–Hilbert action of GR in terms of two different geometric concepts: the teleparallel
(Weitzenböck) connection, which is endowed with nonzero torsion but vanishing curvature and
vanishing nonmetricity, yielding teleparallel equivalent of general relativity (TEGR) where the
dynamics of gravity can be expressed by the torsion [9–11] (see Refs [12,13] for a general context),
and the curvature free and torsion free symmetric teleparallel connection, yielding symmetric
teleparallel equivalent of general relativity (STEGR) where the effects of gravity are encoded by
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nonmetricity [14–16]. These three formulations of the theory (tentatively dubbed the “geometrical
trinity of gravity” [17]) have equivalent field equations and hence possess the same black hole
solutions, which may nevertheless offer insights into the discussions of e.g., gravitational energy,
thermodynamics, etc. [18–20]. However, when analogous to the curvature based f (R) and scalar-tensor
gravity, one extends the teleparallel theory by e.g., introducing an arbitrary function of the torsion
scalar, f (T) [21,22], or nonminimally coupled scalar field in the action [23,24], or generalizes the
theory further [25–31]; then, the field equations start to differ from their curvature based counterparts,
and consequently can offer new or modified solutions.

In contrast to the Levi–Civita connection, the teleparallel connection is not entirely determined
by the metric tensor. The constraints of vanishing curvature (“flatness”) and nonmetricity restrict the
teleparallel connection coefficients in the most general case to depend on six functions, extra to the
Levi–Civita part coming from the metric tensor. How to appropriately interpret this additional freedom
and determine teleparallel connection for a solution of interest are among the central issues in the
theory. In the case of TEGR, varying the action with respect to the independent part of the teleparallel
connection gives an identically trivial result. However, appropriately fixing teleparallel connection is
still required for the correct definition of conserved charges [19,32,33] and physically relevant finite
action [33,34]. The issue is tied to the conceptual separation of gravitational and inertial effects, and
the best proposal so far to find the teleparallel connection in TEGR proceeds by identifying the purely
inertial connection pertaining to the limit where gravity is “turned off” [34–36]. In extended theories,
the variation of the action with respect to the independent part of the teleparallel connection yields
six nontrivial antisymmetric equations [24,35,37], which is an essential ingredient in the covariant
description of the theory [24,36,38]. In the picture of local frames, curvature can be made to vanish
with zero spin connection, and the six functions parameterize the equivalence class of frames related
to the frame with zero spin connection by local Lorentz transformations.

Speaking of connections, one also has to address the issue of how the matter fields couple to
them. Including spinless matter as a scalar field or ideal fluid, as well as the electromagnetic field
in a teleparallel theory, is quite straightforward as they naturally only couple to the metric and feel
the Levi–Civita connection. However, the prescription for the fermions coupling in TEGR has led to
different approaches and conflicting opinions [39–44]. In the present work, we focus upon vacuum
field configurations in the exterior of a massive body or a black hole, hence we expect our results to
hold in different possible scenarios in the matter sector.

There are several papers which consider rotating solutions in f (T) teleparallel gravities. However,
they proceed solving the field equations by accepting that the second derivative of f with respect to T
vanishes [33], or adopts zero [45] or constant T [46,47], which all render the field equations to those of
TEGR. Therefore, these results establish that the Kerr solution (as well as Schwarzschild [48,49] and
McVittie [50]) of GR survives as a universal solution in TEGR and in its generalizations.

It still leaves open an interesting question of whether the family of rotating solutions is larger
when we extend teleparallel gravity beyond TEGR. The aim of this short note is to take the first step
and solve the antisymmetric (connection) equations assuming a generic axially symmetric metric and
scalar field in f (T, φ) extended teleparallel gravity. Indeed, we find a set of spin connection coefficients
which imply nonconstant torsion scalar T, and at the same time get a constraint on the metric, which
forces it to be different from Kerr. Obtaining the full solution would require solving the symmetric
(metric) equations that depend on the particular form of the function f and is beyond the scope of the
present note. Meanwhile, the new axially symmetric connection we found is universal to the whole
f (T, φ) family of theories.

In Section 2, we recollect the main formulas of teleparallel geometry and introduce f (T, φ) gravity
in the formulation that is covariant under local Lorentz transformations. In Section 3, we write down
the field equations and discuss the possible approaches of how to solve them with an emphasis
on treating the spin connection and the antisymmetric equations. Then, in Section 4, we start with
an ansatz for a generic rotating spacetime and solve the antisymmetric field equations for the spin
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connection in Weyl canonical coordinates. The result will be presented in different Lorentz frames
to illustrate the covariant formalism. The same solution is then transformed into Boyer–Lindquist
coordinates in Section 5, and again exposed in different Lorentz frames. Finally, Section 6 gives
a summarizing discussion and outlook.

2. Covariant Formulation of F(T , φ) Gravity

The Weitzenböck connection Γρ
µν in teleparallel gravity is assumed to have vanishing curvature,

Rρ
σµν = ∂µΓρ

σν − ∂νΓρ
σµ + Γρ

λµΓλ
σν − Γρ

λνΓλ
σµ ≡ 0 (1)

and vanishing nonmetricity,

∇ρgµν = ∂ρgµν − Γλ
µρgλν − Γλ

νρgµλ ≡ 0 (2)

but nonzero torsion,
Tρ

µν = Γρ
νµ − Γρ

µν . (3)

The difference between the teleparallel connection and Levi–Civita connection whose coefficients are
determined by the metric,

◦
Γρ

µν =
1
2

gρσ
(
∂µgσν + ∂νgµσ − ∂σgµν

)
(4)

is called the contortion tensor, which can be expressed as

Kρ
µν = Γρ

µν −
◦
Γρ

µν =
1
2
(
Tµ

ρ
ν + Tν

ρ
µ − Tρ

µν

)
. (5)

Note that the curvature
◦
Rρ

σµν of the Levi–Civita connection would still be nonvanishing in general, but

the torsion
◦
Tρ

µν is identically zero. (In some literature, the teleparallel connection and the quantities
computed from it are denoted by a filled overdot (e.g., [9,36]) but we will omit this here. All quantities
pertain to teleparallel connection unless marked otherwise.)

From the quantities above, we may introduce the superpotential

Sρ
µν = Kµν

ρ − δ
µ
ρ Tσ

σν + δν
ρ Tσ

σµ (6)

and form a torsion scalar
T =

1
2

Tρ
µνSρ

µν . (7)

The latter has a remarkable property

◦
R = −T +

2
√

g
∂µ(
√

gTν
νµ) . (8)

When submitted to a variational exercise here, the last term becomes a boundary term that does not
contribute to the field equations. This property allows to rewrite the Einstein–Hilbert action of GR in
the teleparallel framework as

STEGR =
1

2κ2

∫
M

d4x
√

g T . (9)

As the field equations derived from the action (9) coincide with those of GR due to the relation (8),
the theory (9) is known as the teleparallel equivalent of general relativity.
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While TEGR reproduces GR in an alternative geometrical setting, if we modify the action (9) to
a function of the torsion scalar or involve a nonminimally coupled field, we get a theory different from
the curvature counterparts f (R) or scalar-tensor gravity. Let us consider the action [24]

S =
1

2κ2

∫
M

d4x
√

g
[

f (T, φ) + Z(φ)gµνφ,µφ,ν
]

(10)

which depends on two free functions f and Z, while 2κ2 = 16πGN sets the Newtonian gravitational
constant. This action encompasses f (T) gravity and teleparallel dark energy as particular cases. Here,
we assume that the connection in T is teleparallel. An alternative would be to start with arbitrary
connection and impose its flatness and metricity by adding suitable Lagrange multiplier terms in the
action [51]. A complete physical theory is obtained by adding matter field actions to the gravitational
actions (9) or (10). In the literature on teleparallel gravity theories, several inequivalent matter coupling
models have been considered, as we mentioned in the introduction. Since we are interested in the
solutions of the vacuum field equations, we do not enter into this discussion here.

The conditions (1) and (2) reduce the freedom in teleparallel connection to six functions. This can
be seen more elegantly in the tetrad formalism, which allows for expressing quantities in anholonomic
bases (frames) by relating the metric and tetrad ha

µ,

gµν = ηabha
µhb

ν (11)

(where ηab = diag(−1, 1, 1, 1), ha
µhb

µ = δa
b , ha

µha
ν = δν

µ), and the spin connection ωa
bµ with

Γρ
µν = ha

ρ
(

∂νha
µ + ωa

bνhb
µ

)
(12)

is introduced. Tetrads can be used to transform between spacetime and frame indexes, e.g.,

Ta
µν = ha

ρTρ
µν = ∂µha

ν − ∂νha
µ + ωa

bµhb
ν −ωa

bνhb
µ. (13)

Ra
bµν = ha

ρhb
σRρ

σµν = ∂µωa
bν − ∂νωa

bµ + ωa
cµωc

bν −ωa
cνωc

bµ . (14)

It is important to realize that the relationship between spacetime and frame expressions is not
unique, since we are allowed to make local Lorentz transformations on the frame indices,

h′aµ = Λa
bhb

µ, ω′abµ = Λa
cωc

dµΛ d
b + Λa

c∂µΛ c
b , (15)

(where Λb
d is the inverse matrix of Λb

d), which leaves the respective spacetime quantities intact.
One can easily translate the flatness condition (1) into Ra

bµν = 0 and solve the latter by asking
the spin connection coefficients to vanish, ωa

bµ = 0. Then, in all other frames obtained by a Lorentz
transformation, the spin connection

ωa
bµ = Λa

c∂µΛ c
b (16)

remains flat and metric. This explains why the independent teleparallel connection is characterized by
six functions; these are just the six independent Lorentz transformation parameters at every spacetime
point. Note that vanishing spin connection does not imply zero spacetime connection because of the
relation (12). If we had imposed Γρ

µν = 0, then both the curvature (1) and torsion (3) would vanish. On
the other hand, vanishing spin connection and its Lorentz transformed versions imply the vanishing
of curvature (14), but not of torsion (13).

The specific frame where the spin connection vanishes defines the Weitzenböck gauge [40]
(up to a global Lorentz transformation). This gauge can be rather useful in calculations, but, if one sets
the spin connection to vanish as defining property of the theory, then local Lorentz covariance is lost
and many problems ensue [52,53]. If the spin connection is suppressed, the torsion tensor (13) and the
quantities constructed from it will fail to transform covariantly under local Lorentz transformations. In
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particular, the actions (9) and (10) in such noncovariant formulation will remain invariant only under
global Lorentz transformations whereby nonzero spin connection would otherwise not be generated
by Equation (15). In the covariant approach, one allows nontrivial spin connection and considers all
Lorentz frames on equal footing, the torsion (13) behaves correctly as a tensor and the action (10) is
invariant under local Lorentz transformations [36,38].

3. Field Equations

The variation of the action (10) with respect to the metric, or with respect to the tetrad, and then
symmetrizing of the spacetime indices, yields the symmetric (scalar-vacuum) field equations [24]

1
2

f gµν +
◦
∇ρ

(
fTS(µν)

ρ
)
− 1

2
fTS(µ

ρσTν)ρσ − Zφ,µφ,ν +
1
2

Zgµνgρσφ,ρφ,σ = 0 . (17)

Here, fT denotes a derivative of f (T) with respect to the torsion scalar T, etc., and comma a partial
derivative with respect to the respective coordinate. One must keep in mind that

∂µ fT = fTT∂µT + fTφ∂µφ . (18)

The antisymmetric part of the tetrad field equations turns out to be equivalent to the equations
coming from the variation of the action with respect to the teleparallel spin connection, in spacetime
components [24]

∂[ρ fTTρ
µν] = 0 (19)

(here one needs to antisymmetrize the three lower indices and then sum over the repeating upper and
lower index), or equivalently in terms of the frame fields [35,37]

∂µ fT

[
∂ν

(
hh[a

µhb]
ν
)
+ 2hhc

[µh[a
ν]ωc

b]ν

]
= 0 . (20)

Here, h = det ha
µ is the volume factor equal to

√
g. There are six independent equations corresponding

to the freedom in teleparallel connection, as encoded in the Lorentz matrices. Finally, the equation for
the scalar field is

fφ − Zφgµνφ,µφ,ν − 2Z
◦
�φ = 0, (21)

where
◦
� = gµν

◦
∇µ

◦
∇ν is the d’Alembert operator of the Levi–Civita connection.

It is quite obvious that, if fTT ≡ 0, we get a scalar field coupled to TEGR (9), if fTφ ≡ 0, we get
a scalar field minimally coupled to f (T) gravity, and, if fTT ≡ 0 as well as fTφ ≡ 0, we get a scalar
field minimally coupled to TEGR. In addition, if fφ ≡ 0, the scalar field is massless and minimally
coupled. Furthermore, one can show that, when T and φ are constant in spacetime and fφ = 0, then
the equations above also reduce to those of TEGR with a minimally coupled scalar field [24]. Notice
that the minimally coupled scalar field does not appear in the antisymmetric field Equation (19),
and similarly would not any matter coupled to the metric only. On the contrary, if we had introduced
extra matter directly coupled to the teleparallel connection (or torsion, which is equivalent), then the
antisymmetric field equations would have acquired an additional source term (see, e.g., [51]). However,
we will not entertain the latter possibility here.

To complement the outline of the mathematical possibilities of how the antisymmetric field
Equation (19) can be satisfied, given in Ref. [24], let us briefly discuss here how to approach the field
equations in practice. Usually, wanting to study a specific physical system, one has some underlying
symmetry in mind, which can be imposed on the dynamical fields of the theory to solve the field
equations. In contrast to the curvature and Levi–Civita connection based theories, here this means
that we look for tetrads and teleparallel (flat) connections, whereby both obey the symmetry demands.
Combining the three requirements of symmetry, flatness and solving the equations, there are several
approaches one can pursue to determine the spin connection.
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First, naively taking the most straightforward diagonal tetrad that corresponds to a metric with
certain symmetry, and assuming vanishing spin connection, will generally not solve the antisymmetric
field equations, except for a few really simple cases. A more fruitful method is to take that diagonal
tetrad and apply a local Lorentz transformation (15) on it, then still assuming vanishing spin
connection go on to solve the antisymmetric field equations for the functions parametrizing the
Lorentz transformation [49]. The solution will be a tetrad in the Weitzenböck gauge, while the other
equivalent tetrad–spin connection pairs can be generated by arbitrary local Lorentz transformations.
The spin connection in these pairs is guaranteed to be flat, since it obeys the form (16), and also
symmetric, since it is associated with a symmetric tetrad.

The second approach could be to take that diagonal tetrad and write the flat spin connection in
terms of the Lorentz matrices as (16), then solve the antisymmetric field equations for the functions
parametrizing the Lorentz transformation. In essence, one is now solving the field equations assuming
a non-Weitzenböck gauge. Like in the previous approach, the antisymmetric Equation (19) would be
second order differential equations for the six Lorentz functions, which could be rather complicated to
tackle in a general case. However, like before, the situation will not be so bad, if one can guess that
only one local Lorentz boost or rotation is needed. The resulting spin connection can be assessed for
the symmetry properties afterwards.

The third approach would be to take the diagonal tetrad and try to solve the antisymmetric
equations with the spin connection coefficients that satisfy the zero curvature condition (14)
simultaneously. The number of equations and different components one needs to solve for is large,
but the equations contain now at most only first order derivatives of the spin connection coefficients.
It might be helpful to guess that some spin connection coefficients should be zero or assume not to
depend on certain coordinates, for example by comparing with the spin connection in the “zero gravity”
(Minkowski) limit where the torsion tensor vanishes. The resulting spin connection can be checked for
the symmetry as a subsequent step.

Finally, the fourth approach would benefit from the recent Ref. [54], where the mathematical
details of the notion of symmetry in teleparallel geometry were worked out and several tetrads
and teleparallel connections corresponding to various symmetries were derived. One can take
a suitable tetrad–spin connection pair from Ref. [54], whereby the symmetry and flatness are already
implemented, and proceed to solve the antisymmetric field equations to fix the remaining freedom.

In the current work, we have followed the third approach to solve the antisymmetric field
equations, and used Ref. [54] to check the symmetry of the obtained spin connection. To complete the
solution, our result should be substituted into the symmetric and scalar field equations. However,
solving these equations would require specifying the particular theory, i.e., the functions f (T, φ) and
Z(φ), which is beyond the scope of the present note, and is left for future work.

4. Rotating Spacetime in Weyl Canonical Coordinates

A general axially symmetric metric in Weyl canonical coordinates (t, z, ρ, ϕ) is given by [55]

ds2 = A2(dt−Wdϕ)2 − B2(dz2 + dρ2)− ρ2 A−2dϕ2 (22)

where A, B, W are arbitrary functions of z and ρ. As one may easily verify, the metric (22) can be
obtained from the almost diagonal tetrad

ha
µ =


A 0 0 −AW
0 −B 0 0
0 0 −B 0
0 0 0 −ρA−1

 (23)

via (11). To complement the setup, we assume that the scalar field is also stationary and axially
symmetric, φ(z, ρ).
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We can determine the associated spin connection coefficients from the connection Equation (20)
and the requirement of flatness, the vanishing of curvature (14). Equation (20) is given by a sum of
two parts, one multiplied by fTT and another by fTφ, c.f., (18). We proceed by finding a solution that
would satisfy both these parts separately, so that the result would remain independent of the function
f that specifies a particular theory. It is a lengthy computation, but assuming that the spin connection
components are at most functions of z, ρ, and demanding that the coefficients of ∂2

z A, ∂2
ρ A, ∂2

z B, ∂2
ρB,

∂2
zW, ∂2

ρW vanish independently (since A, B and W are arbitrary), yields a solution with only two
nonzero components

ω2̂
3̂ϕ

= −ω3̂
2̂ϕ

= −1 . (24)

This spin connection solves five of the six Equation (14), while the remaining one can be satisfied by

B =
1
A

. (25)

Comparing with Ref. [54], we may confirm that the spin connection (24) is a particular case of a generic
axially symmetric connection.

In fact, we could have obtained the spin connection (24) by the procedure originally suggested for
TEGR, namely “turning off” gravity so that only purely inertial connection remains [34–36]. Indeed,
demanding that the torsion tensor components vanish for a reference tetrad with A = B = 1, W = 0,
which corresponds to Minkowski space in cylindrical coordinates, immediately gives (24). Physically,
this spin connection is easy to interpret as accounting for the inertial effects stemming from the
cylindrical coordinate system. However, in extended teleparallel theories, the spin connection must
also satisfy Equation (20), and this brings in extra demand (25). The latter is rather difficult to interpret
at this point, especially since imposing (25) in (22) precludes Kerr solution (c.f., for instance [56]).

It is possible to find a local Lorentz transformation that makes the spin connection vanish. In
other words, we need to determine Λa

b that generates (24) via (16). It turns out to be a simple rotation

Λa
b =


1 0 0 0
0 1 0 0
0 0 cos ϕ sin ϕ

0 0 − sin ϕ cos ϕ

 . (26)

Applying the inverse rotation

(Λ−1)a
b =


1 0 0 0
0 1 0 0
0 0 cos ϕ − sin ϕ

0 0 sin ϕ cos ϕ

 (27)

in (15) makes the spin connection vanish and transforms the tetrad (23) into

ha
µ =


A 0 0 −AW
0 − 1

A 0 0
0 0 − cos ϕ

A
ρ sin ϕ

A
0 0 − sin ϕ

A − ρ cos ϕ
A

 . (28)

Indeed, the tetrad (28) satisfies the condition (20) with vanishing spin connection. In the parlance
of the older noncovariant “pure tetrad” approach to teleparallel gravity, the nondiagonal tetrad (28)
would be called a “good tetrad” in analogy with the nondiagonal tetrads for the spherically symmetric
spacetimes [48,49]. In the newer covariant approach, the tetrad (28) is called a “proper tetrad” and
interpreted to correspond to a frame where the inertial effects are not present. The spherically
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symmetric analogue for the diagonal tetrad (23) and nontrivial spin connection (24) was given in
Ref. [38]. In the spherically symmetric case, an extra condition like (25) did not arise.

As a remark, let us note that, if we took the “good” tetrad solution (28) and made a Lorentz
transform (26), we would have gotten the tetrad (23). However, the latter without spin connection
would not solve the field equations. In the old noncovariant approach which assumed identically
zero spin connection, this phenomenon was a source of some puzzlement and led to the terminology
whereby the tetrad (23) would be called “bad” [49]. In the covariant understanding of the theory,
the tetrad (23) is in no sense bad or unphysical, it just solves the field equations in combination with
a nonzero spin connection (24) engendered by the same Lorentz transformation (26) via (16).

We can also record that the torsion scalar (7) corresponding to the diagonal tetrad (23) and
spin connection (24), or equivalently to the nondiagonal tetrad (28) and vanishing spin connection
(all with (25) implied) is given by

T =
A6 ((∂zW)2 + (∂ρW)2)− 4ρ2 ((∂z A)2 + (∂ρ A)2)

2ρ2 . (29)

The torsion scalar is not constant in general, hence does not render the equations automatically to
those of TEGR. Therefore, there is a possibility to obtain new solutions that are not present in TEGR
(and correspondingly, in GR). The functions A, W still need to be determined by solving the symmetric
field Equation (17) and the scalar field Equation (21), which cannot be undertaken without specifying
the theory (i.e., the function f ).

5. Rotating Spacetime in Boyer–Lindquist Coordinates

To facilitate comparisons with the most common presentation of the Kerr solution, let us convert
the solution from Weyl canonical coordinates into the Boyer–Lindquist coordinates (t, r, ϑ, ϕ) by [55]

t = t ρ =
√

∆ sin ϑ z = (r−m) cos θ ϕ = ϕ, (30)

where
∆ = r2 − 2mr + a2 . (31)

Here, we should stress that, while in the Kerr solution the parameters m and a carry a clear physical
meaning, at this point, here they are just some constants in the coordinate transformation, without
a physical interpretation yet. We can make the coordinate transformation (30) to the nondiagonal
tetrad (28) to obtain

ha
µ =


A 0 0 −AW
0 − cos ϑ

A
(r−m) sin ϑ

A 0

0 − (r−m) cos ϕ sin ϑ

A
√

∆
−
√

∆ cos ϕ cos ϑ
A

√
∆ sin ϕ sin ϑ

A

0 − (r−m) sin ϕ sin ϑ

A
√

∆
−
√

∆ sin ϕ cos ϑ
A −

√
∆ cos ϕ sin ϑ

A

 (32)

where A, W are now functions of r, ϑ. It can be checked that the transformed nondiagonal tetrad (32)
still satisfies (20) with vanishing spin connection, as it should. The torsion scalar is now given by

T =
A6
(
(∂rW)2

sin2 ϑ
+ (∂ϑW)2

∆ sin2 ϑ

)
− 4

(
∆(∂r A)2 + (∂ϑ A)2)

2Ω
(33)

where
Ω = r2 − 2mr + m2 + (a2 −m2) cos2 ϑ . (34)
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We may want to find a Lorentz frame where the tetrad (32) diagonalizes as much as possible. For
that, let us rotate it by making a Lorentz transformation with (26). The result is

ha
µ =


A 0 0 −AW
0 − cos ϑ

A
(r−m) sin ϑ

A 0

0 − (r−m) sin ϑ

A
√

∆
−
√

∆ cos ϑ
A 0

0 0 0 −
√

∆ sin ϑ
A

 . (35)

The latter tetrad is obviously associated with the spin connection (24). Indeed, it can be
checked that together the tetrad (35) and the spin connection (24) satisfy the connection Equation (20).
Another rotation

Λa
b =


1 0 0 0

0
√

∆ cos ϑ√
Ω

(r−m) sin ϑ√
Ω

0

0 − (r−m) sin ϑ√
Ω

√
∆ cos ϑ√

Ω
0

0 0 0 1

 (36)

takes the rotated tetrad (35) into a “diagonal” form

ha
µ =


A 0 0 −AW
0 −

√
Ω

A
√

∆
0 0

0 0 −
√

Ω
A 0

0 0 0 −
√

∆ sin ϑ
A

 . (37)

This last “diagonal” tetrad (37) is associated with the spin connection

ω1̂
2̂r = −ω2̂

1̂r =
(m2 − a2) sin ϑ cos ϑ

Ω
√

∆
ω1̂

2̂ϑ
= −ω2̂

1̂ϑ
= − (r−m)

√
∆

Ω
,

ω1̂
3̂ϕ

= −ω3̂
1̂ϕ

= − (r−m) sin ϑ√
Ω

ω2̂
3̂ϕ

= −ω3̂
2̂ϕ

= −
√

∆ cos ϑ√
Ω

(38)

which can be generated by (16) where the Lorentz transformation is a composition of (26) and (36),
or by Lorentz transforming (15) the connection (24) by (36). The tetrad (37) together with the spin
connection (38) again satisfies the connection equation (20).

To be sure, all the tetrads (32), (35), and (37) generate a rotating metric

ds2 = A2(dt−Wdϕ)2 − Ω
A2

(
1
∆

dr2 − dϑ2
)
− ∆

A2 sin2 ϑ dϕ2 . (39)

Here, the two arbitrary functions A, W need to be determined by the tetrad field Equation (17) and
the scalar field Equation (21). By inspecting the tt and rr components, it becomes clear that a metric
in the form of (39) can not be exactly congruent to the Kerr metric. The origin for this feature is the
condition (25). We were seeking solutions different from TEGR and on purpose tried to solve the
connection Equation (20) by not imposing the torsion scalar T to be zero or constant. The Kerr solution
is still a solution in f (T, φ) gravity, but it can be found on a different branch of connections, namely
those that are common with TEGR [45].

Finally, let us remark that the spacetime components of the teleparallel connection can be
computed via Equation (12) from the tetrad–spin connection pairs given above. Although the
tetrad and spin connection change from one Lorentz frame to another, the spacetime components
of the connection remain unaffected, just like the metric. Although we are not going to write them
out explicitly, the spacetime components of the teleparallel connection are not arbitrary. We have
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determined them by solving the antisymmetric field equations, while the exact form of the free
functions should get fixed by the symmetric field equations and the scalar field equation.

6. Conclusions

Solving extended teleparallel gravity means not just finding the metric but also the independent
teleparallel connection, thus satisfying both the symmetric and antisymmetric field equations. In
contrast to GR and arguably also TEGR, a solution in f (T) or scalar-torsion gravity is incomplete
without determining the connection. When we work in the formalism of local frames, a solution would
entail fixing a tetrad and the associated spin connection. The covariant formulation here fluently
accommodates an equivalence class of different Lorentz frames by allowing nontrivial spin connection.

Thus far, only a few explicit examples of teleparallel connections were known, which
solve the antisymmetric field equations independent of the function f (T, φ), viz. the spherically
symmetric [38,49] and cosmological spacetimes [24,38,49,54,57]. In this paper, we presented
an example of a teleparallel connection that solves the antisymmetric field equations for rotating
spacetimes. It imposes an additional constraint on the metric, which renders the geometry different
from the Kerr solution. Obtaining a full solution would also need to tackle the symmetric and scalar
field equations, but our result could be a first indication that f (T, φ) theories harbor an alternative
branch of rotating black hole solutions besides the Kerr spacetime, which has been shown to be
universal in TEGR and beyond [45]. Since the antisymmetric field equations are not altered by the
presence of minimally coupled matter, our result will still hold when such matter is included.

We presented the solution in Weyl canonical and Boyer–Lindquist coordinates, and expressed it
in different Lorentz frames, explaining how the Lorentz covariant formulation of the theory works.
The presented results may be interesting in a further analysis of the tetrads and spin connections,
especially in trying to understand better how the inertial effects manifest for different observers
(building up upon, e.g., Ref. [58]). Enlarging the repertoire of analytic solutions will hopefully also
inform and complement the discussion on more fundamental questions, like the nature of the (extra)
degrees of freedom in the theory [59–62] and the uniqueness of the connection for a given metric
(compare the open universe solutions in Refs. [24,54,57]). Once a full solution is obtained, it will be
certainly interesting to analyse it in comparison with Kerr and its cousins in extended gravity theories
(starting from e.g., Refs. [63,64]). Hopefully, the present work will also contribute to the prospective
use of the phenomenology of black holes to test teleparallel theories, like cosmology [65–72] and
gravitational waves [73–77].
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