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Abstract: According to the asymptotic safety conjecture, gravity is a renormalizable quantum field theory
whose continuum limit is defined by an interacting fixed point of the renormalization group flow. In these
proceedings, we review some implications of the existence of this nontrivial fixed point in cosmological
contexts. Specifically, we discuss a toy model exemplifying how the departure from the fixed-point
regime can explain the approximate scale-invariance of the power spectrum of temperature fluctuations
in the cosmic microwave background.
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1. Introduction

Primordial quantum fluctuations occurring in the preinflationary epoch have left indelible imprints
which we measure today in the form of tiny temperature anisotropies, δT/T ∼ 10−5, in the Cosmic
Microwave Background (CMB) radiation. The inflationary mechanism furnishes a simple explanation for
the presence of these anisotropies [1] and it has become a paradigm in the description of the primordial
evolution of the universe within the standard cosmological model.

The spectrum of the CMB reproduces an almost perfect black-body radiation at an average
temperature 〈T〉 ∼ 2.7 K. The distribution of temperature fluctuations in the CMB is described by the
power spectra of scalar and tensorial perturbations. These spectra are essentially characterized by two
parameters: The spectral index ns, giving information on the scale dependence of the power spectrum of
scalar fluctuations; and the tensor-to-scalar ratio r, measuring the suppression of tensorial perturbations
against the scalar ones. The values of the spectral index ns, and tensor-to-scalar ratio r, can be obtained from
the observational data. In particular, the most recent observations to date [2] constrain the spectral index
to be ns = 0.9649± 0.0042 at 68% CF, and limit the tensor-to-scalar ratio to values r < 0.064. Note that,
although the scalar power spectrum is almost scale-invariant, perfect scale invariance, corresponding to
ns = 1, seems to be excluded.

The extraordinary predictive power of the inflationary scenario, combined with the current limits on
the determination of r, makes it difficult to distinguish between different models of cosmic inflation [3].
The simplest inflationary model capable of explaining the current observational data is the Starobinsky
model [4]. In the Einstein frame, the only free parameter of the model is the inflaton mass, and this mass is
fixed by the normalization of the amplitude of the scalar power spectrum [2]. In addition, the Starobinsky
Lagrangian is conformally equivalent to Einstein gravity coupled to the Standard-Model Higgs boson by
means of the nonminimal interaction term ξH† HR [5,6], making this model particularly interesting.
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Although Starobinsky inflation and other models characterized by an inflationary potential with a
plateau are favored by observations [2], it has been argued that they might reintroduce the fine-tuning
problems that inflation is supposed to solve, resulting in the so-called “unlikeness problem” [7]. In fact,
the upper bound on the tensor-to-scalar ratio arising from the CMB data lowers the scale of inflation
down to ∼1016 GeV, and a proper resolution of the flatness and horizon problems requires an inflationary
potential with Vplateau(φ) ∼ M4

Pl [7]. A more fundamental understanding of inflation and its role in the
cosmological evolution of the universe thus requires these inflationary models to be understood and
embedded in a more general framework, explaining the origin of the plateau based on first principles,
e.g., on short-distance modifications of General Relativity due to quantum gravity.

Adopting the Wilsonian point of view, a quantum field theory is well-defined and predictive if its
renormalization group flow is equipped with an ultraviolet fixed point, endowed with a finite-dimensional
basin of attraction. This fixed point, ensuring the renormalizability of the theory [8], can be Gaussian
(GFP), corresponding to a free theory; or non-Gaussian (NGFP). In the latter case, the fundamental theory
is interacting and termed “asymptotically safe”. As shown by numerous computations [9–27] employing
functional renormalization group (FRG) techniques [28,29], the gravitational RG flow could attain a NGFP
in the ultraviolet limit. The asymptotic-safety mechanism would hence allow to quantize gravity in the
well-established framework of quantum field theory.

In these proceedings, we exploit the consequences of the existence of a gravitational fixed point in
cosmological contexts. To this end, we will use the toy model constructed in [30], where an effective action
for inflation was derived from the renormalization group improvement of the Einstein–Hilbert action (see
also [31–37]). Using the equivalence of the description in the Jordan and Einstein frames, it will be shown
explicitly that a period of slow-roll inflation can be generated by the departure of the RG flow from the
scale-invariant regime associated with the cosmological “fixed-point era” [31,38]. We will show that this
scenario has two important consequences. First of all, the generation of a nearly-scale-invariant power
spectrum of scalar perturbations in the CMB can be seen as a relict of the nearly-scale-invariant behavior of
the gravitational RG flow in the vicinity of its ultraviolet attractor. In this scenario, the inflationary potential
is characterized by a plateau region—however, due to the running of the gravitational couplings, the bound
on the tensor-to-scalar ratio might not necessarily reintroduce the fine-tuning problems discussed in [7].
Secondly, the inflationary potential depends on universality properties of the gravitational interaction and
therefore, compatibility with observations can constrain the way the RG trajectories depart from the fixed
point and put bounds on the corresponding critical exponents [30].

This paper is organized as follows. In Section 2, we review key features of Asymptotically Safe
Gravity and introduce a variant of the RG-improved model constructed in [30]. Section 3 discusses the
conformal representation of RG-improved theories and their relation to observations. Assuming that
the dynamics and output of cosmic inflation are determined solely by the quantum fluctuations of the
spacetime, in Section 4, we provide a simplified but explicit explanation of how a period of slow-roll
inflation can be triggered by the departure of the RG flow from the scale-invariant regime defined by the
interacting fixed point. Finally, Section 5 summarizes our conclusions.

2. Running Couplings and Effective Actions

In the (G, Λ)-theory-space, the beta functions for the dimensionless Newton coupling gk = Gkkd−2

and cosmological constant λk = Λkk2 are determined by the projection of the functional renormalization
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group equation (FRGE) [29,39,40] on the Einstein–Hilbert subspace. The renormalization group equations
for gk and λk can generally be written as:{

k∂gk = βg(gk, λk) = {d− 2 + ηG(gk, λk)} gk

k∂λk = βλ(gk, λk)
, (1)

where ηG ≡
∂ log Gk
∂ log k is the anomalous dimension of the Newton coupling. A nontrivial fixed point (g∗, λ∗)

exists if βλ(g∗, λ∗) vanishes and at the same time the anomalous dimension ηG flows to ηG(g∗, λ∗) = 2− d.
The existence of a non-Gaussian fixed point (NGFP) thus entails an effective dimensional reduction
from d = 4 to deff = 2 spacetime dimensions [41,42]. This property seems to be a common
prediction of several approaches to quantum gravity [43–46]. A key consequence of this dimensional
reduction is a modification of the graviton propagator at short distances. Under certain approximations,
it scales as G(x, y)∼log |x − y|2 for η = −2 [41] and gives rise to a scale-invariant scalar power
spectrum [38,41,47,48]. It is thereby possible that the nearly-scale-invariant power spectrum of temperature
fluctuations in the CMB arises from the nearly-scale-invariant regime following the NGFP epoch. In order
to understand if and under which conditions this mechanism is realized, it is important to study the
departure of the renormalization group (RG) flow from its ultraviolet fixed point.

The universality properties of the RG flow about the nontrivial fixed point (g∗, λ∗) are determined
by the stability matrix ∂gi β j(g)|g∗ . Denoting by ei its eigenvectors; and by (−θi) the corresponding
eigenvalues, the running of the dimensionless gravitational couplings about (g∗, λ∗) can be written as:gk = g∗ + c1e1

1

(
k

MPl

)−θ1
+ c2e1

2

(
k

MPl

)−θ2

λk = λ∗ + c1e2
1

(
k

MPl

)−θ1
+ c2e2

2

(
k

MPl

)−θ2
, (2)

where MPl∼(8πG0)
−1/2 is the reduced Planck mass.

The NGFP typically found in the functional renormalization group (FRG) computations in the
Einstein–Hilbert truncation is characterized by Re(θ1) > 0 and Re(θ2) > 0. The positivity of the real
part of the universal critical exponents θi indicates that, in the aforementioned truncation, the fixed point
(g∗, λ∗) is endowed with two relevant directions. FRG computations in higher-order truncations show that
there might be one more relevant direction, associated with 4th-order derivative operators. These relevant
directions identify the UV critical surface. The NGFP can thus act as an ultraviolet “sink” for the RG
trajectories belonging to its basin of attraction. The constants ci are integration constants, corresponding
to different initial conditions of the flow. Every pair (c1, c2) identifies a particular RG trajectory. These
free parameters should be fixed by equating the infrared values of the dimensionful running couplings
Gk and Λk with the values of the Newton and cosmological constants at observational scales, namely
8πG0∼M−2

Pl and Λ0∼3 · 10−122M2
Pl . This comparison allows selection of the particular RG trajectory

realized by nature [49].
Starting from a classical action of the form:

Scl =
1

16πG0

∫
d4x
√
−g (R− 2Λ0) + Smatter , (3)

the introduction of quantum effects typically results in the emergence of higher-derivative terms.
The renormalization effects thus modify the interactions of the theory and, as a consequence, the coupling
constants appearing in the bare Lagrangian turn into running functions of the energy (or length) scale.
Reversing the argument, replacing the coupling constants in the classical action with running functions
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and promoting the corresponding energy-scale to a proper coordinate-dependent quantity k = k(x)
should provide an effective action which mimics, at least qualitatively, the effects of quantum loops [28,50].
Neglecting the running of the matter couplings, the scale-dependent version of the action (3) is:

Sk =
1

16πGk

∫
d4x
√
−g (R− 2Λk) + Smatter , (4)

and the corresponding field equations read [50]:

Gµν = 8πGkTµν + Λkgµν + ∆tµν . (5)

Here, Gµν is the Einstein tensor, Tµν = − 2√−g
δSmatter

δgµν , and ∆tµν ≡ Gk(∇µ∇ν− gµν�)G−1
k is an effective

energy-momentum tensor generated by the running of the Newton coupling [50].
Assuming that there is no energy-momentum flow between the gravitational and matter components

of the theory, i.e., that the energy-momentum tensor Tµν is separately conserved, the momentum-scale
k = k(x) is determined by a set of of consistency conditions dictated by the Bianchi identities [50–54].
In particular, diffeomorphism invariance requires [51,53,54]:

∂kGk R = 2(Λ′kGk − G′kΛk) . (6)

In the fixed-point regime, the scaling of the dimensionful Newton: coupling and cosmological
constant read:

G(k) = g∗k−2 , Λ(k) = λ∗k2 . (7)

Combining Equation (7) with the constraint (6) yields [53,54]:

k2 =
R

4λ∗
. (8)

A similar relation should also hold when additional operators of the form Rn are added to the bare
Lagrangian, at least in the fixed-point regime [53].

The replacement k2 → R/4λ∗ in the scale-dependent action (4) generates an effective f (R) action,
whose analytical expression is determined by the running of the gravitational couplings [34,53,55].
In particular, in the vicinity of the NGFP, the running (2) leads to the following effective action [30]:

Seff
grav = S∗grav +

∫
d4x
√
−g

(
b1R

4−θ1−θ2
2 + b2R

4−θ1
2 + b3R

4−θ2
2 + b4R2−θ1 + b5R2−θ2

)
, (9)

where the fixed-point action is given by [53]:

S∗grav =
∫

d4x
√
−g

R2

128πg∗λ∗
, (10)
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and the coefficients bi read [30]:

b1 =
c1c2 (e1

1 e2
2+e2

1 e1
2) (4λ∗M2

Pl)
θ1+θ2

2

128π(g∗λ∗)2 , (11a)

b2 =
c1 (e2

1 λ∗ − e1
1 g∗ − 2e2

1 λ∗) (4λ∗M2
Pl)

θ1
2

128π(g∗λ∗)2 , (11b)

b3 =
c2 (e2

2 λ∗ − e1
2 g∗ − 2e2

2 λ∗) (4λ∗M2
Pl)

θ2
2

128π(g∗λ∗)2 , (11c)

b4 =
c2

1 (e
1
1 e2

1) (4λ∗M2
Pl)

θ1

128π(g∗λ∗)2 , (11d)

b5 =
c2

2 (e
1
2 e2

2) (4λ∗M2
Pl)

θ2

128π(g∗λ∗)2 . (11e)

In what follows, the critical exponents θi will be assumed to be real numbers, as indicated by
computations of the gravitational RG flow in the presence of matter fields [25,56].

The combination of the scaling relation (8) with the scale-dependent Einstein–Hilbert action (4)
correctly reproduces the fixed-point Lagrangian f∗(R)∼R2 found in the study of the renormalization
group flow of fk(R)-gravity theories [20,57,58]. Notably, in cosmological contexts, the action f∗(R)∼R2

gives rise to a perfectly scale-invariant power spectrum, ns = 1 (flat inflationary potential). By lowering
the energy-scale k2∼R towards the infrared, the gravitational RG flow departs from the fixed-point regime
and generates additional operators in the Lagrangian, Leff

grav = L∗ + δLRG. As is clear from Equation (9),
the form of the deviation δLRG ≡ fRG(R) depends crucially on the running of the gravitational couplings.
Therefore, the study of the inflationary scenario arising from the RG-improvement of the Einstein–Hilbert
action might actually put constraints on microscopic details of the theory—for instance, its critical
exponents [30,37]. Moreover, the nearly-scale-invariant power spectrum of temperature anisotropies
in the CMB might be related to the deviation of the Lagrangian Leff

grav from the scale-invariant regime
described by L∗. This will be shown explicitly in the following sections.

3. Conformal Representation of RG-Improved f(R) Theories

Replacing the running couplings in the scale-dependent action (4) yields an effective gravitational
action of the form:

Seff
grav =

∫
d4x
√
−g

{
R2

128πg∗λ∗
+ fRG(R)

}
. (12)

Provided that f (2)RG(R) 6= − 1
64πg∗λ∗ , and introducing the field ϕ ≡ 16πG0

(
χ

64πg∗λ∗ + f ′RG(χ)
)

, this
action can be re-expressed as:

Seff
grav =

∫
d4x
√
−g

{
1

16πG0
ϕR−U(ϕ)

}
, (13)

where the function U(ϕ) is given by:

U(ϕ) =
χ[ϕ]2

128πg∗λ∗
− fRG(χ[ϕ]) + χ[ϕ] f ′RG(χ[ϕ]) . (14)

It is now convenient to perform a conformal transformation, mapping the metric gµν in the Jordan
frame to the metric gE

µν = ϕ gµν in the Einstein frame. Rescaling the metric gµν by the conformal factor
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ϕ = e
√

2/3 φ/MPl maps the purely gravitational theory (12) to General Relativity (i.e., Einstein–Hilbert
action) minimally coupled to the scalar field φ:

Seff
grav =

∫
d4x
√
−gE

(
RE

16πG0
+

1
2

gµν
E ∂µφ∂νφ−V(φ)

)
. (15)

The scalar degree of freedom, introduced by the function fRG(R) in the Jordan frame, can thus be
seen as a scalar field subject to the potential V[ϕ(φ)] = U(ϕ) ϕ−2 in the Einstein frame.

Due to the coupling to gravity, and depending on the form of the potential V(φ), the time evolution
of the scalar field φ might lead to a period of inflation. In fact, specializing the metric gE

µν to that of a
Friedmann–Lemaıtre–Robertson–Walker (FLRW) universe, the time evolution of the scalar field φ(t) and
the growth of the scale factor a(t) are related to each other and are described: by the following Friedmann
and Klein–Gordon equations: (

ȧ
a

)2
=

8πG0

3

{
φ̇2

2
+ V(φ)

}
, (16)

φ̈ + 3Hφ̇ + V′(φ) = 0 . (17)

In the slow-roll approximation, the kinetic energy of the inflation field is negligible—φ̇2 � V(φ) and
φ̈� 3Hφ̇ + V′(φ). Note that the reliability of the slow-roll approximation is corroborated by the recent
Planck data which, so far, have not found hints for inflationary dynamics beyond slow roll [2].

The first and second variations of the potential define the slow-roll parameters:

ε(φ) =
M2

Pl
2

(
V′(φ)
V(φ)

)2

, η(φ) = M2
Pl

(
V′′(φ)
V(φ)

)
. (18)

The slow-roll conditions ε� 1 and η � 1 are satisfied when the evolution of the scalar field φ along
its potential V(φ) is slow in comparison to the rate of exponential expansion of the universe. The violation
of the slow-roll conditions, encoded in the equation ε(φ f ) = 1, defines the value of the field at the end of
inflation, φ f ≡ φ(t f ). Fixing the number of e-folds before the end of inflation:

Ne(φi) =
∫ φi

φ f

V(φ)

V′(φ)
dφ (19)

to Ne ' 60 [1], provides the initial condition φi ≡ φ(ti). The spectral index and tensor-to-scalar ratio:

ns = 1− 6 ε(φi) + 2 η(φi) , r = 16 ε(φi) , (20)

are determined by the values of the slow-roll parameters at the beginning of the period of exponential
growth of the universe, i.e., at φ = φi. Therefore, under the slow-roll approximation, the theoretical values
(20) can be determined and compared to the values provided by the analysis of the observational data on
the anisotropies of the CMB.

Finally, for a single-field inflationary model with inflationary potential V(φ), the amplitude of the
primordial scalar power spectrum takes the form [2]:

As =
V(φi)

24π2M4
Pl ε(φi)

' 2.2 · 10−19 . (21)

Every inflationary model has to be normalized in order to fit this value (see [3] for details), and this
normalization puts constraints on the scale of inflation.
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For instance, for inflationary potentials with a plateau, inflation is assumed to start from the plateau

region, so that V(φi) ∼ Vplateau(φ) = 3/4 m2M2
Pl—m being the “inflaton mass” defined via L ∼ M2

Pl
2

R2

6m2 .
In these cases, the normalization (21) constrains the order of magnitude of the inflaton mass to m ∼
1013 ÷ 1014 GeV [3].

4. The Inflationary Mechanism in Asymptotically Safe Gravity

The RG-improved f (R)-type action Seff
grav and the corresponding scalar potential V(φ) in the Einstein

frame, depend on the critical exponents θi. Here, we assume that the density fluctuations at the last
scattering surface are generated by the amplification of quantum-gravity fluctuations in the preinflationary
era. Hence, requiring the compatibility of the inflationary dynamics generated by the effective action
Seff

grav with the Planck data constrains the universality properties of the theory in the vicinity of the NGFP.
Moreover, since the gravitational critical exponents θi are influenced by the presence of matter [25,56,59],
the conditions on the critical exponents imposed by compatibility with observations could be used, at least
in principle, to identify the primordial matter content of universe [30]. We remark however, that the
current systematic uncertainties on the computation of the critical exponents are still too large to put strong
constraints on the matter content of the early universe based on the aforementioned conditions on the
critical exponents.

The fixed-point regime is described by the action S∗grav. Following the procedure described in the
previous section, it is not difficult to see that the fixed-point action S∗grav is conformally equivalent to
a scalar-tensor theory (4), where the scalar field φ is minimally coupled to gravity and subject to the
constant potential:

V∗(φ) = 8πg∗λ∗M4
Pl . (22)

The fixed-point potential V∗ should give rise to a perfectly scale-invariant scalar power spectrum.
However, as the RG flow moves away from the NGFP, additional operators are generated and the potential
V∗ is dynamically modified by this running:

V∗ → V(φ) = V∗ + δV(φ) . (23)

The deviation δV(φ) of the scalar potential from its fixed-point value V∗ is determined by the
function δL = fRG(R) and, in accordance with the simple RG-improved model introduced above,
depends on the critical exponents θi. Its analytical form can be determined by performing a conformal
transformation of the original fRG(R) theory, as detailed in Section 3. As already mentioned, we assume
the critical exponents to be real numbers. The results are displayed in Figure 1 for the special case θ1 = θ2,
and for θi taking values 0 < θi ≤ 4. These bounds are justified as follows:

• The critical exponents are assumed to be positive, θi > 0, in order to fulfill the
asymptotic-safety condition;

• There exists at least one critical exponent θi < 4. As is clear from the form of the RG-improved action
(4), this condition ensures that the scalar power spectrum deviates from the perfect scale-invariance
realized by the fixed-point regime, and thereby guarantees compatibility with the Planck data (see
also [30] for details). The borderline case θi = 4 works under very specific assumptions, and will be
discussed in detail below.



Universe 2019, 5, 189 8 of 14

0 5 10 15
-0.5

0.0

0.5

1.0

1.5

ϕ[MPl]

V
(ϕ
)
·
V
*-
1

Sgrav
*

θi=1

θi=2

θi=3

θi=4

Figure 1. Inflationary potential V(φ) generated by the conformal transformation of the fixed-point action
S∗grav, Equation (10), and of the effective action Equation (9) for various values of the critical exponents θi in
the range θi ∈ (0, 4]. The fixed-point action S∗grav gives rise to a flat potential V∗ = 8πg∗λ∗M4

Pl , relict of the
fixed-point epoch, and corresponds to a perfectly scale-invariant regime. Moving away from the NGFP, the
renormalization group flow generates additional operators which destabilize the fixed-point potential V∗.
The form of the modified potential V(φ) = V∗ + δV(φ) depends on the deviation δL = fRG(R) from the
fixed-point regime realized in the Jordan frame. Modeling this variation by means of the RG-improved
model (4), the analytical form of the inflationary potential V(φ) is determined by the critical exponents θi.
Interestingly, the case θ1 = θ2 = 2 reproduces the well-known Starobinsky model. The departure from the
fixed-point regime modifies the inflationary potential such that V′(φ) 6= 0 at φ∼MPl , and thereby induces
a nonzero kinetic energy, φ̇i∼−V′(φi)/3H(ti), for the inflaton field. This quantity provides an initial boost
for the subsequent evolution of the scale factor a(t), i.e., for t > ti, according to Equation (16).

Note that, due to the structure of the function fRG(R) and provided that θi 6= 0, the R2 term in the
action (4) does not gain any additional contribution from the operators in δL = fRG(R) (at least in the
regime where the couplings scale as in Equation (2)). Therefore, its coefficient inherits the universality
properties of the fixed-point action S∗grav and defines a mass scale:

m2 = 8π

(
4
3

λ∗g∗

)
M2

Pl , (24)

determined by the universal product λ∗g∗ [60], which is typically ∼ O(1). It is interesting to notice that
when higher derivative operators:

LHD =
1

16πGk
∑
n≥2

ζ
(n)
k
n

Rn

(3k2)n−1 , (25)

are included in the ansatz for the bare action, ζ(n) being dimensionless couplings, the RG-improvement
generated by the consistency Equation (8) preserves the structure of the fixed-point effective action.
Specifically, S∗grav will maintain its pure R2-form, while the mass scale m will be corrected by the presence
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of other fixed-point quantities. Assuming that a UV-attractive NGFP persists in arbitrary large truncations,
the new fixed-point potential V∗ yields the mass scale:

m2 = 8π

(
4
3 λ∗g∗

1 + ∑n≥2
2
n
( 4λ∗

3
)n−1

ζ
(n)
∗

)
M2

Pl . (26)

The general form of the RG-improved action (9) is preserved as well, but a contribution from the
critical exponent θ3 due to the additional relevant operator R2 should appear: The normalization of the
scalar CMB power spectrum dictated by Equation (21) implies a nontrivial constraint on the fixed-point
values of the dimensionless couplings (gk, λk, ζ

(n)
k ),(

4
3 λ∗g∗

1 + ∑n≥2
2
n
( 4λ∗

3
)n−1

ζ
(n)
∗

)
' 10−6 . (27)

As functional RG computations indicate that λ∗g∗ ∼ O(1) [60], the sum in the denominator would
be required to be very large in order to fit observations. On the other hand, going beyond the fixed-point
approximation introduced in Section 2 modifies the scaling relations (2). If the integration of fast-fluctuating
modes generates additional contributions to the R2-operator (or, equivalently, if the coupling to the R2

operator runs), the “plateau scale” (26) will be dynamically modified by the departure of the flow from the
fixed-point regime. In this case, the initial conditions for inflation would be defined by the fixed-point mass
scale (26), which can even be Planckian, while the amplitude of the scalar fluctuations at the horizon exit,
Equation (21), would be fixed by the “renormalized” plateau scale. If this dynamical-plateau mechanism
is realized, it could provide a solution to the “unlikeness problem” raised in [7]. As addressing this
question goes far beyond the purpose of these proceedings, in what follows, we will restrict ourselves to
the fixed-point approximation introduced in Section 2.

The departure from the fixed-point regime causes an instability of V∗ and results in a scalar potential
V(φ) whose first derivative is nonzero at φi∼MPl . As a consequence, even if φ̇ = 0 in the NGFP era,
the inflaton field acquires a nonzero kinetic energy, φ̇i∼−V′(φi)/3H(ti), which provides an initial boost
towards the subsequent time evolution of the universe. In particular, depending on the shape of the
potential, this mechanism can potentially trigger a period of slow-roll inflation, the growth of the scale
factor a(t) being controlled by the function V(φ(t)) according to Equation (16). Particularly interesting is
the case θ1 = θ2 = 2, which realizes a Starobinsky-like potential (see Figure 1):

V(φ) = e−2
√

2
3

φ
MPl

{
3
4

(
1− e

√
2
3

φ
MPl

)2

m2 + Λeff

}
M2

Pl , (28)

in the presence of an effective cosmological constant Λeff = −(b1 + b4 + b5)M2
Pl . As it is well known, this

model leads to cosmic parameters:

ns ' 1− 2
Ne

+O(N−3
e ) , r ' 12

N2
e
+O(N−3

e ) , (29)

in good agreement with the Planck data. The case θ1 = θ2 = 4 is a limiting case, where the function
fRG(R) reduces to a constant term Λeff = −(b2 + b3)M2

Pl plus an additional R−2 operator. Operators of
the form R−α, with α > 0, are suppressed at curvature scales R & M2

Pl and hence do not contribute to
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the inflationary dynamics [30]. Overall, neglecting the R−2 contribution to the action (4), the inflationary
potential can be approximated by:

V(φ) = V∗ + e−2
√

2
3

φ
MPl ΛeffM2

Pl . (30)

This potential has no local minima and, depending on the sign of Λeff, diverges to ±∞ as φ→ −∞.
As a consequence, no reheating phase by standard parametric-oscillations of the inflaton field is possible,
and a new mechanism to reheating the universe after inflation would be required. The spectral index and
tensor-to-scalar ratio generated by the class of potentials (30) read:

ns ' 1 +
3Λeff

8π(g∗λ∗)M2
Pl N

2
e
+O(N−3

e ) , r '
27Λ2

eff

256π2(g∗λ∗)2M4
Pl N

4
e
+O(N−5

e ) . (31)

Assuming g∗λ∗ > 0, these numbers are compatible with observations if Λeff is sufficiently small and
negative. Note that, in principle, the presence of a negative Λeff at inflationary scales is not necessarily
incompatible with the current phase of accelerated expansion of the universe. In fact, for k2 . M2

Pl ,
the approximation (2) breaks down and additional operators start contributing to the scale-dependent
action (4). In particular, operators of the form R−α start playing a role at cosmological scales and could
overcome the effects of a negative cosmological constant—and drive the late-time evolution of the universe
towards the current phase of accelerated expansion [61]. The case of a positive effective cosmological
constant, with g∗λ∗ > 0, would instead lead to a spectral index ns & 1 and not allow for a “natural” exit
from the inflationary phase by violation of the slow-roll conditions. In this case, compatibility with the
Planck data would rather constrain the ultraviolet value of the cosmological constant to be negative, λ∗ < 0
(see also [25,30,62,63]). Within the present fixed-point approximation, where the inflaton mass is defined
by Equation (24), a negative ultraviolet cosmological constant would entail the presence of a tachionic
inflaton field. This result seems in contradiction with [30], where the avoidance of a tachionic inflaton field
required λ∗ < 0. This mismatch is caused by a different ratio k2/R—in [30], the infrared cutoff k was
related to the Ricci scalar by means of an unspecified positive constant ξ, k2 = ξ R. The inflaton mass is

thus given by m2 =
g∗(8πM2

Pl)

6ξ(1−2ξλ∗)
, and is positive for arbitrary values of ξ only when λ∗ < 0. However, if λ∗

sets the scale of Quantum Gravity according to Equation (8), then ξ(λ∗) ≡ 1/4λ∗ is no longer an arbitrary
constant, and our result (24) is recovered.

5. Conclusions

According to the Asymptotic Safety conjecture, in the deep ultraviolet, the gravitational interaction
reaches a scale-invariant regime due to the existence of a nontrivial fixed point of the renormalization
group (RG) flow. In these proceedings we have reviewed some key consequences of the existence of a
fixed-point epoch in the “RG-improved” cosmological evolution of the universe.

Assuming that the running of the gravitational couplings can be incorporated into the classical
spacetime dynamics by means of a scale-dependent infrared cutoff k(x), a period of slow-roll inflation
can be associated with the displacement of the RG flow from the regime where the theory is scale
invariant. Following [51,53,54], the invariance of the theory under diffeomorphisms requires the
scale-dependent cutoff k(x) to vary at the same rate as the scalar curvature R. Starting from a
scale-dependent Einstein–Hilbert action, the replacement k2 → R generates an effective f (R)-Lagrangian
of the form Leff

grav = L∗ + δLRG, where L∗∼R2 is realized at the fixed point, in accordance with several
FRG computations [20,57,58], and δLRG introduces additional operators, mimicking the effect of a
Wilsonian RG flow—although, starting from a simple bare theory at the fixed point, at lower energy
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scales the effective degrees of freedom interact through more complicated interactions, generated by
the integration of high-frequency fluctuating modes in the functional integral. This mechanism could
provide a simple explanation for the origin and distribution of the temperature fluctuations of the
Cosmic Microwave Background (CMB). The fixed-point action S∗grav, in fact describes a scale-invariant
gravitational theory and, in the Einstein frame, corresponds to Einstein gravity coupled to a scalar
degree of freedom whose interaction potential is constant, V∗ = 8πg∗λ∗M4

Pl . This potential defines
the universal mass scale m2∼(λ∗g∗)M2

Pl . The departure from the fixed-point regime destabilizes the
fixed-point potential V∗ → V(φ) = V∗ + δV(φ), the correction δV(φ) corresponding to the variation δLRG
of the gravitational Lagrangian caused by the Wilsonian RG flow. Specifically, for φ . MPl , the scalar
potential develops a minimum or diverges. The region φ � MPl remains instead unaffected: The
renormalized scalar potential V(φ) is characterized by a plateau region, where Vplateau(φ)∼m2M2

Pl , relict
of the fixed-point epoch. The nearly-scale-invariant scalar power spectrum is thus understood as the result
of the nearly-scale-invariant behavior of gravity in the vicinity of the ultraviolet fixed point.

In the RG-improved model introduced in [30] and revisited here, the RG running of the couplings is
approximated by their scaling about the nontrivial fixed point. Due to this approximation, the variation
δLRG does not yield additional R2 operators, and leaves the mass scale m2∼(λ∗g∗)M2

Pl unaffected. In a
more complete description, accounting for the full running of the couplings and possibly including
higher-derivatives operators in the action, we expect the coupling of the quadratic term R2 to run and
to redefine the plateau scale [36]. The scale of inflation is then determined by the renormalized plateau.
This dynamical-plateau scenario would allow to setup the initial conditions for inflation at Planckian
energies, where the scalar potential is constant and m2 ∝ (λ∗g∗)M2

Pl , while being able to reproduce the
correct amplitude of scalar perturbations at the horizon exit. This mechanism could provide a solution to
the “unlikeness problem” raised in [7]. However, this behavior is not captured by the simple RG-improved
model reviewed here, and addressing this problem requires going beyond the fixed-point approximation
employed in the present proceedings.

The departure of the RG flow from the fixed-point regime induces a scalar potential V(φ) characterized
by a plateau, and can potentially trigger a period of slow-roll inflation. The specific form of the potential
V(φ) depends on universality properties of the gravitational RG flow and, as a consequence, a comparison
with the observational data can put constraints on the gravitational critical exponents [30]. Specifically,
since the power spectrum of primordial scalar perturbations is almost scale-invariant but not exactly
scale-invariant, at least one of the critical exponents must be θi < 4. Among the class of inflationary models
derived from the action (4), the case θ1 = θ2 = 2 reproduces the well-known Starobinsky model and is
thereby compatible with observations.

It would be interesting to understand if similar conclusions can be drawn by using a self-consistent
RG-improvement [64] of the classical cosmological solutions. In a first approximation, it has been shown
that the anti-screening character of the Newton coupling could replace the classical initial singularity
with a regular bounce or with an emergent universe scenario [62], both characterized by a nonvanishing
minimum value of the scale factor and a period of inflation following the bounce. Finding the class
of actions giving rise to this type of regular cosmologies is the first step towards understanding the
relation between the results obtained in [30,37] and the results summarized in these proceedings, and the
inflationary scenario following a cosmological bounce [62]. We reserve to discuss these problems in
future works.
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