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Abstract: We derive the functional Schrödinger equation for quantum fields in curved spacetime
in the semiclassical limit of quantum geometrodynamics with a Gaussian incoherent dust acting as
a clock field. We perform the semiclassical limit using a WKB-type expansion of the wave functional
in powers of the squared Planck mass. The functional Schrödinger equation that we obtain exhibits
a functional time derivative that completes the usual definition of WKB time for curved spacetime,
and the usual Schrödinger-type evolution is recovered in Minkowski spacetime.

Keywords: functional Schrodinger equation; semiclassical approximation of quantum gravity; WKB
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1. Introduction

The Hamiltonian dynamics of quantum fields on a classical curved spacetime of the kind
envisioned by Tomonaga and Schwinger [1,2] can be recovered as a WKB-like approximation of
canonical quantum gravity [3,4] in the form of a functional Schrödinger equation (we work with units
where c = h̵ = 1):

i∫
Σ

d3xGabcd
δS0

δγab

δχ

δγcd
∶= i∫

Σ

δχ

δτ
= Hφχ (1)

for the wave functional χ of matter fields governed by the Hamiltonian Hφ on the spatial hypersurface
Σ [5–7] (see [8] for a recent comparison of this approach to the Born–Oppenheimer method).
Here, γab are the components of the spatial metric, Gabcd is the DeWitt super-metric, and S0 is a
solution to the Hamilton–Jacobi–Einstein equation that describes the background geometry. However,
the local “many-fingered” WKB time τ[γab(x)] (a functional of the spatial metric) that emerges from
said approximation is identified ad hoc with that appearing in the Tomonaga–Schwinger equation,
and it most remarkably fails for the simplest case: the flat Minkowski spacetime (in which case S0 is
a constant).

When we work with quantum matter fields in flat spacetime, we do so by implicitly assuming
that the gravitational effect of the quantum fields’ energy distribution on the background can be
neglected. If we do so, however, the Schrödinger-type evolution cannot be obtained as a semiclassical
approximation of canonical quantum gravity: If we assume a truly flat background, WKB time
disappears from the Schrödinger equation, although the latter is usually taken for granted as a special
case of the more generic evolution in curved spacetime. Even though this inconsistency sheds a shadow
also on the validity of the definition of WKB time for generic curved spacetimes, it seems to have drawn
little to no attention in the literature (see, e.g., at the very end of chapter 2 in [5] and Section 3 of [9]).

In this paper, we would like to draw attention to this issue and provide one viable solution that
can be applied to generic curved spacetimes. We do so by considering the semiclassical approximation
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of quantum geometrodynamics where, from the beginning, we introduce a physical reference clock
field in the form of a Gaussian reference dust [10]. This might be pictured as a straightforward quantum
realization of the set of free-falling oscillators thinly dispersed in spacetime envisioned by Einstein.
The Gaussian time condition is imposed before variation of the action, and time reparametrization
invariance is then recovered by parametrizing the new action and promoting Gaussian time to a
scalar field labeled by new free spacetime coordinates. The semiclassical limit of the quantized theory
results in a functional Schrödinger equation for the quantum state of matter fields, as observed on the
hypersurfaces determined by the clock field. The functional time derivative operator in (1) is, in this
case, naturally completed with a functional derivative with respect to the clock field configuration
When we adopt a Gaussian reference frame, the operator is reduced, very intuitively, to a local
“material derivative” that takes into account both the intrinsic time-dependence of the matter quantum
state inherited by the clock as well as the evolution on the background “medium”: spatial geometry.

This paper is structured as follows: In Section 2, we will briefly review the elements of the
canonical description of the Gaussian reference fluid in the context of quantum geometrodynamics to
the extent relevant to our discussion; in Section 3, we will expand the phase of the total wave functional
that solves the quantized Hamiltonian constraint in inverse powers of the Planck mass squared,
thus obtaining the Hamilton–Jacobi–Einstein equation describing the background geometry and, at the
higher order, the functional Schrödinger equation for matter-plus-clock fields; in the same section,
we describe the case of the Gaussian reference frame and the explicit recovery of a Schrödinger-type
evolution in Minkowski spacetime. A discussion of our result with relevant conclusions is presented
in Section 4.

2. Canonical Reference Dust

As we are only interested in the Gaussian time condition and keep the spatial frame unaffected
by reparametrization, we will closely follow a simplified version of [10], which we recommend to the
reader for its in-depth analysis of the various issues in the classical and quantum regime related to
employing a phenomenological fluid to implement coordinate conditions and address the definition of
geometrodynamical observables. For a recent study of the perturbation theory of Gaussian dust in an
FLRW cosmological scenario, see [11].

In the Lagrangian formalism of general relativity, the Einstein field equations can be derived from
the Einstein–Hilbert action

SG
[gµν] = ∫

M

d4x
√
−gR[gµν] (2)

by variation of the spacetime metric gµν(x) of the unbounded manifold M. We take a vanishing
cosmological constant for simplicity and do not yet explicitly introduce the gravitational scale before
the action in order to simplify notation.

The diffeomorphism invariance of the theory allows for any choice of spacetime coordinates.
Consider the Gaussian time condition

g00
+ 1 = 0 , (3)

which fixes as a constant everywhere the normal proper time separation between hypersurfaces of
constant times. This choice can be imposed before variating the action by introducing the coordinate
time condition (3) through a Lagrange multiplier L = L(x) at the level of the action (2). This results in
an extra term

SD
[gµν, L] ∶= −

1
2 ∫M

d4x
√
−g L (g00

+ 1) . (4)

The broken time reparametrization invariance can be restored by parametrization of the action:
We promote the Gaussian time to a variable t → T(x) labeled by new arbitrary coordinates x. The new
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action must be invariant under the transformation of the new coordinates and must be reduced to the
old action when Gaussian time is adopted, which leads to

SD
[gµν, L, T] = −

1
2 ∫M

d4xL (1+ gµνT,µT,ν) . (5)

Variation of (5) with respect to gµν provides the vacuum Einstein field equations obtained from (2)
with the stress–energy–momentum tensor

T
µν

= LUµUν , (6)

where

Uµ
∶= −gµνT,ν (7)

is the four-velocity of the source. Variation with respect to T gives the dynamical equation

(LUµ
);µ = 0 , (8)

which describes the source as an incoherent dust. Assuming L > 0, the weak, strong, and dominant
energy conditions are satisfied, and T(x) constitutes a good candidate as a physical clock field.

In the ADM formalism [12], one performs a 3+ 1 decomposition of the metric

g00 = NaNa
−N2

g0a = Na

gab = γab,

(9)

where N is the lapse function, Ni is the shift vector, and γab with a, b ∈ (1, 2, 3) is the induced
spatial metric. Using these new variables, spacetime is described by the time propagation of the
three-dimensional hypersurfaces of constant time corresponding to the chosen arbitrary foliation.
The parametrized action takes the form

SADM = ∫R
dt∫

Σ
d3x (πabγ̇ab + PṪ −NH −Na Ha)) , (10)

where P is the canonical momentum conjugate to T. Variation with respect to N and Ni gives the
constrained Hamiltonian and momenta

H ∶= HG
+HD

= 0

Ha ∶= HG
a +HD

a = 0 ,
(11)

where the constrained Hamiltonian and momenta for gravity are

HG
= γ−

1
2 (πabπab

−
1
2
(πa

a)
2
) − γ

1
2 (3)R[γab]

HG
a = −2πb

a ;b ,
(12)

and for the clock:
HD
∶= nP

HD
i ∶= PT,i ,

(13)

where n = (1+ γabT,aT,b)
1
2 .
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The equations of motion for γab and πab can be obtained from the super-Hamiltonian of the
canonical action (10):

H̄ = ∫
Σ

d3x (NH +NaHa) . (14)

We quantize the theory by promoting the canonical variables to operators and requiring the
physical state to be annihilated by the constraint operators

ĤΨ = 0 (15)

ĤiΨ = 0 . (16)

In the next section, we will focus on the Hamiltonian constraint (15), which gives way
to a Schrödinger-type evolution in the {T(x)}-representation. This evolution is consistent and
unambiguous with respect to the foliation choice only if the commutators of the constraints vanish,
a condition that originates from the quantization of the classical equations of motion. This condition
depends, in turn, on the factor ordering of the geometrodynamical operators. As the focus of the
present work concerns only the emergence of time in the semiclassical limit, we will not deal with the
open issues of quantum geometrodynamics as long as they do not affect the general validity of the
semiclassical approach. In the specific case, the choice of operator ordering results in non-derivative
terms in the functional Schrödinger equation for matter fields, and since this does not affect the
definition of semiclassical time, we will adopt the trivial ordering.

However, it is worth noticing that, when one quantizes the incoherent dust model, one is not
deprived of a consistent definition of the probability density function for γij on the embedding
T(x), as it occurs instead for the more general Gaussian reference fluid where the full Gaussian
coordinate conditions are imposed and all four spacetime coordinates are promoted to variables.
Consequently, the clock field model may help define a conserved positive inner product in superspace
and, although the quantized theory may still present other problems, it may provide a valid starting
point to consider them.

3. Functional Schrödinger Equation

The description of matter fields with non-derivative coupling to gravity can be included
straightforwardly in the canonical formalism. We will use a scalar field φ as their representative.
In the {γij(x), T(x), φ(x)}-representation, the Hamiltonian constraint (15) becomes

i
δΨ
δT

= (HG [γab,−iδ/δγab] +Hφ [φ,−iδ/δφ, γab])Ψ . (17)

In this section, we will imply spatial integration throughout this equation and its consequences in
order to simplify notation.

To the purpose of discussing the semiclassical limit, we will introduce in (2) the gravitational scale
M ∶= 1/32πG = (MP/2)2, MP being the reduced Planck mass. The geometrodynamical Hamiltonian
density will read

H
G
∶= (2M

√
γ)

−1 Gijklπijπ
kl
− (2M

√
γ)

(3)R , (18)

where Gijkl is the index-lowering DeWitt metric of superspace, the configuration space of
general relativity.
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We perform the semiclassical limit of (17), following for the most part [5], and consider an
expansion in powers of M of the wave functional

Ψ[γab, φ, T] = exp [iM
∞

∑
n=0

1
Mn Sn[γab, φ, T]] , (19)

where Sn ∈ C in general.
Substituting in (17) and equating terms of equal power, the highest order (M2) contribution comes

only from the kinetic term of the matter Hamiltonian, and gives us that the leading term S0 = S0[γab, T]

is independent on the matter fields. Although it is not necessary, we will require that S0 is also
independent on T, as we want to treat gravity as classical and the clock field as quantum.

At the next order (M1), we retrieve the Hamilton–Jacobi–Einstein equation [13] with Hamilton’s
principal function S ∶= M S0:

H
G
[γab,

δS
δγab

] = 0 , (20)

which provides a classical description of the vacuum background space equivalent to the G00

component of Einstein’s field equations [14,15]. Equation (20), which is integrated over the space
coordinates, holds true for any value of coordinate time. Rather than considering the evolution between
spatial hypersurfaces that takes place in spacetime [16], we picture the evolution to take place in the
”super-spacetime” S × T given by the cartesian product of the superspace S spanned by the functions
γab(x) and the configuration space T of the clock field T(x).

Proceeding with the semiclassical expansion, at order M0, we have

[−i
δS1

δT
+Gabcd (

δS0

δγab

δS1

δγcd
−

i
2

δ2S0

δγabδγcd
)+Hφ] ei(MS0+S1) = 0 . (21)

We decompose S1 into a pure complex part only dependent on geometry alone and a complex
part S′′1 dependent also on the field configurations

S1[φ, T∣γab] = iS′1[γab] + S′′1 [φ, T∣γab] S′1 ∈ R , S′′1 ∈ C , (22)

and define the matter wave functional

χ[φ, T∣γab] ∶= exp (iS′′1 [φ, T∣γab]) , (23)

where we use the vertical bar in the argument to distinguish the dynamical degrees of freedom of
the functional from the other functions of spacetime. At this order of approximation, the total wave
functional can be written as

Ψ ≈ ($[γab]
1
2 eiS̃[γ]

) χ[φ, T∣γab] ∶= ψ[γab]χ[φ, T∣γab], (24)

where we have defined

$[γab] ∶= exp (−2S′1[γab]) . (25)

Let us then impose the conservation law

Gabcd
δjcd

δγab
= 0 (26)

for the current density
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jab
∶=

1
M

$
δS

δγab
. (27)

Equation (21) then gives

∫
Σ

d3x (
1
i

D
D T
+Hφ)χ[φ, T∣γab] = 0 , (28)

where we have reinserted the spatial integration for the sake of clarity, and we have defined the
functional operator

D
D T
∶=

δ

δT
+ uab

δ

δγab
, (29)

where

uab = Gabcd
δS0

δγcd
(30)

are the geometrodynamical “velocities” uab that can be obtained in the Hamilton–Jacobi approach
from the variation of Hamilton’s principal function S governing (20).

Equation (28) is valid for generic spacetimes, and it does not break diffeomorphism invariance,
as T(x) simply determines the hypersurface on which we decide to observe or register the matter state.
In this picture, the time evolution of the matter field φ(x) is implicitly determined by its correlations
with the values of the clock field T(x), which one can physically measure in principle. We then have an
application at the semiclassical level of the conditional probability interpretation proposed by Page and
Wootters [17], where the matter state χ[φ∣γab, T′] at a given “time” T′(x) is obtained by conditioning
the total “timeless” wave function χ[φ, T∣γab] with the state of the clock field in the configuration T′(x).

As a special case, we may choose our coordinates so that the value of the clock field T(x) is
constant on hypersurfaces of constant (Gaussian) time, T(x) = t. Then, the clock field will appear in the
matter wave functional as a simple parameter rather than a physical variable. In this case, the structure
of the augmented superspace S × T becomes redundant, and we can simply work on the superspace
spanned by the Gaussian metric field γab(x)

(γab(t, x), T(t, x) = t) → γab(x) . (31)

The operator on the left-hand side of (28) reduces to

D
D T

→
D

D t
=

∂

∂t
+ γ̇ab

δ

δγab
, (32)

where the velocities uab = γ̇ab are consistent with the equations of motion given by the
super-Hamiltonian (14)

γ̇ab = NGabcd
δS0

δγcd
+Na;b +Nb;a (33)

for the case of Gaussian coordinates (N = 1, Na = 0).
In analogy with classical continuous mechanics, the “material derivative” (32) takes into account

both the intrinsic time evolution of the state (i.e., its dependence on clock time) and the evolution
of the background “medium” (the spatial metric field). When one performs the semiclassical limit
starting from the usual Wheeler–DeWitt equation without clock field, only the second (“convective”)
part of (32) is present, and thus, it cannot account for the time evolution in static spacetime.

The general solution to (28) at Gaussian time t can be expressed in terms of any solution at time
t0 < t as
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χ[φ∣γab, t] = exp [−i∫ d3x∫
γ
Hφ ds]χ[φ∣γab, t0] , (34)

where the line integral is taken along the classical trajectory γ(x) that solves the
Hamilton–Jacobi–Einstein equation. The standard evolution in Minkowski spacetime is thus
retrieved, together with that of any spacetime described by a Gaussian foliation. For more general
coordinates, we must rely on Equation (28).

4. Discussion and Conclusions

In this work, we have shown how the introduction of a dynamical Gaussian clock field can
provide a semiclassical limit for canonical quantum gravity where matter fields are described by a
Schrödinger-type evolution with a notion of time that also remains valid when the geometrodynamical
momentum vanishes, such as in Minkowski spacetime. The semiclassical limit consists of a classical
gravitational background that is still consistent with the “timeless” equations of motion of general
relativity in the form of the Hamilton–Jacobi–Einstein equation, and quantum matter fields that evolve
according to a functional Schrödinger equation where the usual WKB time derivative is extended
into a functional derivative operator that takes into account the dependence of the matter state on
the configuration of the clock field. For Gaussian time, this operator is reduced to the analogue of a
material derivative where both the explicit dependence on clock time and the time dependence of the
classical gravitational background are taken into account.

While the Gaussian clock field has been our tool in order to recover a viable time evolution for
quantum fields in curved (and flat) spacetime, various alternative derivations of Schrödinger-type
evolutions for quantum gravity have been proposed since the first formulation of the canonical
quantization of the theory, especially in relation to the so-called problem of time (for an extensive
review that also includes the Page and Wootters approach cited above, see [18]). Other models
may equally provide, in a semiclassical approach, viable solutions to the problem addressed here.
Our primary concern has been the recovery of an appropriate semiclassical limit for the dynamics of
quantum matter fields, and we do not claim that it provides a viable definition of time in the quantum
gravity regime, nor that such a notion is necessary to begin with.

In a generic curved spacetime, the Hamiltonian formulation of quantum field theory is
problematic [19], and it has been questioned whether the Tomonaga–Schwinger equation is indeed able
to consistently describe the unitary time evolution of quantum fields between spacelike hypersurfaces
(see, e.g., [20,21]). Our treatment, which results in a functional Schrödinger-type Equation (28),
the solution of which describes the correlation of the configurations of matter fields with the
configuration of the clock without any explicit choice of foliation, may help to address this issue.

Incidentally, we would like to finally draw attention to the fact that, unlike in our case,
the Tomonaga–Schwinger equation was introduced in the interaction picture. This detail does not seem
to have received much attention either, although it might have some relevance to the interpretation
and regularization of the “wave function of the universe” that solves the Wheeler–DeWitt equation.
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