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Abstract: We consider the gravitational interaction of spinless relativistic particle and infinitely thin
cosmic string within the classical linearized-theory framework. We compute the particle’s motion
in the transverse (to the unperturbed string) plane. The reciprocal action of the particle on the
cosmic string is also investigated. We derive the retarded solution which includes the longitudinal
(with respect to the unperturbed-particle motion) and totally-transverse string perturbations.
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1. Introduction

Over recent decades, scientific interest has shifted from the microscopic theory to the problems
of the Universe’s global evolution. Some cosmological scenarios, which pretended to be the proper
description of evolution in the past, were proposed. One might say that at small length scales,
General Relativity works well, while the gravitation on the cosmic scales is of basic interest.

The most of contemporary theories of the Universe’s evolution imply inflation at early
stages [1,2]. In addition, the spontaneous symmetry breaking was proposed to be accompanied
with phase transitions [3–5], where some topological defects may be created. The cosmic string is an
example of topological defects, which, being appeared in the phase transitions of the Early Universe,
may well survive during the evolution [6,7].

The standard problems of research within the theory of cosmic strings are related with the field
effects of the curved background (vacuum polarization, self-action, gravitational radiation [8,9] etc.)
and with the dynamics of the strings themselves. This work is devoted to the consideration of the
elastic encounter of spinless particles with cosmic strings and thus involves both these problems.

In the literature it was considered the interaction of cosmic strings [10–13], including the
self-action [14,15] the propagation of strings in the expanding Universe ([6,7], and refs. therein),
the scattering on the string [16], etc. For the scattering problem, the back-effect of the particle on the
string was neglected, assuming the smallness of the effect. Amongst the variants of mutual location
of the string and particle’s trajectory, we consider the particle’s scattering in the transverse-to-string
plane, with finite impact parameter b.

The curved space generated by the string aligned with the cartesian x-axis, represents the
ultra-static spacetime, whose metric in cylindrical coordinates takes the form

ds2 = dt2 − dx2 − d$2 − β2$2dϕ2 , (1)
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where 0 < β < 1. The quantity δϕ = 2π(1− β) defines the angular deficit [17]. It is proposed to
be extremely small (for η = ηGUT ∼ 1016 GeV it is of order 10−5) [18,19]. Hence we introduce
the complement

β′ ≡ 1− β =
δϕ

2π
,

which plays the role of the relative angle deficit.
For description of the scattered particle we shall introduce the cartesian coordinates. The radial

variable change $→ r according to relation β$ = R0(r/R0)
β , where R0 is an arbitrary lengthy scale,

allows to reduce the metric (1) into conformally-Euclidean form (on the hyperplane x = const):

ds2 = dt2 − dx2 − e−2(1−β) ln(r/R0)(dy2 + dz2) , (2)

where r2 = y2 + z2.
In a series of works [16,20,21] the strings with finite width were of consideration.

However, practically, the width’s contribution into the effects under our interest is insufficient.
Indeed, the string’s tension (linear energy density) is constant in the thin-string limit, the exterior metric
coincides with the conical metric (1), while the string’s width is estimated as η−1 [20]. For η = ηGUT
the string’s diameter is of order d ∼ 10−29 cm, which is much less than impact parameters supposed
for the scattering. Therefore we consider infinitely-thin cosmic string.

The paper is organized as follows: after the introduction, in the Section 2 we consider the setup
of the gravitational-interaction problem for the particle-string system and introduce the iterational
scheme to determine the string’s and particle’s dynamics to the first order. The particle’s motion
is computed. In the Section 3 we consider the cosmic-string’s dynamics, the retarded solutions to
the string’s equations-of-motion will be found. In the Section 4 we analyze that string’s excitation
which is transverse to the particle’s trajectory. The Section 5 is devoted to the qualitative estimates of
the restrictions related with the Perturbation Theory under usage. That string’s excitation, which is
transverse to the string but longitudinal with respect to the particle’s trajectory, is investigated in
detail. Finally, in the conclusion, we will discuss the results and point out some prospects of the
presented work.

We use h̄ = c = 1 units and the spacetime metric gµν with signature (+− −−) . The Greek indices
µ, ν, . . . run over values 0, 1, 2, 3. The Riemann and Ricci tensors are defined as Rµ

νλρ ≡ ∂ λΓµ
νρ − . . . ,

Rµν ≡ Rλ
µλν .

2. Setup

The pointlike spinless particle with mass m moves across the woldline with coordinates Zµ(s)
parametrized by the affine parameter s. The motion is described by the Polyakov’s action with the
einbein e(s); Żµ ≡ ∂Zµ/∂s stands for the tangent vector to the worldline. The string propagates by its
worldsheet V2 ⊂M4 with inner coordinates σ a = (τ, σ), which define the induced metric γ ab with
signature (+−). Particle and string interact by gravity by with no cosmological constant.

Full action for the interacting particle-string system reads

S = −µ

2

∫
Xµ

a Xν
b gµνγab√γ̃ d2σ− 1

2

∫ (
e gµνŻµŻν +

m2

e

)
ds− 1

κ2

∫
R
√
|g| d4x . (3)

Here µ is the string tension, Xµ—the worldsheet embedding coordinates, Xµ
a ≡ ∂Xµ/ ∂σ a—tangent

vectors to the worldsheet, γab—reverse metric on V2. Also γ̃ ≡
∣∣det ‖γab‖

∣∣ and κ2 = 16π G. The string
tension is related with the angular deficit as β′ = 4 Gµ.

Varying (3) over Xµ, one obtains the string’s equation of motion in covariant form:

∂a

(
Xν

b gµνγab√γ̃
)
=

1
2

gνλ,µXν
a Xλ

b γab√γ̃ , (4)



Universe 2020, 6, 184 3 of 16

while variation with respect to γab yields the constraint with solution γab as induced metric on V2:
γab = Xµ

a Xν
b gµν

∣∣
x=X .

Varying S over e and coordinates Zµ, we get the constraint and particle’s equation of motion:

e2gµνŻµŻν = m2 d
ds

(eŻνgµν) =
e
2

gνλ,µ ŻνŻλ, (5)

and, finally, the variation over the full metric is the Einstein field equation

Rµν − R
2

gµν =
1
2
κ2 [Tµν + T̄µν] , (6)

where

Tµν = µ
∫

Xµ
a Xν

b γab δ4(x− X(σ)
)√

γ̃ d2σ , T̄µν = e
∫ ŻµŻνδ4(x− Z(s))(

gλρŻλŻρ
)1/2√|g| ds

represent the energy-momentum tensor of the string and the particle, respectively.
The string’s metric (2) and the Schwarzschild solution for spinless particle represent the exact

solution of non-linear gravity separately. However, the exact solution of the full system of the
ponderomotive Equation (6) seems to be hard to find analytically. Furthermore, if we look forward by
one step and think about the gravitational radiation due to collision, the necessity of the usage of flat
background arises. Thus we shall solve the problem with help of the Perturbation Theory over the
gravitational constant (G or κ), excluding self-action: gµν = ηµν +κhµν.

To the zeroth order, we have free string (aligned with the x-axis) and free particle, which moves to
the positive direction of the z-axis with velocity v with impact parameter b. The mutual perpendicular of
the string and the particle’s trajectory (the impact-parameter vector) will be the y-axis; the intersection
of x-, y- and z-axes will be the coordinate-system origin. The t = 0 and s = 0 moment is the
closest proximity of the unperturbed particle’s trajectory to the string (when the particle passes the
y-axis). Thus

0Zµ(s) = uµs + bµ uµ = γ(1, 0, 0, v) bµ = (0, 0, b, 0) ,

where γ ≡ (1− v2)−1/2 is a Lorentz factor of the particle.
Therefore, the unperturbed string’s world-sheet is a plane spanned by t- and x-axes: σ 0 ≡ τ = t,

σ1 ≡ σ = x, thus

0Xµ = δ
µ
a σ a 0γab = ηab

0Tµν = µ δ
µ
a δν

b ηab δ(y) δ(z) .

To the first perturbation order, the Einstein equations are linear, hence 0Tµν and 0T̄µν are separate
source of own linearized fields, which are denoted as hµν and h̄µν, respectively ( 1hµν = hµν + h̄µν):

ηλρ ∂2

∂xλ ∂xρ
hµν = −κ

(
0Tµν −

0T
2

ηµν

)
, 0T ≡ 0Tστηστ , (7)

and same for h̄µν. Both equations are given in the Lorentz gauge (∂νhµν = ηµν∂νh/2), all tensor indices
are raised with help of the Minkowski metric.

The solution (7) takes apparently simple form in the Fourier space:

hµν(q) = −
(2π)2κµ δ(q0)δ(q1)

δαβqαqβ
Σµν Σµν ≡ diag (0, 0, 1, 1) ,
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where the initial Greek letters take the value 1, 2 and correspond to the transverse (with respect to
string) cartesian coordinates (y- and z-axes). The corresponding coordinate solutions of the linearized
field created by string and particle, are given by

hµν(x) =
κµ

2π
Σµν ln

r
R0

, h̄µν(x) = −κm
4π

(
uµuν −

1
2

ηµν

)[
γ2(z− vt)2 + x2 + y2]−1/2 .

Particle’s scattering. To the zeroth order the einbein reads: 0e = m. The first order is determined
by expressions

1e = −m
2

(
κhµνuµuν + 2ηµν

1Żµuν
)

, 1Z̈µ = −κ
(

hµν,λ −
1
2

hνλ,µ

)
uνuλ . (8)

Such a gauge corresponds to 1e = 0, what, in turn, corresponds to the conservation of the natural
parametrization of the proper time to the first order with the presence of curved metric.

In components, the particle’s acceleration is given by

1Z̈0 = 1Z̈x = 0 1Z̈y = − 4Gµγ2v2b
b2 + γ2v2s2

1Z̈z =
4Gµγ3v3s

b2 + γ2v2s2 . (9)

Since Z̈y < 0, the moving particle is attracted by the string. For comparison, we remind that the
pointlike particle is attracted by another particle [22,23] (in any spacetime dimension), while is repelled
by domain wall [24–26].

Integration of (9) with initial condition 1Żµ(s = 0) = 0 yields

1Ż0 = 1Żx = 0 1Ży = −4Gµγv arctan
γvs

b
1Żz = 2Gµγv ln

b2 + γ2v2s2

b2 . (10)

Substituting these corrections into the gauge (8), we notice that for the self-consistency one demands
R0 = b . Thus the scattering angle equals

αsc = πβ′ . (11)

Finally, integrating (10) with initial condition 1Zµ = 0, one obtains

1Z0 = 0 1Zy = −β′
[

γvs arctan
γvs

b
− b

2
ln

b2 + γ2v2s2

b2

]
1Zx = 0 1Zz = β′

[
γvs

2

(
ln

b2 + γ2v2s2

b2 − 2
)
+ b arctan

γvs
b

]
. (12)

The particle’s dynamics may be well investigated in the framework of full gravitational field
of the cosmic string. The exact geodesics of the cosmic string geometry were considered in [16,20].
The direct comparison of these approaches shows that usage of the linearized metric instead of full
cosmic-string metric is justified up to

|s| 6 s∞ =
b

γv
exp

1√
β′

, |t| 6 t∞ =
b
v

exp
1√
β′

. (13)
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3. Seeking the Excitations of the Cosmic String

The own particle’s field interacts with the string and deforms it. The linear part of this
field, h̄µν, causes the following correction to the induced metric: 1γab = 2δ

µ

(a
1Xν

b)ηµν + κh̄µνδ
µ
a δν

b ,
which, being plugged into (4), yields the following equation of motion:

2ηa[b∂a∂b
1Xµ] = κδ

µ
c δν

dηcdδλ
a δ

ρ
b ηab

(
1
2

h̄λρ,ν − h̄νλ,ρ

)
y=z=0

, (14)

We fix the gauge 1Xa = 0 , what means that only the transverse string excitations are “physical”.
It is well-known that transverse excitations of branes are considered as Nambu–Goldstone bosons.
They appeared due to the spontaneous breaking the symmetry [27], and thus may be detected.
In various brane models, such bosons are coupled with the induced metric [28,29].

As result, we have two wave equations for y- and z-components of the free-string excitation:

22
1Xα = δλ

a δ
ρ
b ηab

(
1
2

h̄λρ
, α − h̄α

λ,ρ

)
y=z=0

, (15)

where (α = y, z). Hereafter the fields 1Xα will be denoted as Φα:

22Φα(t, x) = jα(t, x) , (16)

where the sources are determined by the right-hand-side of Equation (15).
Due to the source’s dynamics, we will be interested in the retarded solutions to the wave equation.

Introducing the retarded Green’s function, the formal expression for the retarded solution of (15) reads:

Φα(t, x) = − 1
(2π)2

∫ ei(qx−ωt) jα(ω, q)
ω2 − q2 + 2iεω

dω dq , (17)

where j(ω, q) is a Fourier-transform of sources.
To resume, with respect to the string, both excitations Φα are transverse. With respect to the

unperturbed particle’s trajectory, the y-deflection is transverse, while the z-deflection is longitudinal.
Hence for brevity the mutually-transverse field (Φy) will be called just “transverse”, and the
transverse-longitudinal field (Φz) will be called just “longitudinal”.

For the seeking the retarded solution to (15), we are interested in the Fourier-transforms of the
sources jα in (17). In the coordinate representation, they equal

jy(t, x) = −κ
2

∂y h̄a
a

∣∣∣
y=z=0

, jz(t, x) = −κ
2

(
2∂t h̄z0 + ∂z h̄a

a

)
y=z=0

. (18)

By the reasons defined below, it is necessary for us to compute these transforms for arbitrary spacetime
dimensionality D. Omitting the computational routines, the Fourier-space expressions for two sources
are given by

jy(ω, q) =
πλy

Γ
(

D−1
2

)
(2b)

D−5
2 γv

K D−3
2

(
b
√

q2 + (ω/γv)2
)

(q2 + γ−2v−2ω2)−
D−3

4

jz(ω, q) = − πλziω

Γ
(

D−1
2

)
(2b)

D−5
2 γv2

K D−5
2

(
b
√

q2 + (ω/γv)2
)

(q2 + γ−2v−2ω2)−
D−5

4
, (19)
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where Kν(z) stands for the Macdonald function of index ν and

λy,z =
κ2

DmΓ
(

D−1
2

)
4π

D−1
2

(
γ2v2 ± D− 4

D− 2

)
.

With the propagator’s poles account, the integration over frequencies reduces to the proper
contour closure in the complex plane of ω. The integrand (17) contains two branching points ω =

±iqγv, due to the Macdonald function argument jy,z(ω, q). Hence, it is necessary to make a cut
from ±iqγv to ±i∞ in the upper (lower) half-plane. Bypassing the branching point along the cut,
we get the meromorphic integrand inside each contour, hence the initial integral over R splits onto the
contribution due to the pole residuals and contribution due to the branching point bypass along the
corresponding cut. It may be done with help of the rule

(iz)nKn(iz)− (−izn)Kn(−iz) = −iπzn Jn(z) , z > 0 ,

where Jn(z) stands for the Bessel function of 1st kind of index n. The integration contours over the
frequency, corresponding to the cases t < 0 and t > 0, respectively, are shown on the Figure 1.

Figure 1. Integration contours in the complex ω-plane.

The complete retarded solution, thereby, is given by sum Φy,z = Φy,z
cut + Φy,z

res , where

Φz
cut = −Λsgn t Iz

cut Φz
res = 2Λθ(t)Iz

res Φy
cut = ΛvIy

cut Φy
res = 2Λv θ(t)Iy

res

(Λ = 2Gmγ) (In fact, Λ depends upon D but, as it will be shown below, this dependence does not
change the final answer.) and the four introduced amplitudes Iy,z

cut,res are defined as

Iz
cut ≡

√
2/π

b
D−5

2

∞∫
0

dq
∞∫

qγv

du
ue−u|t| cos qx

u2 + q2

J D−5
2

(
b
√
(u/γv)2 − q2

)
(γ−2v−2u2 − q2)−

D−5
4

(20)

Iz
res ≡

√
2/π

(bv)
D−5

2

∞∫
0

dq cos qt cos qxq
D−5

2 K D−5
2

(
bq/v

)
(21)

Iy
cut ≡

√
2/π

b
D−5

2

∞∫
0

dq
∞∫

qγv

du
e−u|t| cos qx

u2 + q2

J D−3
2

(
b
√
(u/γv)2 − q2

)
(γ−2v−2u2 − q2)−

D−3
4

(22)

Iy
res ≡

√
2/πv

(bv)
D−5

2

∞∫
0

dq sin qt cos qx q
D−5

2 K D−3
2

(
bq/v

)
. (23)
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Thus, both excitations Φy and Φz are split onto two components: apart from the different time
indicators, the corresponding amplitudes originate from different mathematical factors. Iy,z

cut originates
from the integral over bypass contour around the cut to the branching points, hence this partial solution
will be called as “cut”-amplitude (with index cut indication). Iy,z

res comes from the residuals (with index
res) in the propagator’s poles, hence this partial solution will be called as “pole”-amplitude. Thus the
full dynamics of the two retarded solutions consists in the four amplitudes Iy,z

cut,res.
Direct substitution D = 4 into the formal solutions for the amplitudes shows that the transverse

integrals Iy
cut,res converge, while the longitudinal ones Iz

cut,res diverge logarithmically at small-q limit.
Let us start with the transverse amplitudes: the polar one is given by

Iy
res =

∞∫
0

sin qt
q

cos qx e−bq/v dq . (24)

Computing it with help of the table integral (formula [30], f. 947-3), we get

Iy
res =

1
2

[
arctan

t2 − x2 − b2/v2

2bt/v
+

π

2

]
, (t > 0) . (25)

The double-integral of the cut-amplitude Iy
cut

Iy
cut(|t|, r) =

2
π

∞∫
0

dq
∞∫

qγv

du
e−u|t| cos qx

u2 + q2 sin
(
b
√
(u/γv)2 − q2

)
(26)

can not be computed by the table integrals. Let us differentiate it with respect to t (for t > 0) and
change the integration variable u = qγv

√
ũ2 + 1:

İy
cut =

2
π

∞∫
0

dq
∞∫

0

dũ
ũe−qγv|t|

√
ũ2+1

ũ2 + v−2 cos qx sin bqũ (27)

(hereafter, the dot will denote the derivative with respect to t). Integrating (27) consecutively over q
and ũ, we obtain the following expression for İy

cut:

İy
cut =

b
Q

[
t2 + x2 +

b2

v2 − γt
b2 + v2t2 + (2− v2)x2√

γ2v2t2 + b2 + x2

]
Q ≡

(
t2 + b2/v2 − x2)2 + 4b2x2/v2 .

Finally, integrating over t with boundary condition Iy
cut(t = ∞) = 0 (what follows from the exponential

factor in the initial expression (26)), we conclude that Iy
cut(t, x) in a closed form equals

Iy
cut =

1
2

[
arctan

v2t2 − v2x2 − (2v2 − 1)b2

2bv
√

v2t2 + (b2 + x2)/γ2
− arctan

t2 − x2 − b2/v2

2b|t|/v

]
. (28)

The longitudinal pole-amplitude is given by the following expression:

Iz
res =

∞∫
0

cos qt cos qx
q

e−bq/v dq ,

which diverges logarithmically. For the regularization we apply the dimensional-regularization
method, well-known in Quantum theory. It was pointed out by Hawking [31], that in the case of
non-trivial codimensionality of embedding, the dimensional regularization should be applied to the
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total space-time dimensionality and not to the dimensionality of the sub-manifold (It was successfully
confirmed in [32–34]).

To do it, we restore Iz
res in the form of (21); in our case we have D = 4 + 2ε (ε > 0):

reg Iz
res =

√
2bv
π

(
µ2

resbv
)−ε

∞∫
0

dq
cos qt cos qx

q1/2−ε
Kε−1/2

(
bq/v

)
, (29)

where µres is an arbitrary mass constant introduced for dimensional reasons. For any ε > 0 the integral
converges. With the help of table integral ([35], f. 2.16.14-4), the expression (29) reduces to

reg Iz
res =

Γ(ε)v
4

(
µ2

resv2

2

)−ε [(
(t + x)2 +

b2

v2

)−ε
+
(
(t− x)2 +

b2

v2

)−ε
]

.

Expanding Γ(z) in the pole z = 0 and neglecting the infinite (in the limit ε → 0+) term ε−1,
the renormalized value of the amplitude Iz

res reads:

ren Iz
res = −

v
4

ln
[v2(t + x)2 + b2][v2(t− x)2 + b2]

4r4
res

, (30)

where rres ∝ 1/µres is an arbitrary lengthy scale.
In fact, in view of dimensional regularization, into the definition of Iz

res (20) one should add
the contributions from all dimension-dependent factors in the pre-factor Λ. However, due to the
arbitrariness of the constant rres, such contributions can just redefine it .

The longitudinal cut-amplitude is given by the following formal expression:

Iz
cut ≡

2
π

∞∫
0

dq
∞∫

γvq

du
ue−u|t| cos qx

u2 + q2

cos
(
b
√
(u/γv)2 − q2

)√
(u/γv)2 − q2

.

For the regularization of it we restore Iz
cut in the form (20). Putting D = 4 + 2ε, for any ε > 0 the

integral over the infinitesimal semi-circle around each branching point vanishes in the zero-radius
limit. The double-integral turns out to be finite, hence we change the integration variable u like in (27):

reg Iz
cut =

√
2b
π

(
µ2

cutb
)−ε

∞∫
0

dũ
∞∫

0

dq
ũe−qγv|t|

√
ũ2+1

u2 + v−2
Jε−1/2(bqũ)
(qũ)1/2−ε

cos qx ,

where µcut—also some arbitrary positive parameter with mass dimension. Taking the inner integral
with help of table one [35, f. 2.12.8-4] we arrive at the following dimensionally-regularized expression:

reg Iz
cut =

Γ(ε)
2π ∑

±

∞∫
0

dũ
µ−2ε

cut ũ2ε

ũ2 + v−2

[(
γv|t|

√
ũ2 + 1± ix

)2 − b2ũ2
]−ε

. (31)

Performing the renormalization directly inside the integral and dropping the ε−1-term from the
Gamma-function’s Laurent expansion, we find after simplifications:

ren Iz
cut = −

1
2π ∑

±

∞∫
0

dũ
u2 + v−2 ln

(γ2v2t2 + b2) ũ2 ± 2bx + x2 + γ2v2t2

r2
cutũ2

,
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where rcut stands for the arbitrary length parameter. Now the integral over ũ converges and equals

ren Iz
cut = −

v
2

ln
v2b2x2 +

(
γ2v2t2 + b2 + γv2|t|

√
γ2v2t2 + b2 + x2

)2
r2

cut(γ
2v2t2 + b2)

. (32)

Since we have used the regularization (and moreover inside the improper integral for Iz
cut),

we must convince ourselves that the found renormalized expressions Φy,z do represent the solution
to the initial wave equation (16). First we consider the dalembertian action on the symmetric partial
amplitudes Icut and Ires:

22 Iy
res = 22 Iz

res = 0 . (33)

Direct computation for the cut-amplitudes (28) yields

22 Iy
cut =

γvb
(γ2v2t2 + b2 + x2)3/2 −

2bv
v2x2 + b2 δ(t) , 22 Iz

cut =
γ3v3|t|

(γ2v2t2 + b2 + x2)3/2 . (34)

Now we can switch an attention to the full solutions. The dalembertian of full solution for Φz

takes the form:

22Φz = jz + 2Λδ′(t)
(

Iz
res − Iz

cut
)

t=0 ,

where we imply δ(t) İz
cut,res = 0 in sense of distributions, since Iz

cut,res are time-symmetric by
construction [36]. Therefore, it is necessary to satisfy the constraint Iz

res(0, x) = Iz
cut(0, x) , thus we find

the relation of two length scales: rcut =
√

2rres ≡ r0 . Substituting all expressions and constants, the full
solution for Φz reads

Φz = Gmγv
[

sgn(t) ln
v2b2x2 +

(
γ2v2t2 + b2 + γv2|t|

√
γ2v2t2 + b2 + x2

)2
r2

0(γ
2v2t2 + b2)

−

− θ(t) ln
[v2(t + x)2 + b2][v2(t− x)2 + b2]

r4
0

]
. (35)

For the dalembertian of full transverse solution we take the account of (33) and (34), and the
boundary condition Iy

res(0, x) = 0; thus the dalembertian equals

22Φy = jy + 2Λv δ(t)
(

İy
cut + İy

res
)

t=0+ .

Comparing (25) with computed above İy
cut(0

+, t), we convince ourselves that İy
cut(0

+, t) = − İy
res(0

+, t)
holds, hence the found Φy does represent the solution of (16).

Combining all the contributions, the total transverse solution takes the form:

Φy = Gmγv
[

arctan
v2t2 − v2x2 − (2v2 − 1)b2

2bv
√

v2t2 + (b2 + x2)/γ2
+ arctan

t2 − x2 − b2/v2

2b t/v
+ π θ(t)

]
. (36)

Therefore, the constructed functions Φy and Φz have the following properties:

• They are continuous with respect to t and x;
• They satisfy the equation of motion (16);
• They preserve the causality, that is, they represent the retarded solutions;
• They vanish in the limit v→ 0;
• Their values have characteristic length scale 2Gmγ = rE which is Schwarzschild radius associated

with energy E ;
• Φz depends logarithmically upon the single length factor r0.
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4. Transverse String Perturbation

In the absolute Past and Future, for fixed 0 < v < 1 and x (|t| � max(x, b/v)) Φy (36) behaves as

Φy∣∣
t→−∞ '

rE b
|t| (1− v)→ 0 Φy∣∣

t→+∞ ' rE
[
πv− b

t
(1 + v) +O(t−2)→ πvrE

]
, (37)

hence the string’s final (as t→ +∞) y−deflection equals πvrE and does not depend upon x.
At any fixed point x both Φy and Φ̇y are positive. Therefore, the characteristic factor of the

transverse string’s excitation is rE in y-direction, and b along the string. The characteristic time factor
is the position of half-asymptote of the plot Φy(t) (Figure 2); this time equals

t =
√

x2 + b2 ≡ tx

and does not depend on the particle’s velocity. Respectively, the doubled time 2 tx is a characteristic
relaxation time of the string’s piece with coordinate x with respect to the final asymptotic.

Figure 2. Transverse string perturbation (in units rE ) versus time (normalized by b) for x = 0 (blue
solid line), x = 5b (green dashed line), x = 10b (black dotted line), x = 20b (red dashdotted) for v = 0.5.

Thus, the string’s y-deflection carries the properties of the transverse wave which propagates
from the apex to the periphery. The wavefront propagates with superluminal speed

V =
∂x1/2

∂t
=

t√
t2 − b2

, (38)

which asymptotically tends to the speed-of-light.
In the ultrarelativistic case (x � γt)

Φy∣∣
b�x�γ|t| '

2rE b|t|
x2 .

We can expand (37) with respect to 1/γ, to obtain:

Φy∣∣
t→−∞ '

rE b
2|t|γ2 , Φy∣∣

t→+∞ ' rE

[
π − 2b

t
+O

( x2 + b2

t2

)]
. (39)
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Therefore for t 6 0 the transverse excitation is suppressed as 1/γ and vanishes in the massless limit,
which implies the finite particle’s energy [37]

m→ 0 , γ→ ∞ , mγ ≡ E = const .

Hence the complete string’s transverse perturbation takes place at t > 0 and is determined
by expression

Φy∣∣
v=1 =

rE
2

[
2 arctan

t2 − x2 − b2

2bt
+ π

]
θ(t) . (40)

Thus for the fixed particle’s energy the maximal attraction towards the particle is achieved in the
massless limit; the string’s y-shift equals πrE precisely.

5. Longitudinal String’s Excitation

In contrast with the transverse excitation, the longitudinal solution (35) depends upon the arbitrary
scale factor r0. Such a constant appearing in the dimensional regularization technique, is usually
declared as “to be determined in the experiment” in the literature. However, we try to give some sense
to it from some theoretical-speculation framework.

In the pure case of Minkowski metric the physically-motivated requirement is an absence of
the perturbation at t → −∞. In our case, we are convinced that it is natural to impose a condition,
that interaction starts at t = −t∞, where t∞ is deduced in formula (13).

For t < 0 the longitudinal solution is governed by the first logarithm in (35), it originates from
the cut-term of the total solution. One observes that Φ̇z increases as function of t at any t < 0. Thus at
t = −t∞ with our hypothesis of no interaction, we require the disappearance of Φz or its smallness
with respect to the maximum (which happens at t ∼ b). From some symmetry speculations, it is clear
that for qualitative estimates it is enough to consider the string’s apex x = 0. Fixing it in (35), we get

|Φz(t < 0, x)| < 2Gmγv
∣∣∣ ln

√
γ2v2t2 + b2 + γv2|t|

r0

∣∣∣ . (41)

Fixing t = −t∞ here, we infer that within this hypothesis, the scale factor should be equal

r0 = γv(1 + v)t∞ = γ(1 + v)be1/
√

β′ .

With this identification, the maximal z-deflections are given by

|Φz(−t∞, 0)| ' rEv
2(1 + v)γ2 e−2/

√
β′ , |Φz(0, 0)| ' rEv ln

(
γ(1 + v)e1/

√
β′) ,

so that the latter is exponentially large with respect to the first, to confirm the idea that the string was
“almost at rest” in the effective past.

Due to logarithms, the same restriction concerns the maximal string’s coordinate x where it can
receive the effective particle’s linearized-gravity field with no distortion:

xmax = vt∞ = be1/
√

β′ .

Furthermore, the consideration of Newtonian limit implies the large impact parameters with
respect to the particle’s gravitational radius; the same note concerns the real (finite) width of a string:

b� rg = 2Gm , b� d = η−1.
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Now we transit to the qualitative analysis of the longitudinal solution. At t < 0 Φz as a function
of time, increases monotonously, reaching at t = 0 the value

Φz(0, x) =
rEv
2

ln
(1 + v)2b2γ2 e2/

√
β′

v2x2 + b2 = rEv

(
1√
β′

+ ln
[
γ(1 + v)

]
− 1

2
ln

v2x2 + b2

b2

)
.

Therefore, the relatively large values rE/
√

β′ and rE ln 2γ (the latter for ultrarelativistic particles)
define some characteristic background value of the string’s longitudinal excitation:

Φz
bg = rEv

(
1√
β′

+ ln
[
γ(1 + v)

])
,

while the scale rE defines the characteristic dynamical part on this background.
For the positive maximal time t = t∞ the value of Φz will be determined by the pole-term of the

total solution:
Φz(t∞, x) ' 2rEv ln

[
γ(1 + v)

]
≡ Φz

∞ .

Since, according to our assumption, there is no effective interaction at t > t∞, then the value Φz
∞

defines the final z-shift of the string. As we see, it does not depend upon the string’s angular defect
and thus upon the identification of arbitrary constant r0. Furthermore, this value is independent of x,
that is, in its final state the string is shifted in z-direction parallel to its original position.

The relaxation time to the final deflection is be1/
√

β′/v and too large. However, the dynamical
part of the solution has own characteristic lengthy and time scales, related with b and x, as well as the
transverse solution has.

On the Figure 3 we plot the dependence of Φz upon time.

Figure 3. String’s z-deflection (in units rE = 1) as a function of time (in units b = 1) at x/b = 0 (blue
solid line), x/b = 5 (green dashed line), x/b = 15 (black dotted line), x/b = 25 (red dashdotted line)
for v = 0.5. The conical angular deficit is β′ = 10−4.

The maxima correspond to t = tx . It is precisely the distance from the particle’s position at the
moment of “collision” (t = 0), to the observation point on string. The value at maximum

Φz(tx, x) = rEv

(
1√
β′

+ 2 ln γ + ln(1 + v)

)
≡ Φz

max (42)
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does not depend on x. Hence the excitation has a form of the wave (with constant amplitude)
which propagates from the apex to periphery with the same velocity (38) as the transverse wave.
The difference between two waves consists in the wavefront notion and in the character of residual
phenomenon after the wavefront passage. In the transverse-perturbation case, the wavefront forms
an apparent transverse (with respect to direction of propagation) rectangular frame in orthogonal to
z-axis direction. On the wavefront, a piece of the string is attracted abruptly towards the particle’s
trajectory. After the wavefront passage, that piece does not change the direction of motion and drifts
slowly to the final shift value Φy

∞. In the longitudinal-perturbation case as a wavefront we regard the
position of the deflection maximum (42); after the wavefront passage, that piece of the string changes
the direction of motion and goes towards the initial z-position.

For fixed x the equation Φz(t) = Φz
bg has two roots

t±(x) =
√

b2γ2 + x2 ± bγ , 0 6 t−(x) < tx < t+(x) .

Thus we can regard

δt ' |t+ − t−| = 2γb (43)

as a relaxation time of the wave’s dynamical part with respect to background. During this time
the wavefront passes the observation point. At t > t+(x) the corresponding string’s piece (with
coordinate ±x) slowly decays to Φz

∞ (with characteristic time t∞).
Since Φ̇z > 0 at t < tx and Φ̇z < 0 at t > tx, one may say that the moving particle repels the

string along the direction of own motion. Note that in the lateral direction the moving particle attracts
the string.

It is clear that the wave-part of the longitudinal solution corresponds to the term ln(v2(t∓ x)2 + b2)

from Expression (35) for the wave running in the positive (negative) direction. These terms originate
from the pole-part of the total solution which satisfies the homogeneous wave equation; the relatively
surprising fact is that the maximal value (42) does not change in time, that is the slowly decaying
cut-term (satisfying the homogeneous equation) also takes place in the keeping the maximal amplitude
of pure wave nature.

From the formulae presented above, it is clear that the presence of factor ln γ implies that we can
not use massless limit for the longitudinal excitation. Indeed, due to the construction, the timescale of
the dynamical-part-relaxation (43) is restricted by the timescale (13), related with the angular conical
defect when the conformally-Euclidean coordinated are of usage. In what follows

γ < γmax = e1/
√

β′ . (44)

Therefore we avoid the requirement of vanishing the cut-part for the Aichelburg–Sexl shockwave,
as physical reasons demand. Nevertheless, for contemporary restrictions on the possible values of the
angular conical defect, Expression (44) is a huge quantity much larger than possible Lorentz factors
available now.

6. Conclusions

Effects of the gravitational interaction under elastic encounter of the cosmic string and spinless
particle are considered. We have used iteration scheme with the Perturbation theory over gravitational
constant (G or κ), with flat space as background. The particle is scattered in the plane transverse to
the unperturbed string, attracting to it by angle proportional to the conical angular deficit only and
independent of the impact parameter b and particle’s energy E .
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The basic result of the work is a construction of the exact retarded solutions to the equations of
motion for the cosmic string. They are obtained as inverse elementary functions. The solutions are
continuous, vanish in the zero-speed limit and possess a series of other interesting analytical properties.

The characteristic interaction time is b/v, but the additional lengthy scalefactor r0 � b arises.
The proportionality coefficient is related with the angular defect β′ of the background conical space.

In turn, the particle’s motion causes the string’s excitation: it represents deflections in transverse
(to the unperturbed string) directions: the first deflection is longitudinal with respect to the particle’s
motion, the second one is purely lateral. After the moment t = b both excitations represent a single
wave along the string.

The characteristic length parameter, which determines the value of transverse string deformations,
is a particle’s gravitational radius rE associated with energy E . Thus we expect that the tiny a priori
effect can be amplified if we consider the scattering of transplanckian particles or scattering of a beam
one-sided from the string; this can yield a multiplicity.

Single waves running along the string, are transverse with respect to the direction of propagation.
Both waves are superluminal, that is nothing but the light-spot effect. Effectively, as a source of waves
one can consider the particle at the moment of collision. The the signal passes the distant to the
observation point on the string (tx =

√
b2 + x2) with speed-of-light. Respectively, the minimal time to

achieve the string (t0 = b) corresponds to apex; at this moment the wave appears in the apex and then
propagates to periphery.

The mutually-transverse deflection (Φy) has characteristic timescale of order of impact parameter.
The wave caused by the particle’s attraction, after passage leaves the string in shifted state; the shift is
of order of rE in the direction towards the particle.

The longitudinal (with respect to the particle-motion direction) shift is directed outwards the
particle: at t < tx the string’s piece x goes along the particle, and then after the wavefront passage it
undergoes the backward recess. Therefore, in its longitudinal direction, the particle’s gravitational
field repels the string. Such a non-trivial interaction was proper to the Particle–Domain wall
system [24–26,38]. The interesting technical aspect is a usage of the dimensional-regularization
method to preserve the causal structure of the longitudinal solution. A payment for this is the
appearance of the extra arbitrary constant and, consequently, the appearance of extra scale factor.
Within our Perturbation-theory framework we associate it with a combination of the impact parameter
and the string’s conical angular deficit.

In conclusion, we notice that the approach allows to go beyond the elastic scattering and consider
the gravitational radiation which arises in collision. Such inelastic processes, in particular, might change
the cosmic-string energy at early stages of the Universe evolution, and change the energy balance
within various cosmological scenaria. This kind of particle-string bremsstrahlung differs from the
string radiation considered before (e.g., the radiation from cosmic-string loops [8,9]).

Naively, for string bremsstrahlung one might observe, that though the string’s deflection, found in
the paper, is small, the total emitting energy comes from the whole string. If so, the real (Regarding the
string’s length, the “real” means not that the cosmic string is real (observable now or active in the Past),
but just “the actual string’s length in the assumption that the theoretical models, predicting the cosmic
string’s existence, are adequate.”) string’s length is not infinite (as we have considered for simplicity),
but extremely large, being of order of the Universe’s actual size. Such a computation is a natural task
for the subsequent work.

In addition, the effects of string’s interaction with neutral particles with non-zero spin represents
the particular interest and the prospect of further theoretical issues.
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