
universe

Communication

On the Collision of Relativistic Shock Waves and the
Large Scale Structure of the Universe

Alexander Golubiatnikov and Daniil Lyuboshits *

Faculty of Mechanics and Mathematics, Moscow State University, 119991 Moscow, Russia; golubiat@mail.ru
* Correspondence: daniilll@ya.ru; Tel.: +7-906-790-94-62

Received: 9 October 2020; Accepted: 17 November 2020; Published: 20 November 2020
����������
�������

Abstract: The solution to the problem of symmetric collision of two relativistic shock waves is given
and limiting cases are investigated: Newtonian mechanics and ultrarelativistic mechanics. The results
are correlated with the presence of known superclusters and “walls” in the Universe.
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1. The Scenario of the Big Bang

The Big Bang theory of the Universe, associated with the interpretation of Hubble’s
observations [1], the foundations of which were laid by G. Gamov [2] in the 1940s on the basis of
assumptions about the transformations of elementary particles, was confirmed by the discovery of relic
radiation [3]. Estimates of the radiation density showed that it can be associated with an annihilation
reaction of the type p + p = 2γ, which left only 10−9 ordinary matter [4].

L. Sedov [5] presents many exact solutions to Newtonian gas dynamics; in particular, the solution
of the problem of a strong explosion, in which the velocity distribution over the radius is very close to
the linear one observed in general during the expansion of the Universe.

The conditions under which annihilation began could have occurred during the preliminary
gravitational compression of a mixture of matter and antimatter. This scenario was indicated by
M. Cahill and A. Taub [6], who solved the self-similar problem of shock wave formation during the
collapse of “dust” without annihilation reaction. Exact solutions of not self-similar problems with
annihilation shock wave were given by us [7–11] with the formation of homogeneous Friedman spread
with the symmetry group G6 or a non-homogeneous Gutman–Bespalko radial acceleration with the
group G4.

However, modern observations indicate the presence of sufficiently large angular inhomogeneities
of the order of 0.1 from the visible part of the Universe, both in terms of galaxy density and radiation
density. So, in 1980, the Boötes Void was discovered [12] with a galaxy density of 0.006 from the
average; in 2004, the CMB cold spot [13]; later, the Local Void, which, by the way, is our galaxy;
the KBC Void [14], which encompasses the Local, etc., which indicates the possibility of a number of
subsequent explosions of antimatter remnants. However, the interaction of shock waves generates,
in turn, areas of compaction of matter that are actually observed—for example, the Sloan Great
Wall [15] or the Hercules–Corona Borealis Great Wall [16,17]—in which the density of galaxies exceeds
the average by an order of magnitude.

If we turn to Newtonian gas dynamics [18], the solution of the problem of the collision of two flat
strong (without significant counter pressures) shock waves gives a pressure gain coefficient equal to

κ =
p2

p1
=

3γ− 1
γ− 1

, (1)
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where p1 is the pressure in the incident shock wave, and p2 is the pressure in the reflected shock wave.
Additionally, compaction ratio

µ =
ρ2

ρ0
=

γ(γ + 1)
(γ− 1)2 , (2)

here γ is the adiabatic index, ρ0 is the initial density and ρ2 is the density in the reflected shock wave.
If γ = 5/3, we get µ = 10, which corresponds to a density in galaxy superclusters and cosmic walls
that usually exceed the average density of the Universe by 2–10 times [19]. So, even in the Newtonian
case, the collision of shock waves can lead to a 10-fold compaction, which makes the model at least
partially suitable for use as a scenario for the formation of large cosmic walls, some of which are so
large that they are not compatible with the cosmological principle according to all existing estimates.

In the framework of special relativity, as is known [20], the compaction effect is enhanced: in a
single shock wave by dividing by

√
1− v2/c2 or multiplying by temperature (they are related), and in

a collision of shock waves, as can be expected, by dividing by the square of the same root (see below).

2. Relativistic Hydrodynamics of Perfect Gas and Radiation

The equations of dynamics of adiabatic motion of an ideal gas in the framework of special
relativity have the following tensor form

∇jTij = 0, ∇i(ρui) = 0, (3)

where Tij is the tensor of energy-momentum, which is equal to

Tij = (ε + p)uiuj − pηij, ηijuiui = 1. (4)

Here, ε—internal energy density calculated per unit of its own volume, p—pressure, ui—vector
of 4−velocity, normalized by 1, indices i, j = 0, 1, 2, 3. The second Equation (3) is a differential law of
conservation of rest mass with density ρ (continuity equation).

Tensor ηij—Minkowski tensor defining the metric

ds2 = ηijdxidxj = dt2 − dx2 − dy2 − dz2, (5)

where the speed unit is selected, equal to the speed of light c = 1. In the inertial coordinates (t, x),
the covariant derivatives are reduced to quotients.

Below, we will consider the problem of propagation of flat waves in the plane (t, x),
where dy = dz = 0 is assumed. The conditions for the normalization of 4−velocity can be solved
by introducing the usual; in this case, three-dimensional speed v such that

u0 =
1√

1− v2
, u1 =

v√
1− v2

. (6)

Traditional conditions on the discontinuities of the variables included in Equations (3) and (4) are
given by the formulas

[Tij]nj = 0, [ρui]ni = 0, ηijninj = −1, (7)

where the square brackets denote the difference between the values on different sides of the shock
wave, ni represents the vector of 4—normal; its normalization is −1—generally speaking, insignificant.

If D is the three-dimensional shock wave velocity, then

n0 = − D√
1− D2

, n1 =
1√

1− D2
(8)
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and the denominator can obviously be reduced. There are only two types of discontinuities: a contact
discontinuity frozen in a liquid with D = v and a shock wave D 6= v. The equation of state should also
be added to these formulas. For a perfect gas with a constant adiabatic exponent γ ∈ (1, 2] we have

ε = ρ +
p

γ− 1
. (9)

Let us also discuss an important consequence of Equations (3). If we introduce the specific
enthalpy h = (ε + p)/ρ as a function of the canonical parameters p and S, where S is the specific
entropy, and consider the Gibbs identities

T =
∂h
∂S

,
1
ρ
=

∂h
∂p

, (10)

where T is a temperature; then, if we convolve the first Equation (3) with vector ui and use the
continuity equation, we get the law of conservation of entropy along the world line

ρTui∇iS = 0. (11)

If we enter any Lagrangian variable ξ, this means the dependence of S(ξ). However, there should
always be [S] > 0 on the shock wave, if the jump means the difference of states behind and before
the shock wave, respectively. The entropy integral can be used effectively by entering the specific
internal energy

U =
ε

ρ
= 1 + Cργ−1exp(S/cV) = 1 + f (ξ)ργ−1, (12)

where cV—specific heat at a constant volume, C—some constant. Then, p = (γ− 1) f (ξ)ργ.
Here, the presence of the rest mass density in the Formula (11) plays an important role. If the

density ρ is absent—for example, the medium is radiation with p = ε/3, or it can be ignored, then the
number of unknowns is reduced, but there is still the ratio

ui∇iε + (ε + p)∇iui = 0, (13)

resembling the continuity equation, which, if the dependence p(ε) is known, can be integrated using
the Lagrangian coordinate ξ.

Consider the law of gas motion x(t, ξ), using the variables ξ0 = t, ξ1 = ξ. Then v = xt. In these
variables, we have

ds2 = gijdξ idξ j = (1− v2)dt2 − 2vxξ dtdξ − x2
ξdξ2, (14),

where g00 = 1− v2,
√−g = xξ . Then,

ui = δi
0/
√

1− v2, ∇iui =
1
xξ

(
xξ√

1− v2

)
t
, (15),

where δi
0 is the Kronecker symbol, and the subscripts represent partial derivatives of the law of motion.

This gives the equation
εt

ε + p
+

√
1− v2

xξ

(
xξ√

1− v2

)
t
, (16)

which is easy to integrate with an arbitrary function of ξ. In particular, for radiation, we get

ε = ε0(ξ)

(√
1− v2

xξ

)4/3

= 3p. (17)
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The most convenient Lagrangian variable is the integral rest mass m. To introduce it, consider the
continuity Equation (3) in the form

ρ√
1− v2

= mx,
ρv√

1− v2
= −mt. (18)

It is clear that, along the world line ui∇im = 0. The Relations (18) allow us to proceed to writing
the density and velocity in terms of derivatives of the law of motion x(t, m)

ρ =

√
1− v2

xm
, v = xt. (19)

Now, when the continuity equation has been virtually eliminated, the equations of motion and
energy (3) using formulaes (12) and (15) can be rewritten in the simplest form [7], which is close to
Newtonian mechanics,(

hv√
1− v2

)
t
+ pm = 0,

(
U + pv2/ρ√

1− v2

)
t
+ (pv)m = 0. (20)

In this form, the free index i in (3) is not subjected to the tensor transformation law, but remains in
the original system of inertial coordinates (t, x). This technique is often used in Newtonian continuum
mechanics—for example, in the nonlinear theory of elasticity [21]. For equations of the form (20),
it is easy to formulate integral representation and to the conditions (6) at the surface of discontinuity
m = M(t) in the form

[x] = 0,
[

hv√
1− v2

Ṁ− p
]
= 0,

[
U + pv2/ρ√

1− v2
Ṁ− pv

]
= 0. (21)

The dot is the derivative of t. The first relation (21) also implies the continuity of the derivative
along the discontinuity surface. Or

[v + xm Ṁ] =

[
v +

√
1− v2

ρ
Ṁ

]
= 0. (22)

3. Collision of Shock Waves

Let us consider the process of symmetric collision of two flat strong shock waves in the framework
of special relativity. The solution of the relativistic gas dynamics equations is piece-wise constant,
and the differential Equations (3) are satisfied identically.

We use the rest mass m as the Lagrangian coordinate. Then the conditions on the discontinuity
m = M(t) have a fairly simple form (21) and (22), where, recall, h = U + p/ρ. For a perfect gas

U = 1 +
p

(γ− 1)ρ
. (23)

The shock wave collision problem belongs to a series of problems about the decay of an
arbitrary discontinuity. There are 10 different types of solutions to such problems in which all
unknown functions depend only on the variable x/t [22]. The theory of relativity does not provide
anything new here. Moreover, the effect of a sufficiently smooth gravitational field can also be
ignored locally. Discontinuities of the parameters of matter lead, by virtue of Einstein’s equations,
to discontinuities of only the second derivatives of the gravitational field. Therefore, by choosing a
geodesic coordinate system along the curve that lies on the surface of the discontinuity [23], we can
use special relativity. However, of course, at later stages, a significant increase in the density of the
rest mass and energy-momentum leads to the need to take into account its influence for subsequent
calculations of the gravitational fragmentation of matter.
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The collision of shock waves, usually ultrarelativistic, is also used in the hydrodynamic theory
of interaction of elementary particles [24]. A symmetric collision is equivalent to the problem of a
wave hitting a stationary wall. In Figure 1, three areas are highlighted: 0, 1, and 2. In the region 0
equilibrium: the values p0, ρ0, v0 = 0 are set. In region 1—parameters of the incident wave, among
them, due to the conditions at the discontinuity are (21) and (22)—only one can be set independently.
Choose v1 < 0, as in the statement of the piston problem. In the 2 area, the speed v2 = 0, other
parameters are searched. In addition, we need to find the mass velocities of shock waves Ṁ0 < 0
and Ṁ2 > 0. Thus, six conditions at the break allow you to define six parameters. For a perfect gas,
this is possible due to the evolutionary nature of discontinuities. Note that the conditions (21) and
(22), by virtue of v0 = v2 = 0 for both shock waves, are exactly the same, so excluding the variables
ρ0, p0 and ρ2, p2 on each side, we obtain the same quadratic equation for the quantities Ṁ0 and Ṁ2,
which represent its solutions with different signs. The coefficients of this equation also depend on the
parameters of the state of the incident wave ρ1, p1, which are expressed in terms of v1, ρ0, and p0. For a
perfect gas, we have

Ṁ2 + bṀ− ρ2
1a2

1 = 0, b =
ρ1v1√
1− v2

1

 γ +
√

1− v2
1

h1

(
1 +

√
1− v2

1

) +
γa2

1
γ− 1

 , (24)

where a2
1 = γp1/(ρ1h1)—the square of the speed of sound.

Figure 1. Areas of motion.

In principle, the coefficients of Equation (24) can be rewritten in terms of the values ρ0, p0, v1.
Equation (24) are not difficult to solve in a rather cumbersome, but visible form

Ṁ = − b
2
±
(

b2

4
+ ρ2

1a2
1

)1/2

. (25)

Below, we investigate the cases of a weak incident relativistic shock wave defined by the
inequalities v2

1 � a2
1 < c2 = 1, and a strong one when p0 = 0.

4. Weak Incident Shock Wave

Consider a weak shock wave incident on a wall whose parameters satisfy the inequalities
v2

1 � a2
1 < c2 = 1. Then, in the first approximation v1/a1 we can assume

√
1− v2 = 1, that is, on the

speed, we have the Newtonian approximation, but not for the temperature is T1 = (U1 − 1)/cV .
Further, from the conditions in the discontinuity (21) and (22) have

p1 = p0 + v1h1Ṁ, U1Ṁ = p1v1 + U0Ṁ,
1
ρ1

=
1
ρ0
− v1

Ṁ
. (26)
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From

Ṁ =
p1 − p0

v1h1
=

p1v1

U1 −U0
=

v1

1/ρ0 − 1/ρ1
, b = ρ1v1

(
γ + 1
2h1

+
γa2

1
γ− 1

)
. (27)

Solving the quadratic approximately Equation (24), we get

Ṁ0,2 = − b
2
± ρ1a1. (28)

In this case we recall that v1 < 0 and, therefore, b < 0. Calculating the pressure gain coefficient
κ gives

κ =
p2 − p0

p1 − p0
= 1 +

p2 − p1

p1 − p0
= 1− Ṁ2

Ṁ0
= 1 +

ρ1a1 − b/2
ρ1a1 + b/2

= 2− b
ρ1a1

. (29)

Similarly, for compaction ratio µ

ρ1

ρ0
= 1 +

ρ1v1

Ṁ0
,

ρ1

ρ2
= 1 +

ρ1v1

Ṁ2
, µ =

ρ2

ρ0
= 1− 2v1

a1
. (30)

We can see that for a weak shock wave, the compaction effect is much smaller than in the
Newtonian case. For the coefficient of heating, θ will receive

θ =
T2

T0
=

U2 − 1
U0 − 1

= 1− 2v1

a1
= µ (31)

Due to the negativity of v1, in each case the corresponding coefficient is greater than that obtained
in the main approximation.

5. Strong Shock Wave

Let p0 = 0, then U0 = h0 = 1. Expressing Ṁ0 from the second Equation (21) and substituting it
into the third Equation (21), we get a relation that does not depend on ρ0 [7],

U1

√
1− v2

1 = U0 = 1. (32)

Note that, if v2
1 → 1, the internal energy or temperature U1 = 1 + cV T1 → ∞, as well as the

density ρ1, is an effect associated with the device of the relativistic adiabat of A. Taub [20]. In addition,
there are the roots of the Equation (24):

Ṁ0 =
p1

√
1− v2

1

v1h1
, Ṁ2 = − γv1ρ1√

1− v2
1

, (33)

which allows you to explicitly calculate all values.
Let us move on to calculating the gain coefficients of the pressure jump κ and compaction µ.

In general, from the first condition (21) it follows that

κ ≡ p2 − p0

p1 − p0
= 1− Ṁ2

Ṁ0
. (34)

Substituting (33) here, we get

κ = 1 +
γρ1h1(U2

1 − 1)
p1

, (35)

where equality (24) is used. In the Newtonian limit, when v2
1 � 1 and U − 1 � 1, we have the

formula (1).
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In the ultrarelativistic

p1/ρ1 ≈ (γ− 1)/
√

1− v2
1 � 1, κ =

γ2(p1/ρ1)
2

(γ− 1)3 . (36)

When γ = 4/3 have κ = 48(p1/ρ1)
2.

Let us turn to the calculation of compaction. Calculations give

ρ1

ρ0
=

γ +
√

1− v2
1

(γ− 1)
√

1− v2
1

,
ρ2

ρ1
=

γ

(γ− 1)
√

1− v2
1

and finally

µ =
ρ2

ρ0
=

γ(γ +
√

1− v2
1)

(γ− 1)2(1− v2
1)

. (37)

In the Newtonian limit, we have the formula (2), in the ultrarelativistic (v1 → −1) –

µ =
γ2

(γ− 1)2(1− v2
1)

=
κ

γ− 1
. (38)

For a strong shock wave, the compaction effect can be much greater than in the Newtonian case,
and it increases indefinitely with increasing velocity of the incoming flow. The heating coefficient is
formally equal, obviously, to infinity.

6. A Strong Wave of Annihilation

Consider a symmetric collision of two strong annihilation shock waves or a wave falling on a
wall. We assume that before the shock wave there is a stationary mixture of particles and antiparticles
at zero pressure, the latter have a concentration of ω = ρa/ρ̃, where ρa is the density of antimatter
and ρm is a matter density, and the total density of the mixture is ρ̃ = (ρa + ρm). Let the annihilation
reaction result in the complete destruction of antiparticles, so that the density comes to the conditions
at the break with an incident wave consisting of only one particle ρ0 = ρ̃(1− 2ω), but the energy flow
remains ε0 = ρ̃ = ρ0/(1− 2ω).

Thus, to analyze the situation, we can use the formulas of claim 3, putting the specific internal
energy of the remaining particles after the reaction U0 = 1/(1− 2ω). The mass velocity Ṁ0 refers
specifically to these particles. This procedure is akin to the theory of relativistic detonation [8], when a
shock wave releases some internal specific energy Q = U0 − 1. In the early works of this author,
this model was used to solve a number of problems of gravitational collapse, including the formation
of equilibrium and homogeneous expansion by Friedman. In the absence of back pressure, the formula
similar to (32) with the above U0(ω) still holds. Additionally, assume that U0 � 1, that is ω → 1/2,
which can be interpreted as almost complete annihilation. This mass loss probably occurred during the
production of relic radiation: U0 ∼ 109. Under these assumptions, we will have large ultrarelativistic
temperatures T1, T2, small densities ρ0, ρ1, ρ2 and mass velocities Ṁ0, Ṁ2, and the gas velocity
−1 < v1 < 0 and pressures p1, p2 can be any. v1, ρ0 are assumed to be set. As a result, we get

ρ1 =
ρ0√

1− v2
·

γ− 1 + v2
1

γ− 1
, p1 =

ρ0U0

1− v2
1
(γ− 1 + v2

1). (39)

to determine p2, the quadratic equation

p2
2 − Bp1 p2 + p2

1 = 0, B = 2 +
γ2v2

1
(γ− 1)(1− v2

1)
, (40)
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only the larger solution of which

p2 = p1

(
B
2
+

√
B2

4
− 1

)
satisfies the condition p2 > p1.

After that, the final density is determined

ρ−1
2 =

(γ− 1)(1− v2
1)− γv2

1 p1/(p2 − p1)

ρ0(γ− 1 + v2
1)

. (41)

This checks that ρ2 > 0 for any v2
1 ∈ (0, 1), γ ∈ (1, 2]. Mass velocity of shock waves is equal to

Ṁ0 =
ρ0(γ− 1 + v2

1)

γv1
< 0, Ṁ2 = Ṁ0(1− p2/p1) > 0. (42)

Using the obtained formulas, we can determine the coefficients of gain and “compaction” (in fact,
the density is greatly reduced due to annihilation):

κ =
p2

p1
=

B
2
+

√
B2

4
− 1, µ =

ρ2

ρ̃
=

ρ2(1− 2ω)

ρ0
. (43)

7. Conclusions

Thus, the solution of the problem of symmetric collision of two relativistic strong flat shock
waves is given. As a result, formulas for the pressure gain and compaction coefficient are obtained,
and limiting cases are investigated: Newtonian mechanics and ultrarelativistic mechanics. It is
shown that, in principle, at sufficiently high speeds of the incoming flow, an arbitrarily significant
amplification and compaction of the forming state of the gas is possible, which can be applied to
explain the formation of “walls” in the Universe.
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