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Abstract: Gravitomagnetism characterizes phenomena in the weak-field limit within the context of
rotating systems. These are mainly manifested in the geodetic and Lense-Thirring effects. The geodetic
effect describes the precession of the spin of a gyroscope in orbit about a massive static central object,
while the Lense-Thirring effect expresses the analogous effect for the precession of the orbit about
a rotating source. In this work, we explore these effects in the framework of Teleparallel Gravity
and investigate how these effects may impact recent and future missions. We find that teleparallel
theories of gravity may have an important impact on these effects which may constrain potential
models within these theories.
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1. Introduction

General relativity (GR) has passed numerous observational tests since its inception just over
a century ago, confirming its predictive power. The detection of gravitational waves in 2015 [1] agreed
with the strong field predictions of GR, as does its solar system behavior [2]. However, GR requires
a large portion of dark matter to explain the dynamics of galaxies [3,4] and even greater contributions
from dark energy to produce current observations of cosmology [5]. Given the lack of a concrete
theoretical explanation of these phenomena, we are motivated to explore the possibility of modifying
gravity within the observational context.

There are a myriad of ways in which to consider modified theories of gravity [6–8] and to
constrain them [9–11]. These range from extensions to the standard gravity of GR to more exotic
directions. One interesting framework that has gained attention in recent years is that of Teleparallel
Gravity (TG). TG is formed by first considering a connection that is not curvature-full, i.e., we consider
a connection that is distinct from the regular Levi-Civita connection (which forms the Christoffel
symbols). In this way, the gravitational contributions to the metric tensor become a source of torsion
rather than curvature. This is achieved by replacing the Levi-Civita connection with its Weitzenböck
analog. The Weitzenböck connection is torsion-full while being curvatureless and satisfying the
metricity condition [12]. Thus, we can construct theories of gravity which express gravitation through
torsion rather than curvature. One such theory is the teleparallel equivalent of general relativity
(TEGR), which produces the same dynamical equations as GR while being sourced by a different
gravitational action, i.e., one that is based on torsion rather than curvature.

TEGR and GR differ in their Lagrangians by a boundary term that plays an important role in the
extensions of these theories [13–15]. The boundary term naturally appears in GR due to the appearance
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of second-order derivatives in the Lagrangian [16,17], which is the core difference between GR and
TEGR at the level of the Action.

In fact, this boundary term is the source of the fourth-order contributions to f (R) theories of
gravity. For this reason, TG features a weakened Lovelock theorem [18–20], which as a direct result
means that many more theories of gravity can be constructed that are generally second-order in
their field equation derivatives. It is for this reason that TG is very interesting because it organically
avoids Gauss-Ostrogradski ghosts in so many contexts. The TEGR Lagrangian can be immediately
generalized to produce f (T) gravity [21–25] in the same way that the Einstein-Hilbert action leads
to f (R) gravity. A number of f (T) gravity models have shown promising results in the solar system
regime [26–29] as well as in the galactic [30] and cosmological regimes [13,31,32]. However, to fully
incorporate f (R) gravity, we must consider f (T, B) gravity, where B represents a boundary term that
appears as the difference between the Ricci scalar and the torsion scalar (and will be discussed in more
detail in Section 2).

Gravitomagnetic tests offer an ideal vehicle to probe the rotational behavior of theories of gravity
in their weak-field limits [33–38]. In fact, gravitomagnetic effects are the result of mass currents
appearing in the weak-field limit of GR, where the Einstein field equations take on a form reminiscent
of Maxwell’s equations [39] (and do not involve actual electromagnetic effects). These effects emerge
as a result of a rotating source or observer in a system, which both give independent contributions to
the overall observational effect. For the case where an orbiting observer is moving about a stationary
source, Geodetic effects emerge [39], where a vector will exhibit precession due to the background
spacetime being curved. This is the general relativistic analog of the well-known Thomas precession
exhibited in special relativity [40]. Another closely related relativistic precession phenomenon is that
of the Lense-Thirring effect (or frame-dragging effect) [41], where the neighborhood of a large rotating
source causes precession in nearby gyroscopes. While independent, these effects are often observed as
a combined observable phenomenon such as in the Earth-Moon system about the Sun [42], where the
precession of the Moon’s perigee is caused by this phenomenon [43–45].

Motivated by the Gravity Probe B experiment [46], there have been a number of investigations
into the behavior and predictions of modified theories of gravity [47–50]. However, the accuracy of this
experiment is not enough to adequately differentiate between competing models of gravity. There have
also been other experimental efforts such as LAGEOS [51,52], which aimed to perform lasers test while
in orbit about the Earth. The MGS spacecraft [53,54] tested gravitomagnetism effects about Mars,
while there have also been tests about the Sun [55]. For this reason, there have been a number of
ambitious proposals put forward in recent years to further test this relativistic effect and to increase
the experimental precision of the observations [56–59].

In this work, we explore the gravitomagnetic effects of TG through f (T, B) gravity as well as the
classical solar system tests within this context. We do this by first expanding into the weak-field limit of
the theory and explore both the Geodetic and Lense-Thirring effects separately. We then compare their
combined results against the recent observations. The manuscript is divided as follows. In Section 2,
we briefly review and introduce TG and its f (T, B) gravity extension. In Section 3, we explore the
weak-field regime of f (T, B) gravity and discuss some important properties of the theory in this
limit. Perturbations about a static spherically symmetric metric are considered in Section 4. The core
results associated with gravitomagnetism and the classical solar system tests are then determined in
Section 5, while a comparison with observational values is presented in Section 6. Finally, we conclude
in Section 7 with some remarks and a discussion. Throughout the manuscript, the speed of light is not
set to unity for comparison purposes in the electrodynamics analysis in Section 3.

2. Teleparallel Gravity and its Extension to f (T , B) Gravity

Teleparallel Gravity represents a paradigm shift in the way that gravity is expressed,
where curvature is replaced by torsion through an exchange of the Levi-Civita connection, Γ̊σ

µν, with its
Weitzenböck analog, Γσ

µν, (we use over-dots to represent quantities determined using the Levi-Civita
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connection) [17]. GR expresses curvature through the Levi-Civita connection which is torsionless,
while the Weitzenböck connection is curvatureless and also satisfies the metricity condition [60].
In theories based on the Levi-Civita connection, curvature is given a meaningful measure by means of
the Riemann tensor on Riemannian manifolds [39]. This formulation of gravity is retained in most
popular modified theories of gravity, where gravitation continues to be expressed in terms of curvature
of a background geometry. However, in TG, irrespective of the form of the metric tensor, the Riemann
tensor must vanish since the Weitzenböck connection is curvatureless [61]. It is for this reason that TG
necessitates a fundamental reformulation of gravitation in order to construct realistic models of gravity.

GR and its variants utilize the metric, gµν, as their fundamental dynamical object, but TG treats
this as a derived quantity which emerges from the tetrad, ea

µ. The tetrad acts as a soldering agent
between the general manifold (Greek indices) and its tangent space (Latin indices) [62]. Through this
action, the tetrad (and its inverses e µ

a ) can be used to transform indices between these manifolds:

gµν = ea
µeb

νηab , ηab = e µ
a e ν

b gµν . (1)

Moreover, inverse tetrads can be defined through

ea
µe µ

b = δa
b , ea

µe ν
a = δν

µ , (2)

which also serve for internal consistency. The Weitzenböck connection is then defined using the tetrad
as [12–14,61]

Γσ
µν := e σ

a ∂µea
ν + e σ

a ωa
bµeb

ν , (3)

where ωa
bµ is the inertial spin connection. The Weitzenböck connection is the most general linear

affine connection that is both curvatureless and satisfies the metricity condition [62]. The appearance
of the spin connection is there to retain the covariance of the resulting field equations [63]. This is
an issue in TG due to the freedom in the choice of the components of the tetrads, that is, there is an
infinite number of tetrads that produce the same metric tensor in Equation(2). These different tetrads
are related by local Lorentz transformations (LLTs). As a result, the spin connection components take
on values to account for the LLT invariance of the underlying theory. Thus, there is a particular choice
of frames in which the spin connection components are allowed to be zero [13].

In GR, this issue is hidden in the internal structure of the theory [39]. Considering the full breadth
of LLTs (boosts and rotations), Λa

b, the spin connection can be represented as ωa
bµ = Λa

c∂µΛ c
b [14].

Thus, it is the combination of tetrad and an associated spin connection that forms the covariance of TG.
Given a Riemann tensor that measures curvature, we must define a so-called torsion tensor that

gives a meaningful measure of torsion, defined as [13]

Tσ
µν := 2Γσ

[µν] , (4)

where the square brackets represent the antisymmetry operator. The torsion tensor represents the field
strength of TG, and transforms covariantly under both diffeomorphisms and LLTs [62]. To formulate a
gravitational action, we must define two other quantities. Firstly, consider the contorsion tensor which
effectively is the difference between the Levi-Civita and Weitzenböck connections, defined as [17,64]

Kσ
µν := Γ̊σ

µν − Γσ
µν =

1
2

(
T σ

µ ν + T σ
ν µ − Tσ

µν

)
, (5)

which plays a crucial role in relating TG results with Levi-Civita-connection-based theories. Secondly,
we also need the superpotential which is defined as [62,65]

S µν
a := Kµν

a − e ν
a Tαµ

α + e µ
a Tαν

α . (6)
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This has been shown to potentially relate TG to a gauge current representation of the energy-
momentum tensor for gravitation [66,67]. Then, by contracting the torsion and superpotential tensors,
the torsion scalar can be defined as

T := S µν
a Ta

µν , (7)

which is entirely determined by the Weitzenböck connection along the same vein as the Ricci scalar
being determined completely by the Levi-Civita connection. Naturally, the Ricci scalar calculated with
the Weitzenböck connection will vanish since it is a measure of curvature. This property in conjunction
with the use of the contorsion tensors allows for a relation between the regular Ricci scalar and the
torsion scalar defined in Equation(7) through [13,14,62]

R = R̊ + T − 2
e

∂µ

(
eTσ µ

σ

)
= 0 , (8)

where R is the Ricci scalar calculated using the Weitzenböck connection, R̊ is the standard gravity
Ricci scalar determined using the regular Levi-Civita connection, and e = det

(
ea

µ

)
=
√−g is the

determinant of the tetrad. Thus, the standard Ricci and torsion scalars turn out to be equivalent up to
a total divergence term

R̊ = −T +
2
e

∂µ

(
eTσ µ

σ

)
:= −T + B , (9)

where B = 2∇̊µ

(
Tσ µ

σ

)
is a total divergence term. This relation guarantees that the ensuing equations

of motion will be equivalent. Thus, the TEGR action can be written as [13,62]

STEGR = − 1
2κ2

∫
d4x eT +

∫
d4x eLm , (10)

where κ2 = 8πG/c4 and Lm is the matter Lagrangian. This action leads to the equivalent dynamical
equations as the Einstein-Hilbert action, but the difference in their Lagrangians means that the
fourth-order boundary terms are not necessary to form a covariant theory within the TG context.
While this does not affect the TEGR limit, it will influence the possible theories that can be formed in
the modified gravity scenario.

Considering the same reasoning that led to f (R̊) gravity [6,7], the Lagrangian of TEGR can
be immediately generalized to f (T) gravity [21–25]. The f (T) gravity setting produces generally
second-order field equations in terms of derivatives of the tetrads [13]. This feature is only possible due
to a weakening of Lovelock’s theorem in the TG setting [18–20]. This fact alone guarantees that f (T)
gravity will not exhibit Gauss-Ostrogradsky ghosts since it remains second-order. f (T) gravity also
shares other properties with TEGR such as its gravitational wave (GW) polarization signature [68,69].

However, to fully encompass the breadth of f (R̊) gravity, we must consider the generalization
to f (T, B) gravity, which contains as a subset the limit f (R̊) = f (−T + B). Thus, f (T, B) gravity is
a further generalization of f (R̊) in which the second- and fourth-order contributions to the theory are
decoupled [70].

In this work, we investigate the gravitomagnetic effects of f (T, B) gravity and its effect on
observational constraints of the theory for particular models of this setting [68,70–75]. To do this,
we need the field equations of the theory, which are determined by a variation of the f (T, B)
gravitational Lagrangian density, e f (T, B), to give [13,14,76]

e λ
a 2 fB − e σ

a ∇λ∇σ fB +
1
2

B fBe λ
a + 2S µλ

a
[
∂µ fT + ∂µ fB

]
+

2
e

fT∂µ

(
eS µλ

a

)
− 2 fTTσ

µaS λµ
σ − 1

2
f e λ

a = κ2Θ λ
a , (11)

where subscripts denote derivatives and Θ ν
ρ is the regular energy-momentum tensor. The spin

connection is taken to be zero [68,70–72] since this will be a demand in the work that follows. We will
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revisit this statement at various stages of the analysis to confirm the consistency of the work. Using the
contorsion tensor relations, the f (T, B) gravity field can also be represented as

− fTG̊µν +
(

gµν2−∇µ∇ν

)
fB +

1
2

gµν (B fB + T fT − f )

+ 2S α
ν µ∂α ( fT + fB) = −κ2Θµν , (12)

where G̊µν is the regular Einstein tensor calculated with the Levi-Civita connection. In this setting,
the spin connection depends on the choice of tetrad components and so does not produce independent
field equations. However, works exist in the literature that consider this scenario, such as
References [14,77], where a Palatini approach is considered so that a second set of field equations are
produced for the spin connection.

3. The Weak-Field Approximation

3.1. The Field Equations

Linearized gravity offers a relatively simple procedure to examine the weak-field metric for
a given source. As the gravitational field is assumed to be weak, the metric can be expressed as
a Minkowski background plus a small (first-order) correction, hµν. In other words, the metric tensor
can be expanded as

gµν = ηµν + hµν, (13)

with
∣∣hµν

∣∣� 1. By extension, a similar consideration can be applied for the linearized expansion for

the tetrad: a background value γ
(0)a
µ which yields the Minkowski metric plus some small correction

γ
(1)a
µ , namely,

ea
µ = γ

(0)a
µ + γ

(1)a
µ , (14)

with
∣∣∣γ(1)a

µ

∣∣∣ � ∣∣∣γ(0)a
µ

∣∣∣ ∼ 1. Following the methodology considered in Reference [68], the resulting
perturbed torsional quantities and field equations can be derived. Through the relation between the
metric and the tetrad given in Equation (1), the perturbed quantities are interlinked as

ηµν = ηabγ
(0)a
µ γ

(0)b
ν , (15)

hµν = ηab

(
γ
(0)a
µ γ

(1)b
ν + γ

(1)a
µ γ

(0)b
ν

)
. (16)

Given that the equations are constructed in the Weitzenböck gauge
(

ωabµ = 0
)

, this imposes

a constraint on the behavior of γ
(0)a
µ . The spin connection takes the form [68]

ωa
bµ = −γ

(0)ν
b ∂µγ

(0)a
ν (17)

which, when compared to its LLT form, reveals that the background tetrad corresponds to the Lorentz
matrices. This is expected as this background tetrad represent a trivial frame, one which constructs
the Minkowski metric [62]. As the spin connection is zero here, the background tetrad reduces to
a constant, i.e., to the class of constant Lorentz matrices. For simplicity, the background tetrad can be
chosen to be γ

(0)a
µ = δa

µ
1.

Under these considerations, the torsion tensor Equation (4) turns out to be a first-order quantity
in the perturbations

Ta
µν = ∂µγ

(1)a
ν − ∂νγ

(1)a
µ . (18)

1 Other works also make this choice within the Weitzenböck gauge appear, for instance, in References [69,78].
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Consequently, as both the contorsion Equation (5) and superpotential Equation (6) tensors are linearly
dependent on the torsion tensor, then these are also of at least first-order. Ultimately, this implies that
the torsion scalar is of at least second-order. Observe that this result holds true even if the Weitzenböck
gauge is not imposed [68].

On the other hand, the boundary term is first-order. This is also consistent with the relation
R̊ = −T + B, as the Ricci scalar is of at least first-order. Indeed, the Ricci tensor and Ricci scalar are
given to be

R̊µν =
1
2

(
∂ρ∂µhρ

ν + ∂ρ∂νhρ
µ − ∂µ∂νh−2hµν

)
, (19)

R̊ = ∂ρ∂νhρν −2h, (20)

where h := hµ
µ represents the trace. Up to this point, indices are raised and lowered by the metric

tensor (gµν), but from Equation (19) onward, due to the weak-field approximation, indices are now
raised and lowered by the Minkowski metric. Moreover, the d’Alembert operator reduces to 2 = ∂µ∂µ.

The next step would be to extract the perturbed field equations. For simplicity, as both T and B are
null at a background level, the gravitational Lagrangian f (T, B) is assumed to be Taylor expandable
about these latter values, namely,

f (T, B) = f (0, 0) + fT(0, 0)T + fB(0, 0)B

+
1
2

fTT(0, 0)T2 +
1
2

fBB(0, 0)B2

+ fTB(0, 0)TB + . . . . (21)

Observe that the coefficient fT(0, 0) 6= 0, as this corresponds to the effective Newtonian
gravitational constant, as evident from the field equations Equation (12) (see, for instance,
References [79,80] for detailed discussions in the case of f (T) gravity). Under this assumption,
the zeroth and first-order field equations of f (T, B) gravity in Equation (12) are

ηµν f (0, 0) = 0, (22)

fT(0, 0)G̊µν − fBB(0, 0)
(
ηµν2− ∂µ∂ν

)
R̊ = κ2Θµν, (23)

where the result R̊ = B (which is valid up to this order) has been used, a property which shall be useful
in order to simplify the forthcoming equations. The zeroth order equation confirms the absence of
a cosmological constant 2Λ ≡ f (0, 0), maintaining consistency with the linearization regime as the
background geometry is Minkowski spacetime.

As mentioned previously, f (R̊) gravity is a subcase of f (T, B) gravity. In fact, the resulting
perturbed equations Equation (23) are practically identical in form to those found in f (R̊) gravity,
with the only difference being in the form of the coefficients [7,81–89]. Motivated by this, the same
procedure as presented in Reference [69] shall be followed.
First, the quantity h̄µν defined as

hµν = h̄µν −
1
2

h̄ηµν +
fBB(0, 0)
fT(0, 0)

ηµνR, (24)

is introduced, with h̄ := h̄µ
µ. As shown in References [87,90], the Lorenz gauge ∂µ h̄µν = 0 can be

imposed. In this way, the field equations Equation (23) take a relatively simple form,

2h̄µν = − 2κ2

fT(0, 0)
Θµν. (25)
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The next step is to obtain the form of the perturbed Ricci scalar. Taking the trace of Equation (23)
yields the relation

fT(0, 0)R + 3 fBB(0, 0)2R̊ = −κ2Θ, (26)

which is of the same form as the Klein-Gordon equation having an effective mass

µ2 ≡ − fT(0, 0)
3 fBB(0, 0)

. (27)

Depending on the form of the source (and hence, of the stress-energy tensor), Equations (25)
and (26) allow for a full determination of the weak-field metric in Equation (24). Observe that,
in vacuum, these equations give rise to gravitational waves for which the polarization states have
already been investigated in detail [68].

3.2. Solving the Field Equations

In general, the solutions for hµν and R̊ can be obtained by making use of a Green’s function
G(x, x′), which results into

h̄µν =
4G

c4 fT(0, 0)

∫ Θµν (t− r/c, x′)
r

d3x′, (28)

R = − κ2

3 fBB(0, 0)

∫
GR(x, x′)Θ(x, x′) d4x′, (29)

where r = |x− x′| and the Green’s function GR is defined as [84,91]

GR(x, x′) =
1

(2π)4

∫
d4y

e−iy·r

µ2 − y2 . (30)

Within the practical application of the weak-field approximation, it is sufficient to consider
a slowly rotating source while keeping all terms up to O

(
v3/c3) where v � c is the velocity of the

source. Thus, the stress-energy tensorial components would be negligible within this context. In other
words, the stress-energy tensor takes the form [58,92]

Θµν =

(
ρc2 −ρvic
−ρvic 0

)
, (31)

where ρ is the density of the source and vi is the velocity vector. Alternatively, the off-diagonal
components can be simply expressed in terms of the mass current vector ji := ρvi. In this way,
we therefore find that

h̄00 =
4G

c4 fT(0, 0)

∫
ρc2

r
d3x′ =

4Φ
c2 fT(0, 0)

, (32)

h̄0i = −
4G

c4 fT(0, 0)

∫ jic
r

d3x′ = − 2Ai
c2 fT(0, 0)

(33)

h̄ij = 0 (34)

R =
8πGµ2

c2 fT(0, 0)

∫
GR(x, x′)ρ

(
x′
)

d4x′. (35)

where Φ and A are the scalar and vector potentials, respectively. This yields the weak-field metric
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ds2 = −c2
(

1− 2α

c2 fT(0, 0)

)
dt2 − 4

c
(A · dx)dt +

(
1 +

2β

c2 fT(0, 0)

)
dΣ2, (36)

α ≡ Φ− 1
2

fBB(0, 0)Rc2, β ≡ 2Φ− α, (37)

where dΣ2 = dx2 + dy2 + dz2.
As the main aim of this work is to match with Gravity Probe B and Solar System observations,

it is imperative to treat the source as a slowly rotating spherically symmetric static source having
a constant mass M, radius RS, and angular momentum J with a constant density profile ρ expressed,
for simplicity, as

ρ =


ρ0 =

M
4
3 πRE

3 0 ≤ r ≤ RS,

0 r > RS.
(38)

Under these assumptions, for distances sufficiently far away from the source (as the field is weak),
the integrals can be solved through the Legendre polynomial expansion

1
r
=

∞

∑
l=0

L′l

L̃l+1Pl (cos Θ) , (39)

where L = |x|, L̃ = |x′| and Θ is the angle between the two position vectors x and x′. This yields the
solutions [84]

Φ =
GM

r
, A = −GJ× r

r3c
,

R̊ =
6µ2Φe−µr

c2 fT(0, 0)

[
µRS cosh(µRS)− sinh(µRS)

µ3RS
3

]
, (40)

where J represents the angular momentum vector. Therefore, the weak-field metric takes the
simple form

ds2 = −c2
{

1− 2Φ
c2 fT(0, 0)

[
1 + e−µrη(µRE)

]}
dt2 − 4

c
(A · dx)dt +

{
1 +

2Φ
c2 fT(0, 0)

[
1− e−µrη(µRE)

]}
dΣ2,

(41)

where we have defined the function

η(x) ≡ x cosh(x)− sinh(x)
x3 . (42)

3.3. Analogy with Gravitoelectromagnetism (GEM)

From the resulting weak-field metric, we can make a direct analogy with gravitoelectromagnetism
(GEM) to generate the corresponding gravitoelectric and gravitomagnetic fields. Whilst these fields
remain effectively unchanged in form, the Lorentz force is affected by the scalar R̊ mode similar to
what is encountered in f (R̊) gravity. Following the steps dictated in Reference [91], the GEM equations
and the Lorentz force equation are obtained as follows. Starting from the Lorenz gauge condition
∂µ h̄µν = 0, we obtain that

1
c

∂Φ
∂t

+
1
2
∇ ·A = 0, (43)

with the remaining equations ∂µ h̄µi = 0 that are of order O
(
c−4) and therefore neglected.

The gravitomagnetic field B and gravitoelectric field E are then defined as
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B = ∇×A, E = −∇Φ− 1
2c

∂A
∂t

. (44)

It can then be easily shown that using Equations (43) and (25), the GEM equations reach the result:

∇ · E = 4πGρ, ∇ · B = 0 (45)

∇× E = − 1
2c

∂B
∂t

, ∇× B =
2
c

∂E
∂t

+
8πG

c
j. (46)

On the other hand, the Lorentz force for a test particle of mass m can be obtained starting from
its Lagrangian L = −mc ds

dt , using the weak-field metric solution Equation (36) and expanding up to
first-order of the potentials. This yields

L = −mc2

γ
+

mγ

fT(0, 0)

(
α + β

v2

c2

)
− 2mγ

c
(A · v), (47)

where γ is the Lorentz factor and v = dx
dt is the velocity vector. From the equations of motion d

dt

(
∂L
∂v̇

)
=

∂L
∂x , assuming that the vector potential A is stationary, it can be shown that up to first-order in v2/c2,
the force F ≡ dp

dt , where p = mγv is the relativistic momentum vector, obeys

F = − mE
fT(0, 0)

− 2m
fT(0, 0)c

(v× B) + 3mµ2c2∇R̊. (48)

Similar to Reference [91], one obtains the first two terms that are found in GR (except for
a gravitational constant rescaling from fT(0, 0)) with a new contribution arising from the scalar
mode. However, if the scalar mode is absent (i.e., µ2 → +∞), the Lorentz force reduces to its GR form.

3.4. Comparison with a Spherically Symmetric Metric: The Schwarzchild Solution

In the absence of rotation, the resulting weak-field metric Equation (41) cannot be directly
correlated with the Schwarzchild solution due to the preferred choice of coordinates set by the Lorenz
gauge. However, the metric can be transformed into a spherically symmetric form, which can then
be associated to such known solutions and shall be notably important when discussing the geodetic
effect. Here, we follow the procedure shown in Reference [84]. The aim is to express the weak-field
metric into the spherically symmetric form

ds2 = −c2 A(r̃)dt2 + B(r̃)dr̃2 + r̃2dΩ2, (49)

where A(r̃) and B(r̃) represent some scalar functions and dΩ2 represents the polar symmetry.
The necessary coordinate transformation is dictated by the condition

r̃2 =

(
1 +

2β

c2 fT(0, 0)

)
r2 =⇒ r̃ =

(
1 +

β

c2 fT(0, 0)

)
r, (50)

where the last equality only holds for a weak-field. In particular, for a spherically symmetric static
source, we have

r̃ = r +
GM

c2 fT(0, 0)
[
1− e−µrη(µRS)

]
. (51)

In this way, we obtain that up to first-order in M/r̃,

A(r̃) = 1− 2GM
c2 fT(0, 0)r̃

[
1 + e−µrη(µRS)

]
. (52)
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Observe that the exponential, similar to f (R) gravity, retains the r dependence. On the other
hand, B(r̃) is found to be

B(r̃) =1 +
2GM

c2r̃ fT(0, 0)
[
1− e−µrη(µRS)

]
− 2GM

c2 fT(0, 0)
µe−µrη(µRS). (53)

Evidently, when µ→ +∞ (i.e., in the limit of GR or when f (T, B)→ f (T)), the metric reduces to
its Schwarzchild form.

4. Perturbations on a Static Spherically Symmetric Metric: f (T) Gravity

In the previous section, we have initially assumed that the gravitational field is weak, for
which the relevant weak-field metric for an arbitrary f (T, B) function was obtained. In what follows,
a different approach is considered, particularly in the context of f (T) gravity. Originally considered
in Reference [93] and further pursued in Reference [94], the idea is to assume a static, spherically
symmetric geometry arising due to a spherically symmetric static source of mass M. Then, one solves
the field equations Equation (11) to obtain the corresponding metric. Since no exact solutions have
been obtained following this approach (although exact solutions can be found assuming, for instance,
that the Lagrangian exhibits a Noether symmetry [95,96]), a perturbative approach is employed,
where it is assumed that the f (T) Lagrangian takes the form of

f (T) = T + ε F(T), (54)

where ε� 1 represents a small, fiducial order parameter, which will be omitted once the perturbations
are solved. The role of the latter is to represent the small correction to the TEGR Lagrangian. In this way,
the scalar functions A(r̃) and B(r̃) of the metric Equation (49) are expected to be in the form of
a background solution plus a small correction. This will allow for corrections which were previously
omitted in the weak-field regime. For simplicity, the source shall be assumed to be nonrotating as no
perturbed solutions to the Kerr metric have been yet obtained.

In this formulation, the TEGR term gives rise to the exact Schwarzchild solution while the small
correction sourced by F(T) yields the first-order correction to the solution. Since the main interest
lies in the Gravity Probe B results, an alternative approach is to assume the gravitational field to be
weak, meaning the metric can be approximated by a Minkowski spacetime background plus a small
correction. Both approaches shall be presented and show that the same results are ultimately recovered,
whilst offering a more detailed analysis on the effect of the f (T) Lagrangian on the geodetic effect.

4.1. Perturbations on the Schwarzchild Solution

The Schwarzchild correction can be obtained by taking the scalar potentials to be expressed as

A(r̃) = 1− 2GM
c2r̃

+ εA(r̃), (55)

B(r̃) =
(

1− 2GM
c2r̃

)−1
+ εB(r̃), (56)

for some functions A and B. To solve for the corrections, the field equations are perturbed up
to first-order in ε. For simplicity, the power-law ansatz F(T) = αTp for some constant α and p is
considered. Furthermore, unless otherwise stated, GM

c2 → M.
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The solutions for the scalar functions can be obtained from the following differential equations:

Bx =
2
(
1− 2x2)B
x− x3 +

2α(−1)p(p− 1)M2−2p(x− 1)2p−4x6−5p ((p− 1)x2 + 2px + 5p + x
) (

x2 − 1
)2p

(x + 1)3 , (57)

Ar̃ −
2MA

r̃(r̃− 2M)
=

(
1− 2M

r̃

)
B + α23p−2(1− p)r̃1−3p

[
r̃ +

√
r̃

r̃− 2M
(M− r̃)

]p

, (58)

where x :=
(

1− 2M
r̃

)− 1
2 . Although a general solution is not recovered in general, some special cases

are considered. For p = 2, the scalar functions are given to be [93,94]

A(r̃) = 1− 2M
r̃

+ α

(
32

3M2

[
−1 +

(
1− 2M

r̃

)3/2
]
− (r̃− 3M)

M2 r̃
ln
(

1− 2M
r̃

)
− 2M

r̃3 +
30
Mr̃
− 12

r̃2

)
, (59)

B(r̃) =
1

1− 2M
r̃

+
α

Mr(1− 2M
r̃ )2

[
−

2
(
75M2 − 69Mr̃ + 16r̃2)

3r̃2 +
16(3M− r̃)(M− 2r̃)

3r̃2

(
1− 2M

r̃

)1/2

− ln
(

1− 2M
r̃

)]
. (60)

The solutions are well behaved in the sense that in the absence of a source, the solutions reduce
to Minkowski space as expected, i.e., when M→ 0, A(r̃), B(r̃)→ 1. If the gravitational field is weak,
the solutions follow the order expansion

A(r̃) = 1− 2M
r̃
− 16αM3

5r̃5 +O
(

M6

r̃6

)
, (61)

B(r̃) = 1 +
2M

r̃
+

4M2

r̃2 +
8M3

r̃3 +
16αM3

r̃5 +O
(

M6

r̃6

)
, (62)

which agrees with the weak-field metric Equation (41) in the limit of f (T, B)→ f (T) = T + αTp up to
first-order in M/r̃. Observe that the α contributions do not appear in the latter as it is a higher-order
contribution. Solutions for other values of p are considered in Reference [94]. For the purpose of the
analysis which follows, the solution for p = 3 is given and is listed in Appendix A.

4.2. An Alternative Approach for a Weak-Field Limit

If the field is assumed to be weak, the scalar functions can be expanded around a Minkowski
background according to

A(r̃) = 1 + εA1(r̃) + ε2 A2(r̃) + ε3 A3(r̃) + . . . , (63)

B(r̃) = 1 + εB1(r̃) + ε2B2(r̃) + ε3B3(r̃) + . . . . (64)

Once again, assuming that the Lagrangian f (T) is Taylor expandable about T = 0, and solving
the field equations order-by-order yields

A(r) = 1 + ε
(

c2 −
c1

r̃

)
+ ε2

(
c4 −

c1c2 + c3

r̃

)
+ ε3

(
c6 −

c3
1 fTT(0)

5r̃5 fT(0)
− c2c3 + c1c4 + c5

r̃

)
, (65)

B(r) = 1 +
c1ε

r̃
+ ε2

(
c2

1
r̃2 +

c3

r̃

)
+ ε3

(
c5

r̃
+

c3
1 fTT(0)
r̃5 fT(0)

+
c3

1
r̃3 +

2c3c1

r̃2

)
, (66)

where c1,. . . ,6 are integration constants. To determine these constants, we impose the following
constraints. As r̃ → +∞ (i.e., far away from the source), the metric must reduce to Minkowski
spacetime and thus sets c2,4,6 = 0. On the other hand, according to the solution obtained in Section 3,
namely, Equation (41), we find that c1 = 2M

fT(0)
(alternatively, it can be reasoned that in the limit of

TEGR, the metric must reduce to the Schwarzchild metric). Finally, the constants c3,5 have to be zero,
otherwise the solution does not reduce to its TEGR limit for f (T) = T. Therefore, the final solution is
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A(r) = 1− 2M
r̃ fT(0)

− 8M3 fTT(0)

5r̃5 fT(0)
4 , (67)

B(r) = 1 +
2M

r̃ fT(0)
+

4M2

r̃2 fT(0)
2 +

8M3

r̃3 fT(0)
3 +

16M4

r̃4 fT(0)
4 +

8M3 fTT(0)

r̃5 fT(0)
4 . (68)

Taking f (T) = T + αT2 recovers the previously obtained weak-field limit solution as expected.
Observe that for f (T) = T + αTn, n > 2 (n integer) does not reveal any contributions at this order
meaning their effects are even smaller. On the other hand, this approach is not applicable for functions
which are not expandable about T = 0, for instance, f (T) = T + αTn, n < 0, and even some
cosmologically viable ones such as the Linder model f (T) = T + αT0

(
1− e−p

√
T/T0

)
for some constant

p. However, there exist cosmological-model Lagrangians which may be further investigated for such
weak-field observational tests, such as f (T) = T + αT0(1− e−pT/T0) and f (T) = T + αTn tanh(T/T0)

for appropriate values of p and n [31].
Observe that the result is in agreement with the Parametrized-Post Newtonian (PPN)

approximation investigated in Reference [97] since there is no deviation up to second-order expansion.
The first modification appears at third-order when the fTT term contributes to the behavior.

5. Observational Constraints

As we have now closely discussed the theoretical foundations to obtain the necessary metrics,
in what follows, we apply those results to observations obtained by Gravity Probe B and from classical
Solar System test observations. In particular, we shall focus on the geodetic effect (de Sitter precession),
the Lense-Thirring effect, Shapiro time delay, light bending, and perihelion precession.

5.1. Geodetic Effect

The geodetic effect describes the effect of a precessing gyroscope due to its orbit around a massive
central body. Here, we obtain the precession rate following Rindler’s approach [98]. Starting from
a spherically symmetric metric, we consider the system to be rotating at an angular frequency ω, i.e.,

φ = φ′ −ωt. (69)

By assuming the gyroscope to lie in a circular polar orbit (at an angle θ = π
2 ) allows us to rewrite

the metric in a canonical form

ds2 = −e2Ψ
(

dt− e−2Ψωr̃2dφ′
)2

+ Ar2e−2Ψdφ′
2, (70)

where e2Ψ ≡ A − r2ω2. As shown in Reference [98], the angular frequency of the gyroscope is
given to be

Ω =
eΨ

2
√

2

[
kikkjl(ωi,j −ωj,i)(ωk,l −ωl,k)

]1/2
, (71)

where kij is the spatial 3-metric and ωi ≡ e−2Ψωr2δ3
i , which simplifies to

Ω =
ω√
AB

. (72)

The angle after one full revolution is then given to be α′ = Ω∆τ, where ∆τ represents the proper
time of the gyroscope, which can be obtained directly from the metric
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dτ2 = Adt2 − r̃2dφ2 = Adt2 − r̃2ω2dt2

=⇒ ∆τ =
√

A− r̃2ω2∆t. (73)

Thus, the precession over one orbit is α = 2π− α′, which implies that the precession rate per year
is given to be

ΩdS =

√
Ar̃

2r̃

[
1−

√
1
B

(
1− r̃Ar̃

2A

)]
. (74)

5.2. Lense-Thirring Precession

It is well known that the Lense-Thirring precession in GR can be simply derived by assuming
a freely falling gyroscope initially at rest with an angular spin vector Sµ. Taking uµ to represent the
gyroscope’s rest-frame velocity, we have that Sµuµ = 0. Then, the Lense-Thirring precession rate
would be obtained using the geodesic equations

dSµ

dτ
+ Γ̊µ

σρSσuρ = 0. (75)

In the context of teleparallel gravity, the gyroscope moves according to forcelike equations

dSµ

dτ
+ Γµ

σρSσuρ = Kµ
σρSσuρ. (76)

Despite this apparent difference, the above is mathematically equivalent to the geodesic equation
due to the fact that Kσ

µν = Γ̊σ
µν − Γσ

µν. Nonetheless, the forcelike equations offer a different
interpretation to those discussed, for instance, in References [99,100], as the teleparallel force equations
allow for a separation between gravitation and inertia which has important implications on the
weak equivalence principle (WEP), which lies beyond the scope of this manuscript (see, for instance,
Reference [66] for further discussions on the topic). Within the assumption that the WEP holds, one
can follow the same steps encountered in GR.

If the field is weak, the field equations reduce to

dSi
dτ

= εiklΩ
kSl , (77)

where Ωk ≡ − 1
2 εkmn∂mh0n defines the angular velocity precession vector of the gyroscope. Following

the results obtained in the f (T, B) weak-field solution Equation (41), we find that the Lense-Thirring
precession rate ΩLT remains unaffected except for a Newtonian rescaling, which is expected as the
electromagnetic field is identical to that found in GR. However, this result is only valid within the
context of weak-fields and thus remains to be investigated in the case of strong gravitational fields.

5.3. Shapiro Time Delay

The effect of Shapiro time delay [101] can be derived following the steps listed in Reference [102].
Here, we focus on deriving the α-dependent correction for the f (T) power-law model. For the given
spherically symmetric metric Equation (49), the time delay of a radio signal as it travels from the Earth
to Mercury and back, as the signal passes through the closest point of approach R ' R� to the Sun is

∆t = 2
[
t (r⊕, R�) + t

(
r', R�

)
−
√

r⊕2 − R�2 −
√

r'
2 − R�2

]
. (78)

where r⊕ and ' represent the Earth and Mercury orbital radii, respectively, and t(r̃, R) is defined as
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t(r̃, R) =
r̃∫

R

dr̄√(
1− R2 A(R)

r̄2 A(r̄)

)
A(r̄)
B(r̄)

. (79)

Using the fact that, generally, the orbital radii satisfy the condition r̃ � R, together with the
weak-field metric solutions—Equations (59), (60), (A3), (A4)—we find that the α contribution takes the
following form:

tα(r̃, R) ≈


4αM3

3

(
32
3r̃4 −

2
r̃R3 −

1
r̃3R
− 2

R4

)
, p = 2,

2αM5

63

(
−1152

5R8 +
28
r̃R

+
14

r̃3R5 +
21

2r̃5R3 +
35

4r̃7R
+

35
r̃8

)
, p = 3.

(80)

5.4. Light Bending

The total deflection angle of light is derived following the method used in Reference [26]. A photon
is assumed to be emitted from some far-away source at an angle of φ = −π/2. It travels and
reaches a point of closest approach r̃ = r̃? with respect to some spherical massive source at φ = 0,
then continues to travel away from the source approaching an angle of φ = π/2. To account for
the deflection angle due to the gravitational attraction of the source, we start from the spherically
symmetric metric Equation (49) within the equatorial plane θ = π/2 to obtain that the path of the
photon obeys the second-order differential equation

0 =
d2u
dφ2 +

1
2AB

d
du

[
u2 A

]
+

1
2AB

d
du

[ln(AB)]
(

uR
2 − u2 A

)
, (81)

where u = 1/r̃ and uR = 1/R denote the inverse impact parameter, with boundary conditions
u(0) = u? = 1/r̃? and u(±π/2) = 0. Since the differential equation cannot be solved in general,
even for weak-field sources, the perturbative iterative method considered in Reference [103] is applied.

The approach aims to obtain a perturbative solution by taking the mass M as the perturbation
parameter, i.e., we let

u = u0 + u1 + u2 + . . . , (82)

where ui represents the solution up to O
(

Mi). As an illustrative example, we derive the perturbative
solution for the power-law model with p = 2. In this case, the differential equation up to O(M3) is

0 = u′′ + u− 3Mu2 + αM3u4
(

32
R2 − 56u2

)
, (83)

where we have denoted primes to represent derivatives with respect to φ. This yields the following
ordered system of differential equations:

u0
′′ = −u0,

u1
′′ = −u1 + 3Mu0

2,

u2
′′ = −u2 + 6Mu0u1,

u3
′′ = −u3 + 3M

(
u1

2 + 2u0u2

)
− αM3u0

4
(

32
R2 − 56u0

2
)

,



Universe 2020, 6, 34 15 of 22

which yields the final expression for u to be

u =
cos(φ)

R
+

M [3− cos(2φ)]

2R2 +
3M2

16R3 [20φ sin(φ) + 22 cos(φ) + cos(3φ)]

− M3

16R4 [60φ sin(2φ) + 125 cos(2φ) + cos(4φ)− 312]

− αM3

20R6 [55 cos(2φ) + 8 cos(4φ) + cos(6φ)− 80] . (84)

Once the solution for u is obtained, following Rindler and Ishak’s approach [104], it can be shown
that the total deflection angle is given to be

ε ≈ 2u
| du

dφ |
√

B

∣∣∣∣∣
φ= π

2

, (85)

which, for the quadratic f (T) Lagrangian, yields the following solution:

ε =
4M
R

+
15πM2

4R2 +
189M3

4R3 +
256αM3

15R5 +O(M4). (86)

A similar analysis for the cubic f (T) Lagrangian reveals that the total deflection angle is

ε =
4M
R

+
15πM2

4R2 +
189M3

4R3 +
4335πM4

64R4 +
7155M5

8R5 +
225π2M5

32R5 − 4096αM5

315R9 +O(M6). (87)

Observe that, in both cases, the GR second-order mass correction found in References [103,105,106]
is recovered. In general, for a Taylor expandable f (T) model within the regime of weak gravitational
fields, the first deviation from GR appears at O(M3), having the form

∆ε =
128α fTT(0)M3

15 fT(0)4R5 +O(M4). (88)

Naturally, the quadratic weak-field result is recovered while requiring higher-order contributions
for the cubic case.

5.5. Perihelion Precession

The effect of α for the power-law ansatz Lagrangian on perihelion precession has been investigated
in great detail in References [93,94]. Here, we shall only quote the results: 2

∆φp=2 =
16παM2

rc4 , ∆φp=3 = −96παM4

rc8 , (89)

where rc represents the circular radius of the orbit. For the n = 2 case, the detailed analysis in
Reference [93] leads to a bound of α . 1020 km2.

6. Numerical Results

In this section, we make use of the weak-field solutions listed in Sections 3 and 4 against
observations in order to constrain the Lagrangian-free model parameters depending on the model
considered. It is important, however, to comment on the results for an arbitrary f (T, B) model for the
case when µ 6→ +∞.

2 A factor of 2 has been included to correctly match with the definition of α used in those works.
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Although the weak-field metric has been obtained in its spherically symmetric form, the scalar
functions A(r̃) and B(r̃) are not truly expressed in terms of r̃, since the relation between r and r̃ is not
invertible. This leaves two unknown parameters, the isotropic radial coordinate r and µ. However,
r is not measured and hence, one must instead opt to impose specific values of µ to determine
whether the results would then be consistent. Since the goal is to constrain the Lagrangian parameters
(and hence, constrain µ through observations), this option is not investigated in detail. Nonetheless,
if µ is sufficiently large, the contributions would be small enough that deviations from observations
(and hence, from GR) are expected to be effectively negligible.

On the other hand, a more thorough investigation can be inferred in the case of f (T) gravity using
the results obtained in Section 4. In particular, we shall make use of the results for the two power-law
ansatz values considered, namely, p = 2 and 3, which eventually lead to observation constraints on
the constant α.

6.1. Geodetic Effect

In April 2004, Gravity Probe B was launched, starting its year-and-a-half flight mission, with the
purpose of accurately measuring the geodetic and the frame-dragging precession rates while in orbit
about the earth. A geodetic precession rate of −6601.8± 18.3 mas/yr was measured while in a polar
orbit at around 642 km [46].

Through the use of Equation (74) the α constraints are obtained, as listed in Table 1. The table also
illustrates the α constraint which has to be obeyed for the weak-field approximation to hold (which is
a direct consequence of the assumption that the perturbation F(T)� T).

Table 1. Illustration of the α weak-field constraint depending on the index p for the f (T) model
f (T) = T + αTp alongside the resulting Geodetic precession expressions based on the scalar functions
A(r̃) and B(r̃) derived in References [93,94]. Here, we have defined the parameterM := M

r̃ →
GM
c2 r̃ .

p α � ΩdS

2 5r̃2

4M2
3cM3/2

2r̃

(
1 + 3M

4 + 9M2

8 + 135M3

64 + 567M4

128 + 12αM2

r̃2

)
3 9r̃4

8M4
3cM3/2

2r̃

(
1 + 3M

4 + 9M2

8 + 135M3

64 + 567M4

128 + 12αM2

r2 + 5103M5

512 +

24057M6

1024 + 938223M7

16384 + 4691115M8

32768 − 72αM4

r̃4

)

Based on the expressions listed in Table 1, the corresponding numerical constraints are then
obtained, as shown in Table 2. Evidently, the constraints obtained from observations are well
within the expected bounds of the weak-field condition, which supports the consistency of the
weak-field approach.

Table 2. The numerical constraints for the constant α for the power-law model f (T) = T + αTp, where
p = 2, 3 are set based on the Gravity Probe B observations. Furthermore, an order of magnitude
estimate, where the weak-field approximation is valid, has also been given.

p α � αGPB/km2p−2

2 ∼1032 −7.5476× 1028 < α < 3.8438× 1028

3 ∼1064 −2.3716× 1060 < α < 4.6568× 1060
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6.2. Classical Solar System Constraints

For Shapiro time delay and light deflection, the PPN formulation together with observations from
the Cassini spacecraft pose a viable opportunity to obtain constraints. As illustrated, for instance,
in Reference [39,102], the γ PPN parameter appears in the former tests as follows. For Shapiro time
delay, the deviation from GR amounts to

∆tPPN ' 4M
(

γ− 1
2

)
ln

(
4r⊕r'
R�2

)
, (90)

while for light bending, the total deflection angle is

ε =

(
1 + γ

2

)
4M
R

. (91)

Using Cassini’s experimental value of γ− 1 = (2.1± 2.3)× 105 and the expressions Equations (80),
(86), (87), and (89), α constraints are obtained as summarized in Table 3. In the case of perihelion
precession, the α constraints are based on the observed precession rate of Mercury, as investigated in
Reference [93].

Table 3. A summary of the parameter constraints obtained for the coupling parameter, α, for the
power-law model f (T) = T + αTp, where p = 2, 3 using observations from perihelion precession and
the Cassini spacecraft. Here, M = M� = 1.47 km, R ' R� = 6.9551× 105 km, r⊕ = 1.4710× 1011 km,
r' = 4.6001× 107 km, and rc = 5.55× 107 km.

p α/km2p−2

Shapiro Time Delay

2 −8.26031× 1016 < α < 1.81727× 1018

3 −3.78768× 1044 < α < 1.72167× 1043

Light Bending

2 −1.82378× 1017 < α < 3.95829× 1017

3 −5.57249× 1043 < α < 2.56754× 1043

Perihelion Precession

2 α < 2.23602× 1020

3 α > −8.18149× 1049

7. Conclusions

The main result of this work is that the use of the classical solar systems and the gravitomagnetic
observations from Gravity Probe B result in an overall constraint on the coupling parameter to
|α| . 1016 km2 for p = 2 and |α| . 1043 km4 for p = 3. This forms one of the strongest constraints on
this parameter (to the best of our knowledge).

Gravitomagnetic effects are imperative for understanding the weak-field limit of modified gravity
in the context of rotation. In this work, we have explored these related effects in the TG framework.
TG offers a novel possibility of constructing gravitational theories in which the background manifold
is torsion-full rather than curvature-full. While this is dynamically equivalent to GR in the TEGR
limit, modifications of the TEGR action produce theories which may be distinct from what can be
constructed in regular curvature-based theories of gravity. This allows for the possibility of totally new
models of gravity that may have important consequences for meeting the observational challenges of
the coming years.

The main crux of the weak-field analysis stems from the analysis in Section 3, where we take
an order-by-order expansion of a general f (T, B) gravity Lagrangian. In Equation (26), this is found to
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potentially behave as a massive theory with a mass that is mainly dependent on whether a boundary
term contribution is present or not. This approximation is then set into the field equations with a slowly
rotating source to find metric solutions in Equations (32)–(35). In Section 3.3, we go into the details
of how this analogy tallies with the well-known GEM effects to produce a Lorentz forcelike effect in
Equation (48). Finally, we compare this with the Schwarzschild solution to determine the relation to
the effective mass of the general f (T, B) model.

Limiting ourselves to f (T) gravity, we explore the possibility of perturbative solutions in Section 4,
where exact solutions are found up to perturbative order in the spherically symmetric setting.
These were also investigated in the literature [93,94] and remain an interesting avenue of research in
the TG context. In this part of the work, we investigate two possible routes to the perturbative analysis
which both agree in their PPN limit.

The traditional gravitomagnetic effects of the geodetic and Lense-Thirring phenomena are
determined in Section 5. The Geodetic effect naturally emerges for a static system with a
rotating observer. This is achieved by a coordinate transformation, as prescribed in Equation (69).
This eventually produces Equation (74) which is our result for the geodetic precession rate and the
main result of that subsection. The Lense-Thirring effect is then determined for this TG case, where the
main result result is shown in Equation (77), which is comparable to the Gravity Probe B mission result.
In fact, in Section 6, we use the results of this mission to constrain our parameters for the various
potential models under investigation.

Gravitomagnetic effects have the potential to have an important impact on understanding which
modified theories of gravity are viable and may play an important role in the coming years for
developing realistic modified theories of gravity.
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Appendix A. Solution for p = 3

The perturbed spherically symmetric metric for the model ansatz f (T) = T + αT3 is given to be

A(r̃) = 1− 2M
r̃

+
α

M4
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2 (7M− 3r̃)
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ln
(

1− 2M
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In this case, the weak-field limit yields

A(r̃) = 1− 2M
r̃

+
16αM5ε

9r̃9 +O
(

M10

r̃10

)
, (A3)
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