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Abstract: Several anomalies observed in short-baseline neutrino experiments suggest the existence
of new light sterile neutrino species. In this review, we describe the potential role of long-baseline
experiments in the searches of sterile neutrino properties and, in particular, the new CP-violation
phases that appear in the enlarged 3 + 1 scheme. We also assess the impact of light sterile states on the
discovery potential of long-baseline experiments of important targets such as the standard 3-flavor
CP violation, the neutrino mass hierarchy, and the octant of θ23.
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1. Introduction

More than twenty years ago, groundbreaking observations of neutrinos produced in natural
sources (sun and Earth atmosphere) provided the first evidence of neutrino oscillations and established
the massive nature of neutrinos [1–5]. Subsequently, the neutrino properties have been clarified by
experiments using man-made sources of neutrinos (nuclear reactors and accelerators). The two simple
2-flavor descriptions adopted in the beginning to describe disjointly the solar and the atmospheric
neutrino problems have been gradually recognized as two pieces of a single picture, which is
presently considered as the standard framework of neutrino oscillations. We recall that in the
3-flavor scheme there are three mass eigenstates νi with masses mi (i = 1, 2, 3) [and therefore two
independent mass-squared splittings (∆m2

31, ∆m2
21)], three mixing angles θ12, θ23, θ13, and one CP-phase

δ. The neutrino mass hierarchy (NMH) is defined to be normal (NH) if m3 > m1,2 or inverted (IH)
if m3 < m1,2.

Despite its huge success, the standard 3-flavor scheme does not need to constitute an exact
description. As a matter of fact, several anomalies have been found in short baseline experiments
(SBL), which cannot be explained in the 3-flavor scenario (for reviews on this subject, see [6–15]).
The indications come from the accelerator experiments LSND [16] and MiniBooNE [17], and from
the so-called reactor [18] and Gallium [19,20] anomalies. Constraints on light sterile neutrinos
have been derived also by the long-baseline (LBL) experiments MINOS and MINOS+ [21,22],
NOνA [23], and T2K [24]; by the reactor experiments Daya Bay [25],1 DANSS [27], NEOS [28],
Neutrino-4 [29], PROSPECT [30], and STEREO [31]; by the atmospheric neutrino data collected
in Super-Kamiokande [32], IceCube [33,34], and ANTARES [35]; and by solar neutrinos [36–38].

The two standard mass-squared splittings ∆m2
21 ≡ m2

2 −m2
1 and ∆m2

31 ≡ m2
3 −m2

1 are too small to
give rise to detectable effects in SBL setups. Therefore, one new much bigger mass-squared difference

1 We also mention the work [26], where the combination of MINOS, Daya-Bay, and Bugey-3 was considered.
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O(eV2) must be invoked to explain the SBL anomalies. The new hypothetical mass eigenstate must
be supposed to be sterile, i.e., a singlet of the standard model gauge group. Several new and more
sensitive SBL experiments are underway to put under test such an intriguing hypothesis (see the review
in [39]), which, if confirmed would provide a concrete evidence of physics beyond the standard model.
In the minimal extension, the so-called 3 + 1 scheme, only one sterile species is introduced. In this
scenario, one assumes the existence of one mass eigenstate ν4 weakly mixed with the active neutrino
flavors (νe, νµ, ντ) and separated from the standard mass eigenstates (ν1, ν2, ν3) by a O(eV2) difference.
In the 3 + 1 framework, there are six mixing angles and three (Dirac) CP-violating phases. Therefore,
in the eventuality of a discovery of a light sterile species, we would face the daunting task of nailing
down six new properties (three mixing angles, two CP-phases, and the mass-squared splitting ∆m2

41).
Several global analyses performed in the 3 + 1 scheme [12–15] show that the fit noticeably improves
with respect to the standard 3-flavor case. However, all such analyses evidence an internal tension
between different classes of experiments. More specifically, a tension among the joint disappearance
data (νe → νe and νµ → νµ) and the appearance data (νµ → νe) is present and has become stronger in
the latest analyses. This has led to increasingly lower values for the best fit of θ14 and especially θ24,
which currently are close [13] to θ14 = 8◦ and θ24 = 7◦, and are slightly smaller than the values that we
have taken as a benchmark in this review (θ14 = θ24 = 9◦).

The 3 + 1 scenario naturally implies sizeable effects at short distances, where the oscillation
factor ∆41 ≡ ∆m2

41L/4E (L being the baseline and E the neutrino energy) is of order one, and the
typical L/E dependency of the signal is expected. However, we stress that sterile neutrinos can leave
imprints also in other (non-short-baseline) kinds of experiments, where they have an impact in a
more subtle way. In the atmospheric neutrinos, as first shown in [40], at O(TeV) energies, a novel
Mikheyev-Smirnov-Wolfenstein (MSW) resonance arises, which produces sizeable modifications of
the zenith angle distribution. In the solar sector, a non-zero mixing of the electron neutrino with ν4

(parameterized by the matrix element Ue4) leads to detectable deviations from the unitarity of the
(ν1, ν2, ν3) subsystem [36,37] (see also [38]).

Light sterile neutrinos can produce observable effects also in the long-baseline (LBL) accelerator
experiments. We recall that such setups, when working in the νµ → νe (and ν̄µ → ν̄e) appearance
channel, are able to identify the 3-flavor CP violation (CPV) induced by the standard CP-phase δ.
This sensitivity is strictly related to the circumstance that at long distances the νµ → νe conversion
probability contains an interference term (which is unobservable at SBL experiments) among the
oscillations induced by the solar mass-squared difference and those driven by the atmospheric one.
As first shown in [41], if sterile neutrinos participate in the oscillations, a new interference term arises
in the conversion probability, which contains one additional CP-phase. Notably, the new genuine
4-flavor interference term is expected to have an amplitude similar to that of the standard 3-flavor
interference term. Hence, the detection of the new interference term opens the concrete opportunity
to explore the enlarged CPV sector implied by the presence of sterile neutrino species. It should be
stressed that, in both the 3-flavor and 4-flavor frameworks, the CP-phases cannot be detected in SBL
experiments, since in these setups the two standard frequencies ∆m2

21 and ∆m2
31 have a negligible

impact. Therefore, the SBL and LBL facilities are synergic in searches of the 3 + 1 framework (and of
any other framework that involves more than one sterile state).

These basic observations provide the motivation for writing the present review, in which we
discuss the physics potential of the future LBL experiments in the presence of a hypothetical light
sterile neutrino. The subject is very active as testified by the numerous works about DUNE [42–48],
T2HK [48–50], and T2HKK [48,51]. Other studies on the impact of light sterile neutrinos in LBL setups
can be found in [52–60]. We underline that, while this review deals with charged current interactions,
one can obtain valuable information on active-sterile oscillations parameters also from the analysis of
neutral current interactions (see [21–24] for constraints from existing data and [47,61] for sensitivity
studies of future experiments). Finally, we would like to stress that our review is limited to the
oscillation phenomenology, although light sterile neutrinos may have an impact also on non-oscillation
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searches. We mention the studies focused on the leptonic decays of charged leptons and mesons [62],
the beta decay [63], and the neutrinoless double-beta decay [64,65].

The review is organized as follows. In Section 2, we present the theoretical framework and
introduce the basic formulae for the 4-flavor νµ → νe and ν̄µ → ν̄e transition probabilities. In Section 3,
we provide the specifications of the three setups DUNE, T2HK, and ESSνSB, which we use in the
numerical simulations. In Section 4, we describe the details of the statistical method that we use for the
analysis. In Section 5, we discuss the sensitivity to the LBL experiments to the NMH in the presence of
a light sterile neutrino. In Section 6, we describe the sensitivity to CPV and, in Section 7, we study the
ability to reconstruct the CP phases. In Section 8, we present an important degeneracy issue, which
affects the reconstruction of the octant of θ23 in the 3 + 1 scheme. We trace the conclusions in Section 9.
Appendix A contains the analytical treatment of the matter effects relevant for LBL experiments in the
3 + 1 scheme.

2. Theoretical Framework

In the presence of a sterile neutrino, the flavor (νe, νµ, ντ , νs) and the mass eigenstates (ν1, ν2, ν3, ν4)
are connected by a 4× 4 unitary matrix

U = R̃34R24R̃14R23R̃13R12 , (1)

with Rij (R̃ij) denoting a real (complex) 4× 4 rotation of a mixing angle θij, which incorporates the
2× 2 submatrix

R2×2
ij =

(
cij sij
−sij cij

)
, R̃2×2

ij =

(
cij s̃ij
−s̃∗ij cij

)
, (2)

in the (i, j) sub-block. To simplify the notation, we define

cij ≡ cos θij, sij ≡ sin θij, s̃ij ≡ sije
−iδij . (3)

The parameterization in Equation (1) enjoys some useful properties: (i) The 3-flavor matrix is
recovered by setting θ14 = θ24 = θ34 = 0. (ii) For small values of the mixing angles θ14, θ24, and θ13,
one has |Ue3|2 ' s2

13, |Ue4|2 = s2
14, |Uµ4|2 ' s2

24, and |Uτ4|2 ' s2
34, with a clear physical interpretation

of the three mixing angles. (iii) The leftmost positioning of the matrix R̃34 implies that the νµ → νe

transition probability in vacuum is independent of θ34 and of the associated CP phase δ34 (see [41]).
For clearness, we confine the discussion to the case of propagation in vacuum. We address the

impact of matter effects in Appendix A. As first shown in [41], the νµ → νe transition probability can
be written as the sum of three contributions

P4ν
µe ' PATM + PINT

I + PINT
II . (4)

The first term, which is positive-definite, depends on the atmospheric mass-squared splitting and
provides the leading contribution to the probability. It takes the form

PATM ' 4s2
23s2

13 sin2 ∆ , (5)

where ∆ ≡ ∆m2
31L/4E is the atmospheric oscillating factor, L and E being the neutrino baseline

and energy, respectively. The other two contributions in Equation (4) arise from the interference of
two different frequencies and are not positive-definite. Specifically, the second term in Equation (4) is
related to the interference of the solar and atmospheric frequencies and can be written as

PINT
I ' 8s13s12c12s23c23(α∆) sin ∆ cos(∆ + δ13) , (6)
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where we introduce the ratio of the solar over the atmospheric mass-squared splitting, α ≡ ∆m2
21/∆m2

31.
We recall that at the first (second) oscillation maximum one has ∆ ∼ π/2 (∆ ∼ 3π/2). The third
contribution in Equation (4) appears as a new genuine 4-flavor effect, and is related to the interference
of the atmospheric frequency with the new high frequency induced by the presence of the fourth mass
eigenstate. This term can be written in the form [41]

PINT
II ' 4s14s24s13s23 sin ∆ sin(∆ + δ13 − δ14) . (7)

From Equations (5)–(7), we see that the conversion probability depends on (besides the large
mixing angle θ23) three small mixing angles: the standard angle θ13 and two new angles θ14 and
θ24. We note that the values of such three mixing angles (estimated in the 3-flavor scenario [66–68]
for θ13, and in the 4-flavor framework [12–15] for θ14 and θ24) are similar and one has s13 ∼ s14 ∼
s24 ∼ 0.15 (see Table 1). Therefore, one is naturally induced to consider these three angles as small
quantities having the same order of magnitude ε. We also notice that, since |α| ' 0.03, it can
be considered of order ε2. From inspection of Equations (5)–(7), we derive that the first (leading)
contribution is of the second order, while the two interference terms are both of the third order.
However, we underline that, differently from the standard interference term in Equation (6), the new
sterile-induced interference term in Equation (7) is not proportional to ∆ but to sin ∆; hence, it is not
enhanced at the second oscillation maximum. Because of this feature, as our numerical simulations
will confirm, the performance of ESSνSB in the 4-flavor scenario is not as good as that of DUNE and
T2HK, which work around the first oscillation maximum.

Before closing this section, we underline the fact that the conversion probability in vacuum is
independent of the third mixing angle θ34 and of the related CP-phase δ34. As shown in Appendix A,
this conclusion does not hold anymore in the presence of matter. In practice, as we discuss in the
subsequent sections, the CP-phase δ34 can be probed only in DUNE, which among the planned LBL
experiments, is the most sensitive to the matter effects.

Table 1. Parameter values and ranges used in the simulations. The second column displays the true
values of the oscillation parameters used to simulate the true dataset. The third column displays the
range over which sin2 θ23 and the CP-phases δ13, δ14, and δ34 are varied while minimizing the χ2.

Parameter True Value Marginalization Range

sin2 θ12 0.304 Not marginalized

sin2 2θ13 0.085 Not marginalized

sin2 θ23 0.50 [0.34, 0.68]

sin2 θ14 0.025 Not marginalized

sin2 θ24 0.025 Not marginalized

sin2 θ34 0, 0.025, 0.25 Not marginalized

δ13/◦ [–180,180] [–180,180]

δ14/◦ [–180,180] [–180,180]

δ34/◦ [–180,180] [–180,180]

∆m2
21

10−5 eV2 7.50 Not marginalized

∆m2
31

10−3 eV2 (NH) 2.475 Not marginalized

∆m2
31

10−3 eV2 (IH) –2.4 Not marginalized

∆m2
41

eV2 1.0 Not marginalized
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3. Description of the Experimental Setups

3.1. DUNE Setup

Hosted at Fermilab, DUNE is a new-generation long-baseline neutrino oscillation experiment
which will play an important role in the future neutrino roadmap to discover the fundamental
properties of neutrino [69–73]. DUNE will be composed of three major ingredients: (a) an intense
(∼megawatt), broad-band neutrino beam at Fermilab; (b) a high-precision near neutrino detector
just downstream of the neutrino source; and (c) a massive (∼ 40 kt) liquid argon time-projection
chamber (LArTPC) far detector hosted deep underground at the Sanford Underground Research
Facility (SURF) 1300 km away in Lead, South Dakota. We assume a fiducial mass of 35 kt for the
far detector in our simulations, and consider the detector properties which are given in Table 1 of
Reference [74]. Concerning the beam, we consider a proton beam power of 708 kW with a proton
energy of 120 GeV, which can deliver 6× 1020 protons on target on 230 days per calendar year. In our
simulation, we have taken the fluxes which were estimated assuming a decay pipe length of 200 m
and 200 kA horn current [75]. We consider a total run time of ten years for this experiment, which is
equivalent to a total exposure of 248 kt ·MW · year. We assume that the DUNE experiment would use
half of its full exposure in the neutrino mode, and the remaining half in the antineutrino mode. In our
simulations, we take the reconstructed neutrino and anti-neutrino energy range to be 0.5–10 GeV.
To incorporate the systematic uncertainties, we consider an uncorrelated 5% normalization error on
signal and 5% normalization error on background for both the appearance and disappearance channels
to analyze the prospective data from the DUNE experiment. We consider the same set of systematics
for both the neutrino and antineutrino channels which are also uncorrelated. For both νe and ν̄e

appearance channels, the backgrounds mostly arise from three different sources: (a) the intrinsic νe/ν̄e

contamination of the beam; (b) the number of muon events which will be misidentified as electron
events; and (c) the neutral current events. Our assumptions on various components of the DUNE
set-up are similar to those mentioned in the Conceptual Design Report (CDR) reference design in
Reference [70].

3.2. T2HK Setup

The main goal of the long-baseline neutrino program at the proposed Hyper-Kamiokande
(HK) detector with a neutrino beam from the J-PARC proton synchrotron is to give a conclusive
evidence for leptonic CP-violation in neutrino oscillations induced by the CP-phase δ13 in the 3-flavor
neutrino mixing matrix. This setup is commonly known as “T2HK” (Tokai to Hyper-Kamiokande)
experiment [76–78]. To calculate the physics reach of this setup, we closely follow the experimental
specifications as described in References [77,78]. The neutrino beam for HK will be produced at
J-PARC from the collision of 30 GeV protons on a graphite target. In our simulations, we consider an
integrated proton beam power of 7.5 MW × 107 s, which can deliver in total 15.6× 1021 protons on
target (p.o.t.) with a 30 GeV proton beam. We assume that the T2HK experiment would use 25% of its
full exposure in the neutrino mode which is 3.9× 1021 p.o.t. and the remaining 75% (11.7× 1021 p.o.t.)
would be used for the antineutrino run. This ensures that we have nearly equal statistics in both
neutrino and antineutrino modes to optimize the search for leptonic CP-violation. These neutrinos and
antineutrinos will be observed in the gigantic 560 kt (fiducial) HK water Cherenkov detector in the
Tochibora mine, located 8 km south of Super-Kamiokande and 295 km away from J-PARC. The neutrino
beamline from J-PARC is designed to produce an off-axis angle of ∼ 2.5◦ at the proposed HK site
and, therefore, the beam peaks at the first oscillation maximum of 0.6 GeV to enhance the physics
sensitivity. This off-axis scheme [79] gives rise to a neutrino beam with a narrow energy spectrum which
substantially reduces the intrinsic νe contamination in the beam and also the background deriving from
neutral current events. In our analysis, we consider the reconstructed neutrino and antineutrino energy
range of 0.1–1.25 GeV for the appearance channel. In case of disappearance channel, the assumed
energy range is 0.1–7 GeV for both the νµ and ν̄µ candidate events. We match all the signal and
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background event numbers following Tables 19 and 20 of Reference [77]. The systematic uncertainties
play an important role in estimating the physics sensitivity of the T2HK setup. Following Table 21 of
Reference [77], we consider an uncorrelated normalization uncertainty of 3.5% for both appearance
and disappearance channels in neutrino mode. In the case of antineutrino run, the uncorrelated
normalization uncertainties are 6% and 4.5% for appearance and disappearance channels, respectively,
and they do not have any correlation with appearance and disappearance channels in neutrino
mode. We assume an uncorrelated 10% normalization uncertainty on background for both appearance
and disappearance channels in neutrino and antineutrino modes. With all these assumptions on the
T2HK setup, we manage to reproduce all the sensitivity results which are given in Reference [77].
Here, we would like to mention that, according to the latest report by the Hyper-Kamiokande
Proto-Collaboration [80], the total beam exposure is 27× 1021 p.o.t. and the fiducial mass for the
proposed HK detector is 374 kt. Comparing the exposures in terms of (kt × p.o.t.), we see that
our exposure is 1.156 times smaller than the exposure that has been considered in Reference [80].
However, certainly, the results presented in this work would not change much and the conclusions
drawn based on these results would remain valid even if we consider the new exposure as reported in
Reference [80].

3.3. ESSνSB Setup

ESSνSB is a proposed superbeam on-axis experiment where a very high intense proton beam of
energy 2 GeV with an average beam power of 5 MW will be delivered by the European Spallation
Source (ESS) linac facility running at 14 Hz. The number of protons on target (POT) per year (208 days)
will be 2.7×1023 [81–84]. It is worth mentioning here that the future linac upgrade can push the proton
energy up to 3.6 GeV. The facility is expected to start taking neutrino data around 2030. We have
obtained the fluxes from [85]. They peak around 0.25 GeV. A 500 kt fiducial mass Water Cherenkov
detector similar to the properties of the MEMPHYS detector [86,87] is under investigation to explore
the neutrino properties in this low energy regime. It has been shown in [81] that, if the detector is
placed in any of the existing mines located within 300–600 km from the ESS site at Lund, it will make
possible to reach 5σ discovery of leptonic CP-violation with 50% coverage of the whole range of the
CP phase. A detailed study on the CP-violation discovery capability of this facility with different
baseline and different combinations of neutrino and antineutrino run time has also been performed
in [88]. In this review, we consider a baseline of 540 km from Lund to Garpenberg mine located in
Sweden and also we have matched the event numbers of Table 3 and all other results given in [81].
At this baseline, it works around the second oscillation maximum and it provides the opportunity to
explore the CP-asymmetry, which (in the 3-flavor scheme) is three times larger than the CP-asymmetry
at the first oscillation maximum. Although the main disadvantages for going to the second oscillation
maximum come from the significant decrease of statistics and cross-sections compared to the first
oscillation maximum, the intense beam of this facility compensates those difficulties and makes the
statistics competitive to provide interesting results. All our simulations presented here for this setup
have been done assuming two years of ν and eight years of ν̄ running. We set the uncorrelated 5%
signal normalization and 10% background normalization error for both neutrino and antineutrino
appearance and disappearance channels, respectively. For more details of the accelerator facility,
beamline design, and detector facility of this setup please, see Reference [81].

4. Details of the Statistical Analysis

The experimental sensitivities presented in this review are taken form the works [45,50,89]. These
have been calculated making use of the GLoBES software [90,91] together with its new physics package.
The sterile neutrino effects are included both in the νµ → νe appearance channel and in the νµ → νµ

disappearance channel. The same holds for antineutrino mode. Table 1 displays the true values of
the oscillation parameters and their respective ranges of marginalization, which we consider in our
numerical simulations. Apart from the atmospheric mixing angle θ23, we have fixed the 3-flavor
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oscillation parameters equal to those obtained in the most recent global fits [66–68]. For θ23 (apart from
Section 8), we have set its value to be maximal (45◦), and in the fit we have marginalized it over the
range indicated in Table 1. Concerning the mixing angles that involve the fourth state (θ14, θ24, and θ34),
we have fixed both their true and fit values as given in Table 1. For sin2 θ34, we consider three options,
namely 0, 0.025, and 0.25, which are within its current allowed range [12–15]. Concerning the CP
phases δ14 and δ34, we vary their true values in the range [−π, π], and marginalize the fit values in the
same range. We set the mass-squared splitting to ∆m2

41 = 1 eV2, which is the value presently indicated
by the SBL data. However, we underline that our findings would be unaltered for different values of
such a parameter, provided that ∆m2

41 > 0.1 eV2. For such values, the fast oscillations induced by the
large mass-squared splitting are totally averaged by the finite energy resolution of the detector. For the
same motivation, LBL setups are insensitive to the sign of ∆m2

41 and this allows us to limit our study to
positive values. We have set the line-averaged constant Earth matter density2 of 2.87 g/cm3 for all
the LBL experiments considered. In our simulations, we have incorporated a full spectral analysis
by making use of the binned events spectra for the each LBL experiment. In the statistical analysis,
the Poissonian ∆χ2 has been marginalized over the systematic uncertainties using the pull method as
prescribed in References [93,94]. For displaying the results, we show the 1, 2, 3σ confidence levels for
1 d.o.f. adopting the relation Nσ ≡

√
∆χ2.

In [95], it was shown that the above expression holds in the frequentist method of hypothesis
testing. We define the χ2 function

χ2 = min
ξs ,ξb

[
2

n

∑
i=1

(ỹi − xi − xi ln
ỹi
xi
) + ξ2

s + ξ2
b

]
, (8)

where n is the total number of reconstructed energy bins and

ỹi({ω}, {ξs, ξb}) = Nth
i ({ω}) [1 + πsξs] + Nb

i ({ω})
[
1 + πbξb

]
. (9)

Above, Nth
i ({ω}) represents the theoretical number of CC signal events in the ith energy bin

for a set of oscillation parameters ω. Nb
i ({ω}) denotes the total number of background events3.

The quantities πs and πb in Equation (9) denote the systematic normalization errors on the signal and
background events, respectively. We take the same uncorrelated systematic error for both the neutrino
and antineutrino channels. The quantities ξs and ξb denote the “pulls” due to the systematic error on
the signal and background, respectively. The data in Equation (8) are included through the variable
xi = Nex

i + Nb
i , where Nex

i is the number of observed CC signal events and Nb
i is the background as

discussed above. To obtain the total χ2, we add the χ2 contributions coming from all the relevant
oscillation channels for both neutrino and antineutrino modes in a given experiment

χ2
total = χ2

νµ→νe + χ2
ν̄µ→ν̄e + χ2

νµ→νµ
+ χ2

ν̄µ→ν̄µ
. (10)

In the above expression, we assume that all the oscillation channels for both neutrino and
antineutrino modes are uncorrelated, all the energy bins in a given channel are fully correlated, and the
systematic errors on signal and background are uncorrelated. The fact that the flux normalization
errors in νµ → νe and νµ → νµ oscillation channels are the same (i.e., they are correlated) is taken into
account in the error budget for each of the two channels. However, there are other uncertainties which
contribute to the global normalization error for each of the two channels, such as the uncertainties in

2 The line-averaged constant Earth matter density has been computed using the Preliminary Reference Earth Model
(PREM) [92].

3 Note that we consider both CC and NC background events in our analysis and the NC background is independent of
oscillation parameters.



Universe 2020, 6, 41 8 of 23

cross sections, detector efficiencies, etc., which are uncorrelated. For this reason, we simply assume
that the total normalization errors in these two channels are uncorrelated. The same holds for ν̄µ → ν̄e

and ν̄µ → ν̄µ oscillation channels. We think that, with the current understanding of the detectors of
DUNE, T2HK, and ESSνSB experiments, it is premature to perform a more accurate analysis taking
into account more fine effects as, e.g., the correlation between the flux normalization errors in the
appearance and disappearance channels.

5. Mass Hierarchy Discovery Potential in the 3 + 1 Scheme

In this section, we present the discovery potential of the future LBL experiments to the neutrino
mass hierarchy (NMH). We recall that the NMH discovery potential of a given experiment is
proportional to the size of matter effects in that setup. This in turn is related to the energy of the
neutrino beam of the experiment. As a result, DUNE is very sensitive to NMH, working at the energy
of E = 2.5 GeV; T2HK has intermediate sensitivity since it works at E = 0.6 GeV; and ESSνSB has
basically no sensitivity working at E = 0.25 GeV. In the following we show the sensitivity of DUNE
and T2HK in the 3-flavor and 4-flavor schemes.

In Figure 1, we present the bi-event plots, in which the two axes report the total number of νe

(x-axis) and ν̄e (y-axis) events4. In both panels, the black ellipses represent the 3-flavor case, and are
obtained by varying the CP-phase δ13 in the range [−π, π]. In the 3 + 1 scheme, two CP-phases are
present and the bi-event plot becomes a blob. In both panels, we assume θ14 = θ24 = 9◦, and θ34 = 0,
varying the two phases δ13 and δ14 in the range [−π, π]. The 4-flavor full regions can be regarded as a
convolution of an ensemble of ellipses with different orientations or, alternatively, as a dense scatter
plot resulting from the simultaneous variation of the CP-phases δ13 and δ14. One can see that, in the
left panel concerning DUNE, there is a neat separation between the 3-flavor ellipses. This guarantees
and exceptional sensitivity of DUNE to the NMH in the standard 3-flavor scheme. In the 3 + 1 scenario,
the separation among the blobs corresponding to the two hierarchies is reduced in comparison to
the 3-flavor ellipses, but still the two hierarchies remain distinct. Therefore, we expect that the NMH
discovery potential will be reduced in the 3 + 1 scheme, but it will not be completely erased. In the
right panel, we present the same kind of plot concerning T2HK. In this case, already at the level of the
3-flavor scenario we expect a low sensitivity to NMH since the NH and IH ellipses overlap. In the
3 + 1 scheme, the level of overlapping remains similar.

In Figure 2, we display the discovery potential of the correct hierarchy as a function of the
true value of δ13 considering NH as the true choice. The left (right) panel refers to DUNE (T2HK).
In each panel, we provide the results for the 3-flavor case, which is represented by a black curve. In both
panels, for the 4-flavor scenario, we have taken θ14 = θ24 = 9◦ and θ34 = 0, both true and fit values.
Concerning DUNE (left), we present the results for four values of the true δ14 (−90◦, 90◦, 0◦, and 180◦)
while we marginalize the fit value of δ14 in the range of [−π, π]. Qualitatively, the shape of the 3 + 1
curves seems similar to the 3-flavor one. In particular, a maximum is present around δ13 ∼ −90◦,
and a minimum around δ13 ∼ 90◦. It is evident that overall, there is a deterioration of the sensitivity
of DUNE for all values of the new CP-phase δ14. However, even in the region around the minimum,
the sensitivity never decreases below the 5σ level. In the right panel of Figure 2, we plot the NMH
discovery potential for T2HK. In the 3-flavor case, on the basis of the bivents plot, one would expect
that for some values of the phase δ13, the sensitivity should drop to zero. However, quite surprisingly,
a non-zero sensitivity appears. As extensively discussed in [50], the sensitivity is due to the energy
spectral information. The green band in the right panel represents the T2HK sensitivity in the 3 + 1
scheme. The width of the band is due to the spanning of the true value of δ14 of the range of [−π, π].
We notice that the shape of the 3 + 1 band is similar to that of the 3-flavor scenario, and, as expected
from the bi-event plot, there is only a weak degradation of the NMH discovery potential. In addition,

4 In the 3 + 1 scheme, these plots were first introduced in Reference [96] for the discussion of T2K and NOνA.
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in this case, the binned spectrum has a key role in the NMH discrimination. We can conclude that,
albeit the NMH sensitivity of T2HK is quite limited, it is robust with respect to the modifications
produced by a light sterile neutrino state.
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Figure 1. The colored blobs in the left (right) panel represent the bi-event plots for DUNE (T2HK) in
the 3 + 1 scenario. The regions are obtained by varying the CP-phases δ13 and δ14 in the range [−π, π].
The black curves represents the 3-flavor ellipses. In this case, there is only one running parameter,
the CP-phase δ13. Both figures are obtained for maximal θ23 mixing. This is explicitly indicated only in
the right panel as “MM” in the legend. Figures taken from [45] (left) and [50] (right).
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Figure 2. Discovery potential of DUNE (left) and T2HK (right) for identifying the correct hierarchy
(NH) as a function of true δ13. In both panels, we have fixed true and test θ14 = θ24 = 9◦ and θ34 = 0.
In both panels, the black curve represents the 3-flavor case. For DUNE (left), in the 3 + 1 scheme, we
provide the curves for four different values of true δ14 marginalizing over test δ14. For T2HK (right),
the green band is obtained by varying the true value of δ14 in the range [−π, π] and marginalizing the
test value of δ14 in the same range. Figures taken from [45] (left) and [50] (right).
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6. CP-violation Discovery Potential

The sensitivity of CPV induced by a given (true) value of a CP phase δtrue
ij is defined as the

statistical significance at which one can exclude the test hypothesis of no CPV, i.e., the (test) cases
δtest

ij = 0 and δtest
ij = π. In Figure 3, we report the discovery potential of CPV induced by δ13 for

DUNE (left), T2HK (middle), and ESSνSB (right). We have assumed that the hierarchy is known a
priori and is NH. In all panels, the black dashed curve corresponds to the 3-flavor scenario while the
colored band represents the 3 + 1 scheme. In the 3 + 1 scenario, we fix the true and test values of θ14 and
θ24 to be 9◦. In all panels, the colored bands are obtained by varying the unknown true value of δ14 in
the range of [−π, π] while marginalizing over its test value in the same range. We can observe that in
all cases, in the 3 + 1 scheme, there is a non-negligible deterioration of the sensitivity. The deterioration
is more pronounced in ESSνSB (right). As explained in detail in [89], this different behavior is related
to the fact that ESSνSB (in the configuration which we are considering, corresponding to a baseline
of 540 km) works at the second oscillation maximum, in contrast to DUNE and T2HK which work
around the first oscillation maximum.
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Figure 3. Sensitivity to CPV induced by δ13 for DUNE (left), T2HK (central), and ESSνSB (right)
assuming the NMH is known to be the NH. In all three panels, the black dashed curve corresponds
to the 3-flavor result. In the 4-flavor scheme, we fix the true and test values of θ14 = θ24 = 9◦, and we
take the true and test θ34 to be 0◦. In all panels, the colored bands are obtained in the 3 + 1 scheme by
varying the unknown true δ14 in the range of [−π, π] in the data while marginalizing over fit δ14 in the
same range. Figures taken from [45] (left), [50] (central), and [89] (right).

In the 3 + 1 scheme, one expects that CPV may arise also from the two new phases δ14 and δ34.
However, a non-zero sensitivity to δ34, can be obtained only in DUNE, where matter effects are
noticeable, and for relatively big values of the mixing angle θ34. For this reason, we first show the
discovery potential of the two experiments T2HK and ESSνSB, which are only sensitive to δ14. In the
left and right panels of Figure 4, we display the discovery potential of the CPV induced by δ14 in T2HK
and ESSνSB, respectively. We observe that the T2HK performance is much better than that of ESSνSB.
In the first case one can reach a sensitivity of 5σ, while in the second one the sensitivity never exceeds
the 2σ level.
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Figure 4. Discovery potential of the CPV induced by δ14 for T2HK (left) and ESSνSB (right), assuming
the NMH is known to be the NH. We fix the true and test values of θ14 = θ24 = 9◦, and we take the true
and test θ34 to be 0◦. In both panels, the colored bands are obtained in the 3 + 1 scheme by varying
the unknown true δ14 in its entire range of [−π, π] in the data while marginalizing over test δ14 in the
same range. Figures taken from [50] (left) and [89] (right).

We think that it is useful to further comment on this huge difference in the sensitivity to CPV
induced by δ14 between the two experiments ESSνSB and T2HK. We notice (see Figure 3) that in the
3-flavor framework both experiments have comparable sensitivities to CPV driven by δ13, having both
the highest sensitivity of about 8σ for δ13 ' ±90◦. This is possible, because, despite the lower statistcal
power, ESSνSB takes advantage of the amplification factor proportional to the atmospheric oscillating
factor ∆, which appears in the standard 3-flavor interference term [see Equation (6)] of the conversion
probability. In fact, this is approximately three times bigger around the second oscillation maximum
with respect to the first one. In contrast, in the 3 + 1 scheme, the sensitivity is much worse in ESSνSB.
In fact, one can observe that: (i) The degradation of the discovery potential to the CPV induced by δ13

when going from the 3-flavor to the 3 + 1 framework is much more noticeable in ESSνSB than in T2HK.
Taking the values δ13 = ±90◦ as a benchmark (where the highest sensitivity is reached), we find for
T2HK only a weak deterioration of the discovery potential from 8σ to 7σ (see middle panel in Figure 3).
In ESSνSB, we find instead a pronounced reduction from 8σ to 4.5σ (see right panel in Figure 3);
(ii) The sensitivity to the CPV driven by the new CP phase δ14 is much lower in ESSνSB than in T2HK
(2σ vs. 5σ for δ14 = ±90◦). The explanation of such a different performance in the 3 + 1 scheme of
the two experiments can be understood noticing the fact that ESSνSB works at the second oscillation
maximum. As already stressed in Section 2, the new interference term (which is sensitive to δ14)
depends on sin ∆ [see Equation (6)], and at the second oscillation maximum it is not amplified by the
factor ∆ as happens for the standard 3-flavor interference term (which is sensitive to δ13). In addition,
as underlined in [50], T2HK can benefit from the energy spectral information, which plays a crucial
role in maintaining a good performance in the 3 + 1 scheme. Indeed, in [50], it was demonstrated that,
even if there is a degeneracy at the level of the event counting, the energy spectrum is able to break
such a degeneracy, thus boosting the sensitivity. In ESSνSB, the impact of the spectral information is
drastically reduced because the energy range at the second oscillation maximum is very narrow and the
low statistics impedes to use the information contained in the spectrum. Therefore, we conclude that
ESSνSB is not particularly suited for the searches of CPV induced by the presence of sterile neutrinos.
We underline that such a conclusion holds for a baseline of 540 km, for which ESSνSB works around
the second oscillation maximum. Things may improve by choosing a smaller baseline of 360 or 200 km.
In this last case, ESSνSB would work around the first oscillation maximum.
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Now, let us come to the sensitivity or DUNE to the new CP-phases, which is depicted in
Figure 5. In the first panel, for comparison, we display the sensitivity to CPV induced by the standard
CP-phase δ13. The thinner (magenta) bands represent to the case in which all the three new mixing
angles have the same values θ14 = θ24 = θ34 = 9◦. The thicker (green) bands correspond to the case
in which θ14 = θ24 = 9◦, and θ34 = 30◦. In each panel, the bands have been obtained by varying the
true values of the two undisplayed CP-phases in their allowed ranges of [−π, π] in the data while
marginalizing over their fit values in the same range. The comparison of the three panels show that,
if all the three mixing angles have the same value θ14 = θ24 = θ34 = 9◦, there is a clear hierarchy in
the sensitivity to the three CP-phases. The CP phase δ13 comes first, δ14 comes next, and δ34 is the last
one, inducing negligible CPV. Concerning the CP-phase δ14 (middle), the sensitivity spans over a wide
band. In favorable cases, the signal lies above the 3σ level. On the other hand, the lower border of
the band is always below the ∼ 2σ. This means that there is not a guaranteed discovery potential
at the 3σ confidence level for CPV induced by δ14. Finally, coming to the third CP-phase δ34 (right),
we observe that, if the mixing angle θ34 is big, the sensitivity can be noticeable. In addition, we see
that the shape of the band is different from that obtained for the other two CP-phases. This different
behavior can be explained by observing that, in this case, the νµ → νµ channel also contributes to the
overall sensitivity. In fact, it is well known that the νµ survival probability has a good sensitivity to the
NSI-like coupling εµτ . From the expression of the Hamiltonian in Equation (A13), one can observe
that the new mixing angles mimic a NSI-like perturbation εµτ = rs24 s̃∗34, thus a sensitivity of the νµ

survival probability to the CP-phase δ34 is expected.
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Figure 5. The left, central, and right panels display the discovery potential of the CPV induced,
respectively, by δ13, δ14, and δ34 in the 3 + 1 scenario. The thinner (magenta) bands correspond to the
case in which the three new angles have the same value θ14 = θ24 = θ34 = 9◦. The thicker (green) bands
correspond to the case in which θ14 = θ24 = 9◦, and θ34 = 30◦. In each panel, the bands have been
obtained by varying the true values of the two undisplayed CP-phases in the range [−π, π]. The left
panel also reports the 3-flavor curve (black dashed line) for comparison. In all cases, we marginalize
over hierarchy with NH taken as as the true choice. Figure taken from [45].

7. Reconstruction of the CP Phases

Until now, we have considered the discovery potential to the CPV induced by the two CP
phases δ13 and δ14. Here, we study the capability of the LBL setups to reconstruct the true value of
the two CP phases. With this purpose, we consider the four benchmark cases shown in Figure 6.
In each panel, we show the region reconstructed by each of the three LBL experiments, DUNE, T2HK,
and ESSνSB, around a pair of true values of the two CP-phases δ13 and δ14. The first two panels
represent the CP-conserving cases (0, 0) and (π, π). The lower panels concern two CP-violating
scenarios (−π/2,−π/2) and (π/2, π/2). In each panel, we show the regions reconstructed around
the true values of the two CP phases. In these plots, we have fixed the NH as the true and test hierarchy.
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The contours are displayed for the 3σ level (1 d.o.f.) 5. The performance of ESSνSB in reconstructing
δ13 is similar to that of DUNE and T2HK. In contrast, the reconstruction of δ14 is better in T2HK
and DUNE.

Figure 6. Reconstructed regions for the two CP phases δ13 and δ14 for the four representative couples
of their true values indicated in each panel. Results are displayed for the three different experiments:
ESSνSB, DUNE, and T2HK. The NH has been fixed as the true and test hierarchy. The regions are
drawn for the 3σ (1 d.o.f.) confidence level. Figure taken from [89].

8. Sterile Neutrinos and the Octant of θ23

The latest global neutrino oscillation data fits favor a non-maximal value of the atmospheric
mixing angle θ23 with two almost degenerate solutions: one < π/4, denoted as lower octant (LO),
and the other > π/4, defined as higher octant (HO). The identification of the θ23 octant is an important
target in neutrino physics because of its deep ramifications in the theory of neutrino mass model
building (see [97–101] for reviews). Notable models where the θ23 octant has an important role are

5 Note that both δ13 and δ14 are cyclic variables. Therefore, the union of the four corners in the top right panel of Figure 6
gives rise to a single connected region.
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µ↔ τ symmetry 6 [104–111], A4-flavor symmetry [112–116], quark–lepton complementarity [117–120],
and neutrino mixing anarchy [121,122]. From a phenomenological viewpoint, the information on
the θ23 octant is also a key input. In fact, it is widely recognized that the identification of the two
unknown properties (NMH and CPV) is strictly entangled with the determination of θ23 due to
parameter degeneracy problems [123–131].

The LBL experiments offer a unique opportunity to identify the θ23 octant. In fact, a well-known
synergy between the νµ → νe appearance and νµ → νµ disappearance channels [123,126] confers a
high sensitivity to the θ23 octant. The νµ → νµ survival probability depends on sin2 2θ23. Then, it is
sensitive to deviations from maximal θ23 but is not sensitive at all to its octant. In contrast, the νµ → νe

probability is proportional to sin2 θ23 and is sensitive to the octant. Therefore, the two channels
give complementary information on θ23. Notably, the sensitivity can be maximized with a balanced
exposure of neutrino and antineutrino runs [128].

Several sensitivity studies to the octant of θ23 have been performed within the 3-flavor scenario
(see [128,132–136]). In the work [46], the issue has been studied in the 3 + 1 scheme, evidencing for
the first time an important degeneracy problem taking DUNE as a case study. We refer the reader to
work [46] for analytical details, showing here the numerical results. In a nutshell, the newly identified
interference term in Equation (7) that appears in the νµ → νe transition probability in Equation (4)
can mimic an inversion of the θ23 octant. As a consequence, for unlucky combinations of the two
CP-phases δ13 and δ14, in the 3 + 1 scheme, the discovery potential of the octant of θ23 is completely
lost. The bi-event plot in Figure 7 provides a bird-eye view of what happens. In the 3 + 1 scheme,
the theoretical prediction is represented by a colored blob, and the separation among LO and HO
is lost.

Figure 7. Bi-event plot for the DUNE setup. The ellipses display the 3-flavor scenario, while the colored
blobs correspond to the 3 + 1 framework. We take sin2 θ23 = 0.42 (0.58) as a representative value for the
LO (HO). In the 3-flavor ellipses, the running parameter is δ13 in the range [−π, π]. In the 3 + 1 blobs,
there are two running CP phases, δ13 and δ14. In the 4-flavor case, we have assumed θ14 = θ24 = 9◦

and θ34 = 0◦. Figure taken from [46].

6 As shown in [102,103], in 4 flavors, the condition θ23 ' 45◦ implies an approximate realization of µ↔ τ symmetry, similar
to what occurs in the standard 3-flavor scenario. Therefore, discovering that θ23 is maximal (non-maximal) would imply
that µ↔ τ symmetry is unbroken (broken), independently of the existence of a light sterile neutrino.
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Figure 8 shows the DUNE discovery potential for nailing down the true octant as a function of
true δ13. The left (right) panel refers to the true choice LO-NH (HO-NH). In both panels, we show also
the results for the 3-flavor case (black curve). Regarding the 3 + 1 scheme, we show the curves for
four benchmark values of true δ14 (0◦, 180◦,−90◦, 90◦). In the 3ν framework, the marginalization is
performed over (θ23, δ13) (test). In the 3 + 1 scenario, we fix θ14 = θ24 = 9◦ and θ34 = 0, and marginalize
over (θ23, δ13, δ14) (test). In all cases, we marginalize over the NMH. Figure 8 clearly depicts that in
the 3 + 1 scheme there exist unlucky combinations of δ13 (true) and δ14 (true) for which the octant
sensitivity drops below the 2σ level. We have also verified that for such combinations the energy spectra
corresponding to the two octants are almost identical for neutrinos and antineutrinos. Therefore, even a
broad-band experiment such as DUNE is not able to resolve the degeneracy introduced by a light
sterile neutrino. Very recently, in [48], it has been shown that the situation may improve in T2HKK.
However, a direct comparison with our results is not possible because in [48] the benchmark values
assumed for the true mixing angles θ14, θ24, and θ34 are different (sensibly smaller) than those used in
the present review.
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Figure 8. Sensitivity to the octant of θ23 as a function of true δ13 for LO-NH (left) and HO-NH (right)
as the true option. We take sin2 θ23 = 0.42 (0.58) as representative value for LO (HO). In each panel, we
present the results for the 3-flavor scenario (black line), and for the 3 + 1 case we consider four different
values of true δ14 (colored lines). Figure taken from [46].

9. Conclusions

Several anomalies observed in short-baseline neutrino experiments suggest the existence of new
light sterile neutrino species. In this review, we discuss the potential role of long-baseline experiments
in the searches of sterile neutrino properties and, in particular, the new CP-violation phases that
appear in the enlarged 3 + 1 scheme. We also assess the impact of light sterile states on the discovery
potential of long-baseline experiments of important targets such as the standard 3-flavor CP violation,
the neutrino mass hierarchy, and the octant of θ23. In the case of the discovery of sterile neutrinos,
the planned LBL experiments will have a huge potential to explore the sterile neutrino properties and
they will be complementary to SBL experiments.
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Appendix A. Conversion Probability in Matter

In matter, the Hamiltonian can be expressed, in the flavor basis, as follows

H = UKU† + V , (A1)

with K denoting the diagonal matrix of the wave numbers

K = diag(0, k21, k31, k41) , (A2)

where ki1 = ∆m2
i1/2E (i = 2, 3, 4) and V is the matrix describing the matter potential

V = diag(VCC, 0, 0, −VNC) , (A3)

where

VCC =
√

2 GF Ne (A4)

is the charged-current interaction potential of the electron neutrinos in a background of electrons
having number density Ne, and

VNC = −1
2

√
2GF Nn (A5)

is the neutral-current interaction potential (equal for all the active neutrino species), where the
background neutrons have number density Nn. We also introduce the positive-definite ratio

r = −VNC
VCC

=
1
2

Nn

Ne
, (A6)

which, in the Earth crust, is given by r ' 0.5. With the purpose of simplifying the treatment of matter
effects, we introduce the new basis

ν̄ = Ū†ν , (A7)

where
Ū = R̃34R24R̃14 (A8)

is the part of the mixing matrix defined in Equation (1), which incorporates only the rotations involving
the fourth mass eigenstate. Therefore, the mixing matrix U can be split as follows

U = ŪU3ν (A9)

where U3ν is the 4× 4 matrix containing the standard 3-flavor mixing matrix in the (1,2,3) sub-block.
In the new basis, the Hamiltonian has the expression

H̄ = H̄kin + H̄dyn = U3νKU†
3ν + Ū†VŪ , (A10)

where the first term is the kinematic term describing the oscillations in vacuum and the second one
is the nonstandard dynamical term. As shown in [41] (see the Appendix therein), since |k41| is much
larger than one and much larger than |k21| and |k31|, one can reduce the dynamics to an effective
3-flavor one. Indeed, from Equation (A10), one can see that the (4,4) element of H̄ is much larger than
all the other entries and the fourth eigenvalue of H̄ is much bigger than the other three ones. As a
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consequence, the state ν̄s evolves independent of the others. Extracting the submatrix with indices
(1, 2, 3) from H̄, one arrives at the 3× 3 Hamiltonian

H̄3ν = H̄kin
3ν + H̄dyn

3ν (A11)

governing the (ν̄e, ν̄µ, ν̄τ) system, whose dynamical part has the form [41]

H̄dyn
3ν = VCC

[
|Ūe1|2+r|Ūs1|2 rŪ∗s1Ūs2 rŪ∗s1Ūs3

† r|Ũs2|2 rŪ∗s2Ūs3

† † r|Ūs3|2

]
, (A12)

where we indicate with † the complex conjugate of the element with the same two indices inverted.
For the derivation of Equation (A12), we exploit the relations Ūe2 = Ūe3 = Ūµ3 = 0. Considering the
explicit expressions of the entries of Ū and taking their first-order expansion in the mixing angles θi4
(i = 1, 2, 3), Equation (A12) becomes

H̄dyn
3ν ≈ VCC

[
1−(1−r)s2

14 rs̃14s24 rs̃14 s̃∗34
† rs2

24 rs24 s̃∗34
† † rs2

34

]
. (A13)

Equation (A13) shows that, if the sterile neutrino angles are zero (θ14 = θ24 = θ34 = 0), one
recovers the (diagonal) standard 3-flavor MSW Hamiltonian. In general, in the 3 + 1 scenario,
the Hamiltonian in Equation (A13) implies both diagonal and off-diagonal corrections. We can
observe that these perturbations are formally equivalent to non-standard neutrino interactions (NSI)7

H̄dyn
3ν ≈ VCC

[
1+εee εeµ εeτ

† εµµ εµτ

† † εττ

]
. (A14)

This formal analogy is useful to interpret the sensitivity to the new dynamical effects implied by
3 + 1 scheme. We recall that, in the νµ → νe channel, the NSI that play the most pronounced impact
are εeµ and εeτ , while in the νµ → νµ channel εµτ has the largest effect. If the three new mixing angles
have the same size s2

14 = s2
24 = s2

34 = 0.025, all the perturbations in Equation (A14) are very small
(|εαβ| ' 0.01) and they have an unobservable impact. In such a case, the dynamics is basically identical
to that of the standard 3-flavor scenario. On the other hand, if one allows the third mixing angle to
take bigger values (θ34 ∼ 30◦), the entries of the third column of the Hamiltonian in Equation (A14)
can be noticeably bigger (|εeτ | ' |εµτ | ' 0.04 and |εττ | ' 0.13). In this last case, one may expect
a sizeable effect of εeτ ≡ rs̃14 s̃∗34 in the νµ → νe probability, and of εµτ ≡ rs24 s̃∗34 in the νµ → νµ

probability. As a result, one expects that both channels should be sensitive to the third CP-phase δ34

since s̃∗34 ≡ s34eiδ34 . Therefore, differently from the vacuum case, in matter, the flavor transitions are
sensitive to θ34 and the related CP-phase δ34. The dependence of both channels from these parameters
represents a very peculiar feature, because, in lucky circumstances (i.e., a large value of θ34), the LBL
setups are sensitive not only to the two CP-phases δ13 and δ14, but also to δ34. Hence, the searches
performed at LBL experiments (DUNE in particular) may provide access to the entire CPV sector
implied by the 3 + 1 scheme.

7 We stress that this should be taken only as formal analogy. In fact, the real NSI are mediated by heavy particles. In contrast,
in the case of sterile neutrinos, there is no heavy mediator and the NSI-like structure of the Hamiltonian is connected to the
circumstance that we are working in the new basis introduced in Equation (A7), which is rotated with respect to the original
flavor basis. We mention that a similar analogy has been noticed in the field of solar neutrino conversion in the presence of
sterile states [36].
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