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Abstract: As mature neutron stars are cold (on the relevant temperature scale), one has to carefully
consider the state of matter in their interior. The outer kilometre or so is expected to freeze to form an
elastic crust of increasingly neutron-rich nuclei, coexisting with a superfluid neutron component,
while the star’s fluid core contains a mixed superfluid/superconductor. The dynamics of the star
depend heavily on the parameters associated with the different phases. The presence of superfluidity
brings new degrees of freedom—in essence we are dealing with a complex multi-fluid system—
and additional features: bulk rotation is supported by a dense array of quantised vortices, which
introduce dissipation via mutual friction, and the motion of the superfluid is affected by the so-called
entrainment effect. This brief survey provides an introduction to—along with a commentary on
our current understanding of—these dynamical aspects, paying particular attention to the role of
entrainment, and outlines the impact of superfluidity on neutron-star seismology.

Keywords: neutron stars; superfluidity; hydrodynamics

1. Neutron Star Superfluidity

During its first moments of existence, just after the supernova core collapse, a newly
born neutron star can be thought of as a hot, rotating “ball” of superdense nuclear material.
Thermal aspects play a key role during the early stages of evolution, and it is essentially the
loss of the associated pressure support (through the emission of neutrinos) that leads to the
newly born object shrinking from a radius of about 20 km to the typical size of a “mature”
neutron star, likely just over 10 km. Once the temperature drops below about 1010 K (or
1 MeV for anyone of a nuclear physics persuasion)—after the first 20–100 s [1]—the thermal
contribution to the pressure may be ignored and we can meaningfully consider the object
as a, now gradually evolving [2], neutron star. From the nuclear physics point of view, the
object is cold. In fact, it so cold that we have to consider the precise state of matter.

Laboratory experiments tell us that two things may happen when we cool a fluid.
It may freeze—as in the familiar winter-time example of water forming ice—or it may
become superfluid—as in the case of low-temperature laboratory experiments on helium.
The latter outcome is less common, as it requires quantum fluctuations to prevent the
formation of a regular particle lattice. However, neutron stars—obviously, not hands-on
laboratories!—are expected to manifest both phases. The outer kilometre or so forms the
star’s crust, a lattice composed of increasingly neutron-rich nuclei [3]. The outer core of
the star is expected to contain a mixture of superfluid neutrons—forming a condensate
due to an analogue of Cooper pairing below a density-dependent critical temperature,
see Figure 1—alongside a charge neutral conglomerate of protons and electrons (with
muons also coming into play as the density increases). This may already seem a fairly
complicated system, but we need (at least) two further features. First, beyond a density
of about 4× 1011 g/cm3, neutrons start to drip out of crust nuclei, leading to a superfluid
coexisting with the crust lattice. Second, the protons in the outer core are likely to form
a superconductor. If we proceed to the very high densities of the deep neutron star core,
we may have to consider the impact of hyperons and/or deconfined quarks [4,5]. These
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are also expected to become superfluid, but we will not consider the additional issues this
gives rise to here.
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Figure 1. A sketch of the critical temperatures for superfluidity/superconductivity as a function of
density. The indicated critical temperatures Tn (black), Tn′ (red), and Tp (blue) represent neutron
singlet, neutron triplet, and proton singlet pairing, respectively. The least “secure” of these critical
curves is that for neutron triplet pairing. The edges of the coloured regions indicate the boundaries
between the core and the inner crust (at just above half the nuclear saturation density) as well as the
inner and outer crusts (at neutron drip; ρ ≈ 4× 1011 g cm−3). The main message is that superfluid
aspects come into play already at a temperature close to 1010 K (about 1 MeV), very early in a neutron
star’s life. The results provide a phenomenological representation of actual gap calculations within
the BCS approximation, see [6] for details.

The notion of neutron star superfluidity is firmly established theoretically, and—as
our observations become more precise—the observational support for the idea is getting
stronger. Presently, the observations relate to three distinct problems: (i) the transient
cooling following phases on matter accretion onto the neutron star surface, for which
the crust superfluid regulates the thermal relaxation timescale [7]; (ii) the apparent real-
time cooling of the young neutron star in the Cassiopeia A supernova remnant, which (if
confirmed) requires the recent onset of core superfludity [8,9]; and (iii) the enigmatic spin
glitches seen in many young radio pulsars [10–12]. As the present focus is on dynamical
aspects, we will only consider the last of these aspects here.

Even though the problem of neutron star superfluidity has been under scrutiny since
the late 1960s (following the original suggestion of Migdal [13]), many relevant aspects
remain unresolved (see [14–16] for recent reviews). These range from nuclear physics
issues, like the pairing [17,18] and the critical temperature (with the neutron triplet pairing
gap—roughly the binding energy of a Cooper pair—still uncertain) and the interaction
between quantised neutron vortices and crust nuclei leading to vortex pinning [19–26], to
large-scale dynamics and the impact on astrophysical observations, with the mechanism
that triggers pulsar glitches remaining not well understood. This brief survey is intended
to serve an introduction to dynamical aspects that come into play when we consider a
superfluid neutron star. This involves additional degrees of freedom—we are dealing
with a complex multi-fluid system—and new features like the dense array of quantised
vortices that allow a superfluid to mimic bulk rotation and the associated mutual friction
dissipation. In addition, new parameters need to be understood. Of particular importance
in this respect is the so-called entrainment effect [27–31], the relevance of which will be a
recurring motif throughout this discussion.

2. The Essence of the Two-Fluid Model

The effort to model the dynamics of superfluid neutron stars draws inspiration from
laboratory systems. Historically, the thinking was based on Landau’s original two-fluid
model for He4 [32] (see also [33–35]), with aspects relating to experiments on cold atom
gases becoming increasingly relevant more recently. There are many conceptual similarities,
see [36] for a detailed discussion, but the fineprint details are quite different. In the case of
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neutron stars, both neutrons and protons are expected to form Cooper-type pairs, which
then form condensates that can be described by fluid equations. A key distinction from
helium is that the two components no longer represent the “superfluid” and “normal”
parts of a single particle species. Instead, the two degrees of freedom describe (in the
simplest case, which we focus on here) the neutrons and a conglomerate of all charged
components (which are expected to be electromagnetically coupled on a short timescale).

The dynamical equations for the system have to faithfully represent the degrees of
freedom and the interaction between them. As we will see, there are different ways to do
this. In essence, the models involve an element of choice (or perhaps, taste). The modern ap-
proaches to the problem reflect this choice, but they are all related in a fairly straightforward
manner so one can translate the results from one paradigm to another [37] (we provide
specific examples of this later). The ability to complete such translations is, of course,
crucial. It should not be the case that the physics depend on our mathematical perspective.

The traditional approach was adopted in the seminal effort of Mendell [38,39], who
extended the non-dissipative zero-temperature equations to account for the main dissipa-
tion mechanisms for neutron star cores. His work remains a guiding beacon for research in
this area. The final set of equations include the mutual friction coupling due to electrons
scattering off of rotational vortices in the condensates (see also [28,40]). As the mathemati-
cal framework was applied to the problem of unstable modes of oscillation in a spinning
neutron star, it became clear that the mutual friction is crucial for an understanding of
neutron star dynamics. The mechanism may, in fact, suppress (some) rotational instabilities
entirely [41]. Mendell’s work also demonstrates how the model is complicated by the
so-called entrainment effect [27–31], which accounts for the fact that the flow of one fluid
may impart momentum in another. As the entrainment features prominently in discussions
of superfluid neutron star dynamics, we will pay particular attention to its origin and
interpretation in the following. In fact, this will be the main thread of the discussion.

2.1. The Equations of Motion

In order to provide an intuitive impression of the equations that govern superfluid neu-
tron stars, we will focus on the Newtonian equations. It is well known that realistic neutron
stars require general relativity for a detailed description, but the main features of the fluid
dynamics do not change conceptually—the keen reader may confirm this by consulting the
material in [37]—so we can introduce the ideas within the somewhat simpler Newtonian
context. The starting point for our description is different from that of Mendell [38,39]
in that we make a clear distinction between transport velocities and momenta for the
different components of the system. One reason for doing this is that the relations we write
down then follow as the low-velocity/weak-field limit of the corresponding relativistic
model [37].

There are, in fact, several different ways to obtain these equations. Perhaps the
most intuitive is to develop the relativistic theory and then work out the Newtonian
limit [37]. Working entirely within Newtonian physics, it is possible to develop a variational
framework (involving time-shifts to mimic the Lagrangian variations from the relativistic
model) for deriving the equations [42]. There is also a hybrid approach, centred on the Milne
spacetime structure and the Cartan connection (involving a degenerate metric) [43–45].
A final alternative is provided in [46]. One may also consider a general approach for adding
dissipation to the system, drawing on Onsager’s celebrated symmetry principle [47].

Making use of a chemical label x, y (which does not follow the Einstein summation
convention), the simplest relevant superfluid neutron star model involves two compo-
nents, distinguishing the superfluid neutrons, with mass density ρn and velocity vi

n, from
the “protons”, a conglomerate of all charged components, represented by ρp and vi

p.
In absence of dissipation, each component is represented by a continuity equation (for
mass conservation).

∂tρx +∇i

(
ρxvi

x

)
= 0 (1)
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where x = n or p. Here, and in the following, we express the equations in terms of compo-
nents in a coordinate basis, which means that ∇i should be viewed as the corresponding
covariant derivative. Momentum conservation leads to(

∂t + vj
x∇j

)(
vx

i + εxwyx
i

)
+∇i(Φ + µ̃x) + εxwyx

j ∇iv
j
x = 0 . (2)

where y 6= x, and the relative velocity between the components—an essential part of the
story—is defined as

wyx
i = vy

i − vx
i . (3)

In this description, the matter equation of state is represented by a Lagrangian (see [47]
for details)

L = ∑
x

mx

2
gijni

xnj
x − E(nx, ni

x) (4)

where ni
x = nxvi

x, and the internal energy E notably depends not only on the matter
densities, it must also involve the relative velocity. Assuming E = E(nn, np, w2

np), the
chemical potential for each particle species is given by

µx = mxµ̃x =

(
∂E
∂nx

)
ny,w2

np

, (5)

with mx the mass of each particle. We also have the entrainment coefficients

εx =
2α

ρx
where α =

(
∂E

∂w2
np

)
nx

. (6)

Finally, Φ represents the gravitational potential (as we want to model stars!).
In order to appreciate the impact of the entrainment, it is useful to note that the fluid

momentum is given by

px
i =

(
∂L
∂ni

x

)
nx

= mx

(
vx

i + εxwyx
i

)
, (7)

This illustrates the key point: The momentum of each fluid need not be parallel with
the fluid’s transport velocity. The expression for the momentum (7) suggests an intuitive
way to think of this. We may define the effective proton mass in a frame moving with the
neutrons (setting vi

n = 0):
mp(1− εp)vi

p ≡ m∗pvi
p (8)

with a similar relation for the neutrons defining m∗n. We then have

2α = ρpεp = np(mp −m∗p) ≡ npδm∗p . (9)

Moreover, it is easy to see that the effective masses must be related by

mn −m∗n =
np

nn
(mp −m∗p) . (10)

The notion of a dynamical effective mass is important as it encodes a key effect
expected from nuclear physics. In a neutron star core, the strong force endows each
neutron with a virtual cloud of protons (and vice versa). This affects the effective mass of
the particle and, when it moves, alters the momentum. The mass of each neutron appears
different from what it would be in isolation. It is important to stress that the dynamical
effective masses are distinct from the static (Landau) effective masses in nuclear physics
calculations. Having said that, the two sets are close for systems with small proton fractions
(see the discussion in [3]). The upshot is that when we model neutron star cores we can, to
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good precision, ignore the somewhat technical point that explains the difference. This was,
indeed, done in the analysis that led to the results shown in Figure 2.

An alternative description [43–45] introduces a symmetric “mobility matrix” Kxy

such that
px

i = Kxxnx
i +Kxyny

i . (11)

It is easy to see that we then identify

m∗p = npKpp (12)

and
α =

1
2

nnnpKnp . (13)

This picture highlights the interpretation of the entrainment as a measure of how easy it
is to induce a relative flux between the two fluids, in essence how mobile the superfluid
neutrons are relative to the protons (and vice versa). At the end of the day, the two
descriptions are (obviously) equivalent and point to a model that requires three equation
of state parameters: the two number densities nn and np along with a measure of the
entrainment, such as α, m∗p, or Knp.

2.2. The Crust and the Chemical Gauge

The equations we have considered so far apply in the fluid outer core of a neutron star
(provided we ignore electromagnetism). In this region, the distinction between the two
components is clear. We count, on the one hand, all the neutrons and, on the other hand,
everything else. The inner crust region requires additional consideration—the problem
is both similar and different. The similarity is obvious at a glance: At densities beyond
neutron drip, some neutrons remain bound in nuclei, but there is also a “gas” of free
neutrons. The assignation of neutrons to each component follows from the equation of
state, once the nature of the ions in the lattice is established [3]. We are dealing with a
two-component system that may exhibit a relative flow. However, if we take a closer look,
we see that there are complicating aspects. In particular, it is not clear to what extent the
neutrons that are “confined” to the crust nuclei are able to move [48]. This depends on how
strongly bound they are, to what extent they can tunnel through the relevant interaction
potentials, and so on.

An intuitive discussion of this problem introduces the notion of chemical “gauge” [48].
The chemical gauge involves the interpretation of the different quantities (number densities,
etc), while the two-fluid model remains unchanged at the formal level. The idea is some-
what abstract, so let us focus on the situation in the inner crust. To make a distinction from
the outer core setting, we refer to the two components in the crust as “free” neutrons, with
density nf, and “confined” baryons, represented by nc [48,49]. We also need to consider
the number density of baryons associated with crust nuclei, nN (representing all protons
as well as the confined neutrons, making up the ions in the lattice). The point is that this
set-up is distinct from one where we count all neutrons, nn. To make things clear(er) we
need to consider the physical meaning of nf and nc. We also need to explain why we make
a distinction between the core and the crust. The answer is easy. In the crust, we have to
consider the additional restoring force due to the elastic lattice. The elastic restoring force
involves the nuclei, and hence the confined neutrons. The component that is free to move
is represented by nf. Of course, the entrainment blurs the distinction. Still, the option to
consider a two-fluid model based on nn and np also in the crust is not very attractive, as one
would then have to split the elastic contribution between the two momentum equations,
and this would be (even more) confusing.
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Figure 2. An indication of the dependence of the effective neutron mass—encoding the superfluid
entrainment—on the baryon number density, nb. In the crust, the curve has been fitted to the data
points from Chamel and collaborators [50–52] (shown as filled circles). The results in the core are
obtained by assuming that the dynamical effective mass is equal to the Landau effective mass from
nuclear physics (which should be a good approximation as the proton fraction is small).

In essence, the chemical gauge relates to the neutrons that are considered “free”. The
issue is subtle since, in a dynamical situation, the neutrons that are associated with the
nuclei may be able to tunnel through the relevant interaction potential. This, in turn, makes
concepts like the atomic number less precise. In general, one may introduce a new basis
such that

ni
f = ni

n + (1− aN)ni
p (14)

where aN (which we will take to be constant in the following; a good approximation at the
level of the individual fluid elements [48]) accounts for the fact that some of the neutrons
move with the (crust) protons. We also have

ni
N = aNni

p (15)

Given these relations, it is easy to show that the neutron momentum is independent
of the chosen chemical gauge, represented by aN [48]. This follows immediately from the
definition of the momentum (7). We then have pn

i = pf
i and µn = µf. These are important

identifications, but it is clear that we must in general have vi
f 6= vi

n and εf 6= εn. In essence,
we have to execute some care when we discuss the entrainment and the dynamics of the
neutron star crust.

The discussion of chemical gauge is reflected by different models for crust dynamics
discussed in the literature, see for example [49,53–58]. At first sight, various descriptions
may appear to differ, but a close inspection shows that they have the same physics content.
One of the key recent developments is the realisation that the superfluid neutrons in
the crust may not be particularly mobile. Evidence suggests that the superfluid neutron
component is strongly coupled to the crust lattice via Bragg scattering [50–52,59]. As a
result, the effective neutron mass may be as much as an order of magnitude larger than the
bare mass at some points in the crust, see the results shown in Figure 2. As we will argue
later, this result—which continues to be debated [60–63]—could have significant impact on
the dynamics of the system.
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2.3. Thermal Excitations

Moving on, let us consider another complicating aspect. So far we have taken the
view that neutron stars are cold and that our mission is to model superfluids well below
the critical transition temperature. Locally, this makes sense, but we have to be a bit careful
when we consider a global model. This is apparent from results for neutron star cooling,
see the example provided in Figure 3 (adapted from [6]). The results show that for any
given temperature there will always exist transition regions where the local temperature
is close to the critical temperature. In these regions one would expect thermal effects
to play an important role. They may, in fact, dictate the transition from multi-fluid to
single-fluid dynamics.

Perhaps not surprisingly—although the idea may seem somewhat unorthodox—we
can use the entrainment to account for the presence of thermal excitations. As the idea
takes a lead from the two-fluid model for helium, it is instructive to first consider this case.
The dynamics of superfluid helium is easy to understand if one starts from a system at
zero temperature. Then the dynamics must be entirely due to the quantum condensate;
we have a single quantum wavefunction, and the momentum of the flow follows directly
from the gradient of its phase. This immediately implies that the flow is irrotational (we
will address this later). At finite temperatures, we must account for thermal excitations
(e.g., phonons). A second dynamical degree of freedom arises since the excitation gas may
drift relative to the condensate. This motivates the two-fluid model—dating back to classic
work of London and Tisza (see [34] for a nice discussion)—based on a distinction between
a “normal” fluid component and a superfluid part [33–35].

log10 ρ (g/cm3)

Te
Φ

(K
)

coreinner crustouter crust

Figure 3. Temperature profiles for a neutron star cooling model with superfluidity and no additional
heating (thin black curves). Six (redshifted) temperature profiles are shown, representing ages 10−4

(top), 1, 100, 500, 103, and 104 yr (bottom), respectively. The critical temperatures for superfluid-
ity/superconductivity, as well as the different regions in the star, are also shown. The stellar model is
the same as is Figure 1 (reproducing the results from [6].)

The model we now advocate identifies the atoms (n) and treats the excitations (s) as a
massless entropy component [42,64]. This is different from the traditional approach from,
for example, [33–35], but it is easy to relate the two pictures. First of all, we identify the
drift velocity of the quasiparticle excitations in the two models. This is the variable that
introduces the “two-fluid” dynamics. Since it represents the part of the flow that is affected
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by viscosity, this component has a clear physical interpretation. In the standard model this
velocity, vi

N, is taken to be associated with the “normal fluid” component. In the alternative
framework, the excitations are associated with the entropy of the system, which flows with
vi

s. The two quantities should be the same, so we identify

vi
N = vi

s . (16)

The second fluid component—the “superfluid”—is commonly associated with a
“velocity” vi

S, directly linked to the gradient of the phase of the superfluid condensate
wave function. This is, in fact, a rescaled momentum, and (as discussed in [42]) we
should identify

vi
S =

pi
n

m
. (17)

where m is the atomic mass. Combining (7) with these identifications, we get

ρvi
S = ρ

[
(1− ε)vi

n + εvi
N

]
, (18)

where ε = 2α/ρ, with ρ the total mass density. The total mass current is then given by

ρvi
n =

ρ

1− ε
vi

S −
ερ

1− ε
vi

N , (19)

and if we introduce the superfluid and normal fluid densities;

ρS =
ρ

1− ε
, and ρN = − ερ

1− ε
, (20)

we arrive at the text-book result:

ρvi
n = ρSvi

S + ρNvi
N . (21)

Obviously, it is also the case that ρ = ρS + ρN. This completes the translation.
The comparison shows that the variational approach identifies natural physical vari-

ables: the average drift velocity of the excitations and the total momentum flux. Since the
system can be “weighed” the mass density ρ also has a direct interpretation. Moreover, the
variational derivation identifies the truly conserved fluxes, see (1). In contrast, the orthodox
model uses quantities that only have statistical meaning [32]. The density ρN is inferred
from the mean drift momentum of the excitations. There is no “group” of excitations
that can be identified with this density. Since the superfluid density ρS is inferred from
ρS = ρ− ρN, this is a statistical concept, as well. Furthermore, the two velocities, vi

N and
vi

S, are not individually associated with a conservation law. From a practical point of view,
this is not a problem. The various quantities can be calculated from microscopic theory,
and the results are known to compare well to experiments. At the end of the day, the two
descriptions are (as far as applications are concerned) identical, and the preference of one
over the other is very much a matter of convention.

The comparison between the two formulations highlights a new concept: the entrain-
ment between entropy and matter, which represents the effective mass of the thermal
component. Comparing to (7) we see that we have

α = −ρN

2

(
1− ρN

ρ

)−1
. (22)

This suggests that the entrainment coefficient α diverges as the temperature increases
towards the superfluid transition, as ρN → ρ. This may seem peculiar (as nature abhors
singularities), but it is simply a manifestation of the fact that the two fluids must lock
together as one passes through the phase transition. The key point is that the model
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remains non-singular as long as vn
i → vs

i sufficiently fast as the critical temperature is
approached.

Returning to the neutron star problem, we may now add a third prescription for the
entrainment to our arsenal. This approach involves a straight translation of (21) and the
introduction of the superfluid velocity as the scaled momentum. We then have

Vi
n =

1
mn

pi
n =

1
mn
∇iφ (23)

This has the advantage of being directly linked to the gradient of the phase of the
wavefunction of the quantum condensate, φ. This leads to the mass-flux for each component

ρxvi
x = ρxxVi

x + ρxyVi
y (24)

introducing the (symmetric) mass density matrix, ρxy. This description was used in seminal
work on superfluid neutron star dynamics [28,38]. Comparing to (7) it is easy to show that
we must have

ρn = ρnn + ρnp (25)

ρp = ρpp + ρpn (26)

and it also follows that
α = −1

2
ρnρpρpn

ρnnρpp − ρ2
pn

(27)

The discussion of thermal excitations allows us to make progress on the discussion
of the dynamics near the superfluid transition point. The problem has been considered
by, in particular, Gusakov and collaborators [65–68] (see also [69]). Intuitively, it is clear
what we need to do: we have to add thermal excitations to the model. The outer core of
a neutron star would then require (at least) four distinct components: neutrons, protons,
electrons, and the entropy (representing the thermal quasiparticle excitations). While it is
straightforward to write down the equations for such a system, solving them would be
messy so it makes sense to (at least as a start) ignore two of the relative degrees of freedom.
First, we insist on charge neutrality (as before) by locking the protons and the electrons.
Second, we ignore the relative heat flux by locking the quasiparticles to the “normal”
component, represented by the electrons. This, again, leaves us with a two-fluid problem.
To get an impression of how this works, consider the key contribution from Gusakov and
Haensel [68], who expressed the finite temperature effects in terms of the mass density
matrix. Labelling the thermal excitations by an index qp, the total non-relativistic fluxes
can then be written

ρnvi
n = ρnn Vi

n + ρnp Vi
p + (ρn − ρnn − ρnp) vi

qp , (28)

ρpvi
p = ρpp Vi

p + ρpn Vi
n + (ρp − ρpp − ρpn) vi

qp , (29)

(here, it is worth noting that vi
qp is a true transport velocity, in contrast to Vi

x). The key
points are (i) the components of the mass-density matrix are now temperature dependent,
and (ii) the relations (25) and (26) only hold at T = 0. As in the case of (27), the model
can be translated to make contact with the variational derivation [70]. We then identify
a“thermal effective mass” that diverges as we approach the critical temperature. The formal
divergence may seem troubling, but an explicit example demonstrates that the model leads
to the expected behaviour. Far below the critical temperature the system exhibits a second
sound, but this degree of freedom is quenched as one approaches the edge of the superfluid
region leaving only the familiar sound waves in the normal fluid region [70].

The impact of finite temperature effects on neutron star dynamics has not yet received
the attention the issue deserves. The notable exception is a set of papers on the r-mode
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instability window [71–73], which demonstrates the importance of further work on the
problem.

3. Vortex Dynamics

The fluid equations we have considered do not—at least not explicitly—bring out one
of the defining features of a superfluid system. Because the superfluid “velocity” follows
from the gradient of a scalar phase, it should be irrotational. The fluid equations do not
reflect this. This is as it should be, as macroscopic superfluids mimic bulk rotation by
forming a dense array of quantised vortices, and as long as we average over a large enough
region, the equations we have written down should be appropriate. Of course, the presence
of vortices adds features to the problem.

At the fluid dynamics level, we introduce the angular frequency in the usual way;

2Ωi
x = εijk∇jvx

k , (30)

As a result, on the macroscopic level we identify (assuming that the length scale
considered is sufficiently small that we can treat εn as constant)

εijk∇j pn
k = 2mn[Ωi

n + εn(Ωi
p −Ωi

n)] . (31)

Meanwhile, at a mesoscopic level (where vortices are resolved) the circulation of
the neutron momentum is quantised. Representing the mesoscopic “momentum” by p̄k

n,
we have

1
mn

εijk∇j p̄k
n = κi =

h
2mn

κ̂i , (32)

where
κ = h/2mn ≈ 2× 10−3 cm2/s. (33)

and the vortices are aligned in the direction of κ̂i. In practice, we expect to obtain (31)
from (32). Denoting the involved averaging procedure by angular brackets we then have

〈εijk∇j p̄n
k 〉 = Nvmnκi = εijk∇j pn

k (34)

and we see that the vortex density (per unit area) is given by

Nvκ = 2[Ωn + εn(Ωp −Ωn)] . (35)

Formally, the fluid equations represent a macroscopic average over a large number of
individual fluid elements. This is a natural approach for neutron stars where the focus is
on dynamics at length scales vastly larger than the inter-particle separation. Of course, in
order to assign values to the various parameters (like the entrainment) one must resolve
the problem at the microscopic level. This then raises issues concerning the averaging
required to make contact with the macroscopic level. When we add issues related to the
vortex dynamics, the situation is made even more complex. We have an intermediate
“mesoscopic” level, sufficiently large that one can average over a large collection of particles
(and discuss “fluid” dynamics in a sensible way) and yet small enough that one can resolve
the individual vortices. The macroscopic equations follow from an averaging over a large
set of vortices, leading to the smooth equations of motion (2). To get an idea of the scales
involved, it is useful to relate the vortex density to a typical neutron star (bulk) rotation rate;

Nv ≈ 6× 105
(

10 ms
P

)
cm−2 (36)

where P is the observed rotation period. This suggests that that the kind of averaging
we have in mind would lead to fluid elements at the centimetre scale. It is also clear that
the model we have outlined assumes that the vortices form an an aligned array. This is a
debatable assumption, but it is a natural starting point.
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3.1. Mutual Friction

The vortex dynamics, both collective and individual, impact on the large-scale be-
haviour of neutron star superfluids. From a conceptual point of view, we need to under-
stand how different effects associated with the vortices enter the fluid equations and to
what extent this affects observed phenomena. The so-called mutual friction is key to this
discussion. The classic argument leading to the vortex mutual friction (due to seminal
work by Hall and Vinen in the 1950s [74]) involves the scattering of thermal excitation
(phonons) off of the normal fluid vortex cores in superfluid helium. Mathematically, the
neutron star problem is solved using the same strategy, but the physics argument is very
different [28,38,40].

At the mesoscopic level, the motion of a neutron vortex is affected by fluid flow past it
(known as the Magnus “force”, see [40]). At the same time, the circulation associated with
the vortex induces circular flow in the protons because of the entrainment. The typical scale
for this induced flow is related to the coherence length of the superfluid condensate, of
order 100 fm. In effect, the superfluid exhibits “fluid” behaviour on a much finer scale than
one would expect above the superfluid transition temperature (where the size of a fluid
element is dictated by the mean-free paths of the particles involved). The upshot of this is
that a normal fluid component cannot “react” to the vortex circulation on the mesoscopic
scale. This is essentially what happens in the helium problem. For neutron stars we have
another option—indeed, expected from the physics, see Figure 1—associated with the fact
that the protons in the star’s core will also form a condensate. This means that they can be
dragged along with the neutron circulation (due to the entrainment), while the electrons
cannot (at least not as a collective). The induced proton flow generates a magnetic field
on the vortex, and the scattering of electrons off of this field acts resistively on the vortex
motion [28]. The main friction mechanism in the star’s crust is (yet again) different as it
involves excitations of Kelvin waves on the vortices due to interactions with the lattice
nuclei [75–77].

In order to implement the mutual friction in the fluid equations, we first of all consider
a resistive force proportional to the difference in velocity between the vortex (moving with
vi

v) and the charged fluid flow. That is, we have

f e
i = R(vp

i − vv
i ) (37)

acting per unit length of the vortex. Neglecting the inertia of the vortex core, and balancing
f e
i to the Magnus “force”, we arrive at the mutual friction acting on the neutrons (per unit

length of vortex) [39,40,74]

f mf
i = B′ρnεijkκ jwk

np + Bρnεijkεklmκ̂ jκlw
np
m . (38)

An equal and opposite force affects the protons. Notably, the macroscopic force does
not explicitly involve the vortex velocity. As discussed in [28,39,40] estimates for the
(dimensionless) mutual friction coefficients lead to

B =
R

ρnκ
≈ 4× 10−4

(
δm∗p
mp

)2(
mp

m∗p

)1/2( xp

0.05

)7/6
(

ρ

1014g/cm3

)1/6

, (39)

along with, as the system is in the weak drag regime,

B′ ≈ B2 , (40)

where xp = ρp/ρ is the proton fraction. The direct dependence on the entrainment (via
the effective proton mass) is clear. Without entrainment, the proposed mechanism would
not lead to mutual friction. The relative importance of different proposed mutual friction
mechanisms is discussed in [77,78].
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In terms of completing the dissipative fluid equations, we note that the Magnus effect
is already accounted for in the left-hand side of (2), so we only need to add the averaged
version of the force (38) to the right-hand side. In the particular case of a straight vortex
array, the required averaging is easy: we simply need to multiply (38) by the local number
density of vortices per unit area, Nv, and we are done.

3.2. Pulsar Glitches

As a dynamical example of mutual friction in action, it is natural to turn to the pulsar
glitch phenomenon. Mature neutron stars tend to be extremely stable rotators, but many
young systems exhibit timing noise and (more or less) regular glitches, instances where
the observed spin rate suddenly increases (see [79] for a review and [12] for a collection of
glitch data). These sudden spin-up events are followed by a slow relaxation towards the
original spin-down rate.

The archetypal glitching neutron star is the Vela pulsar, which has (since the first event
in 1969) exhibited a sequence of similar size glitches. The general understanding is that
these glitches are a manifestation of the superfluid neutron star interior [10]. The idea
was first put forward by Anderson and Itoh [11] who explained a glitch as a tug-of-war
between the tendency of the neutron superfluid to match the spindown rate of the rest
of the star by expelling vortices and the impediment due to the vortices being “pinned”
to crust nuclei. The vortex pinning prevents the neutron superfluid from spinning down,
leading to the development of a spin lag with respect to the rest of the star (which is spun
down electromagnetically). The increasing spin lag increases the Magnus force exerted on
the vortices until—at some threshold limit—the vortices break free and the excess angular
momentum is transferred to the crust. This transfer of angular momentum is observed as a
spin-up of the crust component (to which the star’s magnetic field is locked).

The model makes sense at the “cartoon” level, but it is probably fair to say that we do
not yet have a calculable model (see [80–86] for progress in this direction). This is not to
say that there has not been progress. In particular, the relevant microphysics, especially
concerning the interaction between neutron vortices and crust nuclei [19–26], is better
understood, leading to a clearer idea of the location of the superfluid reservoir associated
with the events. Observations support the notion that the vortices are (mainly) pinned
in the crust, and hence the angular momentum available is that associated with the crust
superfluid.

By considering the accumulated reversal in the spin down associated with glitches—an
argument that requires regular events of (roughly) the same size—we may infer that
we need a superfluid reservoir with moment of inertia In/I ∼ 1% where I and In are,
respectively, the moments of inertia of the entire star and the superfluid component [87].
This agrees well with the estimated moment of inertia of the crust (which is dominated
by the free neutrons in the inner crust, see Figure 1) for realistic equations of state [88].
However, if the effective neutron mass is large (as suggested by the results shown in
Figure 2) this explanation runs into trouble [89,90]. As this is an important point, let us
sketch the argument. First of all, we introduce a “body” averaged two-component model,
including entrainment coupling. We then have(

Ip − εn In
)
Ω̇p + εn InΩ̇n = −aΩ3

p −Npin −Nmf (41)

where the first term on the right-hand side represents the standard torque due to a magnetic
dipole (the coefficient a depends on the moment of inertia, the magnetic field strength and
orientation), and

(1− εn)InΩ̇n + εn InΩ̇p = Npin +Nmf . (42)

We have added terms representing torques associated with vortex pinning (Npin) and
dissipative mutual friction (Nmf). Noting that the right-hand side of (42) vanishes for
perfect pinning, we see that—as long as the vortices remain pinned— the crust spins down
according to
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ĨΩ̇p = −aΩ3
p where Ĩ = Ip −

εn

1− εn
In . (43)

The entrainment changes the effective moment of inertia and, hence, the magnetic
field inferred from the spin-down rate (neither of which are directly observed). Expressing
the entrainment in terms of the (body averaged) effective neutron mass, we have

εn = 1− 〈m
∗
n〉

mn
=⇒ Ĩ = I − mn

〈m∗n〉
In . (44)

If the effective mass is large, then the two components are essentially locked and
the system spins down as one body ( Ĩ → I in the limit where 〈m∗n〉 � mn). Turning to
the rotation of the superfluid, we note that Ωn changes even when vortices are pinned.
From (42) we have

Ω̇n = − εn

1− εn
Ω̇p =

(
1− mn

〈m∗n〉

)
Ω̇p . (45)

This impacts on the estimated glitch jumps because the spin-lag between the two
components takes a longer time to develop if the effective neutron mass is large. Working
out the accumulated lag and assuming perfect angular momentum conservation during
the glitch, we have (assuming I ≈ Ip)

∆Ωp

Ωp
≈ mn

〈m∗n〉

(
In

I

) tglitch

2τc
(46)

where τc is the characteristic age inferred from observations, and tglitch is the time between
glitches. Introducing the activity parameter A as in [87]—an argument that requires a
system to exhibit regular glitches of roughly the same magnitude, as in the case of the Vela
pulsar and the young x-ray pulsar J0537-6910 [91,92]—we have the constraint

In

I
≈ 2τcA

〈m∗n〉
mn

(47)

and we see that, if the (averaged) effective neutron mass is large the constraint on the
moment of inertia inferred from observations will be more severe. For a set of realis-
tic equations of state and suggested pairing gaps, one finds values for 〈m∗n〉/mn in the
range 4–6. This indicates that we cannot explain the observed glitches in terms of the
crust superfluid [89,90] (although see [93]). This region does not have sufficient moment of
inertia to explain what we see.

A plausible resolution to the problem is that some fraction of the core superfluid is
also involved in the glitch, just enough to explain the observations. This could then allow
us to use observed data to constrain the singlet pairing gap for the neutrons (see Figure 1),
an interesting complement to the constraints on the superfluidity obtained from neutron
star cooling [2]. Interestingly, we may also turn the question around. Suppose the pairing
gaps were firmly established. Then the observations would—at least in principle—allow
us to infer the star’s mass [94] (see also [95,96]). The superfluid would provide an internal
weighing scale. This may seem somewhat far fetched, but it is a neat idea.

A precise understanding of glitch dynamics would involve both an explanation of
statistical properties of a large set of events (an issue we have not considered here) and
models able describe singular well-resolved events (pulse-by-pulse, to the extent that
this will ever be possible). The latter would constrain the mutual friction parameters,
as this is the mechanism that couples the two components in the system once vortices
unpin. Until recently, the best resolved event was the so-called Christmas glitch in the
Vela pulsar [97], limiting the glitch rise time to less than a minute or so. Such an evolution
would accord with the theoretical understanding of mutual friction. The recent results
from [98] is a potential game changer. Catching the Vela pulsar in the act of glitching, the
new data suggest two features that must be explained by theory: a slight dip in the spin
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rate preceding the glitch and a short term over-shoot following it [77,99]. One possible
explanation involves more than two components, but the discussion is only just beginning.

3.3. Superfluid Turbulence

So far we have assumed that the vortices are (at least locally) straight and that they
form an aligned array. Laboratory experiments suggest that both assumptions are dubious.
Turbulent behaviour, associated with vortex tangles, is common in superfluid systems, and
there is no reason why neutron stars should be different [100–102].

If we want to model vortex tangles we, first of all, have to consider what happens
when the vortices bend. The circulation of a curved vortex induces a flow that affects
the motion of the vortex itself. The analysis proceeds as in the case of superfluid helium,
although we now have to account for entrainment. As discussed in [102], the vortex
curvature induces a contribution to the (mesoscopic) neutron momentum

p̄ind
i

mn
= νεijks′js′′k (48)

where

ν =
κ

4π
log
(

b
a0

)
. (49)

A typical value of the size of the vortex core would be a0 ≈ 100 fm, while we can take
b to be given by the inter-vortex spacing. We also have

s′i = κ̂i (50)

s′′i = κ̂ j∇jκ̂i , (51)

see Figure 4. Working out what this implies, we find that the difference between the two
induced velocities is

vn
i − vp

i = ν̃εijks′js′′k (52)

where
ν̃ =

1
1− εn − εp

ν . (53)

This then leads to additional contributions—that should be added to (38)—to the
mutual friction

f ind
i = −ρnκν̃

[
B′κ̂ j∇jκ̂i + Bεijkκ̂ jκ̂l∇l κ̂

k
]

(54)

effectively representing the tension of the vortices.

̂κ
s′�

s′�′�
s′� × s′�′�

Figure 4. A sketch of the vectors involved in the representation of the induced flow for a
curved vortex.

The introduction of the vortex curvature is important. From the helium problem
we know that there exists a critical relative flow above which oscillations are induced
in the vortices rendering the array unstable [103], leading to a different form for the
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mutual friction [104] (see [105,106] for interesting numerical simulations). This leads to the
formation of a vortex tangle and a state of turbulence. In order to trigger the instability that
drives turbulence, we need a flow along the vortices [40,103,107]. This is easy to imagine
in principle and fairly straightforward to arrange in the laboratory, but when would this
happen in a neutron star? We need to induce a large-scale flow that involves a component
along the vortices. Two plausible scenarios come to mind. The first involves free precession,
where the precession motion induces circulation in the neutron star core. The results
from [108,109] suggest that the vortex instability may prevent precession in systems where
the vortices are strongly pinned. The second scenario relates to neutron star seismology,
where the large-scale oscillations may trigger local turbulence. It is also intriguing to
entertain the possibility that the vortex array becoming unstable may explain the onset of
glitches [110]. These are interesting ideas—see [111–114] for further discussion—but many
of the relevant details remain to be worked out.

4. Oscillations and Instabilities

The discussion has taken us to the point where we are ready to discuss how superflu-
idity affects the problem of neutron star seismology, the general idea being that one would
like to combine observations with theory models for neutron star oscillations to probe
the physics of the star’s interior. This is, inevitably, a challenging task, but as there are
promising scenarios it is important to understand how superfluidity enters the discussion.
There are different aspects to this.

First of all, we may ask how the additional superfluid degree(s) of freedom impact on
the oscillation spectrum. In general, different classes of oscillation modes can be—more
or less clearly—assigned to different aspects of neutron star physics. Hence it is not
surprising that a superfluid star has a distinct set of oscillation modes that arise because
of the existence of the second sound [115–126], and it makes sense to ask if one may (at
some point in the future) be able to use observations, e.g., via gravitational waves [127], to
constrain the physics.

The second obvious aspect relates to the mutual friction. How does the vortex-
mediated friction impact on the mode oscillations? This turns out to be a crucial question
in the context of the gravitational-wave driven (CFS) instability (see [128] for a review).
In fact, in the case of the fundamental mode of the star, the evidence is that the mutual
friction may completely suppress the instability [41,123]. The situation is slightly different
for the inertial r-modes, for which the situation may be more subtle. Still, there has been
progress towards an understanding of the nature of the r-modes in a superfluid neutron
star [129–134]. The increasingly detailed effort to include finite temperature effects [71–73]
is notable in this respect.

A third relevant issue relates to the possibility that superfluidity may bring new
features. Particularly interesting in this respect is the demonstration that superfluid systems
may exhibit a two-stream instability, once the relative flow exceeds a critical level [135–139].
The question of whether astrophysical systems are able to reach the critical level for the
onset of this kind of instability remains open, but it is undoubtedly an interesting idea.

Decoupling the Degrees of Freedom

Considering the problem at the conceptual level, it is useful to discuss the equations
that govern a perturbed system (and which one would have to solve in order to determine
the frequencies of the different oscillation modes). This also involves assumptions about the
background one is perturbing with respect to. In the present case, as we want to highlight
how the mutual friction enters the discussion, it makes sense to consider rotating stars but (i)
limit ourselves to first order in the slow-rotation approximation (leaving out the centrifugal
deformation which enters at second order), and (ii) focus on a background configuration
where the two fluids rotate together. The general problem, with the components rotating at
different rates already in the background, is much more complicated (see for example [140]).
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Perturbing the equations of motion and working in a frame rotating with the angular
frequency of the unperturbed star, Ωj, we have

∂t(δvx
i + εxδwyx

i ) +∇i(δµ̃x + δΦ) + 2εijkΩjδvk
x = δ( f x

i /ρx) (55)

where where δ represents Eulerian variations, f x
i represents the mutual friction, and

∂tδρx +∇j(ρxδvj
x) = 0 . (56)

For the usual two-component system, we have two fluid degrees of freedom, and one
might expect this to imply that the set of oscillation modes “doubles”, with each mode of a
normal fluid star having a new “superfluid” counterpart. Detailed work [115–126] brings
out this expectation (with some caveats that we will comment on later).

It is useful to ask what happens if we try to decouple the two degrees of free-
dom [119]. The first natural degree of freedom represents the total mass flux. Introducing
the weighted sum

ρδvj = ρnδvj
n + ρpδvj

p (57)

and combining the two Euler equations accordingly, we find that

∂tδvi +∇iδΦ +
1
ρ
∇iδp− 1

ρ2 δρ∇i p + 2εijkΩjδvk = 0 (58)

where ρ = ρn + ρp, and the pressure is obtained from

∇i p = ρn∇iµ̃n + ρp∇iµ̃p . (59)

In deriving (58) we have used

ρn∇iδµ̃n + ρp∇iδµ̃p = ∇iδp− δρ∇iµ̃ = ∇iδp− 1
ρ

δρ∇i p (60)

where it has been assumed that the two fluids are in chemical equilibrium in the back-
ground; µ̃n = µ̃p = µ̃. Note also that, in the general case where the background fluids are
not co-rotating, there will be additional contributions to (60) associated with the differential
rotation and the entrainment.

We also have the usual continuity equation

∂tδρ +∇j(ρδvj) = 0 . (61)

In effect, we have two equations which are identical to the perturbation equations
for a single fluid body. In particular, we see that (58) does not contain the mutual friction.
This suggests that the co-moving degree of freedom is only damped by this mechanism by
virtue of the coupling to the second degree of freedom.

The other degree of freedom in naturally expressed in terms of the difference between
the perturbed velocities:

δwj = δvj
p − δvj

n . (62)

Combining two Euler equations in the relevant way, we then have

(1− ε̄)∂tδwi +∇iδβ + 2B̄′εijkΩjδwk − B̄εijkΩ̂jεklmΩlδwm = 0 (63)

where we have defined
δβ = δµ̃p − δµ̃n (64)
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which represents the (local) deviation from chemical equilibrium induced by the perturba-
tions. We have also introduced the simplifying notation

ε̄ = εn/xp , B̄′ = 1−B′/xp , B̄ = B/xp (65)

where xp = ρp/ρ is the proton fraction (as before). Again, Equation (63) does not appear
to couple the two degrees of freedom. The explicit coupling is entirely due to the second
continuity equation. It is natural to use the proton fraction to complement the total density
ρ. If we do this, then we find that

∂tδxp +
1
ρ
∇j

[
xp(1− xp)ρδwj

]
+ δvj∇jxp = 0 . (66)

This equation shows that the two dynamical degrees of freedom are coupled unless the
proton fraction is constant [120].

In order to complete the formulation of the mode problem for superfluid neutron stars,
we need to discuss two further issues: the equation of state and the boundary conditions.
Starting with the equation of state, we need additional relations to close the system of
equations. This typically introduces a less direct coupling between the fluid degrees
of freedom. Basically, we need to relate [δp, δβ] to [δρ, δxp] (or some other combination
of these variables). For models where the two fluids co-rotate in the background we
have (in the general case there will be terms depending on the relative rotation and the
entrainment here)

δρ =

(
∂ρ

∂p

)
β

δp +

(
∂ρ

∂β

)
p
δβ (67)

and

δxp =

(
∂xp

∂p

)
β

δp +

(
∂xp

∂β

)
p
δβ . (68)

These relations give us an opportunity to discuss the impact of matter stratification
on the star’s oscillation spectrum. Focus first of all on the first relation and a single-fluid
problem described by (58). This problem has two intuitive limits [141]. In the first, a
displaced fluid element immediately equilibrates to the composition of its surroundings in
the sense that the motion maintains (with ∆ representing a Lagrangian variation and ξ j the
associated displacement vector)

∆β = δβ + ξ j∇jβ = 0 =⇒ δβ = 0 (69)

where the latter follows since the background is in equilibrium (β = 0). In this limit the
equation of state is effectively a barotrope, and a non-rotating star has the usual f- and
p-modes, with inertial modes like the r-mode becoming non-trivial due to the Coriolis force
in a rotating star. Another “simple” limit is that of very slow nuclear reactions, where a
moving fluid element does not have time to adjust before it moves on. In this limit we have
∆xp = 0. This introduces buoyancy and leads to the presence of g-modes associated with
composition gradients [141]. These arguments are standard. Now, superfluidity quenches
the nuclear reactions so one might expect that the second argument would apply, but
the answer turns out to be different as the variable δβ is dynamical. The logic that leads
to the buoyancy breaks down and the (usual) g-modes disappear [117,119]. Intuitively,
the two fluids move relative to one another, so a varying proton fraction does not lead
to stratification (in the usual sense). We may, however, reintroduce a set of composition
g-modes by considering the conditions beyond the density at which the muons first appear.
We then have to consider a conglomerate of protons-electrons-muons, representing one of
the two fluids, which will exhibit buoyancy due to the varying muon fraction [142,143].

The boundary conditions also involve elements of choice, reflected by the discussion
in the literature (see [118,121,122]). The surface of the star is always identified by the
vanishing of the Lagrangian variation of the pressure, ∆p = 0. This would also be the
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appropriate surface condition for a star with a superfluid interior since the superfluid is
only present above the density of neutron drip. However, there are situations where one
may conceivably have to consider a superfluid surface, say for quark stars. In that case,
it may be sensible to assume that the two perturbed fluids move together (in the radial
direction) at the surface. For neutron stars, we need to focus on the junction conditions at
the edges of the superfluid region. As we have already discussed in the context of finite
temperature excitations, the dynamics in such regions may be characterised by the two
fluids locking together [70], so a natural option would be to introduce junction relations
that facilitate this behaviour. There may, of course, be different physics arguments to
consider. For example, at neutron drip the free neutron density vanishes, and this may
automatically enforce the required behaviour. At the end of the day we should let the
physics dictate what the mathematics has to do.

An oscillation problem of immediate relevance to observations involves the possible
crust dynamics induced by the mechanism that leads to magnetar flares. Quasiperiodic
oscillations seen in the x-ray tails from such events (see [144] for a review and further
context) are naturally interpreted in terms of the torsional oscillations of the crust. This,
in turn, involves (due to entrainment) the crust superfluid. Different aspects of this
problem are considered in [145–149]. As in the case of crust-driven glitches, the potentially
strong entrainment coupling has significant impact on the crust oscillations and hence the
interpretation of the observations.

Another topical problem related to neutron star oscillations—with immediate rel-
evance for gravitational-wave astronomy—involves the possible imprint of superfluid-
ity on the dynamical tide in an inspiralling binary system. This problem has been ex-
plored in [150,151], with suggestive results, but further effort is required to make the
models realistic.

5. Final Remarks

We have provided an introduction to different aspects that come to the forefront when
we consider the dynamics of a superfluid system, paying particular attention to the impli-
cations of the two-fluid model and the role of entrainment for different problem settings.
We have outlined the impact of superfluidity—and the associated vortex dynamics—on
problems of immediate relevant for astrophysics, like pulsar glitches and neutron star seis-
mology, adding references to the relevant literature that should help the interested reader
dig deeper. Further effort would, indeed, be required to reach a precise understanding of
specific technical aspects. The intention here was to provide a starting point rather than
the final destination.

In order to reach the journey’s end (whatever this may be) we have quite a lot of work
to do. This involves aspects we have touched upon, like the nuclear physics and the main
microphysics parameters (e.g., pinning and entrainment) and the averaging involved in the
fluid model (especially involving vortices and turbulence). There are also aspects we have
not considered, like the transport of heat in a superfluid system (e.g., the link to superfluid
phonons [152] and how this manifests itself in a fluid model) and features associated with
the anticipated superconductivity of the protons in a neutron star core [153–155]. Finally,
we need to be mindful of the fact that a truly quantitative model—making contact with
realistic microphysics—must be formulated in the context of general relativity. We are,
in many ways, far from this goal. The relevant multi-fluid framework exists [37], and a
number of simplified scenarios have been considered, but the challenges of truly realistic
model building remain formidable.
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