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Abstract: Classical black holes contain a singularity at their core. This has prompted various
researchers to propose a multitude of modified spacetimes that mimic the physically observable
characteristics of classical black holes as best as possible, but that crucially do not contain singularities
at their cores. Due to recent advances in near-horizon astronomy, the ability to observationally distin-
guish between a classical black hole and a potential black hole mimicker is becoming increasingly
feasible. Herein, we calculate some physically observable quantities for a recently proposed regular
black hole with an asymptotically Minkowski core—the radius of the photon sphere and the extremal
stable timelike circular orbit (ESCO). The manner in which the photon sphere and ESCO relate to
the presence (or absence) of horizons is much more complex than for the Schwarzschild black hole.
We find situations in which photon spheres can approach arbitrarily close to (near extremal) horizons,
situations in which some photon spheres become stable, and situations in which the locations of both
photon spheres and ESCOs become multi-valued, with both ISCOs (innermost stable circular orbits)
and OSCOs (outermost stable circular orbits). This provides an extremely rich phenomenology of
potential astrophysical interest.

Keywords: regular black hole; Minkowski core; Lambert W function; black hole mimic.

1. Introduction

Karl Schwarzschild first derived the spacetime metric for the region exterior to a
static, spherically symmetric source in 1916 [1]; only some 50 years later was it properly
understood that this spacetime could be extrapolated inwards to describe a black hole.
Without any loss of generality, any static spherically symmetric spacetime can be described
by a metric of the form

ds2 = −e−2Φ(r)
(

1− 2m(r)
r

)
dt2 +

dr2

1− 2m(r)
r

+ r2
(

dθ2 + sin2 θ dφ2
)

. (1)

For the standard Schwarzschild metric, one sets Φ(r) = 0 and m(r) = m0. Over the
past century, a vast host of black hole spacetimes, qualitatively distinct from that of
Schwarzschild, have been investigated by multiple researchers [2–14].

Furthermore, the field has now grown to not only include classical black holes, but also
quantum-modified black holes [15–18], regular black holes [19–23], and various other exotic
spherically symmetric spacetimes that are fundamentally different from black holes but
mimic many of their observable phenomena (e.g., traversable wormholes [24–39], gravas-
tars [40–46], ultracompact objects [47,48], etc. [49–51]; see [52] for an in-depth discussion).
Herein, we investigate a specific model spacetime representing a regular black hole. That is,
a spacetime that has a well-defined horizon structure, but the curvature invariants are
everywhere finite.
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Investigating black hole mimickers is becoming increasingly relevant due to recent
advances in both observational and gravitational wave astronomy. Projects such as the
Event Horizon Telescope [53–58], LIGO [59,60], and the planned LISA [61] are and will be
continuously probing closer to the horizons of compact massive objects (CMOs), and so there
is hope that such projects will eventually be able to distinguish between the near-horizon
physics of classical black holes and possible astrophysical mimickers [52]. Herein, we focus
on photon rings, ISCOs and OSCOs. Modifications to photon rings would potentially affect
the images gathered by the EHT. Modifications to ISCOs would potentially affect both
accretion disks and the final inspiral and plunge events detected by LIGO. In contrast,
OSCOs (outermost stable circular orbits) do not exist for Schwarzschild or Kerr black holes—
so any evidence for the existence of an OSCO would be of immediate astrophysical interest.

The model spacetime investigated in this work is a specific regular black hole with
an asymptotically Minkowski core, as discussed in [62,63]. This is an example of a metric
with an exponential mass suppression, and is described by the line element

ds2 = −
(

1− 2m e−a/r

r

)
dt2 +

dr2

1− 2m e−a/r

r

+ r2
(

dθ2 + sin2 θ dφ2
)

. (2)

A rather different (extremal) version of this model spacetime, based on nonlinear electrody-
namics, was previously discussed by Culetu [64], with follow-up on some aspects of the
non-extremal case in [65–67] (see also [68,69]).

Most regular black holes have a core that is asymptotically de Sitter (with constant
positive curvature) [19–22]. However, the regular black hole described by the metric (2) has
an asymptotically Minkowski core (in the sense that the stress-energy tensor asymptotes to
zero). Such models have some attractive features compared to the more common de Sitter
core regular black holes: the stress–energy tensor vanishes at the core, greatly simplifying
the physics in this region; and many messy algebraic expressions are replaced by simpler
expressions involving the exponential and Lambert W functions, whilst still allowing
for explicit closed form expressions for quantities of physical interest [62]. Additionally,
the results obtained in this work reproduce the standard results for the Schwarzschild
metric by letting the parameter a→ 0. Thus, the value of the parameter a determines the
extent of the “deviation” from the Schwarzschild spacetime.

If 0 < a < 2m/e, then the spacetime described by the metric (2) has two horizons
located at

rH− = 2m eW−1(− a
2m ), and rH+ = 2m eW0(− a

2m ). (3)

Here, W−1(x) and W0(x) are the real-valued branches of Lambert W function. We could
also write

rH− =
a

|W−1
(
− a

2m
)
|
, and rH+ =

a
|W0

(
− a

2m
)
|
. (4)

Perturbatively, for small a, we have

rH+ = 2m− a +O(a2), (5)

nicely reproducing Schwarzschild in the a→ 0 limit. For the inner horizon, since rH− < 2m,

rH− =
a

ln
(
2m/rH−

) (6)

implies rH− < a, whence we have a strict upper bound given by the simple analytic expression:

rH− <
a

ln(2m/a)
. (7)
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Certainly, lima→0 rH−(m, a) = 0 as we would expect to recover Schwarzschild; how-
ever, the form of rH−(m, a) is not analytic. This bound can also be viewed as the first term
in an asymptotic expansion [70] based on (as x → 0+)

W−1(−x) = ln(x) +O(ln(− ln(x))) = − ln(1/x) +O(ln(ln(1/x))). (8)

This leads to

rH− =
a

ln(2m/a) +O(ln(ln(2m/a)))
=

a
ln(2m/a)

+O
(

a ln(ln(2m/a))
(ln(2m/a))2

)
. (9)

More specifically (as a/m→ 0 or m/a→ ∞),

rH−

a
=

1
ln(2m/a)

+O
(

ln(ln(2m/a))
(ln(2m/a))2

)
. (10)

If a = 2m/e, then the two horizons merge at rH = 2m/e = a and one has an extremal
black hole. If a > 2m/e, then there are no horizons, and one is dealing with a regular
horizonless extended but compact object (the energy density peaks at r = a/4).

This object could either be extended all the way down to r = 0, or alternatively be
truncated at some finite value of r, to be used as the exterior geometry for some static and
spherically symmetric mass source that is not a black hole. This is potentially useful as a
model for planets, stars, etc. Consequently, we also incorporate aspects of the analysis for
a > 2m/e as and when required to generate astrophysical observables in the case when
Equation (2) is modeling a compact object other than a black hole.

2. Geodesics and the Effective Potential

Continuing the analysis of [62], we now calculate the location of the photon sphere
and extremal stable circular orbit (ESCO) for the regular black hole with line element given
by equation (2). Photon spheres (or more precisely the closely related black hole silhouettes)
have been recently observed for the massive objects M87 and Sgr A* [53–58]. As such,
they are, along with the closely related ESCOs, practical and useful quantities to calculate
for black hole mimickers.

We begin by considering the affinely parameterized tangent vector to the worldline of
a massive or massless particle in our spacetime (2):

gµν
dxµ

dλ

dxν

dλ
= −

(
1− 2m e−a/r

r

)(
dt
dλ

)2
+

(
1

1− 2m e−a/r

r

)(
dr
dλ

)2

+r2

[(
dθ

dλ

)2
+ sin2 θ

(
dφ

dλ

)2
]
= ε, (11)

where ε ∈ {−1, 0}, with −1 corresponding to a massive (timelike) particle and 0 corre-
sponding to a massless (null) particle. (The case ε = +1 would correspond to tachyonic
particles following spacelike geodesics, a situation of no known physical applicability.)
Since we are working with a spherically symmetric spacetime, we can set θ = π/2 without
any loss of generality and reduce Equation (11) to

gµν
dxµ

dλ

dxν

dλ
= −

(
1− 2m e−a/r

r

)(
dt
dλ

)2
+

(
1

1− 2m e−a/r

r

)(
dr
dλ

)2
+ r2

(
dφ

dλ

)2
= ε. (12)

Due to the presence of time-translation and angular Killing vectors, we can now define
the conserved quantities

E =

(
1− 2m e−a/r

r

)(
dt
dλ

)
and L = r2

(
dφ

dλ

)
, (13)
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corresponding to the energy and angular momentum of the particle, respectively. Thus, Equa-
tion (12) implies

E2 =

(
dr
dλ

)2
+

(
1− 2m e−a/r

r

)(
L2

r2 − ε

)
. (14)

This defines an “effective potential” for geodesic orbits

Vε(r) =

(
1− 2m e−a/r

r

)(
L2

r2 − ε

)
, (15)

with the circular orbits corresponding to extrema of this potential.

3. Photon Spheres

We subdivide the discussion into two topics: First the existence of circular photon
orbits (photon spheres) and then the stability of circular photon orbits. The discussion is
considerably more complex than for the Schwarzschild spacetime, where there is only one
circular photon orbit, at r = 3m, and that circular photon orbit is unstable. Once the extra
parameter a is nonzero, and in particular sufficiently large, the set of photon orbits exhibits
more diversity.

3.1. Existence of Photon Spheres

For null trajectories, we have

V0(r) =

(
1− 2m e−a/r

r

)
L2

r2 . (16)

Thus, for circular photon orbits,

V′0(rc) =
2L2

r5
c

[
m e−a/rc(3rc − a)− r2

c

]
= 0. (17)

To be explicit about this, the location of a circular photon orbit, rc, is given implicitly
by the equation

r2
c = m e−a/rc(3rc − a), (18)

where a and m are fixed by the geometry of the spacetime. 1 The curve described by the
loci of these circular photon orbits is plotted in two distinct ways in Figure 1.

For clarity, defining w = rc/a and z = m/a, we can re-write the condition for circular
photon orbits as

w2 = z e−1/w(3w− 1); =⇒ z =
w2 e1/w

3w− 1
. (19)

In Figure 1, we also plot the locations of both inner and outer horizons.
The inner and outer horizons merge at a/m = 2/e = 0.7357588824 . . . , i.e., at m/a =

e/2 = 1.359140914 . . . . For a/m > 2/e, i.e., for m/a < e/2, one is dealing with a horizon-
less compact object and we see that there is a region where there are two circular photon
orbits. Note that the curve described by the loci of circular photon orbits terminates once
one hits a horizon, i.e., at w = 1. Sub-horizon curves of constant r are spacelike (tachyonic),
and cannot be lightlike, so they are explicitly excluded. That is, photon spheres can only
exist in the region w ∈ (1, ∞).

1 As a→ 0, we have rc → 3m, as expected for Schwarzschild spacetime.
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Photon sphere (black hole)

Photon sphere (CMO)

r

m
= 3 - 4 a

3m

Outer horizon

Inner horizon
r

m
= 2 - a

m

r

m
= a/m

ln (2m/a)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

a

m

r

m

(a)
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(b)
Figure 1. Location of the photon sphere, inner horizon, and outer horizon. Sub-figure (a) plots these quantities as a function
of the parameter a; sub-figure (b) plots these quantities as a function of the parameter m. The dashed blue line represents the
extension of the photon sphere to horizonless compact massive objects (CMOs), whilst the dashed red line is the asymptotic
solution for small values of the parameter a (Equation (21)). The dashed grey line is the asymptotic solution to the outer
horizon for small values of a (Equation (5)). The dashed green line is the simple analytic bound and asymptotic estimate for
the location of the inner horizon (Equations (7) and (10)).

Can we be more explicit about the key qualitative and quantitative features of this
plot? Specifically, let us now analyze stability versus instability and find the exact location
of the various turning points.

3.2. Stability versus Instability for Circular Photon Orbits

To check the stability of these circular photon orbits, we now need to investigate

V′′0 (rc) =
2L2

r7
c

[
3r3

c −m e−a/rc(6rc − a)(2rc − a)
]
. (20)

3.2.1. Perturbative Analysis (small a)

We note that determining rc(m, a) from Equation (18) is not analytically feasible,
but rc(m, a) can certainly be estimated perturbatively for small a. We have

rc(m, a) = 3m− 4ma
rc

+O(a2) =⇒ rc(m, a) = 3m− 4
3

a +O(a2). (21)

Thus, for small values of a, we recover the standard result for the location of the
photon sphere in Schwarzschild spacetime.

Estimating V′′0 (rc) by now substituting the approximate location of the photon sphere
as rc(m, a) = 3m− 4a/3 +O(a2), we find

V′′0 (rc(m, a)) = − 2L2

81m4

(
1 +

4
3

a
m

+O(a2)

)
. (22)

This quantity is manifestly negative for small a. That is, (within the limits of the current
small-a approximation), photons are in an unstable orbit at the small-a photon sphere.
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3.2.2. Non-Perturbative Analysis

However, if we rephrase the problem, then we can make some much more explicit
exact statements that are no longer perturbative in small a: Whereas determining rc(m, a)
is analytically infeasible, it should be noted that in contrast both a(m, rc) and m(rc, a) are
easily determined analytically:

a(m, rc) = rc(3−W(rce3/m)); m(rc, a) =
r2

c ea/rc

(3rc − a)
. (23)

Consequently, at the peak we can write

V0(rc, m) =
L2

r2
c

(
1− 2

W(rce3/m)

)
; V0(rc, a) =

L2

r2
c

rc − a
3rc − a

. (24)

Regarding stability, in the first case, substituting (23) (left) into (20), we have

V′′0 (rc, m) = −
2L2(W(rce3/m)2 −W(rce3/m)− 3

)
r4

c W(rce3/m)
. (25)

Using properties of the Lambert W function, we quickly see that this is negative for
rc/m > 1

2 (1 +
√

13) e−5/2+
√

13/2 = 1.146702958 . . . , implying instability of the circular
photon orbits in this region, (and stability outside this region).

That is, on the curve of circular photon orbits, V′′(rc) = 0 at the point

(rc/m, a/m)∗ = (1.146702958 . . . , 0.7995092385 . . . ). (26)

In the second case, substituting (23) (right) into (20), we have

V′′0 (rc, a) = −2L2

r5
c

3r2
c − 5arc + a2

3rc − a
. (27)

This will certainly be negative for rc/a > (5 +
√

13)/6 = 1.434258546 . . . , implying
instability of the circular photon orbits in this region, (and stability outside this region).

That is, on the curve of circular photon orbits, V′′(rc) = 0 at the point

(rc/a, m/a)∗ = (1.434258546 . . . , 1.250767286 . . . ). (28)

Consequently, on the curve of circular photon orbits, we have existence and stability
in the region w ∈ (1, 1.434258546 . . . ) and existence and instability in the region w ∈
(1.434258546 . . . , ∞). Precisely at the point w = 1.434258546 . . . , the photon sphere exhibits
neutral stability.

3.3. Turning Points

To evaluate the exact location of the turning points on the curve described by the loci
of circular photon orbits, recall that using w = rc/a and z = m/a we can write this curve as

w2 = z e−1/w(3w− 1) =⇒ z =
w2e1/w

(3w− 1)
. (29)

This allows us to calculate

dz
dw

= e1/w 3w2 − 5w + 1
(3w− 1)2 , (30)

which has a zero located at w = (5 +
√

13)/6, where we have already seen that V′′0 (rc, a) =
V′′0 (w) = 0.
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At this point, z takes on its maximum value

z = e6/(5+
√

13) (5 +
√

13)2

18(3 +
√

13)
= e(5−

√
13)/2 (2 +

√
13)

9
. (31)

Consequently, no photon sphere can exist if

a
m

> e−(5−
√

13)/2 (
√

13− 2) = 0.7995092385...; (32)

or equivalently
m
a
< e(5−

√
13)/2 (2 +

√
13)

9
= 1.250767286.... (33)

Note that this happens when

rc

m
>

1
2
(1 +

√
13)e−(5−

√
13)/2;

rc

a
>

5 +
√

13
6

, (34)

which is where, as shown above, V′′0 (rc, m) = 0.
As can be seen, originally in Figure 1, and now in more detail in the zoomed-in plot

in Figure 2, for horizonless compact massive objects, there is a region where there are
two possible locations for the photon sphere for fixed values of m and a. Furthermore,
when this happens, it is the upper branch that corresponds to an unstable photon orbit,
while the lower branch is a stable photon orbit.

Photon sphere (black hole)

Photon sphere (CMO)

Outer horizon

Inner horizon

(a/m, rc /m)* = (0.799509, 1.14670)

(a/m, rc /m) = (2/ⅇ, 2/ⅇ)

0.5 0.6 0.7 0.8 0.9
0.0

0.5

1.0

1.5

2.0

a

m

r

m

(a)

Photon sphere (black hole)

Photon sphere (CMO)

Outer horizon

Inner horizon

(m/a, rc /a)* = (1.2507, 1.4342)

(m/a, rc /a) = (ⅇ/2, 1)

1.2 1.3 1.4 1.5 1.6

0.5

1.0

1.5

2.0

2.5

m

a

r

a

(b)
Figure 2. Zoomed in plots of the location of the photon sphere, inner horizon, and outer horizon, focusing on the extremal
and merger regions. Sub-figure (a) plots these quantities as a function of the parameter a; sub-figure (b) plots these quantities
as a function of the parameter m. The dashed blue line represents the extension of the photon sphere to horizonless compact
massive objects (CMOs). Whenever the location of the photon sphere is double-valued, the upper branch corresponds to an
unstable photon orbit while the lower branch corresponds to a stable photon orbit.
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4. Timelike Circular Orbits

Let us first check the existence, and then the stability, of timelike circular orbits. Even in
Schwarzschild spacetime (a→ 0) this is not entirely trivial: Timelike circular orbits exist for
all rc ∈ (3m, ∞); they are unstable for rc ∈ (3m, 6m), exhibit neutral stability at rc = 6m,
and are stable for rc ∈ (6m, ∞). Once the parameter a is non-zero the situation is much
more complex.

4.1. Existence of Circular Timelike Orbits

For timelike trajectories, the effective potential is given by

V−1(r) =

(
1− 2m e−a/r

r

)(
1 +

L2

r2

)
, (35)

and so the locations of the circular orbits can be found from

V′−1(rc) = −
2
r5

c

{
L2r2

c + m e−a/rc [a(L2 + r2
c )− rc(3L2 + r2

c )]
}
= 0. (36)

That is, all timelike circular orbits (there will be infinitely many of them) must satisfy

L2r2
c + m e−a/rc [a(L2 + r2

c )− rc(3L2 + r2
c )] = 0. (37)

This is not analytically solvable for rc(L, m, a), however we can solve for the required
angular momentum Lc(rc, m, a) of these circular orbits:

Lc(rc, m, a)2 =
r2

c m(rc − a)
ma− 3mrc + r2

c ea/rc
. (38)

Physically, we must demand 0 ≤ L2
c < ∞, so the boundaries for the existence region of

circular orbits (whether stable or unstable) are given by

rc = a; ma− 3mrc + r2
c ea/rc = 0. (39)

The first of these conditions, rc = a, comes from the fact that in this spacetime gravity
is effectively repulsive for r < a. Remember that gtt = −(1− 2me−a/r/r), and that the
pseudo-force due to gravity depends on ∂rgtt. Specifically,

∂rgtt = −
2m
r2 e−a/r

(
1− a

r

)
, (40)

and this changes sign at r = a. Thus, for r > a, gravity attracts you to the center, but for
r < a gravity repels you from the center.

If gravity repels you, there is no way to counter-balance it with a centrifugal pseudo-
force, and so there is simply no way to get a circular orbit, regardless of whether it is stable
or unstable. Precisely at r = a, there are stable “orbits” where the test particle just sits
there, with zero angular momentum, no sideways motion required. Since by construction
rc > rH+ ≥ a, this constraint is relevant only for horizonless CMOs.

The second of these conditions is exactly the location of the photon orbits considered
in the previous sub-section. (Physically, what is going on is this: At large distances, it is
easy to put a massive particle into a circular orbit with Lc ∝

√
mrc. As one moves inwards

and approaches the photon orbit, the massive particle must move more and more rapidly,
and the angular momentum per unit mass must diverge when a particle with nonzero
invariant mass tries to orbit at the photon orbit.)

Thus, the existence region (rather than just its boundary) for timelike circular orbits is
(see Figure 3):

rc > a; ma− 3mrc + r2
c ea/rc > 0 (41)
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(a) (b)
Figure 3. Locations of the existence region for timelike circular orbits in terms of the circular null geodesics, outer horizon,
and inner horizon. Sub-figure (a) plots these quantities as a function of the parameter a; sub-figure (b) plots these quantities
as a function of the parameter m.

4.2. Stability versus Instability for Circular Timelike Orbits

Now, consider the general expression

V′′−1(r) =
6L2r3 − 2m(2r4 − 4ar3 + (12L2 + a2)r2 − 8L2ar + L2a2)e−a/r

r7 , (42)

and substitute the known value of L→ Lc(rc) for circular orbits (see (38)). Then,

V′′−1(rc) = −
2me−a/rc(2m(3r2

c − 3arc + a2)e−a/rc − rc(r2
c + arc − a2))

(r2
c −m(3rc − a)e−a/rc)r4 . (43)

Note that V′′−1(rc)→ ∞ at the photon orbit (where the denominator has a zero).
To locate the boundary of the region of stable circular orbits, the ESCO (extremal stable

circular orbit), we now need to set V′′−1(rc) = 0, leading to the equation

2m(3r2
c − 3arc + a2)e−a/rc = rc(r2

c + arc − a2). (44)

We note that locating this boundary is equivalent to extremizing Lc(rc). To see this,
consider the quantity [V′−1(L(r), r)] = 0 and differentiate:

d [V′−1(L(r), r)]
dr

=
∂V′−1(L, r)

∂L

∣∣∣∣∣
L=L(r)

× dL(r)
dr

+ V′′−1(L, r)
∣∣
L=L(r). (45)

This implies

0 =
∂V′−1(L, r)

∂L

∣∣∣∣∣
L=L(r)

× dL(r)
dr

+ V′′−1(L, r)
∣∣
L=L(r). (46)
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Thence,

V′′−1(L, r)
∣∣
L=L(r) = −

∂V′−1(L, r)
∂L

∣∣∣∣∣
L=L(r)

× dL(r)
dr

. (47)

However, it is easily checked that ∂V′−1(L, r)/∂L is non-zero outside the photon sphere
(that is, in the existence region for circular timelike geodesics). Thence,

V′′−1(L, r)
∣∣
L=L(r) = 0 ⇐⇒ dL(r)

dr
= 0. (48)

Thus, one might also extremize L2
c (rc), as in Equation (38), and once again find

Equation (44).
Defining w = rc/a and z = m/a, the curve describing the boundary of the region of

stable timelike circular orbits can be rewritten as

2z(3w2 − 3w + 1)e−1/w = w(w2 + w− 1). (49)

Plots of the boundary implied by Equation (44), or equivalently (49), can be seen
in Figure 4. As for the photon sphere, we have the interesting result that the extension
of the ESCO to horizonless compact massive objects results in up to two possible ESCO
locations for fixed values of a and m. Perhaps unexpectedly, the curve of ESCOs does
not terminate at the horizon—it terminates once it hits the curve of circular photon orbits
at a very special point. Let us now turn to the detailed analysis of both the qualitative
behavior and the various turning points presented in Figures 4 and 5. Note that where the
ESCO is single-valued, it is an ISCO (innermost stable circular orbit). Where the ESCO is
double-valued, the upper branch is an ISCO and the lower branch is an OSCO (outermost
stable circular orbit) [71].
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Figure 4. Locations of the ESCO, photon sphere, outer horizon, and inner horizon. Sub-figure (a) plots these quantities as a
function of the parameter a; sub-figure (b) plots these quantities as a function of the parameter m. The dashed blue line
represents the extension of the ESCO to CMOs. The dashed red curves in (a,b) are the asymptotic location of the ISCO for
small values of a (approaching the Schwarzschild solution).

(a) (b)
Figure 5. Locations of the ESCO, photon sphere, outer horizon, and inner horizon. Sub-figure (a) plots these quantities as a
function of the parameter a; sub-figure (b) plots these quantities as a function of the parameter m. The dashed blue line
represents the extension of the ESCO to CMOs. The dashed red line represents the extension of the photon sphere to CMOs.
The blue region denotes stable timelike circular orbits, while the red region denotes unstable timelike circular orbits, and the
green region denotes the non-existence of timelike circular orbits. Where the ESCO is single-valued, it is an ISCO. Where the
ESCO is double-valued, the upper branch is an ISCO and the lower branch is an OSCO (outermost stable circular orbit).
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4.2.1. Perturbative Analysis (Small a)

Let us first investigate the existence region perturbatively for small a. We have

Lc(rc, m, a)2 =
mr2

c
rc − 3m

− 2mrc(rc −m)

(rc − 3m)2 a +O(a2). (50)

Note that this approximation diverges at the Schwarzschild photon sphere r = 3m.
Thus, for small a the boundary for the region of existence of timelike circular orbits is still
r = 3m.

Now, we investigate the stability region perturbatively for small a. Rearranging
Equation (44), we see

rc =
6m(r2

c − arc + a2/3)e−a/rc

r2
c + arc − a2 = 6m

(
1− 3a

rc
+O(a2)

)
. (51)

Thence,
rc = 6m− 3a +O(a2), (52)

which sensibly reproduces the Schwarzschild ISCO to lowest order in a, and explains the
asymptote in Figure 4b.

Furthermore, for small a, substituting Lc(rc) into V′′−1(L, rc) and expanding

V′′−1(rc) =
2m(rc − 6m)

r3
c (rc − 3m)

+
4m2(7rc − 15m)

r4(rc − 3m)2 a +O(a2) (53)

Demanding that this quantity be zero self-consistently yields rc = 6m− 3a +O(a2).

4.2.2. Non-Perturbative Analysis

We show above that, defining w = rc/a and z = m/a, the curve describing the
boundary of the region of stable timelike circular orbits can be rewritten as

2z(3w2 − 3w + 1)e−1/w = w(w2 + w− 1). (54)

Thence,

z =
w(w2 + w− 1)e1/w

2(3w2 − 3w + 1)
. (55)

Let us look for the turning points of z(w). The derivative is

dz
dw

=
(w− 1)(3w4 − 6w3 − 3w2 + 4w− 1)e1/w

2w(3w2 − 3w + 1)2 . (56)

There is one obvious local extrema at w = 1, corresponding to z = e/2. Physically,
this corresponds to the point where inner and outer horizon merge and become extremal—
but from inspection of Figure 4, the descriptive plots of Figure 5, and the zoomed-in plots
of Figure 6, we see that the curve of ESCOs hits the photon orbit (and becomes unphysical)
before getting to this point. In terms of the variables used when plotting Figures 4–6,
this unphysical (from the point of view of ESCOs) point corresponds to

(rc/a, m/a)∗ = (1, e/2) (rc/m, a/m)∗ = (2/e, 2/e). (57)
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Figure 6. Zoomed in plot of the locations of the ESCO, outer horizon, and inner horizon for various values of the parameters
a and m, focusing on the turning points. Sub-figure (a) plots these quantities as a function of the parameter a; sub-figure (b)
plots these quantities as a function of the parameter m. The dashed blue line represents the extension of the ESCO to CMOs.
Where the ESCO is single-valued, it is an ISCO. Where the ESCO is double-valued, the upper branch is an ISCO and the
lower branch is an OSCO.

The other local extrema is located at the only physical root of the quartic polynomial

3w4 − 6w3 − 3w2 + 4w− 1 = 0. (58)

While this can be solved analytically, the results are too messy to be enlightening and
so we resort to numerics. Two roots are complex, one is negative, and the only physical
root is w = 2.210375896 . . . , corresponding to z = 1.173459017 . . . . Physically, this implies
that the ESCO curve should exhibit a non-trivial local extremum—and from inspection of
Figure 4 we see that the curve of ESCOs does indeed have a local extremum at this point.
In terms of the variables used when plotting Figure 4, this extremal point corresponds to

(rc/a, m/a)∗ = (2.210375896, 1.173459017), (59)

and
(rc/m, a/m)∗ = (1.883641323, 0.8521814444). (60)

4.3. Intersection of ESCO and Photon Sphere

We can rewrite the curve for the loci of the photon spheres (19) as

e−1/wz =
w2

(3w− 1)
. (61)

Similarly, for the loci of ESCOs, we rewrite (55) as

e−1/wz =
w(w2 + w− 1)

2(3w2 − 3w + 1)
. (62)
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These curves cross at

w
(3w− 1)

=
(w2 + w− 1)

2(3w2 − 3w + 1)
. (63)

That is, at
(w− 1)(3w2 − 5w + 1) = 0, (64)

with explicit roots at

1,
5±
√

13
6

. (65)

The physically relevant root is w = 5+
√

13
6 = 1.434258546..., which is where we

determine above that the photon sphere became stable and at the point where the curve of
photon spheres maximizes the value of z = m/a.

4.4. Explicit Result for the Angular Momentum

We can rewrite the curve for the angular momentum (38) as

L2
c = a2

(
e−1/wz w2(w− 1)

w2 − e−1/wz(3w− 1)

)
. (66)

Similarly, for the loci of ESCOs, we can rewrite (55) as

e−1/wz =
w(w2 + w− 1)

2(3w2 − 3w + 1)
. (67)

We then substitute this into back into Lc:

L2
c = a2 w2(w2 + w− 1)

3w2 − 5w + 1
. (68)

This has a pole at w = 5+
√

13
6 = 1.434258546..., and is then positive and finite for

all w > 5+
√

13
6 . (Of course, the point w = 5+

√
13

6 on the ESCO curve is exactly where the
ESCO curve hits the photon curve, so we would expect the angular momentum to go to
infinity there.) Asymptotically, for large r (large w = rc/a), we have L2

c ∼ a2w2/3 and
m/a = z ∼ w/6, so L2

c ∼ 2mrc as expected from the large-distance Newtonian limit.

4.5. Summary

Overall, we see that the boundary of the stability region for timelike circular orbits is
rather complicated. In terms of the variable w = rc/a:

• For w ∈ ( 5+
√

13
6 , ∞), we have an ESCO.

This ESCO then subdivides as follows:

– For w ∈ (2.210375896, ∞), we have an ISCO.

– For w ∈ ( 5+
√

13
6 , 2.210375896), we have an OSCO.

• For w ∈ (1, 5+
√

13
6 ), the stability region is bounded by a stable photon orbit.

• The line w = 1 bounds the stability and existence region for timelike circular orbits
from below.

This is considerably more complicated than might reasonably have been expected.

5. Conclusions

In this work, we investigate astrophysically observable quantities of a specific novel
regular black hole model based on an asymptotically Minkowski core [62,63]: Specifically,
we investigate the photon sphere and ESCO. The spacetime under consideration is an
example of a black hole mimicker. For the regular black hole model, both the photon
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sphere and the ESCO exist and are located outside of the outer horizon, and thus (at least
in theory) could be astrophysically observable. The analysis of the photon sphere and
ESCO is extended to horizonless compact massive objects, leading to the surprising results
that, for fixed values of m and a, up to two possible photon sphere and up to two possible
ESCO locations exist in our model spacetime; and that the very existence of the photon
sphere and ESCO depends explicitly on the ratio a/m. Somewhat unexpectedly, due to the
effectively repulsive nature of gravity in the region near the core, we find some situations
in which the photon orbits are stable and some situations where the ESCOs are OSCOs
rather than ISCOs. There is a rich phenomenology here that is significantly more complex
than for the Schwarzschild spacetime.
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