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Abstract: Ever since Eddington’s analysis of the gravitational redshift a century ago, and the ar-
guments in the relativity community that it produced, fine details of the roles of proper time and
coordinate time in the redshift remain somewhat obscure. We shed light on these roles by appealing
to the physics of the uniformly accelerated frame, in which coordinate time and proper time are well
defined and easy to understand; and because that frame exists in flat spacetime, special relativity
is sufficient to analyse it. We conclude that Eddington’s analysis was indeed correct—as was the
1980 analysis of his detractors, Earman and Glymour, who (it turns out) were following a different
route. We also use the uniformly accelerated frame to pronounce invalid Schild’s old argument for
spacetime curvature, which has been reproduced by many authors as a pedagogical introduction to
curved spacetime. More generally, because the uniformly accelerated frame simulates a gravitational
field, it can play a strong role in discussions of proper and coordinate times in advanced relativity.

Keywords: accelerated frame; gravitational redshift; clock postulate; Rindler space

1. Introduction

The prediction and subsequent confirmation of gravitational redshift is a standard
topic of courses on general relativity. Despite this, the meanings and roles of the two times
used in the analysis have produced differences of opinion historically. In [1], Scott describes
how Eddington [2,3] derived the standard result by analysing the relationship of proper
and coordinate times at two heights in a gravitational field. Eddington’s analysis used the
language of his day, and while it gives the correct result, its logic was questioned even in
Eddington’s time. This calculation was essentially reproduced by later authors, such as
Weinberg [4]. The analysis was critiqued by Earman and Glymour [5], who swapped the
roles of proper and coordinate time in what appeared to be a very similar calculation,
and yet produced the same, correct, expression for the redshift that Eddington derived.
The natural question arises: what are the correct roles of proper and coordinate times in
the gravitational redshift, and why did these apparently contrasting analyses both yield
the correct result?

The purpose of this paper is to show how the roles and correct use of proper and
coordinate times arise naturally in a flat spacetime context, when we analyse the pseudo-
gravitational redshift that appears in the uniformly accelerated frame in flat spacetime (UAF).
Because the UAF mimics a gravitational field over small differences in “height”, the equiva-
lence principle guarantees that it forms a good test-bed for discussing the redshift in curved
spacetime.1 Despite this utility, the UAF is almost absent from textbooks on relativity; even
Misner, Thorne and Wheeler’s comprehensive textbook [6] devotes only a few pages to
it. In-depth discussions of the UAF can certainly be found in studies of the foundational
aspects of relativity, such as in [7–12]. But study of the UAF is perhaps still regarded as the

1 The equivalence principle is formulated in various ways in the literature, and the question of how these are related lies outside this paper. We take
the principle to state that over a “small” region of spacetime, the action of a gravity field on any experiment is identical to performing that experiment
in an accelerating laboratory in zero gravity. See also the comment just after (21).
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province of a small group of specialists. I believe that a good understanding of the roles of
proper and coordinate times in the UAF can be obtained by following the specifics of how
the frame and its coordinates are constructed. Those details appear in Section 4.

Discussions of relativity demand a careful use of jargon. Throughout this paper,
we distinguish “seeing” from “observing”. Seeing is what we do with our eyes, and is
subject to any “tricks of the light” that might arise in a scenario. In contrast, “observing”
or “measuring” describes what is really happening, and is what results after allowance
has been made for the time taken by a signal from an event to reach an observer. In this
paper, we will use two observers, Alice and Bob; but it’s important to realise that each
observation belongs to the frame as a whole, independently of who made the actual mea-
surement. All observers in the frame agree on any given observation, and the “person
observing the event” has merely constructed the observation from all the information
available. In analyses, it is equivalent but simpler to treat spacetime as populated by a
continuum of observers who each record events only in their own immediate neighbour-
hood. These records are then passed to a master observer, who collates the information
and builds a description of what happened when and where. This description becomes the
observation or measurement of a scenario.

For example, when we stand on a platform in an inertial frame and watch a train go
by, the Doppler effect ensures that we see the clocks of approaching passengers ticking
faster than those of receding passengers; but when this purely visual position-dependent
effect is subtracted from the data, we—and all the other observers in our platform frame—
observe or measure all the train’s clocks to tick at the same rate, slower than our own by the
usual gamma factor. In fact, we will find that in our redshift scenario, seeing turns out to
be the same as observing; but that fact must be acknowledged explicitly in any analysis.
What everyone sees is interesting in its own right, but it must be distinguished from what
everyone observes.

The rate of ticking of a clock (a pseudonym for all physical processes) might be
quantified in two ways. Its coordinate rate is the number of ticks per unit coordinate time.
This rate can vary, and is referred to when an inertial observer says “A moving clock ticks
slowly”. A clock’s proper rate is the number of ticks per unit proper time; since the tick
defines the proper time, this proper rate never varies, and is somewhat trivial to speak of.
In the famous twin paradox of Section 4.5, when one says that space-bound Bob ages more
slowly than Earthbound Alice, it is the coordinate tick rate of Bob’s ageing process that is
lower than that of Alice. This difference is tangible, and Bob is younger than Alice on his
return to Earth. Throughout this paper, when we refer to clocks’ rates varying, we always
mean their coordinate rates, in agreement with normal relativity usage. But being aware
of coordinate and proper rates is a useful step for the idea of coordinate frequency versus
proper frequency in Section 9.

2. Eddington’s Prediction of Gravitational Redshift

We present here a rewording of Scott’s description of Eddington’s prediction of the
redshift undergone by light climbing up a real gravitational field. We replace Scott’s
infinitesimal “d” with a non-infinitesimal “∆”, and momentarily postpone questions of
what the analysis is really doing.

Observers Alice and Bob are at rest in a static gravitational field, with Alice at a lower
potential than Bob. She sends Bob a light signal that climbs up the potential. Our task is to
determine whether and by how much Bob observes a different frequency in the received
signal, and whether he sees anything different from what he observes. Energy conservation
and the quantum-mechanical postulate “energy ∝ frequency” (discussed in Section 9)
suggest that Bob should see a redshift. In this case, because Bob and Alice have no relative
motion, “seeing” is the same as “observing/measuring”, since no kinematic Doppler shift
is present.

Eddington gives Alice and Bob identical clocks whose “proper period” of oscillation
is some ∆τ. That is, if this period is one second, then Alice and Bob can each say “During
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one period of my clock, I grew older by one second”. The metric relates this period to the
frame’s coordinate time t by ∆τ =

√
gtt∆t, where gtt is the time component of the metric.

Eddington says (and note that we have changed his sometimes-obscure wording) that
Alice measures her clock to have a “coordinate period” ∆tA, meaning the coordinate time
at Alice’s location that elapses between successive ticks. Bob measures his clock likewise to
have a coordinate period ∆tB. Eddington thus effectively writes (where throughout this
paper, A stands for Alice and B for Bob)

∆τ =
√

gtt(A)∆tA =
√

gtt(B)∆tB . (1)

Denote by νA the frequency measured by Alice of her clock, and similarly νB for Bob and
his clock. Eddington then has

νB
νA

=
∆tA
∆tB

(1)
√

gtt(B)
gtt(A)

. (2)

It can be shown [13] from an analysis of geodesic motion in a weak static gravitational
potential Φ (chosen to tend to zero at “infinite height”) that gtt ' 1 + 2Φ. It follows that
gtt(A) < gtt(B). We then infer from (2) that νB > νA, and indeed that, in weak gravity,

νB
νA
' 1 + Φ(B)

1 + Φ(A)
' 1 + Φ(B)−Φ(A) > 1 . (3)

Eddington concludes that Bob measures his clock’s tick rate to be higher than the value
that Alice measures for her clock’s tick rate, and hence that Bob sees light emitted by
Alice as redshifted by the difference in potentials. Eddington’s result has been verified
experimentally, and (3) is now established as the correct expression for the redshift.

The above is a paraphrase of Eddington’s analysis in modern language, but his own
description in [3] was far more cursory. We can ask if redshift is even present in his
discussion of tick rates. Seeing and observing are the same in this scenario, and that
means what Bob sees is what is really taking place; so, since he sees Alice’s clocks ticking
slowly (and hence Alice ageing slowly), he must also see a lower frequency of the light she
produces. It’s not clear if this fact was recognised or given much attention in Eddington’s
time. Eddington’s abbreviated reasoning was questioned in his own day, as discussed in
detail in [1,5]. Those questions were from an era when ideas of proper time and coordinate
time were new, and we will return to them later.

Eddington’s derivation and variations on it have been reproduced by other physicists,
as discussed by Earman and Glymour in [5]. Earman and Glymour gave their own
derivation of the redshift that centres around their Equations (2.4) to (2.5′′) in [5]. In our
language of Alice and Bob, they define

νA,A ≡ freq. of light emitted by Alice, as measured by Alice,

νA,B ≡ freq. of light sent by Alice to Bob, as measured by Bob. (4)

Additionally, for any light that Bob might emit, they define

νB,B ≡ frequency of light emitted by Bob, as measured by Bob, (5)

although this just equals νA,A because Alice and Bob’s clocks were manufactured identically.
They then state, in essence, that for some ∆t,

νA,A ∝
1√

gtt(A) ∆t
, νA,B ∝

1√
gtt(B) ∆t

. (6)
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Hence,
νA,A

νA,B
=

√
gtt(B)
gtt(A)

> 1 . (7)

That is, Bob measures a lower frequency of Alice’s light than Alice measures—hence, a
redshift. Earman and Glymour were attempting to fix Eddington’s derivation, which
they described as “exactly backwards from what is wanted”, owing to what they called
Eddington’s “misapplication” of ideas. Likewise, they pronounced incorrect Einstein’s
derivation, which was essentially the same as Eddington’s. We’ll see in this paper that
although Earman–Glymour’s re-derivation was as correct (and as obscure) as Eddington’s,
they misunderstood what he was doing.

In general discussions, special relativity teaches us to isolate, say, events 1 and 2 of
interest. In a frame called S, we write ∆t ≡ t2− t1, and in S′ we refer to the same two events
by writing ∆t′ ≡ t′2 − t′1. The Lorentz transform then connects ∆t to ∆t′, and everything
is well defined. But in the arguments above, the meanings of the time increments are not
necessarily clear. Do they refer to ticks of a clock or crests of a wave? What specific events
are being observed?

We will construct a UAF formalism that allows a clear analysis of both redshift deriva-
tions. We’ll see in Section 8 that the approaches of both Eddington and Earman–Glymour
were correct; they were simply doing different things. The derivation of Eddington (and Ein-
stein) was not “backwards” at all. Eddington examined the lapses in coordinate time for
two equal proper times; Earman–Glymour examined the lapses in proper time for two equal
coordinate times.

Gravitational redshift is often predicted or interpreted using a completely different
approach to that of Eddington. That other approach calculates a drop in frequency of
Alice’s emitted ray en route to Bob, in accordance with energy conservation in a weak non-
relativistic gravitational field. In [14], Okun et al. maintain that the energy-conservation
approach is incorrect. In Section 9, we’ll discuss Okun’s view in a UAF context.

3. Acceleration and the Flow of Time

The accelerated frame is rarely analysed in any detail in introductory textbooks in
special relativity, but its core feature is already evident in those books. As taught in all
introductory courses, when a train with two on-board identical clocks synchronised and
at rest on the train moves with constant velocity v through our inertial frame, we say that
although the clocks tick at identical rates in our frame, the rear clock displays ahead of
the front clock by a time vL0/c2, where their proper separation is L0. We also learn that
time’s “rate of flow” is defined by the ticking (ageing, if you prefer) of an ideal clock. In this
paper, we’ll discuss “gearing” clocks to tick at different speeds, and will then distinguish
an arbitrarily manufactured tick rate from the clock’s immutable ageing rate. It is then the
ageing rate that defines the flow of time.

Now, suppose that one of two synchronised clocks sits by our side, while the other
lies in a distant galaxy, one thousand million light-years away. Leaving aside questions of
cosmological distance, their proper separation is L0 = 109 light-years. Suppose that we
on Earth pace slowly back and forth, moving with speed |v| = 10−9c in each direction.
In that case, the clock next to us alternately leads and trails its partner by one year. But
because it is right next to us, we can see and observe that its time is not changing at all
by any more than the few seconds we spend pacing. This implies that the clock in the
distant galaxy is alternately jumping ahead of us by one year and then suddenly dropping
behind by the same amount; and this see-sawing continues for as long as we pace back
and forth. We conclude that the display on the distant clock really is swinging back and
forth—implying time in that galaxy is behaving likewise—as we accelerate periodically to
switch our walking direction.2 Already in this simple scenario, the rates of clocks in an

2 Some authors refer to a no-acceleration variant of this with two people walking past each other as the “Andromeda Paradox”.
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accelerated frame are position dependent. Hence, a position-dependent rate of flow of time
must emerge from any analysis of an accelerated frame.

This position-dependent rate of flow of time in an accelerated frame implies that the
speed of light in that frame is also position dependent. (To see this, consider running a
movie at high speed: everything in that movie moves faster, including a light beam that
sets events into motion.) This rules out at least any simplistic use of radar to measure or
define distances in an accelerated frame. Radar requires knowing the speed of light at all
points between emitter and receiver; but, since this can vary with position, one cannot
simply invoke “distance = c × signal-travel time” globally. (Cook [15] defines a “local
[infinitesimal] radar distance” using c, in the context of a frame, where each infinitesimal
distance applies to one of a chain of observers, each applying “distance = c × signal-travel
time” in their immediate vicinity. But in general, a frame cannot be constructed by a
chain of observers with arbitrarily differing motions. If it could, we would be permitted to
chain together the differently moving inertial observers/frames in an introductory relativity
textbook, S, S′, S′′, etc., to build a “frame” that disobeyed the basic rules of special relativity.)
In addition, using radar to synchronise clocks in an accelerated frame presupposes that
those clocks age at the same rate, but the above discussion of pacing back and forth shows
that they do not age at the same rate.

4. Constructing the UAF

The UAF springs from this question: is it possible for a frame to exist in flat spacetime
whose observers each feel a fixed acceleration for all time? To answer this, we must define
a frame carefully. As described in [16], we take a frame to be a collection of observers who
require that:

1. Any two events deemed simultaneous by one observer are deemed simultaneous by
all observers. This requirement enables them to construct a time coordinate that serves
the whole frame. This coordinate time is normally chosen to be the proper time—the
“age”—of one of the observers (the “master observer”), and need not match the proper
times (the ages) of other observers. If all observers are given identical clocks, then the
observers who age faster (slower) than the master observer gear their clocks down
(up), making them all agree that all clocks display any given time simultaneously.
We must now distinguish an observer/clock’s ageing rate from a clock’s tick rate.
Picture an ageing rate as biological, set by the laws of physics and unable to be
changed by us; and a tick rate as mechanical and arbitrary, set by gear wheels that we
can prepare in any way we choose;

2. All separations between the observers are deemed by them to be constant. The ob-
servers thus form a rigid lattice, allowing them to construct a single set of space
coordinates that serve the whole frame.

This definition of a frame and its coordinates (at least applying to flat spacetime) is
stringent. Compare it with the definition given in [7,17], which is simply that a frame
is a collection of observers with non-crossing world lines, with no stipulation of any
notion of “frame-wide” simultaneity. In contrast, our definition above requires frame-wide
simultaneity. For an example of a time coordinate that is not related to simultaneity, look
no further than a textbook introduction to special relativity: the time coordinates t, t′

that conventionally describe two inertial frames S, S′ certainly each define frame-wide
simultaneity for its relevant frame; but, because the Lorentz transformation converts
between unprimed and primed coordinates unambiguously, nothing stops us from using
t as a coordinate in S′. Although a valid coordinate, t does not match the frame-wide
simultaneity in S′, and hence does not fit with the first requirement above.

Discussions of the UAF (including ours) probably universally define simultaneity for
any UAF observer at each moment to match that of his momentarily comoving inertial frame
(MCIF) at that moment. The MCIF is an inertial frame that, at the moment in which it
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applies, shares the same velocity as the observer.3 Simultaneity in inertial frames is well
understood. Defining simultaneity in the UAF using MCIFs is useful and meaningful
because it predicts a redshift in the UAF which, when applied to real gravity using the
equivalence principle, is confirmed by experiment.

An observer cannot hold a fixed acceleration forever in the “laboratory inertial frame”,
as measured by that frame. (We will always take the lab to be inertial.) But because a
constant velocity cannot be felt, the acceleration felt by the observer at any given moment
is his velocity change relative to his current MCIF, not relative to the lab. The world line of
a linearly accelerated observer who feels a constant acceleration to the right turns out to be
a hyperbola that asymptotes from the leftward lab speed of light in the distant past to the
rightward lab speed of light in the distant future [7,18].

Use of the MCIF is closely allied to the clock postulate of special relativity. Consider
an observer riding in an accelerating train on a straight track next to another train that
holds a fixed velocity. At some moment, the accelerating train’s velocity will equal that of
the inertial train. When that happens, for a brief time, it’s reasonable that any passenger
on the accelerating train should be able to lean out of the window and converse with the
nearest passenger on the inertial train: they should each even be able to run identical
physics experiments and agree on the results. For the short duration of their conversing,
the inertial train is the MCIF of the accelerating observer. The clock postulate states that the
observations an accelerating observer makes of events in his vicinity should always match
those of his current MCIF. In particular, each observer, accelerated and inertial, should note
that the other’s clock ticks at the same rate as his own.

The clock postulate says that the tick rate of a clock that accelerates in the inertial
lab slows by the usual γ-factor of special relativity, which is now a function of time:
γ(t) = 1/

√
1− v(t)2/c2; here, v(t) is the speed of the accelerated clock in the lab. That is,

γ(t) contains no time derivatives of v(t). The clock postulate has been tested under extreme
accelerations, as high as 1018 times Earth’s gravity [19,20]. The postulate also applies to the
shortening of rods, and to energy/momentum, since these are measurements set by the
MCIF’s γ-factor. And it applies in the presence of real gravity.

4.1. A Lattice of Observers for the UAF

Building the UAF begins with the above observation that the world line of an observer
who feels a fixed acceleration g in the inertial (gravity-free) lab frame S is a hyperbola.
With suitable initial conditions, his world line in lab coordinates t, x is (with c = 1) [6,18]

t = g−1 sh gτ , x = g−1 ch gτ , (8)

where “sh, ch” are the hyperbolic functions sinh and cosh (and later, “th” for tanh), and τ
is the observer’s proper time: his biological age. (We will allow this age to be negative.)

Equation (8) describes us firing our rocket motors to accelerate forever, as shown in
Figure 1. We start out far in the past and move left toward x = 0, always firing our rocket
to produce what we feel as a fixed acceleration g in the positive-x direction. Eventually
we slow to a stop at t = τ = 0 and x = 1/g, reverse direction, and pick up speed again,
now moving to the right, away from the origin. In conventional units, 1/g becomes c2/g,
and for g = one Earth gravity, c2/g is very close to one light-year.

3 The MCIF is known in the literature by various names, including instantaneous rest frame and momentarily comoving reference frame.



Universe 2021, 7, 4 7 of 33

S frame
(inertial lab)

our world line

t

x

MCIF S′
t′

x′

MCIF S′′
t′′

x′′

MCIF S′′′t′′′
x′′′

x = 1/g

Figure 1. Our hyperbolic world line in the inertial frame S of the lab. Included are a selection of the
infinite number of our MCIFs. The positive-x direction is “up” for us, in the sense that we feel a force
pressing us into our seats “downward” in the negative-x direction.

Figure 1 includes a selection of MCIFs, represented by their spacetime axes. The time
axis of each MCIF has slope 1/v, where v is the (constant) velocity of that MCIF in S.
The space axis has slope v: it is orthogonal in the Minkowski sense to the time axis.

To ascertain if we can construct a global frame based on our motion, we must address
point 1 at the start of Section 4. Draw the line of simultaneity through an arbitrary event
(x, t) on our hyperbolic world line by noting that the tangent there has slope dt/dx, and so
the corresponding line of simultaneity has slope dx/dt. Equation (8) says that dx/dt = t/x.
Hence, the line of simultaneity at event (x, t) has slope t/x, and so it passes through the
origin of S, (x, t) = (0, 0). This spacetime-origin event, then, is simultaneous with every
event on our world line, past and future. This and other strange phenomena result from
the extremely non-physical nature of our world line. To say that we have been, and are,
accelerating forever in a flat spacetime is a very strong statement about the entire universe,
and about time in general.

If we now place other observers in the lab with appropriate hyperbolic world lines,
they will also draw their lines of simultaneity through (x, t) = (0, 0). Hence, they will
all agree with us on simultaneity. Three of these observers’ world lines are drawn in
Figure 2. In the same way that our world line satisfies (8), bringing us to rest at x = 1/g
where g is our acceleration, another accelerating observer i has a constant acceleration gi
in S, with a turn-around point of x = 1/gi. All such observers agree with us on which
events are happening “now”. Also, along each common line of simultaneity, all observers’
four-velocities are parallel, since these four-velocities are all orthogonal to that line of
simultaneity. It follows that, in each observer’s MCIF, the world lines of all other observers
maintain a constant separation. Thus, they measure each other always to be at rest with
respect to themselves, and hence they say that they form a rigid lattice of observers who
all agree on simultaneity. Hence, by points 1 and 2 in Section 4, they form a frame. This is
the UAF, which we call S̄ throughout this paper. Note that the UAF covers only one
quarter of spacetime, shaded yellow in Figure 2 and often called Rindler spacetime. Despite
being flat, it has much in common with Schwarzschild spacetime, as evidenced by the
mathematical similarity of Figure 2 with the Kruskal–Szekeres coordinates that are usually
invoked to analyse Schwarzschild spacetime [21]. In [17], Desloge argues that the UAF is
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the only well-defined frame obeying the requirements at the start of Section 4, other than
the inertial frame.4

S frame
(inertial lab)

t

x

accelerations
g1 g2 g3

common line
of simultaneity

1/g1 1/g2 1/g3

Figure 2. Three of the continuum of observers who help us make measurements. When their
accelerations in their MCIFs bring them momentarily to rest at positions given by those accelerations’
reciprocals (really c2/g1, etc., in conventional distance units), then the geometry of hyperbolae
guarantees that these observers will always share a common line of simultaneity, as required to make
a well-defined frame. This frame covers only the quarter of spacetime shaded yellow. The bunching
up of the observers in the future and past (times when they move quickly) is the Lorentz contraction.

Because observers at varying “heights” x in the UAF feel different accelerations,
the standard word “uniform” in “uniformly accelerated frame” is something of a misnomer,
and certainly doesn’t imply equal accelerations for all observers. The UAF’s observers
have differing accelerations in the lab, and hence don’t form a rigid lattice there; but they
say that they do form a rigid lattice. Conversely, if a set of observers are each given the
same acceleration in the lab, then they say they are moving relative to each other and do not
form a rigid lattice.

The UAF gives insight into “Bell’s rocket paradox”. When two observers accelerate in
the same direction, the chasing observer must accelerate more strongly than the leading
observer if the observers are to measure the distance between them as remaining constant.
These observers follow the world lines in Figure 2. (The bunching up of the observers in the
future and past in Figure 2 is precisely the Lorentz contraction.) On the other hand, if the
observers accelerate identically, the chasing observer does not accelerate fast enough to
create the UAF, and so the observers measure their separation to increase. Any string that
joins them—without being accelerated independently of the observers—must then break.
John Bell famously put the following question to his fellow physicists: “If two rockets
accelerate identically in the same direction, what will happen to a string joining them?”.
Two such rockets will measure their separation to be increasing, and so a string connecting
them must snap.

4.2. Coordinates for the UAF

We now coordinatise the UAF. The clocks of S̄ must be calibrated to all agree that they
display the same value, t̄, at each moment; this becomes the coordinate time of S̄. Refer to
Figure 3, which shows two UAF observers, Alice and Bob.

4 Despite the UAF approximating the frame in which each of us lives and in which almost all physics experiments are carried out, it does not have a
high profile even in advanced relativity courses.
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S frame
(inertial lab)

t

x1/gB1/gA

a

b

τA = −1

τA = 0

τA = 1

τA = 2

t̄ = −1

t̄ = 0

t̄ = 1

t̄ = 2

t̄ =
∞

t̄ =
−

∞
x̄
=

1/g
A

x̄
=

1/g
BAlice Bob

Figure 3. An event’s value of t̄ is defined to be the proper time τA shown on the master clock (chosen
to be Alice’s) when that event occurs for Alice. The event’s x̄ is the value of x̄ of the observer present
at that event—which is that observer’s value of x at t = 0. Event a has (t̄, x̄) = (2, 1/gA), and event
b has (t̄, x̄) = (2, 1/gB). No signal can reach Alice and Bob from the blue region: it is “below the
horizon”. Alice and Bob see all events in the red region, but they say that none of those events were
simultaneous with any event on their world lines!

The time τA on the master clock—arbitrarily chosen as that of Alice—dictates what the
other clocks display. When τA = 0 (which happens at t = 0 from (8), whose τ becomes τA),
all of the UAF’s observers are “crossing the x-axis” in spacetime (i.e., coming momentarily
to rest in the lab), and all agree on this. Hence, all of their clocks are set to display t̄ = 0
when t = 0. We set x̄i, the unchanging position of observer i in S̄, to be that observer’s
value of x at this time, which is 1/gi. Thus, observers stationed far “above” Alice (large x
or x̄) accelerate much less strongly than she does.

Next, we require the ratio of ageing rates of two observers, to determine how one’s
clock might be geared relative to the other’s so that (if possible) both can display the
same coordinate time t̄ at any moment. Consider events a and b in Figure 3, which are
simultaneous in S̄ but not in S. Their S coordinates are (ta, xa) and (tb, xb). Event a is on
Alice’s world line, and b is on Bob’s world line. At a common moment t̄, we will use these
events to calculate dτB/dτA, the ratio of the ageing rate of Bob to that of Alice at a moment
that they agree is “now”.

Equation (8) says that{
ta
xa

}
=

1
gA

{
sh
ch

}
gAτA(a) ,

{
tb
xb

}
=

1
gB

{
sh
ch

}
gBτB(b) , (9)

where τA(a) is Alice’s age at event a (in contrast to her clock’s displayed time t̄A(a), which
can be changed by gearing), and similarly for τB(b) and Bob. Since the events’ common
line of simultaneity passes through the S-origin, it must be true that

ta
xa

=
tb
xb

. (10)

Thus, (9) and (10) imply that (with “th” the hyperbolic tangent)

th gAτA(a) = th gBτB(b) . (11)
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The hyperbolic tangent is a one-to-one function, and so it follows that

gAτA(a) = gBτB(b) . (12)

Hence (with x̄A ≡ 1/gA and x̄B ≡ 1/gB),

dτB(b)
dτA(a)

=
gA

gB

=
x̄B

x̄A

= constant, independent of a, b . (13)

We see that Bob at x̄B ages x̄B/x̄A times as fast as Alice at x̄A, regardless of which pair of
simultaneous events a, b we discuss. That is, time at Bob’s location is flowing faster than
time at Alice’s location by this factor.

Recall that Alice holds the master clock. Since Bob’s clock was manufactured iden-
tically to Alice’s, it would ordinarily tick faster than hers by this factor of x̄B/x̄A at Bob’s
location. But we are free to make the reading on Bob’s clock always agree with Alice’s by
gearing Bob’s clock down by that same factor. When we do, all UAF observers will agree
that Bob’s clock displays any nominated value of t̄ when Alice’s does.

For example, if Alice and Bob “cross the x-axis” at x = 1/g and x = 3/g,respectively,
then x̄B/x̄A = 3, and so they agree that Bob ages three times as fast as Alice. Without
gearing, Bob’s clock ticks three times as fast as Alice’s. Hence, we gear Bob’s clock down by
a factor of three. Similarly, if Bob is “below” Alice, he ages slower than her, and we must
gear his clock up to tick faster. Arbitrarily close to x̄ = 0, observers’ accelerations increase
without limit, and their clocks must be geared to tick ever faster. At x̄ = 0, clocks (i.e., time)
have stopped. The dashed diagonal line bordering the blue region in Figure 3 is a horizon
because no light from events in the blue region can reach observers in the white region.

We cannot alter the clocks’ rates of ageing: the passage of their proper time τ, which is
very slow close to the horizon and faster away from it. But gearing the clocks has created a
global time coordinate t̄ for the UAF:

τ = clock age, t̄ = clock display produced by gearing. (14)

According to the clock postulate, the real, biological age of an observer is the sum of the
age increments of his series of MCIFs:

∆Age ≡ ∆τ =

∫
observer’s world line

dτ. (15)

Suppose we are in deep space far from any gravity, in a spaceship accelerating at one
Earth-gravity. The negative-x̄ direction is that in which a mass falls within the spaceship.
Our spaceship is the heart of the S̄-frame, and we on-board the ship are the master observer;
our position in this frame is then x̄ ' 1 light-year. One light-year below us lies the horizon,
a plane on which time has stopped: all events there are simultaneous with everything we
do. Very close to that plane, time is passing very slowly for all physical processes, because
our line of simultaneity rotates “very slowly” over the world lines of those processes in
Figure 3. Our frame’s clocks in that region must be geared up heavily to keep pace with
our own.

Above us, time runs faster than it does for us. One light-year above us (x̄ ' 2 light-
years), all physical processes occur at about twice the rate as at our location. Of course,
we have geared clocks there down to keep them ticking at the same rate (∆t̄ ) as our own,
but they are ageing (∆τ) faster than us.

This description of gearing clocks is crucial because it distinguishes coordinate time
from proper time. Statements such as “the time interval measured by a clock carried by Al-
ice” sometimes appear in discussions of redshift, but these are ill defined because they don’t
distinguish coordinate time from proper time: was Alice’s clock geared? That confusing
omission can lead to the correctness of the theory being questioned unnecessarily.
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4.3. UAF Coordinate Transforms and Metric

We can now produce coordinate transforms that relate (t, x) to (t̄, x̄) in Figure 3.
Choose Alice to be the master observer, and write her acceleration gA more generically as
gM. Then, {

tb
xb

}
(9) 1

gB

{
sh
ch

}
gBτB(b)

(12) 1
gB

{
sh
ch

}
gMτA(a) . (16)

Now, t̄b is defined to be the value of τ shown on Alice’s (master) clock at event a [i.e., τA(a)],
since the UAF says that a and b are simultaneous. Hence,{

tb
xb

}
(16)

x̄B

{
sh
ch

}
gM t̄b . (17)

Finally, since event b is arbitrary, the sought-after transform relating inertial and accelerated
frames is {

t
x

}
= x̄

{
sh
ch

}
gM t̄ , y = ȳ , z = z̄ . (18)

[The y and z coordinates are unaffected by our motion perpendicular to their axes in the
Lorentz transform, hence in the MCIF, and hence in (18).] The inverse transform to (18) is

t̄ =
1

gM

th−1 t
x
=

1
2gM

ln
x + t
x− t

, x̄ =
√

x2 − t2 , ȳ = y , z̄ = z . (19)

The metrics for the two coordinate systems are

dτ2 = dt2 − dx2 − dy2 − dz2

= g2
M x̄2 dt̄2 − dx̄2 − dȳ2 − dz̄2. (20)

Close to the master-observer Alice, gM x̄ ≈ 1, and so

dτ2 ' dt̄2 − dx̄2 − dȳ2 − dz̄2. (21)

Hence, the accelerated frame’s metric is approximately Minkowski near Alice. The meaning
of “near” is the length scale 1/gM, or c2/gM in conventional length units. (Recall that, for g
equalling one Earth gravity, c2/g is about one light-year.) Note that despite the “Minkowski
appearance” of (21), the exact metric (20) is not the one that the equivalence principle says is
always possible to construct: locally Minkowski with vanishing first derivatives. After all,
the first derivative of gt̄t̄ = g2

M x̄2 with respect to x̄ vanishes only at the horizon. But such a
choice of coordinates is trivially found: it is the set t, x, y, z, related to the barred coordinates
via (18), and whose metric is the first line of (20). Even though those unbarred coordinates
more naturally describe a different frame, they are valid coordinates for the UAF, precisely
because of (18).

The scale parameter c2/g of the previous paragraph turns out also to be a kind of
radius of curvature, in spacetime, of the world line of any projectile [6,18,22]. A thrown ball
and a fired bullet usually have very different trajectories in space, but a straightforward
calculation shows that their world lines in a uniform gravitational field, when drawn in
2 + 1 dimensions, both have a radius of curvature of c2/g, or about one light-year in the
case of motion near Earth’s surface. This spacetime thus has a tiny curvature: Earth’s
gravity is very weak.

UAF literature sometimes defines new coordinates (double barred here) that shift the
origin to the master observer:

{ ¯̄t, ¯̄x, ¯̄y, ¯̄z} ≡ {t̄, x̄− 1/gM, ȳ, z̄} , (22)

with metric
dτ2 =

(
1 + gM

¯̄x
)2d¯̄t 2 − d ¯̄x2 − d ¯̄y2 − d ¯̄z2. (23)
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The horizon (x̄ = 0) is at ¯̄x = −1/gM. The y and z dimensions are really extraneous to all
further discussion, so we will seldom refer to them.

4.4. More on Observer Ageing Rates

To prepare for analysing more general metrics when coordinate transforms are not
available, here is a slightly different calculation of UAF ageing rates that uses only the
metric. Again, start with the question: how quickly does an observer age (dτ) compared
to the passing of the UAF’s coordinate time (dt̄ )? This rate, dτ/dt̄, is given by the metric.
For example, in an inertial frame with the usual Minkowski coordinates t, x, y, z, the proper
time experienced by a particle moving with velocity v is

dτ2 = dt2 − dx2 − dy2 − dz2 = dt2(1− v2) . (24)

Hence, dτ/dt =
√

1− v2 < 1, an expression of the statement “a moving clock runs
slow”. In the UAF, for a particle moving with UAF-velocity v̄, the metric (20) gives the
analogous expressions

dτ2 = g2
M x̄2 dt̄2 − dx̄2 − dȳ2 − dz̄2

= dt̄2
[

g2
M x̄2 − (dx̄/dt̄ )2 − · · · − (dz̄/dt̄ )2

]
≡ dt̄2

[
g2

M x̄2 − v̄2
]
. (25)

Thus, dτ/dt̄ =
√

g2
M x̄2 − v̄2, which can be treated as the reciprocal of a generalised gamma

factor for the UAF. Focus on Alice and Bob, both stationary in the UAF, where Alice is now
no longer the master observer. Then v̄ = 0 for each, and (25) becomes

dτ/dt̄ = gM x̄ (26)

for each. Refer to Figure 4.

S frame
(inertial lab)

t

x

∆τA

∆τB t̄1

t̄2

x = x̄A = 1/gA x = x̄B = 1/gB

Alice Bob

Figure 4. When Alice and Bob’s shared coordinate time increases from t̄1 to t̄2, Alice ages by ∆τA and
Bob by ∆τB.
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When Alice and Bob’s shared coordinate time increases from t̄1 to t̄2 (with ∆t̄ ≡ t̄2− t̄1),
by how much does each observer age? Alice ages by

∆τA =

∫
dτ =

∫
dτ

dt̄
dt̄ =

∫ t̄2

t̄1

gM x̄ dt̄ = gM x̄A ∆t̄ =
gM

gA

∆t̄ . (27)

Similarly, Bob ages by

∆τB = gM x̄B∆t̄ =
gM

gB

∆t̄ . (28)

The amount that Bob ages relative to Alice is

∆τB

∆τA

=
∆τB/∆t̄
∆τA/∆t̄

=
gA

gB

=
x̄B

x̄A

> 1 , (29)

as we saw in (13). We’ll revisit this result in Section 6.

4.5. The Twin Paradox and the UAF

As discussed at length by Good [23], the above prediction of differential ageing that
rests on MCIFs and the clock postulate is compatible with the standard resolution of the
special relativity’s “twin paradox”.

In Figure 5, consider Alice who stays on Earth, which for the purpose of description
we take to be an inertial frame. Her twin brother Bob boards a rocket to a distant star,
and later returns to Earth. Bob and Alice agree that when they are reunited, Bob will
be younger than Alice because his world line’s integrated proper time is less than the
corresponding proper time on Alice’s world line. The paradox results from asking “Cannot
each say that the other went on a journey, and therefore each should be younger than the
other when they reunite?”. The well-known answer is that “all moving clocks tick slowly”
can be stated by inertial Alice, and by Bob if he moves at constant velocity, but not when
he is accelerating.

Figure 5 shows how the intersection of an always-accelerating Bob’s lines of simul-
taneity (dashed green) with Alice’s world line (the t axis) gives the age that Bob says “Alice
is now”. (The same could be done for Alice: her lines of simultaneity, not shown, are
horizontal at each event.)

Alice’s
inertial frame

x

t

x′
t′

x′′
t′′

x′′′

t′′′

Alice Bob

Figure 5. Bob travels with a constant acceleration in Alice’s inertial frame. At each event on his world
line, we draw the space and time axes of his MCIF in the same way as in Figure 1.
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The scenario usually has Bob accelerate for negligibly small periods of time, outside
of which he holds a constant velocity. If Bob were to fly two constant-velocity legs, a ped-
agogical problem would occur when he jumped from his outbound inertial frame to his
inbound inertial frame at his turn-around: the intersection of his line of simultaneity with
Alice’s world line would then jump forward discontinuously. The scenario is made more
realistic by having Bob accelerate continuously throughout his trip. His world line then
has no sharp corners, and so his line of simultaneity never jumps discontinuously: instead,
it rotates upwards smoothly in Figure 5. In particular, Bob measures Alice to be

1. first ageing slowly as his line of simultaneity slides up Earth’s t-axis (Alice’s world
line) in a mostly translational way;

2. then ageing quickly as he slows, and his line of simultaneity begins to rotate and sweep
rapidly over Alice’s world line;

3. then finally ageing slowly as he nears Earth, and the sweep of the simultaneity line is
again mostly translational.

Inertial Alice says that Bob always ages slowly only by his instantaneous gamma factor,
as decreed by the clock postulate. In Bob’s frame, he is at rest, and Alice has apparently
been given a strong push “upwards”. He says that immediately after her departure she
ages slowly, corresponding to the first item several lines up. As Alice ascends higher
in Bob’s accelerated frame, Bob notes that time at Alice’s location runs faster: her age
increases dramatically (corresponding to the second item above). When she descends back
to him, she ages slowly once more (corresponding to the third item). Bob’s perception of
Alice’s ageing embodies the idea that time runs faster “higher up” in an accelerated frame.
The equivalence principle then takes over to predict that time runs faster higher up in a
static gravitational field.

Two comments are pertinent here. The first is that no logical problem would arise were
Bob to move back and forth for some part of his trip. His line of simultaneity would then
see-saw, allowing him to say that Alice’s age was bouncing back and forth, as discussed in
Section 3; but no contradiction results from this. This situation is labelled as contradictory
in Sections 2 and 3 of [24], which describes two twin scenarios that are both equivalent
in our language to Bob accelerating abruptly one or more times during his trip. Ref. [24]
effectively writes, in our language, that Bob states Alice’s age to be behaving non-physically,
and that Alice has to agree, which Ref. [24] then says is impossible. But this is not how
relativity works. Although Bob’s observations are valid, they don’t constrain or interfere
with Alice’s evolution. Alice’s age is oscillating for Bob, not for Alice. In a simple analogy,
imagine that Bob defined his “line of the horizontal” by the tilt of his head, and then tilted
his head back and forth. He would say correctly that Alice’s position was oscillating above
and below his horizontal; but that would be of no consequence to Alice, who of course
would feel no change in her position.

The above confusion between Alice’s and Bob’s observations as expressed in [24]
seems also to have motivated the view in [25]: that reference regards a see-sawing line of
simultaneity to be so “wrong” that it concludes no meaning can be given to extending the
line arbitrarily far in space. But again, prohibiting the line from being extended arbitrarily
is as pointless as preventing Bob from extending his “line of the horizontal” arbitrarily far
in space. I have discussed this at length in [26].

The second comment is: it is important to realise that the above difference in rates of
flow of time for Alice and Bob is a purely special-relativistic effect, which is then taken
on-board general relativity via the equivalence principle. Things are not the other way
around. The different rates of flow of time for the twins are often said to result from
Bob somehow generating a pseudo gravity field when he accelerates, and supposedly
“because GR (general relativity) says that time flows at different rates at different heights in
a real gravity field, Bob will say that Alice is ageing faster than him at his turn-around”.
This well-worn description puts the cart before the horse. Rather, GR infers that time flows
at different rates at different heights in a gravity field via the equivalence principle applied
to the special relativity of the UAF. Bob cannot then say that GR is the cause of Alice ageing



Universe 2021, 7, 4 15 of 33

at a different rate to him. This different ageing rate is naturally consistent with GR; and so
GR then lets us deduce what happens to Alice and Bob’s ages in a scenario of real gravity,
because that scenario must be consistent (via the equivalence principle) with the pseudo
gravity of the twin scenario of this section. But pseudo gravity is purely a useful mental
picture. GR should not be treated as the cause of anything in the UAF.

5. Two Speeds of Light in the UAF

In this section, Latin indices denote space coordinates, with summation over repeated
indices implied. The coordinate t is a generic “good” time coordinate, by which we mean
that all events of constant t are deemed to be simultaneous in the sense of how coordinates
are constructed, discussed at the start of Section 4. (See further the discussion of this in
Section 7.) The coordinate velocity of a particle is defined as v = d`/dt, where the spatial
element d` obeys

d`2 = −dτ2
∣∣∣
dt= 0

. (30)

In that case,

v2 =
−gab dxa dxb

dt2 . (31)

Suppose that the metric is static (it contains no dt dxa terms). To calculate the speed of
light, vlight, we set dτ2 = 0 between emission and reception events:

0 = dτ2 = gtt dt2 + gab dxadxb. (32)

Combining (31) and (32) gives
v2

light = gtt . (33)

The speed of light is then
vlight =

√
gtt = ∂τ/∂t . (34)

If we interpret ∂τ/∂t as the frame’s “rate of flow of time”, then the speed of light equals
the rate of flow of time.

In the barred coordinates of the UAF, we can now write

vlight =
√

gt̄t̄
(20)

gM x̄ . (35)

This speed equals zero at the horizon (x̄ = 0), as we might expect. It equals 1 (the usual
value in an inertial frame) at the location of the master observer (x̄ = 1/gM), and increases
higher up (larger x̄). This higher speed results from the global line simultaneity in the UAF
rotating in the lab frame as per Figure 3, and hence sweeping over a higher observer’s
world line faster than it sweeps over a lower observer’s world line. We interpret this to
mean that time flows more quickly higher up, since higher observers age more in a unit
of coordinate time than do lower observers—and all observers agree on this because the
standard of simultaneity is global to the frame. With time passing more quickly higher
up, light must cover more distance per unit coordinate time higher up than it does lower
down. (The same argument explains why light’s speed reduces toward the horizon.)

The master observer says that the speed of local light equals 1, and the speed of distant
light differs from 1. But any observer can consider himself to be the master, provided he
redefines the UAF’s coordinates to suit. This means that all observers in the UAF measure
the speed of local light to be 1. This is expected because, by the clock postulate, that speed
must equal the speed measured by the MCIF of any observer; and that MCIF, being inertial,
measures a speed of 1. Picture a UAF observer having a (brief) conversation with the
observer in his MCIF who is momentarily at rest right next to him, and both measuring the
speed of light on a table in front of them: by the clock postulate, they must agree on the
result. They will not agree on the speed of distant light, and this shows that the UAF is
more than just a collection of MCIFs. But that is okay because neither observer can measure
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the speed of distant light in an experiment, and so they can have nothing to argue about.
Accelerated observers thus always measure light’s speed locally to have the familiar value
found in an inertial frame. By the equivalence principle, this is also true in a real gravity
field.

Additionally, we can define a new velocity v̂ = d`/dτobs, where dτobs is the age
increase of an observer who is local to the particle. The expression equivalent to (31) is

v̂ 2 =
−gab dxadxb

dτ2
obs

. (36)

When the observer is at rest, dτ2
obs = gtt dt2, and (36) becomes

v̂ 2 = v2/gtt . (37)

In particular, for light, we obtain

v̂ 2
light = v2

light/gtt
(33)

1 . (38)

Thus, the observer always measures this speed of local light to be 1. This is consistent
with the clock postulate.

The fact that accelerated observers say that a distant light ray’s speed depends on its
location tells us something about the Sagnac Effect. This effect describes the measured
difference in the speeds of two light pulses that are sent simultaneously around Earth from
one emitter that is fixed to Earth. If the pulses are sent east- and westbound around the
Equator, then the westbound pulse will arrive back at the emitter about half a microsecond
before the eastbound pulse does. This is, of course, due to Earth rotating in the Solar
System inertial frame in which the two pulses have equal speeds. An observer fixed
anywhere on the Equator will measure each pulse’s coordinate speed to be 1 as it races
past; but when MCIFs are used to analyse the scenario, we find that all such observers say
that the coordinate speed is a non-trivial function of the pulse’s longitude and direction of
travel. I discussed this at length in [16].

6. Redshift in the UAF

The redshift that Bob observes in a light ray sent to him by Alice can be calculated by
following the emission and reception times of two rays, in Figure 6.

These can be individual rays, or successive crests of one wave. From the discussion
in Section 4.1, a line of simultaneity drawn through the event of Alice emitting a wave
intersects Bob’s world line at an event where Bob has the lab velocity that Alice had at the
emission event. It follows that, when Bob receives the ray, his rightward velocity in the
lab frame is greater than Alice’s velocity was when she emitted the ray. Hence, Bob will
measure the light to be redshifted. This is purely a kinematic Doppler shift in the lab;
but because Bob says that his separation from Alice is fixed, for him it is not a kinematic
effect. He says that seeing and observing are the same in this case, and so the redshift is a
consequence of Alice’s time running slower than his time.
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S frame
(inertial lab)

t

x

Alice Bob

τ1(x1, t1)

τ2(x2, t2)

τ3(x3, t3)

τ4(x4, t4)

∆τ
light

A

∆τ
light
B

ray 1

ray 2

Figure 6. Alice sends Bob two light rays. These can just as well be envisaged as successive crests of a
single light wave.

A highly simplified version of this section’s calculation was given by Feynman in his
lectures [27], and can be found elsewhere in the literature. Feynman studied an accelerating
rocket in an inertial lab frame in flat spacetime, and gave all parts of the rocket equal
accelerations. Clocks fixed to such a rocket would always have equal speeds in the inertial
lab, and so would tick at equal rates. In contrast, Feynman did not explain why the clock at
the base of the accelerating rocket in his Figure 42-16 is drawn in the lab as ticking slower,
incongruously, than the clock at its head. Feynman’s rocket was not a UAF, but in his
simplified calculation, such details as simultaneity and the need for different accelerations
were ignored. Although his Doppler calculation was valid, his rocket’s non-UAF-like
acceleration would make its inhabitants disagree on simultaneity, and they would thus
measure its length to be changing. Hence, they would state that a kinematic Doppler
shift was present, and so Feynman’s argument that what they observe is what they see
would be invalid. To have the inhabitants say that no kinematic Doppler was present
because the rocket’s length was not changing for them (and hence conclude that what they
observe is what they see), the rocket would have to be uniformly accelerated. In that case,
the clock in the rocket’s base (Alice in our Figure 6) would tick faster than the head clock
(Bob) because, at any lab moment, Alice would be moving faster in the inertial lab than
Bob. This difference in Alice’s and Bob’s accelerations is, indeed, the origin of the Lorentz
contraction. See my comment on Bell’s rockets at the end of Section 4.1.

To calculate the redshift in the UAF, place Alice as usual at x̄A ≡ 1/gA, and Bob at
x̄B ≡ 1/gB. Alice sends two light rays to Bob when she is aged τA = τ1 and τ2; he receives

these when he is aged τB = τ3 and τ4 respectively. How is ∆τ
light

A (≡ τ2 − τ1) related to

∆τ
light
B (≡ τ4 − τ3)?

Following (9), we write{
t1
x1

}
=

1
gA

{
sh
ch

}
gAτ1 ,

{
t3
x3

}
=

1
gB

{
sh
ch

}
gBτ3 . (39)

In Figure 6, ray 1 is a straight line of slope 1 and passes through (x1, t1), and thus has
equation t− t1 = x− x1, or

t− 1
gA

sh gAτ1 = x− 1
gA

ch gAτ1 . (40)
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This intersects Bob’s hyperbola at (x3, t3), when Bob is aged τ3. This hyperbola
has equation

x2 − t2 = 1/g2
B . (41)

We will solve (40) and (41) simultaneously for t = t3, and then use (39) to solve for τ3.
First, write (40) for (x3, t3) as

x3 = t3 +
1
gA

(ch− sh) gAτ1 = t3 +
e−gAτ1

gA

. (42)

Substitute this last expression into (41), and solve for t3 to give

t3 =
gA

2

(
egAτ1

g2
B

− e−gAτ1

g2
A

)
. (43)

By (39), t3 is also required to equal 1/gB sh gBτ3. Combine this with (43) to give

sh gBτ3 =
1
2

(
gA

gB

egAτ1 −
gB

gA

e−gAτ1

)
= sh

(
ln

gA

gB

+ gAτ1

)
. (44)

Because the sinh function is one to one, the inverse sinh can be taken trivially of the
left- and right-hand terms in (44), yielding

τ3 =
1
gB

ln
gA

gB

+
gAτ1

gB

. (45)

This is the sought-after expression for τ3. Similarly, we can immediately write down
the corresponding expression for ray 2:

τ4 =
1
gB

ln
gA

gB

+
gAτ2

gB

. (46)

We conclude that

τ4 − τ3 =
gA

gB

(τ2 − τ1) =
x̄B

x̄A

(τ2 − τ1) > τ2 − τ1 . (47)

In other words,

∆τ
light
B =

x̄B

x̄A

∆τ
light

A > ∆τ
light

A . (48)

We can convert (48) to the language of frequency. Alice and Bob agree on the number of
rays—or the number of periods of a single wave—that Alice sends to Bob. Alice generates
and emits a proper frequency fA, denoting a number of waves or periods per unit of her
proper time: we must use proper time here because Alice’s light generator knows nothing
about how her clock might be geared; she might simply have switched on a light bulb.
Bob receives and detects a proper frequency fB, a number of waves or periods per unit of
his proper time.5 The number of rays or periods sent from Alice to Bob is then

fA ∆τ
light

A = fB ∆τ
light
B . (49)

Equation (49) says
fB
fA

=
∆τ

light
A

∆τ
light
B

(48) x̄A

x̄B

< 1 . (50)

5 Don’t confuse the fA, fB here with the νA, νB of Eddington’s analysis in Section 2. The νA, νB are frequencies of Eddington’s clocks—which might
be local light generated by each observer; but fA, fB are the emitted and received frequencies of the light sent from Alice to Bob: fA, fB equal
Earman–Glymour’s νA,A, νA,B respectively.
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As predicted, Bob sees a redshift that is independent of time, as we might expect.
He also observes the same redshift because he says that Alice is not moving relative
to himself, and so therefore in his and Alice’s frame (the UAF), the redshift can have
no kinematical Doppler component. Realise that Bob doesn’t just see a redshift in the
frequency of light emitted by Alice; he also sees all of Alice’s actions passing at the slower
rate of (50). But now notice that this redshift factor, or rather its reciprocal x̄B/x̄A > 1, is
precisely the rate at which Bob was shown to age faster than Alice in (29).

If, say, Bob is twice as far from the horizon as Alice (x̄B = 2x̄A), then not only is
Alice ageing half as quickly as Bob, but Bob actually sees Alice ageing at half his own
rate. While he has 10 birthdays, he sees her have five birthdays. In addition, conversely,
Alice will see Bob ageing twice as quickly as herself. Each observer sees the other ageing
at a different rate, and, because they have no relative motion in the UAF, they conclude
that they are seeing reality, and not some kinematical Doppler artifact: what they observe
is what they see. The difference in the flow of time at their different locations is a visible,
tangible, effect, and is not something abstract that appears only in a bookkeeping ledger of
emission and reception times.

Books on general relativity sometimes describe the different rates of flow of time at
different locations in a way that can suggest it is not real, such as: “Bob’s clock appears
to tick more quickly than Alice’s clock”. Does the word “appears” (used in [28]) denote a
visual appearance? More likely, is it meant to suggest that the “appearance” of different
rates of flow of time is not real? Or perhaps that something obscure isn’t being accounted
for? Are the clocks displaying proper time (thus showing the ageing of Alice and Bob),
or have they been geared to display coordinate time? The UAF teaches us that the different
perceived rates of flow of time (different ageings of Alice and Bob) are real. Alice and Bob
can quite literally watch each other ageing at a different rate to themselves. In addition,
remember that with no relative motion in the UAF to produce a Doppler shift that is only
a “trick of the light”, each observer concludes that what they see is what they observe:
it is reality.

The agreement of the redshift calculation in this section with the “rate of flow of time”
calculations in Section 4 provides a very strong support and validation for analysing the
UAF using ideas of simultaneity and MCIFs. This should be kept in mind when these ideas
are extended to scenarios in which a frame cannot be defined according to the two rules in
Section 4. Such scenarios include rotation in flat spacetime, and curved spacetime; in both
of these, the speed of light and the rate of flow of time depends on location. That means the
standard special-relativity radar-style procedure of synchronising clocks does not apply,
and so ideas of simultaneity lose their standard special-relativity meaning.

7. Scenario Plots in UAF Coordinates

Previously, we drew our spacetime scenarios using the inertial frame’s coordinates
x, t. Insight can be gained by picturing the same scenarios in the UAF’s coordinates x̄, t̄.
First, we make the following observations.

• In Figure 4, ∆τA and ∆τB are the spacetime lengths of segments of world lines (that is,
how much Alice and Bob age on those segments), whose start events are simultaneous
for Alice and Bob, and whose end events are simultaneous likewise, thus defining
start and end coordinate times t̄1, t̄2. Equation (29) says that between any two such
coordinate times, the age increases of Alice and Bob have the ratio

∆τB

∆τA

=
gA

gB

=
x̄B

x̄A

> 1 . (51)

• In Figure 6, ∆τ
light

A is the proper time interval for Alice (how much she ages) between
emissions of two signals—two light rays or successive crests of a single wave—and
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∆τ
light
B is the proper time interval for Bob (how much he ages) between receiving those

signals. Equation (48) becomes

∆τ
light
B

∆τ
light

A

=
x̄B

x̄A

> 1 . (52)

The proper times between the rays in (52) have the same ratio as the age increases
of (51):

∆τ
light
B

∆τ
light

A

=
∆τB

∆τA

=
x̄B

x̄A

=
gM x̄B

gM x̄A

(20)
√

gt̄t̄(B)
gt̄t̄(A)

> 1 . (53)

The fact that ∆τB > ∆τA here means that Bob receives a period of a wave emitted
by Alice over a greater proper time—a greater number of Bob’s heartbeats so to speak—
than Bob counts for a period of light that was generated in his vicinity using the same
mechanism that Alice used. That is, he sees (and observes) Alice’s light redshifted.

Figure 4 shows the age increases ∆τA, ∆τB of Alice and Bob for the lapse of a coordinate
time t̄2 − t̄1. It was drawn in the t, x coordinates of the inertial lab. When it is redrawn in
the barred coordinates t̄, x̄ of the UAF, Figure 7 results.

UAF t̄

x̄

t̄1

t̄2

Alice Bob

x̄A = 1/gA x̄B = 1/gB

∆τA ∆τB > ∆τA

Figure 7. The scenario of Figure 4 shown in the UAF’s barred coordinates.

Analysing the rate of flow of time consists of finding and comparing the proper time
intervals ∆τA, ∆τB that correspond to a single lapse of coordinate time t̄2 − t̄1. We did that
in (29), repeated in (51).

It stands to reason that we should be able to draw this figure. The coordinate time t̄ is
a global standard of simultaneity for the UAF in the same way that an inertial frame has a
global standard of simultaneity; hence, we expect to be able to draw spacetime in the UAF
such that lines of simultaneity are horizontal, and all vertical distances of the same length
on the figure represent the same elapsed coordinate time ∆t̄. That is, after all, what we do
without a moment’s thought for inertial frames.

Likewise, Figure 6 drew the redshift in lab coordinates. To redraw it in UAF coordi-
nates, we first ask the question: how are the coordinate time intervals t̄2 − t̄1 and t̄4 − t̄3
related, where t̄1 is the UAF time of event (x1, t1) in Figure 6 (and similarly for t̄2 to t̄4)?
It turns out that t̄2 − t̄1 = t̄4 − t̄3, which we can show as follows.

Extract from the metric (20) the fact that at a fixed x̄, we have ∆τ/∆t̄ = gM x̄, or

∆t̄ =
∆τ

gM x̄
. (54)

Write ∆t̄A ≡ t̄2 − t̄1 and ∆t̄B ≡ t̄4 − t̄3. Then, (54) says

∆t̄A =
∆τA

gM x̄A

=
τ2 − τ1

gM/gA

. (55)
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Equation (54) also says

∆t̄B =
∆τB

gM x̄B

=
τ4 − τ3

gM/gB

(47) gA

gB

×
τ2 − τ1

gM/gB

(55)
∆t̄A . (56)

This equality ∆t̄A = ∆t̄B lets us redraw Figure 6 in UAF coordinates as Figure 8.

UAF

t̄

x̄

t̄1

t̄2

t̄3

t̄4

t̄2 − t̄1

(≡ ∆t̄A)

∆t̄B ≡ t̄4 − t̄3

(= t̄2 − t̄1)

Alice Bob

∆τ
light

A

∆τ
light
B > ∆τ

light
A

Figure 8. The scenario of Figure 6 represented in the UAF’s barred coordinates. The light rays’ world
lines are drawn curved because the coordinate speed of light is proportional to x̄, as in (35). Note that,
although t̄2 − t̄1 and ∆τ

light
A both refer to the time separation of the two emissions of the rays, they

are not necessarily equal; the first is coordinate time and the second is proper time. The same can be
said for t̄4 − t̄3 and ∆τ

light
B .

Again, this figure is reasonable. Because the metric (20) is time independent, we expect
that the world line of the second emitted ray in Figure 8 should be a copy of the first
emitted ray, translated upward. Hence, it must follow that ∆t̄A = ∆t̄B. To study this
time-independence of the metric in more detail, consider calculating t̄3 − t̄1, the coordinate
time taken for light to travel from Alice to Bob. We set the metric (20) equal to zero:
this gives a quadratic equation in dt̄ which can be solved in terms of spatial infinitesimals
and the metric coefficients. Because the UAF’s metric coefficients are time independent,
the coordinate-time duration of the transit, t̄3 − t̄1 =

∫ B
A dt̄, is independent of coordinate

time. It follows that the duration of coordinate time between successive emissions of
light signals by Alice (t̄2 − t̄1) equals the duration of coordinate time between successive
receptions of those signals by Bob (t̄4 − t̄3).

Analysing the redshift consists of finding and comparing the proper time inter-
vals ∆τ

light
A , ∆τ

light
B that correspond to the coordinate time intervals ∆t̄A, ∆t̄B, respectively.

We wrote the ratio of these proper time intervals in (53).
Thus, Figures 7 and 8 (and equivalently, Figures 4 and 6) both show the proper times

that elapse during a single coordinate time interval. This sheds light on the fact that the
relevant ratios of elapsed proper times (∆τ

light
B /∆τ

light
A and ∆τB/∆τA) are equal [see (53)].

That is, although Figures 7 and 8 show two distinct scenarios, the ratios of proper times
elapsed in them are equal. For example, if Bob sees a redshift such that the frequency of
Alice’s light is halved [and hence its period is doubled: ∆τ

light
B /∆τ

light
A = 2, as in (50)],

then he also knows that he is ageing twice as fast as Alice (∆τB/∆τA = 2). As we have
noted previously, what Bob sees is also what he observes: he quite literally sees Alice’s
light oscillating in slow motion, and similarly he sees Alice ageing slower than himself.
He knows that this is not the result of a Doppler shift in his and Alice’s frame because,
in their frame (the UAF), they keep a constant separation.
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An assumption of this equality of ageing and redshift might play a role in some
standard analyses of the literature, which run as follows. At a fixed location for a given
metric, the increment in proper time is dτ =

√
gtt dt (where the time coordinate t is a

generic symbol for that used in the frame of interest: it actually corresponds to t̄ above).
If the metric is time independent, this expression becomes ∆τ =

√
gtt ∆t. A ratio of two

proper times is then written as

∆τB

∆τA

=

√
gtt(B)∆t√
gtt(A)∆t

=

√
gtt(B)
gtt(A)

. (57)

Because this matches the correct expression (53), the redshift result is considered proved
and the case pronounced closed. But the reader is left wondering: what has all of this to do
with the emission and reception of light rays (or successive crests of a single wave)? And
why is the same coordinate time interval ∆t used top and bottom in (57)?

We saw in the preceding analysis around Figure 8 and (56) that, in the UAF, the lapse
of coordinate time between emissions of the two rays, ∆t̄A ≡ t̄2 − t̄1, turns out to equal
the lapse of coordinate time between receptions of the rays, ∆t̄B ≡ t̄4 − t̄3. Hence we can
certainly write, for Figure 8,

∆τ
light
B

∆τ
light

A

=

√
gt̄t̄(B)��∆t̄B√
gt̄t̄(A)�

�∆t̄A

=

√
gt̄t̄(B)
gt̄t̄(A)

> 1 , (58)

just as we wrote in (53). But showing that ∆t̄A = ∆t̄B required some work involving the
UAF, in (56). It is not obvious a priori. In addition, the “nice” behaviour of the coordinate
time t̄ here is no doubt due to the fact that it is a bona fide time coordinate, one that
obeys the strong requirement for simultaneity at the start of Section 4. It is not clear
that such nice behaviour will result from a time coordinate used in, say, Schwarzschild
spacetime, where a notion of simultaneity is no longer clear.6 See more discussion of this
in Sections 10.1 and 10.2.

One final note: we saw in Figure 8 that the coordinate times are equal: ∆t̄A = ∆t̄B,
and that the proper times are not equal: ∆τB > ∆τA. These relations seem to have been
unknown to Rice, who in the first of two questions put to Eddington in a letter to Nature [29]
assumed that the coordinate time intervals for that scenario are not equal, and the proper
time intervals are equal. Eddington argued the reverse in his reply, in agreement with
what we showed in Figure 8. In Section 2 of [5], Earman and Glymour stated that Rice’s
preference for equating proper times was correct; presumably they based this on their
belief that coordinates have no strong connection to physical events. But such a belief is
incorrect. Yes, arbitrarily defined coordinates can certainly be badly behaved—which is
precisely why we were careful to define a “good” time coordinate at the start of Section 4.
That section’s construction ensured that t̄ is a good time coordinate for the UAF because t̄
does have a strong connection to physical events.

I think the distinction between a “good” time coordinate and any arbitrary time
coordinate is treated poorly in relativity—if it’s discussed at all. A lack of awareness of this
distinction seems central to the unwillingness of some specialists to assign the coordinate
time any important role. Studies such as [30] redefine simultaneity in any way that can
eliminate some perceived difficulty. We would do better by treating time less cavalierly.
In addition, relativity textbooks generally assume that tensor notation puts all coordinates
on an equal footing, from which it supposedly follows that one coordinate is no more
physically meaningful than another. But tensor notation says no such thing. It allows us to
express laws in a coordinate-independent form mathematically; but that does not imply

6 In the usual Kruskal–Szekeres coordinatisation of Schwarzschild spacetime, light cones are drawn just as they are in flat spacetime. Does it
follow that Schwarzschild simultaneity is well determined by constant surfaces of the Kruskal–Szekeres time coordinate? That spacetime has a
well-defined direction of up/down; but why should simultaneity be determined by a time parameter that renders the light cones symmetrical in the
up–down direction?
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that all coordinates stand on the same footing physically. Reiterating my comments in
Section 4, if all coordinates were equally valid physically, then we would have no need to
construct “primed coordinates” when discussing “unprimed and primed” inertial frames
in introductory relativity textbooks, and the Lorentz transform would have no physical
importance. Clearly, relativity has taught us otherwise.

This distinction between good and bad coordinates has been with us since the early
days of cartography. Like relativity, any calculations done in cartography require coordi-
nates. Any arbitrary coordinate pair that satisfies a few mathematical constraints is valid
to describe a location on Earth; and yet, clearly, some coordinates are better than others.
If cartographic coordinates had no meaning beyond being arbitrary labels for locations
on Earth, one might invent a new type of latitude/longitude pair such that the curves of
constant latitude and constant longitude were not circles and ellipses, respectively, but were
some complicated curves of arbitrary shape. This would be a mathematically valid set
of coordinates that we could use to allocate two unique numbers to any point on Earth;
but it would almost certainly be useless—what I have called a bad set of coordinates—
because, for example, it might be thoroughly misleading and extremely difficult to apply
to real-world tasks of cartography.

Despite Rice’s early questioning of Eddington’s work, in his own later textbook on
relativity, Rice presented Eddington’s analysis as the correct one [5]. Apparently, redshift
analyses have been a source of confusion since the beginning. More of this confusion is
described in the next section.

7.1. Failure of Schild’s Argument for Curved Spacetime

Several textbooks [6,13,27,28] present an old argument due to Schild that concludes
that the existence of redshift implies that spacetime must be curved. (Schild mentions this
implication in [31].)

This argument can be formulated for Figure 8 in the following way. It says, correctly,
that the existence of a redshift (∆τ

light
B > ∆τ

light
A in the figure) implies that a different

standard of spacetime length (∆τ) applies to Bob’s world line than to Alice’s world line.
Hence, supposedly, the (pseudo-)parallelogram with two curved (red) sides that links the
four red dots in that figure cannot be a parallelogram after all (it cannot have two pairs of
parallel sides); thus, the spacetime must be curved. The problem with this argument is that
the UAF’s spacetime is flat! The above (correct) inequality ∆τ

light
B > ∆τ

light
A results from the

UAF’s non-Minkowski metric (20), along with the fact that it concerns proper time, whereas
the time axis of Figure 8 is coordinate time. Thus, Schild’s argument is invalid; it is a simple
case of misinterpreting a non-Minkowski metric in flat spacetime as implying curvature.
An increment in proper time can certainly vary with position, and that is precisely what
a non-trivial metric encodes. But it does not follow that curvature must be present. In a
spatial analogy, Figure 9 shows that the metric for polar coordinates on a flat plane in two-
dimensional space is position dependent: d`2 = dr2 + r2 dθ2. It follows that ∆`B > ∆`A,
but the space is certainly not curved. Compare that figure with Figure 7.

Feynman invoked Schild’s argument in his Lectures on Physics [27]. Naturally, we can-
not know if he was over-simplifying his thoughts for his undergraduate target audience.
He described a rocket accelerating in what is surely, from the context, flat spacetime. Next,
he produced a simplified version of our argument in Section 6, which was valid because
his rocket was small. He then used the equivalence principle to transfer his results to
real gravity.7 Schild’s argument appeared in his Section 42-7. At the start of that section,
Feynman’s text has “We have already pointed out that if the time goes at different rates at

7 A crucial point: Feynman’s transcribed words make it unclear whether he distinguished seeing from observing. His text has “But if one [clock]
always appears to be running at a different speed with respect to the other [clock], then so far as the first is concerned the other is running at a
different rate”. His comment holds only because the clocks in his rocket have no relative motion, and hence no kinematic Doppler shift. I might
add here that, when discussing moving clocks, I think it’s best to avoid words such as “running” and “speed”; these are too easily confused with
kinematics, instead of the rate of flow of time that they are meant to describe. “Running at a different speed” is better replaced by “Ticking at a
different rate”, and we must always remember that a clock’s tick rate really does equate to the rate of flow of time onboard the clock.
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different places, it is analogous to the curved space of the hot plate. But it is more than an
analogy; it means that space-time is curved”. Feynman immediately went on to draw his
Figure 42-18, which is essentially identical to our Figure 7. Corresponding to ∆τB > ∆τA in
our figure, he concluded that the larger value of ∆τ higher up in his figure implied that
its spacetime must be curved. The problem here is that, although his figure ostensibly
depicts gravity (that is, curved spacetime), it is also a correct depiction of the UAF’s flat
spacetime. Thus, his argument can be interpreted as saying that the flat spacetime of the
UAF is curved; a contradiction because a spacetime that is flat for one observer is flat for
all observers. It is the Schild-argument flaw of thinking that a non-trivial metric in flat
spacetime implies curvature.

flat plane

θ

r

θ1

θ2

small circular arc large circular arc

rA rB

∆`A ∆`B > ∆`A

Figure 9. The flat plane of two-dimensional space in polar coordinates r, θ, drawn analogously to
the spacetime of Figure 7. Two circular arcs, both centred on the origin r = 0, become the blue
straight lines in this figure. The metric that describes a length d` in space is position dependent:
d`2 = dr2 + r2 dθ2. Certainly ∆`B > ∆`A (the outer arc is longer than the inner arc), but we cannot
use that to conclude that the space is curved.

Although Feynman placed his scenario in free space, Carroll, Misner et al., and
Schutz [6,13,28] placed theirs on Earth’s surface. An observer on Earth is not accelerating
in an inertial frame in the same explicit way that Feynman’s rocket occupant was, and this
might have some bearing on how these authors phrase Schild’s argument. Schutz and Car-
roll refer to coordinate time directly in their discussion without drawing any relationship
to proper time; Misner et al. make a point of saying that coordinate time equals proper time
in their putative inertial frame. It might be said that the coordinate and proper times are
equal in the presumed-existing inertial frame; but a discussion that does not distinguish
one time from the other can never shed light on the confusion between these times that
played a key role in the arguments presented to Eddington by his detractors.

That Schild’s argument is used by so many authors might be due to our familiarity
with Mercator maps of Earth’s surface, which really is curved. When we look at such a map,
we are aware that the horizontal lines are not what they seem; they are circles of constant
latitude. The circumferences of these circles shrink near the poles, even though the lines’
lengths are all equal on the map. Earth’s curvature is the cause, but it is not correct to infer
the other way. That is, Earth’s curvature produces this distortion, but not all such distortions
are caused by curvature. This is proved by the flat-plane example in Figure 9, the space-only
analogy of Figure 7. What would Feynman have made of our Figure 9?8 We can suppose
one thing: despite what he and all of the above authors have written, they would all be

8 I’m sure he would have appreciated the arguments above, since he knew that his Lectures on Physics were not above the occasional hiccup. As an
example, consider Feynman’s discussion of the force acting on a capacitor plate in Section 8-2 of his Lectures’ Volume II. When the total field in the
capacitor is his value E0, the force on each plate equals its charge times the field E0/2 of the other plate, since a plate doesn’t act on itself. Feynman
derived this E0/2 term using an energy argument, and then expressed surprise at the presence of the 1/2. I think that the hindsight explanation he
gave for it doesn’t really work: it appeals to an average field strength inside capacitor plates that are required to be macroscopic conductors, belying
the idea that the plates should be treatable as thin sheets of charge only, and with no averaging necessary.
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well aware that determining curvature requires knowledge of the Riemann tensor, and is
not necessarily a by-product of a non-trivial metric.

The invalidity of Schild’s argument has been pointed out by Hamilton [11], who
stressed the correct roles of proper and coordinate time as presented in our previous
sections (but perhaps the details of those roles were obscured by the mass of other results in
his paper); and by Marsh and Nissim-Sabat [32], who didn’t stress the correct roles. Brown
and Read [10] have also argued that Schild’s analysis is incorrect.

8. Revisiting the Analyses of Eddington and Earman–Glymour

We are now in a position to describe more fully the analyses of Eddington and of
Earman and Glymour. Their scenario took place in a real gravitational field; but we are
creating a “toy” version of that field by using a UAF. It will be crucial to recall that in
Section 7 we showed that the coordinate time elapsing between successive emissions of
light signals by Alice equals the coordinate time elapsing between successive receptions of
those light signals by Bob.

8.1. Eddington’s Analysis

Eddington’s scenario, placed in a UAF, is shown in Figure 10.

UAF

t̄

x̄x̄A x̄B = 2x̄A

Alice Bob

∆t̄A

(Alice ages
by ∆τ)

∆t̄B (Bob ages by ∆τ)

∆t̄A

( = 2 ∆t̄B)

Figure 10. Eddington’s correct calculation of the redshift. He compared the lapses in coordinate time
(∆t̄A, ∆t̄B) for one given proper time ∆τ elapsing for both Alice and Bob. Alice and Bob’s clocks are
identical: they both have the same proper period of ∆τ; but Bob ages twice as fast than Alice, and so
he ages ∆τ in half the coordinate time taken by Alice. If, like Alice, Bob sent a light ray upwards at
each tick of his clock (∆τ), he would emit twice as many light rays as does Alice per unit coordinate
time, as shown in green.

He compared the lapses in coordinate time (∆t̄A, ∆t̄B) for one given proper time ∆τ
elapsing for both Alice and Bob. For the sake of argument, place Bob twice as far from
the horizon as Alice: x̄B = 2x̄A. Alice’s clock ticks once every ∆t̄A, equivalent to a proper
time ∆τ for Alice. That is, Alice ages by ∆τ between ticks of her clock, and so the metric
says that

∆t̄A = ∆τ/
√

gt̄t̄(A) . (59)

She sends a light ray to Bob at each tick. Bob receives these tick signals at intervals of the
same quantity, ∆t̄A, as we recalled in the previous paragraph. Bob’s clock ticks at intervals
of ∆t̄B, which need not equal ∆t̄A; this depends on how the coordinate time was defined.
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But the clocks were manufactured identically, and so Bob ages by the same proper time ∆τ
between his clock’s ticks as does Alice between her clock’s ticks. The metric then says that

∆t̄B = ∆τ/
√

gt̄t̄(B) . (60)

If Bob sent his own light ray upwards at each tick of his clock (∆τ), he would emit twice as
many rays as does Alice per unit coordinate time. These hypothetical rays are drawn green
in Figure 10.

In particular, since we have set x̄B = 2x̄A, we see from (59) and (60) that

∆t̄A

∆t̄B

=

√
gt̄t̄(B)
gt̄t̄(A)

=
gM x̄B

gM x̄A

= 2 . (61)

In this case, Bob receives Alice’s signals at half the rate of his own ticking. That is, Bob sees
Alice’s clock to be ticking slow by the factor ∆t̄A/∆t̄B = 2, or half of his clock’s rate: he
sees her ageing in slow motion. Bob also observes the same result because he knows that
Alice is not moving relative to him in their shared frame (the UAF), and so no kinematical
Doppler shift can be present. This is Eddington’s analysis of the redshift in our language,
and it is perfectly valid.

8.2. Earman and Glymour’s Analysis

Earman and Glymour’s scenario is shown in Figure 11.

UAF

t̄

x̄x̄A x̄B = 2x̄A

Alice Bob

∆t̄
(Alice ages

by ∆τA)

∆t̄ (Bob ages by ∆τB = 2 ∆τA)

Figure 11. Earman and Glymour’s correct calculation of the redshift. They compared the lapses in
proper time (∆τA, ∆τB) for one given coordinate time ∆t̄ elapsing for both Alice and Bob.

They compared the lapses in proper time (∆τA, ∆τB) for one given coordinate time
∆t̄ elapsing for both Alice and Bob. (Our description of their analysis in Section 2 used a
generic time coordinate t, but we now specifically use the UAF coordinate t̄.) Alice and
Bob have identical clocks. As usual, the proper period of these clocks is the time that each
observer ages in one period of their own clock. In particular, focus on Alice, and call this
period ∆τA. (Bob ages by the same amount, ∆τA, in one period of his clock.) Alice’s clock’s
period also corresponds to a coordinate time ∆t̄. This is not the coordinate period that Bob
ascribes to his clock. But it is the period that Bob sees and observes between Alice’s ticks.
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Define νA,A and νA,B as in (4). It follows that

1/νA,A = ∆τA =
√

gt̄t̄(A)∆t̄ = 1/νB,B ,

1/νA,B = ∆τB =
√

gt̄t̄(B)∆t̄ . (62)

The redshift factor is
νA,A

νA,B
=

√
gt̄t̄(B)
gt̄t̄(A)

=
gM x̄B

gM x̄A

= 2 . (63)

That is, Eddington’s ∆t̄A/∆t̄B in (61) and Earman–Glymour’s νA,A/νA,B in (63) are the
same redshift factor, but in somewhat different languages for scenarios that are really only
slightly different. Both analyses were valid.

9. Difficulty with the Energy-Plus-Quantum Argument for Redshift

We saw in Figures 8–11 that a light ray’s coordinate frequency (number of oscillations
per unit coordinate time t̄ ) does not drop en route from Alice to Bob, but its proper
frequency (number of oscillations per unit personal proper time τ) certainly does drop
from Alice to Bob.

The proper frequencies are most naturally measured: they do not depend on any clock
gearings, and so, in a manner of speaking, answer Alice’s question “How many cycles
of the light were emitted per each of my heart beats?” and Bob’s question “How many
cycles of the light were received per each of my heart beats?”. But the coordinate frequency
also has real physical meaning because the UAF’s coordinate time has physical meaning.
The coordinate time defines a global standard of simultaneity for the frame, and hence is a
privileged choice of time for the UAF.

We should take seriously, then, the idea that the coordinate frequency does not drop
in the UAF en route from Alice to Bob, and hence that the difference in proper frequencies
measured by Alice and Bob is not due to something happening to the travelling light, but to
the twins ageing at different rates. This is reasonable; after all, by what mechanism could
such a drop occur in any static scenario if Alice and Bob were ageing at the same rate?
It would require successive crests to take longer and longer to travel from Alice to Bob;
but light’s speed cannot be time dependent in a static scenario. This was already realised
by Einstein some years before general relativity came about [5], and forced him to conclude
that Bob must really be ageing faster than Alice in the context of true gravity.

Now, consider a basic exercise in non-relativistic classical mechanics: say, computing
the trajectory of a projectile in a uniform gravitational field. The scenario occurs in a
non-inertial frame; but if we are to apply Newton’s equations of motion (which apply only
to inertial frames), we model the frame as being inertial with a “gravity force” present.
This idea might be applied to the light that Alice sends to Bob. Suppose they model their
frame as inertial with a “gravity force” present. In that case, because Alice and Bob are at
rest, each writes their metric as “dτ2 = dt2”, meaning proper and coordinate times are
equal, and hence proper and coordinate frequencies are equal. We can compute the redshift
with what is a standard argument in the literature, as follows.

Alice generates a light ray of energy E. She sends this up the gravitational potential
∆Φ ≡ ΦB −ΦA > 0. The ray loses energy ε and is received by Bob. The value of ε can be
determined by energy conservation with the following thought experiment. Bob converts
the light of energy E− ε into a mass (E− ε)/c2 (where we retain factors of c to highlight the
use of mass here). We assume he can do this with full efficiency, barring any known Carnot-
type argument to the contrary. He then drops this mass back down to Alice. For a weak
field (∆Φ/c2 6 1), we can omit the momentum-conserving back-reaction of the mass’s
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motion on the field, and simply say that the mass gains kinetic energy (E − ε)∆Φ/c2.
Alice converts the mass (E− ε)/c2 and its kinetic energy back into a light wave of energy

E− ε

from the mass

+ (E− ε)∆Φ/c2

the kinetic energy

. (64)

Energy conservation says this should equal E. It follows that

ε =
E∆Φ/c2

1 + Φ/c2 ' E∆Φ/c2 (since the field is weak). (65)

Setting c = 1 again for conciseness, we conclude that, whereas Alice emits light of energy
E, Bob receives light of energy E − ε = E(1 − ∆Φ). We now take a photon view and
write “E = h f ” with h Planck’s constant. Re-use the fA, fB in (49): Alice emits light with a
frequency that she measures to be fA = E/h, and Bob receives that light and measures its
frequency as fB, where

fB =
E(1− ∆Φ)

h
= fA(1− ∆Φ) < fA . (66)

Equation (66) is the standard redshift expression, validated by experiment. It matches the
expression we derived in (50). The reason is that (50) can be written as

fB
fA

=
x̄A

x̄B

=
gM x̄A

gM x̄B

(20)
√

gt̄t̄(A)

gt̄t̄(B)
, (67)

and because [as mentioned just after (2), but now in barred coordinates] gt̄t̄ ' 1 + 2Φ for a
weak static gravitational potential, it follows that

fB
fA
' 1 + Φ(A)

1 + Φ(B)
' 1 + Φ(A)−Φ(B) = 1− ∆Φ < 1 . (68)

We can also argue that light must lose energy in climbing a gravitational field by
considering a mass m at sea level that is converted with 100% efficiency to light. This light
is sent upward, received, and converted back to mass. That mass must be less than m,
since otherwise we would have sent the mass upwards at no energy cost. On the other
hand, if the 100% efficiency cannot be attained, it might imply the existence of some type
of Carnot theorem for converting mass to energy; but no such theorem is known.

The thought experiment preceding (64) can be eliminated by positing that light of
energy E has a relativistic mass of E/c2. This mass is reduced by ε = E∆Φ/c2 as the
light climbs the potential, bringing us to (65) immediately. In non-relativistic mechanics,
a particle that is shot upwards in a gravitational field has its kinetic energy converted to
potential energy while its mass stays fixed. But in relativity, the particle’s kinetic energy
contributes to its relativistic mass; hence, the particle’s relativistic mass is reduced as the
particle ascends. The same idea holds for light here: the loss in relativistic mass of the
ascending light means that its energy is reduced from E to E− E∆Φ/c2.

This simplified derivation—that avoids transforming energy to mass and vice
versa—has been questioned by Earman and Glymour [5], and pronounced invalid by
Okun et al. [14]. These authors object to light obeying what Okun calls a non-relativistic
analysis built around an energy loss of E∆Φ/c2. Okun goes further, pronouncing incorrect
Einstein’s 1911 statement “whenever there is mass, there is also energy and vice versa”,
on the basis that the photon has no (rest) mass. But light’s zero rest mass is irrelevant here.
Light clearly has energy, and it is reasonable to imagine transforming that energy into mass
in the thought experiment preceding (64) where that mass was dropped back down to
Alice. Thus, nothing here negates Einstein’s statement, and the relativistic-mass view is
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a conveniently brief way to present the thought experiment of converting between light
and mass.9

Nonetheless, the redshift cannot be a coordinate-frequency drop between observers
who age at the same rate, because the very idea that a signal’s coordinate frequency can
change from emission to reception in the static case where emitter and receiver are ageing at
the same rate and have no relative motion makes no logical sense: the frequency drop would
imply successive wave fronts were taking longer and longer to reach Bob, contradicting the
fact that the signal’s speed was time independent. Hence, we must interpret the redshift as
due to Bob ageing faster than Alice, and not to any drop in coordinate frequency happening
en route from Alice to Bob. Recall the comment just after (48): proper frequency is the
relevant quantity here, and Bob’s measurement of it is less than Alice’s because he is ageing
faster than her. The “ f ” in Planck’s identity “E = h f ” is the observer’s proper frequency,
not coordinate frequency. When we invoke that identity, we are already unconsciously
allowing Alice and Bob to age at different rates. Planck’s identity goes hand in hand
with the idea that time flows differently at different heights in an accelerated frame or
gravity field.

Even though light’s coordinate frequency does not drop as it ascends the potential that
is present in the UAF, it does not ascend for free, with no energy price being paid. What we
might call an energy price is reflected in the different rates of flow of time with height
in the UAF. The principle of energy conservation is thus intimately related to the rate of
flow of time. This goes beyond Nöther’s theorem, which says that energy conservation
results from a system’s dynamics having no time dependence. Nonetheless, it’s clear that
defining a gravitational energy becomes problematic in relativity. The ascending light has
not given energy to the gravity field; instead, the state of the observer has been central to
the description of the light.

The classical loss of mass/energy of a particle that ascends a (real or apparent) gravity
field might indicate a relationship of mass to time. When Alice looks up, she sees/observes
Bob going about his daily activities in fast motion. If Alice and Bob apply equal forces to
identical metal blocks stamped “100 kg” on rollers, Alice marvels that Bob can give his
block a higher acceleration than she can give hers. She concludes that if Bob is ageing at
the same rate as she, then his block must be less massive than hers. But if she demands that
his block have the same mass as hers, then she must conclude that his time is unfolding
faster than her time.

10. Redshift in Real Gravity

Given that the UAF approximates (but is not equivalent to) a uniform gravitational
field over small distances, the equivalence principle helps us infer at least some behaviour
of a real gravitational field from it. For example, we infer that clocks (i.e., time) run faster
the higher they sit in a real gravitational field. This prediction is verified daily because it
is built in to global satellite navigation systems. Atomic clocks on-board such satellites
are “geared down” just as Bob’s clock was in Section 4.2: they are manufactured to “tick”
slightly slowly on Earth, so that, when in orbit and ageing (hence ticking) faster than they
were in the factory, they tick at the same rate as their counterparts on Earth. This allows
the relevant equations for time and position to be solved unambiguously. (This quickening
of a satellite’s tick rate upon reaching a typical global navigation orbit is the sum of two
contributions: the larger is the rate increase caused by the gravitational potential, and the
smaller is a decrease caused by the orbital motion.)

9 In [14], Okun is really expressing his aversion to the concept of relativistic mass, which he expounds on in [33]. But that mass E/c2 finds a perfect
use in simplifying the above valid thought experiment. Light has zero rest mass m0, in that it satisfies the general particle equation E2 = p2c2 + m2

0c4

for m0 = 0. Its momentum is p = E/c = E/c2 × c. Hence, being multiplied by light’s speed c in an inertial frame, E/c2 certainly plays the role of a
mass. The thought experiment in this section shows that this mass behaves in the way that we expect of a mass that is raised in a gravity field.
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Let’s use the equivalence principle to apply (68) to a real field with gravitational
acceleration g. For observers at rest on or near Earth’s surface, kinematic effects due to
Earth’s rotation are negligible; then (68) becomes, with factors of c restored,

fB
fA
' 1− g× Bob’s height above Alice

c2 . (69)

This formula was tested by the 1960s Mössbauer experiments of Pound, Rebka and Snider.
They measured the redshift of gamma rays sent by the equivalent of Alice from an Earth-
stationary source up 22.5 metres to an Earth-stationary detector held by the equivalent of
Bob. Equation (69) predicts a redshift of

fB
fA
' 1− 10 ms−2 × 22.5 m

9× 1016 m2 s−2 ' 1− 2.5× 10−15. (70)

This value agrees with the experimentalists’ findings to a 1% accuracy [34]. Alternatively,
we can imagine that the experiment was carried out in a UAF and use the barred coordinates
of (67) without discussing gravitational potential at all. Alice and Bob’s “heights” (above
the horizon x̄ = 0) are then

x̄A = c2/g ' 0.97 light-years , x̄B = x̄A + h , (71)

with h = 22.5 m. Equation (67) says [referring to (70) for the numbers]

fB
fA

=
x̄A

x̄B

=
x̄A

x̄A + h
' 1− h

x̄A

= 1− h
c2/g

= 1− gh/c2 ' 1− 2.5× 10−15. (72)

This agrees with (69) and (70). The expression 1− gh/c2 has been confirmed over sub-metre
values of h by modern precision clocks [35]. Echoing the end of Section 6, this agreement
of the UAF/MCIF approach to redshift with experiment forms a strong validation of the
whole philosophy of using MCIFs to define simultaneity in an accelerated frame, coupled
with the equivalence principle to discuss real gravity.

In his 1960 book [36], Synge suggested dismissing the equivalence principle from
modern physics, saying that its role had been only to help general relativity be born,
and that it should now be “buried with appropriate honours”. In contrast, we have seen
above that the principle is alive and well, and is necessary for introducing the UAF into
any modern discussion of gravitational redshift.

10.1. Redshift from the Schwarzschild Metric

How might we reproduce (68) using, say, the Schwarzschild metric, which describes
Earth’s gravitational field well for our purposes? The Schwarzschild metric is

dτ2 = (1− 2M/r)dt2 − (1− 2M/r)−1dr2 − r2 dθ2 − r2 sin2 θ dφ2. (73)

Can we use the argument of Section 7 and Figure 8 to derive the redshift, which we
know should be at least approximately (68)? The Schwarzschild metric describes a curved
spacetime, not the flat one shown in Figure 8. Nevertheless, just as we can draw Earth’s
surface with some distortion on a flat page, we should be able at least to envisage depicting
Schwarzschild spacetime on a flat page. Any distortion will not affect the static nature of the
metric, meaning that successive light rays should appear as in Figure 8; that is, they should
all be congruent, irrespective of how their speed might change en route from emitter to
receiver. Thus, Figure 8 applies to Schwarzschild spacetime: in particular, the lapses in
the coordinate time t of the metric (73) (not proper time τ!) between successive emissions
and between successive receptions should be equal: ∆tA = ∆tB. This is the crucial point to
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realise, and once we have it, the rest is easy. We combine (50) with the reciprocal of (58)
(using Schwarzschild’s t, not the UAF’s t̄ ) to write

fB
fA

=
∆τ

light
A

∆τ
light
B

=

√
gtt(A)��∆tA√
gtt(B)��∆tB

=

√
gtt(A)

gtt(B)
. (74)

For the metric (73), the last term in (74) becomes the 1− gh/c2 of (72).
One big difference is evident between the “∆tA = ∆tB” argument as applied to

Figure 8 in Section 7, and to Schwarzschild spacetime in the previous paragraph. The UAF
time t̄ in Figure 8 is a “good” time coordinate: it gives a well-defined global standard of
simultaneity to the UAF. But the time t in the Schwarzschild metric doesn’t guarantee
any simultaneity at all, local or global. It is the time shown on the master clock located at
spatial infinity, but it is not assigned to events in any way that accords with the simultaneity
standard present in special relativity. What role this difference in the time coordinates of
UAF and Schwarzschild might play in more advanced discussions of redshift and time is
not clear.

Aside from that, the discussion in Section 7 shows that ageing and redshift are synony-
mous in Schwarzschild spacetime. Construct a variant on the usual twin paradox, in which
Alice and Bob both fly independently around the world, or perhaps one stays at home.
When they meet, what is their age difference ∆τB − ∆τA? Their proper times elapsed are
each given by integrating the metric (73) over their paths in spacetime. This is easier said
than done, because it demands a knowledge of the quantities dr/dt, dθ/dt, and dφ/dt.
For example, if Alice traverses a “small circle” at a fixed height and latitude, then her age
increase—her elapsed proper time—is

∆τA =

∫
dτA

(73)
∫ √

1− 2M/rA − r2
A sin2 θA (dφ/dt)2 dt . (75)

We might be inclined to say that, to a high approximation, rA sin θA dφ/dt is Alice’s velocity
in the Solar System frame in which Earth spins.10 To calculate this velocity, we might be
given Alice’s velocity over Earth’s surface, and will have to combine that with Earth’s spin
velocity at her latitude. It’s not clear how to do this at a deep level; should the velocities be
added special-relativistically? Why? At its core, this question relates to what it means for
Alice’s velocity to be specified “over Earth’s surface”, since this involves relativistic rotation,
a subject of much debate. Typical experiments use such low speeds that the velocities are
added directly. This analysis is at the core of Hafele and Keating’s 1971 experiment, in
which clocks were flown around the world. Their results gave a low-speed confirmation of
relativity’s current ideas of proper and coordinate times in the Schwarzschild metric.

10.2. A Global Time for Earth

The calculation that produced (69) disregarded Earth’s rotation as negligible. When de-
tails of that rotation are included, we find a phenomenon that is used to define our modern
global time, called TAI (and dubbed UTC when leap seconds are included.) Earth’s rotation
gives it an oblate-spheroid surface. Including gravitational effects from the non-uniform
surface distribution of land masses and oceans produces the geoid: a best fit to Earth’s
surface, with all of its points at a single effective gravitational potential that combines
gravity with rotation.

Alice and Bob are fixed to different points A, B on the geoid. Equation (73) is now
modified to include Earth’s spin: dφ is set equal to Earth’s spin rate times dt. This modifies
gtt such that gtt(A) = gtt(B). A superficial comparison of light frequencies in (74) then
indicates that a light ray sent by Alice to Bob will be received without being redshifted.

10 My own essay on this in [18] has a typographical error in its equation (12.58) and the sentence immediately following. The terms sin2 θplane

and sin2 θlab should be absent, and the plane’s velocity should be v ' r sin θ dφ/dt. These typos cancel in (12.58), so that it still returns the
correct numbers.
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(This also follows from the energy-conservation argument in Section 9: the total work
done by the light en route from Alice to Bob is zero, and hence Bob measures no change in
frequency of the light.) But because Alice and Bob say that they have no relative motion,
then (as discussed in Section 6) what they see is reality. They each conclude that the other is
ageing at the same rate as themselves. This is the standard argument for all clocks ticking
at the same rate on the geoid, without requiring gearing. This rate is called TAI, whose SI
unit is the second defined from the physics of the caesium atom.

That said, the above geoid discussion assumes the existence of the time t in (73) and (74).
Constructing a meaningful time on a rotating Earth even in the absence of gravity is a delicate
procedure, as I have discussed in [16,26]. It turns out that global simultaneity breaks down on a
rotating Earth—at least in the absence of gravity—but not for the reason commonly found in
papers in the subject, which string together one-space-dimensional Lorentz transforms naïvely.
As already stated in Section 10.1, this lack of global simultaneity might cause problems for any
discussion of rotation. The last words on that topic have yet to be said. Unfortunately, the
precise-timing community remains almost completely unaware of these delicate nuances of
the theory.

11. Conclusions

Eddington’s and Einstein’s analysis of redshift lay at the cutting edge of their time;
and, although correct (at least as far as a modern interpretation of Eddington’s gravitational
argument goes), was not well understood in their day. Perhaps that was partly due to a
lack of precision in Eddington’s language. Earman and Glymour [5] say that Eddington
wasn’t completely sure of what he wrote. The UAF’s analysis vindicates Eddington and
Einstein, while preserving the correctness of the alternative derivation made by their
detractors, Earman and Glymour. It also sheds light on the analyses of authors such as
Schild. Section 7.1’s discussion of some modern authors suggests that, even today, the roles
of proper and coordinate time are not distinguished from each other as well as they should
be. That might be a result of the modern practice of redefining time and simultaneity
through arbitrary foliations of spacetime—a practice that I think has no deep physical
meaning, and only ends up trivialising what is really a rich subject. The UAF approach
accomplishes much, while remaining in the comparatively well-understood realm of special
relativity. For this, and for what it tells us about real gravity via the equivalence principle,
the uniformly accelerated frame deserves a more prominent role in the teaching of relativity.

I thank the referees for their comments, which corrected a couple of mistakes and
made some things clearer.
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