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Abstract: This paper presents the results of calculating the van der Waals friction force (dissipative
fluctuation-electromagnetic force) between metallic (Au) plates in relative motion at temperatures
close to 1 K. The stopping tangential force arises between moving plates along with the usual
Casimir force of attraction, which has been routinely measured with high precision over the past two
decades. At room temperatures, the former force is 10 orders of magnitude less than the latter, but
at temperatures T < 50 K, friction increases sharply. The calculations have been carried out in the
framework of the Levin-Polevoi-Rytov fluctuation electromagnetic theory. For metallic plates with
perfect crystal lattices and without defects, van der Waals friction force is shown to increase with
decreasing temperature as T−4. In the presence of residual resistance ρ0 of the metal, a plateau is
formed on the temperature dependence of the friction force at T → 0 with a height proportional to
ρ0
−0.8. Another important finding is the weak force-distance dependence ∼ a−q (with q < 1). The

absolute values of the friction forces are achievable for measurements in AFM-based experiments.

Keywords: van der Waals friction force; Casimir force; Levin-Polevoi-Rytov fluctuation-electromagne-
tic theory; Drude model; low-temperature dependence

1. Introduction

Spatial correlations of quantum and thermal fluctuations of polarization and mag-
netization of condensed bodies, as well as a vacuum electromagnetic field, lead to the
appearance of fluctuating electromagnetic forces between polarizable particles, atoms, and
macroscopic bodies. In particular, an attractive force arises between electrically neutral
thick metallic or dielectric plates (half-spaces) located at a distance a from each other—the
Casimir-Lifshitz force [1,2]. Fluctuation-electromagnetic forces in various systems are
usually called van der Waals forces [3]. Upon the relative motion of the plates with velocity
V, in addition to an attractive force, a dissipative tangential force (quantum friction force
at T = 0) arises between them [4–16]. At nonrelativistic velocities V and temperature T 6= 0,
this force is proportional to V and to higher odd powers of V− at T = 0.

For several decades, the calculation of the van der Waals dissipative force has been the
subject of intense theoretical research and discussion by numerous groups of authors, with
widely differing results. In particular, the expressions for this force, obtained in the first
works [4–7], were considered either inaccurate or lacked sufficient details, while correct
expressions, in the cases T = 0 and T 6= 0, were first obtained in [8–10]. However, as
has recently been shown [17], basic results obtained earlier by Polevoi (Equations (1)–(4)
in [6]) make it possible to correctly reproduce all generally accepted expressions for the
dissipative van der Waals force between parallel plates. In addition, a more transparent
formula for this force, obtained on the basis of these results in [17], makes it possible to
significantly simplify the analysis of its low-temperature dependence. As we have noted
in [17], dissipative tangential force Fx between metallic (Au) plates increases sharply with
decreasing temperature and decreasing electrical resistance. This unexpected result is asso-
ciated with a significant increase of the contribution from low-frequency electromagnetic
modes with frequencies ω � ν, with ν being the relaxation frequency, which, although
small, is finite at T = 0. At the same time, at ν = 0, the force Fx becomes negligibly small.
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Along with these results, a general consensus has emerged between several theoretical
approaches to the problem of dissipative van der Waals interactions on the whole, reflected,
for example, in [11,18–20]. These developments and the results obtained and shown
below open up much more optimistic prospects for conducting appropriate experiments to
measure van der Waals friction, despite its smallness at ordinary (room) temperatures that
hampers experimental studies.

Unlike dissipative van der Waals forces, precise experimental measurements of attrac-
tive Casimir-Lifshitz force Fz have been carried out for more than 20 years [21–23], having
achieved a high accuracy of ∼ 1%, but at temperatures of ∼ 1 K, thermal corrections to Fz
are small compared to a “cold” part. This fact greatly complicates experimental measure-
ments of entropy and, accordingly, the resolution of another long-standing problem—-the
so-called Casimir puzzle and Casimir conundrum [23–26] in the case of metallic and di-
electric plates: violating the Nernst heat theorem when calculating the force of attraction
between the plates in the framework of the Lifshitz theory using conventional, well-tested
dielectric functions of materials. A recent comprehensive review on this issue is given
in [27]. In contrast, the van der Waals friction force with a linear dependence on velocity
turns out to be most sensitive precisely to the low-temperature dielectric properties of
materials, and its measurement can also give a new impetus in solving the Casimir puzzle.

In addition to fundamental interest, exploring van der Waals friction can be of great
practical importance for microtechnology and for description of micromechanical systems
operation [28]. There is also reason to guess that van der Waals friction can manifest itself
under astrophysical conditions during conglomeration of dust particles [19,29].

Taking all the above into account, this work aims at a more detailed analytic and
numerical analysis of the low-temperature behavior of the van der Waals friction force
between metallic plates, based on the theory by Levin-Polevoi-Rytov [6,30] and its develop-
ment in [17]. This enables us to confirm our previous conclusions [17] both analytically and
numerically. Namely, van der Waals friction force between the plates of gold increases by
6–7 orders of magnitude when the temperature drops down from 100 to 1 K, provided that
the dielectric permittivity is described by the Drude function, with the temperature depen-
dence of relaxation frequency obeying the Bloch-Grüneisen formula or close to it. A simple
analytic expression for the friction force is also obtained, and the conditions are discussed
for its experimental measurement in the sphere-plate configuration, commonly used when
measuring attractive Casimir force. This creates a favorable prospect in measuring van der
Waals dissipative friction.

2. Theoretical Background

Let us consider the standard Casimir-Lifshitz configuration of a system of two metallic
plates 1 and 2 (Figure 1) at a temperature T, separated by a vacuum gap a, where plate
1 moves with a nonrelativistic velocity V relative to a fixed plate 2. Recall the original
expression for the fluctuation-electromagnetic friction force Fx per unit area of the vacuum
contact of two plates obtained in [17] in a linear approximation in the velocity V (a more
general formula is also given in [17]).

Fx =
h̄V
2π2

∞∫
0

dω
dn
dω

∞∫
0

dkk3

[
|q|2

|Qe|2
Im
(

q1

ε1

)
Im
(

q2

ε2

)
+
|q|2

|Qm|2
Im
(

q1

µ1

)
Im
(

q2

µ2

)]
, (1)

where n(ω) = 1/(exp(h̄ω/T)− 1); ε1,2 and µ1,2 are the frequency-dependent dielectric
permittivity and magnetic permeability of materials of plate 1 and 2,



Universe 2021, 7, 427 3 of 13

Figure 1. System configuration.

q =
√

k2 −ω2/c2, q1,2 =
√

k2 − ε1,2µ1,2ω2/c2, and

Qe = (q + q1/ε1)(q + q2/ε2)eqa − (q− q1/ε1)(q− q2/ε2)e−qa, (2)

Qm = (q + q1/µ1)(q + q2/µ2)eqa − (q− q1/µ1)(q− q2/µ2)e−qa. (3)

In (1), the Planck constant and the speed of light in vacuum are denoted by h̄ and
c, and temperature T is expressed in energy units. The linear approximation in velocity
corresponds to the condition ω � kV, which at a nonrelativistic velocity V � c is met both
in the case of inhomogeneous (evanescent) electromagnetic waves (k > ω/c) and in the case
of propagating (traveling) waves (k ≤ ω/c). As shown in [17], formula (1) fully agrees with
the general relativistic expression for the dissipative force Fx, obtained by Polevoi [6] within
the framework of the fluctuation-electromagnetic theory [30]. It can also be cast to a more
familiar expression with Fresnel’s reflection coefficients of electromagnetic waves [10,11]
(see Appendix A). However, formula (1) is much more convenient when analyzing the low-
temperature behavior of the force Fx due to a more transparent dependence on dielectric
permittivity.

We will further consider the case of plates of the same nonmagnetic metals with
µ1 = µ2 = 1, ε1 = ε2 = ε(ω). Then (1) takes the simpler form

Fx = − h̄V
8π2

(
h̄
T

) ∞∫
0

dω

sin h2(h̄ω/2T)

∞∫
0

dkk3|q|2
[

Im(q1/ε)2

|Qe|2
+

Im(q1)
2

|Qm|2

]
. (4)

Inobtaining(4),wehavetakenintoaccounttheidentity d
dx (exp(x)− 1)−1 = −1/4sin h2(x/2).

The modification of (2) and (3) for µ1 = µ2, ε1 = ε2 = ε is obvious (keeping the general
definition q1 =

√
k2 − ε ω2/c2 for q1,2).

When studying the low-temperature behavior of the attractive Casimir-Lifshitz force
Fz between metallic plates, the Drude approximation for ε(ω) is usually used:

ε(ω) = 1−
ω2

p

ω(ω + iν)
(5)

where ωp and ν are plasma and relaxation frequencies. Meanwhile, for an ideal metal with-
out impurities and other defects, dependence ν(T) obeys the Bloch-Grüneisen law [31,32].

νBG(T) = 0.0212(T/θ)5
∫ θ/T

0
x5sh(x/2)−2dx (eV), (6)
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where θ is the Debye temperature. In the presence of impurities and other physical defects
that contribute to the formation of residual resistance, it seems natural to use the expression

ν(T) = ν0 + νBG(T), (7)

with ν0 being the constant and νBG(T) � ν0 at 0 ≤ T � T0 (T0 � θ). The role of
the relaxation frequency at zero temperature and the corresponding mechanisms were
discussed in [32–36].

As can be easily seen from (4), only traveling waves ω/c ≥ k can contribute to the
friction force Fx at ν = 0. The resulting friction force Fx in this case is extremely small
for measurement at present. Therefore, direct experimental measurements of Fx at small
distances between the plates, when inhomogeneous waves k > ω/c dominate, would not
only be a direct validation of the presence of finite residual resistance but would also enable
us to quantitatively assess its magnitude. In view of the above, we will further assume that
function ν(T) is always nonzero and introduce the frequency parameterization ω = νt. For
wave vector k, we use the parametrization k =

(
ωp/c

)√
y2 + β2t2 (with β = ν/ωp) in the

case k > ω/c, and k =
(
ωp/c

)√
β2t2 − y2 in the case k ≤ ω/c. Then, for q and q1 in (4),

we obtain q =
(
ωp/c

)
y, q1 =

(
ωp/c

)√
y2 + t/(t + i) in the former case and q = i

(
ωp/c

)
y,

q1 =
(
ωp/c

)√
−y2 + t/(t + i) in the latter case. Accordingly, formula (4) takes the form

Fx = − h̄V
8π2

(ωp

c

)4
α

∞∫
0

dt
sin h2(αt/2)

[ f1(t, β, λ) + f2(t, β, λ)], (8)

where α = h̄ν/T, λ = ωpa/c, and functions f1,2 are given by

f1(t, β, λ) =

∞∫
0

dyy2
(

y2 + β2t2
)[ (Im(w1/ε))2

|Qen|2
+

(Imw1)
2

|Qmn|2

]
, (9)

f2(t, β, λ) =
∫ βt

0
dyy2

(
β2t2 − y2

)[ (Im(w2/ε))2

|Qer|2
+

(Imw2)
2

|Qmr|2

]
. (10)

In (9) and (10), we also introduced the quantities ε = 1− 1/
(

β2t(t + i)
)
,

w1 =
√

y2 + t/(t + i), w2 =
√
−y2 + t/(t + i) and

Qmn = 2
(

2y2 +
t

t + i

)
sh(λy) + 4y

√
y2 +

t
t + i

ch(λy), (11)

Qen = 2
(

y2 + ε−2
(

y2 +
t

t + i

))
sh(λy) + 4yε−1

√
y2 +

t
t + i

ch(λy), (12)

Qmr = 2
(
−2y2 +

t
t + i

)
sin(λy) + 4y

√
−y2 +

t
t + i

cos(λy), (13)

Qer = 2
(
−y2 + ε−2

(
−y2 +

t
t + i

))
sin(λy) + 4yε−1

√
−y2 +

t
t + i

cos(λy). (14)

Let us analyze the role of individual terms in (8) as T → 0, when the parameter α = h̄ν(T)/T
is small. If ν(T) is defined by (6), then α = 1 for T = 69 K and α = 1.375 for T = 300 K.
Moreover, up to high temperatures T ∼ 1000 K, the relation α/β = h̄ωp/T � 1 holds.
Parameter λ does not depend on temperature. In particular, for gold (ωp = 9.03 eV)
at a = 10 nm, we obtain λ = 0.459. The presence of the hyperbolic sine squared in
(8) enhances the role of low-frequency modes with t � 1, when sh(αt/2)−2 ≈ 4α−2t−2.
Accordingly, a significant temperature effect should manifest itself at T � 69 K. To allocate
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the dependence of the force Fx on α (and on temperature) more clearly, we write (8) in
the form

Fx = − h̄V
8π2

(ωp

c

)4 1
α
(Imn + Ien + Imr + Ier) (15)

where the integral terms in square brackets are given by

Imn = α2
∞∫

0

dt
sin h2(αt/2)

∞∫
0

dyy2
(

y2 + β2t2
)

Im
(√

y2 + t/(t + i)
)2

|Qmn|−2, (16)

Ien = α2
∫ ∞

0

dt
sin h2(αt/2)

∫ ∞

0
dyy2

(
y2 + β2t2

)
Im
(

ε−1
√

y2 + t/(t + i)
)2

|Qen|−2, (17)

Imr = α2
∫ ∞

0

dt
sin h2(αt/2)

∫ βt

0
dyy2

(
β2t2 − y2

)
Im
(√

y2 + t/(t + i)
)2

|Qmr|−2, (18)

Ier = α2
∫ ∞

0

dt
sin h2(αt/2)

∫ βt

0
dyy2

(
β2t2 − y2

)
Im
(

ε−1
√

y2 + t/(t + i)
)2

|Qer|−2. (19)

The temperature dependence of Fx also manifests itself through a small parameter β.
An analysis of (16)–(19) shows that, in the most important range of nanometer distances, a
between the plates, the main contribution is made by the integral Imn, corresponding to
inhomogeneous waves. When calculating Imn, y takes characteristic values y ∼ λ−1 ∼ 1.
Then for t � 1 and y � t, one obtains |Qmn|2 ≈ 16y4 exp(2λy). On the other hand,
regardless of the relation between y and t, it follows that

(Imw1)
2 =

(
Im
√

y2 +
t

t + i

)2

=

√
t2 + [t2 + y2(1 + t2)]

2 − t2 − y2(1 + t2)
2(1 + t2)

. (20)

Accordingly, for t � 1 and y � t, one obtains (Imw1)
2 ≈ 0.5t2/y2(1 + t2) and

(Imw1)
2/|Qmn|2 ≈ t2e−2λy/32y6(1 + t2), while (16) takes the form

Imn ≈
1
8

p∫
0

dt
(1 + t2)

∞∫
p

dy
e−2λy

y2

(
1 +

β2t2

y2

)
, (21)

where p ∼ 1. Calculating integral (17) yields,

Imn =
arctgp

8p

[
2pλEi(−2pλ) + e−2pλ

]
+

β2

24
(p− arctgp)

p3

[
4p3λ3Ei(−2pλ) +

(
1− pλ + 2p2λ2

)
e−2pλ

]
(22)

with Ei(−x) being the integral exponential function [37]. Moreover, the presence
of a small parameter β2 in the second term of (22) makes it negligible in comparison
with the first term. In the case when y � t � 1, from (11) and (20) it follows that
(Imw1)

2/|Qmn|2 ≈
(
1 + y2)/16y2, and when this expression is substituted into (16), the

result does not depend on α, but it is negligible due to the smallness of the upper limits of
integration. In other regions of integration, integral Imn turns out to be proportional to α
or α2, so its contribution at α� 1 can also be neglected. The rest of the integral terms in
(15) are also small. In particular, integral Ien is cut off due to the large modulus value of the
dielectric constant ε (ε in (9)), and the contributions Imr and Ier from traveling waves are
small due to the additional dependence on β2. Thus, taking into account (18), it follows
from (15) that at T → 0 force, Fx increases proportionally to T−4 if ν(T) is described by (6).
This conclusion is also confirmed by direct numerical calculations in Section 3.

3. Numerical Results

As an example, we calculated the van der Waals force between two Au plates. The
dielectric function was taken in Drude approximation (5) with the relaxation frequency
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defined by (6) or (7). When using (7), parameter ν0 was varied in such a way that the
equality ν0 = νBG(T0) was fulfilled for values of T0 in the range from 0 to 3 K. This
made it possible to estimate the residual resistance of the plate material, ρ0 = 4πν0/ω2

p.
Accordingly, parameter α in (15)–(19) was calculated by α(T) = (ν0 + νBG(T))/T. In Table
1, we compare different contributions to the friction force (Imn, Ien, Imr, Ier) in Equation
(15). One can see that integrals Ien, Imr, Ier are small compared to Imn and can be neglected.
The resultant friction forces at ν0 = 0 are shown in Table 2. The upper-row values of Fx
for each temperature T and a gap width a were obtained by direct numerical integration
of (16). The lower-row values of Fx were calculated by formula (22) with parameter p
depending on a. Since the temperature dependence of integral Imn was very weak, a good
approximation for p(a) at each value of a was obtained when equating (22) and the result
of numerical integration in (16) for T = 1 K. The resultant dependence p(a) is shown by
the solid curve in Figure 2. The dashed curve was obtained using the fitting function

p(a) = 0.4 exp
(
−0.1a1/2 − 0.001a0.874

)
. (23)

Table 1. Integrals Imn, Ien, Imr, Ier.

a=10 nm

T K Imn Ien Imr Ier

1 8.08 × 104 4.91 × 10−34 8.43 × 10−29 8.94 × 10−29

5 129.3 7.49 × 10−23 4.12 × 10−21 4.36 × 10−21

10 8.087 4.84 × 10−18 8.02 × 10−18 8.89 × 10−18

50 0.0785 1.46 × 10−9 2.91 × 10−12 3.77 × 10−12

a = 50 nm

T K Imn Ien Imr Ier

1 3.031 × 104 9.77 × 10−35 2.91 × 10−29 7.14 × 10−29

5 48.5 1.49 × 10−23 1.42 × 10−21 3.49 × 10−21

10 3.031 9.77 × 10−19 2.78 × 10−18 7.1 × 10−18

50 0.0296 6.54 × 10−11 1.14 × 10−12 3.07 × 10−12

Figure 2. Dependence p(a) in (22) (circles) as a function of the gap width a, obtained when equalizing
(16) and (22) for T = 1 K and ν0 = 0 in (7). Solid line extrapolation (23).
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Table 2. Van der Waals friction force between two Au plates (N/m2), V = 1 m/s. The upper-rows of
data correspond to Equation (15) with (16), while the lower-rows data correspond to Equation (24)
with (23).

a, nm T = 0.5 K T = 1 K T = 5 K T = 10 K T = 50 K

1 13.1
13.0

0.818
0.814

1.309 × 10−3

1.302 × 10−3
8.18 × 10−5

8.14 × 10−5
7.90 × 10−7

7.95 × 10−7

5 9.55
9.72

0.597
0.608

9.55 × 10−4

9.72 × 10−4
5.97 × 10−5

6.08 × 10−5
5.78 × 10−7

5.94 × 10−7

10 7.48
7.57

0.468
0.473

7.48 × 10−4

7.57 × 10−4
4.68 × 10−5

4.73 × 10−5
4.54 × 10−7

4.62 × 10−7

20 5.29
5.24

0.330
0.328

5.29 × 10−4

5.24 × 10−4
3.31 × 10−5

3.28 × 10−5
3.22 × 10−7

3.20 × 10−7

30 4.09
3.98

0.256
0.248

4.09 × 10−4

3.98 × 10−4
2.56 × 10−5

2.49 × 10−5
2.49 × 10−7

2.43 × 10−7

40 3.33
3.18

0.208
0.198

3.33 × 10−4

3.18 × 10−4
2.08 × 10−5

1.99 × 10−5
2.03 × 10−7

1.94 × 10−7

50 2.81
2.63

0.175
0.164

2.81 × 10−4

2.63 × 10−4
1.75 × 10−5

1.64 × 10−5
1.71 × 10−7

1.61 × 10−7

100 1.55
1.39

0.0969
0.0868

1.55 × 10−4

1.39 × 10−4
9.69 × 10−6

8.68 × 10−6
9.48 × 10−8

8.48 × 10−8

150 1.063
0.965

0.0665
0.0603

1.063 × 10−4

9.65 × 10−5
6.65 × 10−6

6.03 × 10−6
6.53 × 10−8

5.90 × 10−8

200 0.404
0.773

0.0504
0.0483

8.07 × 10−5

7.73 × 10−5
5.05 × 10−6

4.83 × 10−6
4.91 × 10−8

4.72 × 10−8

As follows from the data in Table 2, the use of (22) in combination with (23) provides
a fair description of the friction force. Approximation errors gradually increase from 0–3%
for a ≤ 30 nm to 3–10% for 30 ≤ a ≤ 200 nm. Errors are associated with increasing errors
of Equation (23) at large values of a

Omitting the small second term in (22) and inserting (22) into (15), we obtain an
approximate expression for the friction force of the form

Fx = − h̄V
64π2

(ωp

c

)4 T
ν(T)

arctgp
p

[
2pωpa

c
Ei
(
−2pωpa/c

)
+ exp

(
−2pωpa/c

)]
, (24)

where p(a) is given by (23) or it can be taken from Figure 2 (circles) and Table 3.

Table 3. Function p(a).

a, nm 1 2 3 5 7 10 15 20

p(a) 0.352 0.385 0.360 0.334 0.318 0.297 0.272 0.254
a 30 40 50 60 80 100 150 200

p(a) 0.225 0.204 0.188 0.175 0.154 0.139 0.113 0.0955

As follows from (24) and the data shown in Table 2, at T ∼ 1− 200 K, friction force
Fx scales as T−4 if ν0 = 0. This is caused by dependence (6). Another striking result is that
in the range of distances under consideration (see Figure 3).
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Figure 3. Friction force between two Au plates as a function of gap width a for
T = T0 = 1 K, V = 1 m/s. The black line shows the result of numerical calculation. The
red, green, and blue lines correspond to analytic fits 5a−1, 1.37a−0.75, and 0.41a−0.25.

The dependence of Fx on distance (gap width) is relatively weak: Fx(a) ∼ a−0.25 for
a = 1− 10 nm, Fx(a) ∼ a−0.75 for a = 10− 100 nm, and Fx(a) ∼ a−1 for a = 100− 3000 nm.
This is in drastic contrast to the behavior of the attractive Casimir force ( Fz ∼ a−4 for T = 0
in this range of separations).

As the next step, we calculated dependence Fx(T) at different values of ν0. The results
are shown in Figures 4 and 5 for a = 10 nm and a = 100 nm.

Figure 4. Friction force between Au plates as a function of temperature T and parameter T0 for a gap width a = 10 nm and
V = 1 m/s. The top (red) to bottom (light blue) curves correspond to T0 = 0.1, 0.2, 0.5, 1, 3 K, respectively.
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Figure 5. Friction force between Au plates as a function of temperature T and parameter T0 for a gap width a = 100 nm and
V = 1 m/s. The top (red) to bottom (light blue) curves correspond to T0 = 0.1, 0.2, 0.5, 1, 3 K, respectively.

The formation of a plateau on the plots at T = 0 was caused by the finite values of ν0
and residual resistance ρ0. The smaller ν0, the higher the growth of Fx(T) with decreasing
temperature. A plateau was formed at a temperature T0, corresponding to the equality
ν0 = νBG(T0), and the corresponding values of Fx were proportional to ρ−0.8

0 . Another
plateau on the curves, where the friction force barely does not depend on temperature, was
observed at T > 100 K, in the range of room and higher temperatures, in agreement with
our previous calculations [17].

4. Discussion

The results obtained fully confirm our earlier conclusion [17] that van der Waals
friction force between metallic plates of gold should increase significantly at temperatures
T < 50 K (see Figures 4 and 5). The character of this dependence ( Fx ∼ T−4) is due to the
low-temperature behavior of the relaxation frequency ν(T) at T < θ, since ν(T) ∼ T5. In
the presence of defects and impurities in the metal, the quantity ν(0) = ν0 is associated with
the residual resistance of the metal, ρ0 = 4πν0/ω2

p. With decreasing temperature below the
value T0 determined by the relation νBG(T0) = ν0, the height of the plateau forming on the
dependence of the friction force on temperature is proportional to T−4

0 . Correspondingly,
knowing the height of the plateau allows one to find ρ0, since Fx ∝ ρ−0.8

0 . At first glance, an
unexpected increase in friction at T < 100 K (69 K for gold) had a fairly simple physical
justification. In accordance with the Planck distribution, the density of fluctuation modes
increased significantly at low frequencies ω < T/h̄. However, under normal conditions
and a sufficiently high resistance of the metal, the relationship ν > T/h̄ (α > 1) was
satisfied, and the characteristic absorption frequency was the Wien frequency. Accordingly,
friction force decreased with decreasing temperature (∝ T2). With decreasing temperature
T, the relaxation frequency decreased faster than the Wien frequency, the ratio between
them changed (α < 1), and the characteristic absorption frequency shifted towards low
frequencies with a high density of electromagnetic modes. At the same time, the penetration
depth of S-modes increased. Although the mean free path of electrons increased and the
resistance to direct current dropped down, an increasing number of electrons underwent
small-angle scattering under the action of numerous small-scale local fluctuations of the
electromagnetic field and charge density. As a result, Joule dissipation and friction grew
up to the saturation threshold due to residual resistance. In general, these processes were
controlled by parameter α. Within the framework of this scheme, the sharp drop in the
friction force in the limit T → 0, ν→ 0 is also easily explained: the S-wave field was
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transformed into a constant magnetic field that freely penetrated into the sample, and the
dissipation of energy of electrons disappeared.

Thus, no less important result is that the dominant contribution to the friction force (up
to distances a = 1÷ 3 µm) was due to inhomogeneous S-polarized electromagnetic waves.
Meanwhile, it was the low-temperature behavior of the S-modes and their contribution to
the magnitude of the thermal part of the Casimir force that played a key role in resolving
the Casimir paradox associated with a possible violation of the Nernst theorem, since
theoretically consistent models of dielectric response for real metals at low frequencies
should agree with the behavior of the Casimir entropy at T → 0 . According to [32], the
most promising route for exploring the finite temperature correction to the Casimir pressure
and entropy in the standard setup with two parallel plates appears to be the case of large
separations around 2 µm. Then the corresponding (relative) temperature correction will
be on the level of 1%. However, at such separations, the Casimir pressure itself is small
(it is ∼1.6×104 times less than at separations of 100 nm). At the same time, if van der
Waals friction increases by 106 ÷ 108 times at T ∼ 1 K, the level of thermal correction to
Casimir pressure will be inferior to the magnitude of the van der Waals friction. For ideal
metal plates, at a = 2 µm, T = 3 K, the thermal Casimir force Fz = −1.2T/4πa3 turns out
to be 5× 10−7 N/m2, whereas the corresponding friction force was 3.2× 10−5 N/m2 (at
V = 1 m/s, T = T0 = 3 K), i.e., much higher.

Also noteworthy was the very slow decrease in the friction force with distance: even
at a = 1÷ 3 µm we obtained the dependence Fx ∼ a−1, while at smaller distances we
had Fx ∼ a−q with q < 1 (Figure 3). This is in drastic contrast to the Casimir attraction
force, where Fz ∼ a−q with q = 4÷ 3. Such a weak dependence lead to an increase in
the effective area of interaction in experiments, in which a probing body was a metallized
sphere of radius R. In addition, the role of surface roughness in this case also turned out to
be less important.

The calculated values of the van der Waals friction force seem to be quite achievable in
a setup based on an atomic force microscope (AFM), where an Au-coated sphere of radius
R is attached to the AFM cantilever and interacts with an Au-coated plate of the substrate
material. Thus, for R = 50 µm, a = 20 nm, T = T0 = 1 K, and V = 1 m/s, we obtained
Fx = 0.165 N/m2 and Fx = 0.088 N/m2 (at a = 50 nm and the same other conditions).
Then, with an effective area of interaction Se f f = πaR, the calculated friction parameter
will be γ = FxSe f f /V = 5.2× 10−13 kg/s in the former case and γ = 6.9× 10−13 kg/s
in the latter. Close to such experimental conditions were those implemented in [38]. In
that experiment, a configuration with the AFM cantilever oriented perpendicular to the
surface was applied. Due to the high stiffness of the cantilever in the transverse direction,
the distance a between the sphere and the surface could be controlled with an accuracy
of several nm. The measured values of the friction parameter γ (at a = 10 nm) were
1.5 × 10−13 kg/s at T = 295 K and 2.5 × 10−14 kg/s at T = 77 K, with the distance
dependence γ ∼ a−q (q = 1.3± 0.2). However, the dissipation mechanism in [38] was
not clearly elucidated. However, in the opinion of the authors, the dissipation is electrical
in origin, and they did not exclude the influence of adsorbates and other surface defects,
causing the appearance of parasitic electric fields. To a greater extent, such effects were
likely even more significant in the experiment [39], with a parallel orientation of the
cantilever (in the range of room temperatures). As compared to our expectations, the key
points, which likely exclude the relevance of these experiments to the quantitative estimates
of the van der Waals friction, are related with the decreasing temperature dependence
(with reducing temperature). In addition, the level of the van der Waals friction of order
10−13 kg/s is expected at temperatures T < 5 K, which were not reached in [34].

New fascinating experimental possibilities in precision measurements of Casimir
forces and quantum friction forces between plates and in close geometry are opening
up with recent experiments [36,40,41]. In particular, in [41], the Casimir force between
interpenetrated rectangular gratings was measured at T = 4 K.
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Another point that seems to be worth touching on briefly is the possible role of nonlo-
cal corrections to the dielectric constant at low temperatures. In our recent paper [42], the
calculated nonlocal correction to friction force becomes significant at separations a < 10 nm,
but it affects only the contribution from P-polarized waves, which is much less than the
contribution from S-waves (Table 1). In addition, this nonlocal correction scales with tem-
perature and distance as T2/a5. The effect of nonlocality was also negligible in calculating
the contribution from S-waves to Casimir pressure [43,44]. One more nonlocal modification
of Drude function (5) (compared to [43,44]) was recently proposed in [45]. In its essential
point, as far as concerned the friction force, the second term in (5) had an additional factor
∼ 1/(1 + ikVF/ω). In the case of interest, k > ω/c, this factor either did not change the
Drude-like low-temperature behavior of dielectric permittivity, ε ≈ iω2

p/ων(T) (ω � ν(T))
or lead to the plasma-like dependence. In the latter case, the friction force receded. A more
confident judgement needs additional analysis.

5. Conclusions

The main conclusions are the following:

(1) For metals without defects and impurities, van der Waals friction parameter γ = Fx/V
increases with decreasing temperature as T−4 at temperatures T < 100 K.

(2) In the presence of residual resistance ρ0, the temperature dependence of the friction
force reaches saturation (γ ∝ ρ−0.8

0 ) at T < T0, where T0 depends on the magnitude of
ρ0.

(3) Dependence of the friction parameter on distance is weak: γ ∼ a−q with q ≤ 1 up to
a = 3 µm.

(4) Absolute values of van der Waals friction at T < 1÷ 5 K are large enough to be
measured with existing AFM techniques.
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Appendix A

As shown in [17], the following identities take place

Im(q1/ε1)Im(q2/ε2) =


− Im∆1eIm∆2e
|q|2|ε1|2|ε2|2

|ε1q + q1|2|ε2q + q2|2, k > ω/c

− 1
4
(1−|∆1e |2)(1−|∆2e |2)

|q|2|ε1|2|ε2|2
|ε1q + q1|2|ε2q + q2|2, k ≤ ω/c

, (A1)

Im(q1)Im(q2) =


− Im∆1mIm∆2m

|q|2
|q + q1|2|q + q2|2, k > ω/c

− 1
4
(1−|∆1m |2)(1−|∆2m |2)

|q|2
|q + q1|2|q + q2|2, k ≤ ω/c

, (A2)

|Qε|2 = |ε1q + q1|2|ε2q + q2|2
∣∣∣1− ∆1e∆2ee−2qa

∣∣∣|ε1|2|ε2|2
∣∣∣e2qa

∣∣∣, (A3)∣∣Qµ

∣∣2 = |q + q1|2|q + q2|2
∣∣∣1− ∆1m∆2me−2qa

∣∣∣∣∣∣e2qa
∣∣∣, (A4)

where ∆ie =
εiq−qi
εiq+qi

and ∆im = q−qi
q+qi

are the reflection coefficients for the P-polarized and

S-polarized electromagnetic waves (i = 1, 2), q =
√

k2 −ω2/c2 = |q| for k > ω/c and
q = i|q| for k ≤ ω/c. Inserting (A1)–(A4) into (1) we obtain
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Fx = h̄V
2π2

∞∫
0

(
∂n
∂ω

)
dω

∞∫
ω/c

dkk3e−2qaIm∆1eIm∆2e|De|−2

+ h̄V
8π3

∞∫
0

(
∂n
∂ω

)
dω

ω/c∫
0

dkk3
(

1− |∆1m|2
)(

1− |∆2m|2
)
|De|−2 + (e↔ m)

(A5)

where De = 1−∆1e∆2ee−2qa. Formula (A5) has become more familiar since works [10,11].
In the case µ1 = µ2 = 1, ε1 = ε2 = ε, using (A1)–(A4), we retrieve (A5).
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