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Abstract: In the present article we review the work carried out by us and collaborators on supersym-
metric quantum cosmology, noncommutative quantum cosmology and the application of GUPs to
quantum cosmology and black holes. The review represents our personal view on these subjects and
it is presented in chronological order.
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1. Introduction

Quantum gravity is a prospect of a physical theory describing the quantum phenom-
ena associated to the gravitational field. At the present time nobody knows with certainty
how this theory will look like. There are several proposals in the literature describing
the possible nature of the fundamental degrees of freedom and checking the internal
consistency by connecting it to the correct limits as the low energy macroscopic general
relativity and quantum mechanical laws. These theories have some features which are
quite interesting by themselves, as the modification of the spacetime structure near Planck
scale (for an exposition of the different approaches, see for instance, [1,2]). String theory
and loop quantum gravity are among the most prominent examples. In the present article
we review our advances on another approach to quantum gravity as quantum cosmology.
This proposal has its origins in the Arnowitt, Deser and Misner (ADM) canonical formalism
of quantum gravity [3]. This is an approach to quantum gravity that possess some of the
features of the complete theory and it allows to formulate some models easily workable
(for some reviews on this topic, see [4,5].)

The study of the universe must be done in the framework of the theories in force
at present, depending on the scale to be described, although there is no question that it
must rely on general relativity. Cosmology links together, as a theory of the evolution
of the universe, small with large scales, hence a natural, theoretical framework for it is
quantum cosmology.

Cosmology describes the general laws of the universe, i.e., its evolution and structure
formation. Mostly, these laws can be formulated classically, in accordance with the obser-
vational bounds. However, assuming the past convergence of matter into a singularity, it
emerges the question, still open, of its quantum origin. On the other side, there is large
evidence and it is generally accepted that classical physics can be explained from quan-
tum physics. Accordingly, there have been broad efforts to formulate a quantum theory
of gravity.

The observation of the universe has lead to the knowledge that it behaves as a classical
system, it is no subject to quantum uncertainties. This fact refers to the observable universe,
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which begins with the time of the Cosmic Microwave Background (CMB). Before this time,
the universe is well described after the hot big bang, and there is controversy on what
happened before, although it is largely accepted, that an inflationary epoch should have
been present, originated during a homogeneous phase. Before this phase not much is
known, but it is believed that if the universe has expanded from a previous era above
Planck scale, a full quantum gravity description is required. On the other side, one of
the successes of inflation is that it produces a growth of quantum fluctuations to the size
and density required by gravitational instability, without generating too strong primordial
gravitational waves. These fluctuations can be explained by the quantization of small
inhomogeneous perturbations of the metric, in a homogeneous background, hence from
a semiclassical quantum gravity. Therefore, it is valid to study homogeneous cosmology
as a quantum theory. This quantization corresponds to quantum mechanics, with a time
independent Klein-Gordon equation, given by the Wheeler-DeWitt equation [5,6].

Among the candidates for a unified theory of quantum gravity, supergravity has an
important place, as an effective or possibly fundamental theory. As supergravity includes
necessarily fermions, it requires to be a quantum theory. Thus, the study of quantum
supergravity cosmology is meaningful and relevant. As a bonus, in the supersymmetric
framework, the Wheeler-DeWitt equation turns into a system of first order equations.

Supersymmetric quantum cosmology has been first formulated in an attempt to give a
systematic approach for a square root for the Wheeler-DeWitt equation in [7]. In this work,
a homogeneous theory following from N = 1 supergravity theory was considered. In this
way, an invariance principle for a square root of the WDW equation has been proposed,
at the energy scale of quantum cosmology. As the fields in the action depend only on
time, not all the original constraints follow from the variation, and the missing constraints
should be implemented by hand for consistency.

If one would like to consider the presence of quantum effects through the Heisenberg
uncertainty principle in gravitational systems, it is possible to argue that there is a minimal
length, which is precisely the Planck length LP. If we increase the energy, the length will
be start to be increased again. This behavior is typical of noncommutative field theories
and noncommutative gravity [8,9]. One of its prominent examples is the description
of instantons on noncommutative spaces. It can be appreciated an effective size of the
instantons depending on the noncommutative parameter. A novel proposal was carried
out by us in the paper [10], where noncommutative deformation was implemented at the
level of Wheeler’s superspace or more concretely at the level of minisuperspace.

If the uncertainty relations are modified by generalizing them, then the ultraviolet
(UV) behavior will change. This is precisely the aim of Generalized Uncertainty Principles
(GUP), which asserts that in the UV the usual Heisenberg relations should be modified.
These generalizations are consistent with some results of very high energy scattering in
string theory [11–18].

However, the observed large scale homogeneity of the universe, indicates a primary
description in a minisuperspace, with finitely many degrees of freedom. Such a theory has
the indubitable advantage, that it accepts a quantum description, and has served also as
a test ground for approaches of quantum gravity. Moreover, this theory has given new
insights in the study of the early universe, and of the other realm where it is thought that
quantum gravity should manifest, the interior of black holes. Among these approaches,
we have made several proposals that we shortly review here: supersymmetric cosmology,
effective noncommutativity in cosmology and black holes.

In this work we shortly present some of these developments with collaborators, and
concentrate on our own point of view, and main contributions. The article is organized
as follows: in Section 2 we review supersymmetric quantum cosmology starting from the
original proposal [7] and we describe very briefly the other proposals to supersymmetric
quantum cosmology in the literature. Section 3 is devoted to give an overview of the
noncommutative quantum cosmology. We give the original idea [10] and briefly discuss its
further evolution. In Section 4 we describe a recent proposal of the application of GUPs
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to quantum cosmology following Ref. [19]. In Section 5 we review the application of the
GUPs to black holes, this is based in Ref. [20].

2. Supersymmetric Quantum Cosmology

The starting point is the Freedman-Nieuwenhuizen-Ferrara action [21]. The fields are
the tetrad e a

µ , the spin connection ω ab
µ , and the Rarita-Schwinger Majorana 3

2 -spinor field
ψ a

µ , i.e., it satisfies ψ̄µ = ψT
µ C, where C is the charge conjugation matrix. The lagrangian is

L =
1

2κ2

[√
−gR(ω)− εµνρσψ̄µγ5γνDρψσ

]
, (1)

where the bosonic part is the Palatini lagrangian, which depends on the tetrad and the spin
connection. The derivative of the Rarita-Schwinger field is covariant with respect to Lorentz
transformations. After its elimination by its equations of motion, the spin connection turns
into the Ricci rotation coefficients, modified by the supersymmetric torsion term

ωλµν =
1
2
(
−Ωλµν + Ωµνλ + Ωνλµ

)
, (2)

where Ωλµν = eλa

(
∂µe a

ν − ∂νe a
µ − i

2 ψ̄µγaψν

)
.

Similar to Yang-Mills theories, the components e a
0 , ωab

0 , and ψa
0 are non-dynamical,

and their conjugated momenta pa, pab and πa vanish. The hamiltonian is [22,23]

H = e a
0 Ha + ωab

0 Lab + ψα
0 Sα + λa pa + λab pab + λαπα, (3)

where H0 is the hamiltonian constraint, Hi, (i = 1, 2, 3) the momentum constraints, Lab the
Lorentz constraints, and Sα the supersymmetry fermionic constraints. All these constraints
are first class.

In general the fermionic variables have first order kinetic term, from which follow
second class constraints, which require Dirac brackets. Thus, the canonical brackets of ψα

m
form a Clifford algebra (m = 1, 2, 3). The equal time bracket constraint algebra closes [22],
modulo Lorentz transformations,

{Sα(~x), Sβ(~x′)} = −(γaC)αβHa(~x)δ(~x−~x′). (4)

The canonical quantization of the bosonic variables is implemented by derivatives of
the conjugated variables, as for canonical quantum gravity [6]. The fermionic variables can
be quantized in a similar way [24]. Another way is, as in the case of the spinning particle,
representing the fermionic variables by Dirac matrices, leading to the Dirac equation [25].
The constraints are implemented as operator equationsHΨ = 0, on a wave function Ψ that
will be a functional of the fields of configuration space, called also superspace. Thus, the
solutions do not depend on the non-dynamical fields, are scalar by the Lorentz constraints,
and depend on 3-metrics through space diffeomorphisms invariant classes, due to the
momentum constraints Hi, see e.g., [5]. On the other side, these solutions satisfy the
supersymmetric constraints SαΨ = 0, then the hamiltonian and momentum constraints
will be satisfied, HaΨ = 0, due to (4).

At the beginning of the nineties, supersymmetric quantum cosmology has attracted
the attention of theoretical cosmologists and was developed in several directions, for early
developments see [26], and the extensive more recent review [27,28].

As fermionic degrees of freedom of the universe could describe anisotropies, fre-
quently a supergravity description of a homogeneous universes has been done for Bianchi
models [7,29], whose metric has the general form, in the ADM formulation, ds2 = [N2(t)−
Ni(t)Ni(t)]dt2 − 2Nm(t)dtωm − hmn(t)ωmωn, where hmn(t) = e2Ω(t)(e2β(t))mn, β(t) is a
3× 3 matrix, and the one-forms ωm are determined by the Bianchi type. With this met-
ric, a tetrad can be given by e 0

0 = N, e i
0 = eΩ(e−β)ij, e 0

m = 0, e i
m = e−Ω(eβ)mi, where

i, j, . . . are Lorentz space indices, and m, n, . . . are world space indices. Usually, the Misner
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parametrization is taken β = diag(β+ +
√

3β−, β+ −
√

3β−,−2β+). These choices amount
to a gauge fixing, corresponding to space homogeneity and Lorentz invariance of the tetrad.
As a consequence, there are no Lorentz constraints, as noted in [7]. However, as usual in
gauge theory QFT, in this case, the Lorentz constraints must be taken into account [29].
In [7,29] the Bianchi I model has been studied, ωm = dxm. In [7] a matrix representation
has been taken for the fermionic variables, with a spinor wave function, and in [29] a power
series in the fermionic variables. In fact, in [30] the Bianchi IX model has been studied,
considering the 12 dynamical fermionic degrees of freedom, which require a 64× 64 Dirac-
matrix representation. In this case, as there is no dependence on space coordinates, the
Lorentz constraints act only on the fermionic variables and are algebraic. Their application
to the 64-D spinorial wave function is straightforward and, as shown it [30], the wave
function reduces to only two non-vanishing components

ψ± = Ce±e−2Ω [2e2β+ Cosh(2
√

3β−)+e−4β− ]. (5)

This result confirms the observation in [29], that the Lorentz constraints restrict
strongly the solutions of the WDW equation. In [31], a thorough analysis of this model has
been done without considering the Lorentz constraints. In [32] this model has been studied
under the inclusion of a cosmological constant, with results indicating that there may be
no physical quantum states.

In [33], the Bianchi IX model has been considered by the observation that it has the
structure of a sigma model in classical mechanics, on a manifold with three degrees of
freedom q = (a, β+, β−), i.e., geometrodynamics with a specific metric for Bianchi IX,
Gij = diag(−1, 1, 1), and whose hamiltonian constraint can be written as

H0 = Gij(q)
[

pi pj +
∂φ(q)

∂qi
∂φ(q)

∂qj

]
, (6)

where pi are the conjugate momenta, and φ(q) = 1
6 e2aTre2β. As the hamiltonian (6)

is quadratic, a global supersymmetric extension can be given straightforwardly, see
e.g., [34–36], with the supersymmetric charges Q = ψi(pi + i ∂φ

∂qi ) and Q̄ = ψ̄i(pi− i ∂φ

∂qi ), and

H = {Q, Q̄} = H0 +
h̄
2

∂2φ

∂qi∂qj [ψ̄
iψj]. The fermionic variables satisfy {ψi, ψj} = {ψi, ψj} = 0,

and {ψi, ψ̄j} = Gij. Time reparametrization invariance is restored in [37], by the intro-
duction of the lapse function and its fermionic superpartner in the inverse Legendre
transformation. This formulation has been worked out to introduce a cosmological term
in [37] and scalar matter in [38].

A superfield formulation has been given in [39,40], by a realization of general time
reparametrizations on superspace1 (t, θ, θ̄)

δt = ζ(t) +
i
2
[θξ(t) + θ̄ ¯ξ(t)], (7)

δθ =
1
2

ξ̄(t) +
1
2

θ[ζ̇(t) + ib(t)] +
i
2

θθ̄ξ̇(t), (8)

δθ̄ =
1
2

ξ(t) +
1
2

θ̄[ζ̇(t)− ib(t)]− i
2

θθ̄ ˙̄ξ(t). (9)

where (ζ(t), ξ(t), ξ̄(t)) are the parameters of superspace transformation, and b(t) is the
parameter of the U(1) R-symmetry transformation, which acts on the (ξ, ξ̄) space. As this
is a one dimensional field theory, there are no Lorentz transformations. The fields are
replaced by superfields, but their components must be suitably rescaled to have the correct
weight under time reparametrizations. There are superfields for the parameters of time and
supersymmetry transformations, as in superspace supergravity, see e.g., [41]. The lapse
field is also replaced by a superfield, although there is not an invariant volume element
for superspace is not considered. However, this formulation allows to write invariant su-
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perfield actions, whose bosonic sector agrees with the corresponding non-supersymmetric
action. The constraint algebra contains the hamiltonian and supersymmetric constraints,
and it closes properly. An interesting feature is that it includes additionally, as a constraint,
the fermion number operator, which ensures equal number of bosonic and fermionic de-
grees of freedom; the corresponding Lagrange multiplier is the highest component of the
lapse superfield.

This formalism has been applied in [42,43] to a FRLW cosmology with a scalar field,
where the spontaneous symmetry breaking of supersymmetry has been explored. In these
works a canonical quantization has been performed, with matrix representations for the
fermionic variables, and the wave function has been computed. It has been shown that
a similar mechanism of supersymmetry breaking as in supergravity applies here, as the
scalar potential is not positive definite, which written in terms of the auxiliary fields is

V(φ) =
1
2

F2 − 3
κ2a2 B2, (10)

where F and B are auxiliary fields, given by their equations of motion F = 2 ∂g(ϕ)
∂ϕ ,

B = −κ2ag(ϕ), and g(ϕ) is the superfield potential, i.e., the superpotential in supergravity.
Thus, supersymmetry is broken if at an extremum ϕ0 of the potential, V(ϕ0) = 0, and
F 6= 0; the superpartner of the lapse, the gravitino, acquires a nonvanishing mass, similar
to the Higgs mechanism. The wave function has four components, two of them are not
normalizable, and the other two are the ‘conjugated’ states, one of them normalizable,
depending on the sign of the superpotential

ψ±(a, ϕ) = Ca
3
4 e∓2a3g(ϕ)±3

√
kM2

pl a
2
. (11)

In order to appreciate phenomenological consequences of the previous model, it has
been studied in [44] in a semiclassical setting by the WKB method, with the solutions (11)
written as eSa+Sϕ see also [45]. For each one of these solutions follow different classical
evolution equations for the scale factor and the scalar field. In these equations there are
supersymmetric contributions with the behavior of radiation and stiff matter. A detailed
numerical analysis has been made for an exponential superpotential and flat space, where,
in particular, inflationary stages can be observed. An interesting relation of a SU(2) matrix
model with supersymmetric quantum cosmology has been uncovered in [46], arising from
the quantization of the 11-dimensional supermembrane, which has a zero energy solution
of the same form of a wave function known from supersymmetric quantum cosmology [27].

The superspace approach in supergravity has the drawback, that the component fields
of superfields in general are not Lorentz spinors (bosonic or fermionic). This problem has a
solution in the formalism of the so called “new” Θ- variables [41,47]. The fermionic power
expansion in superfields is redefined as

φ(x, θ) = ∑
1
n!

θη1 · · · θηn ∂η1 · · · ∂ηn φ(x, θ)|θ=0

→ Φ(x, Θ) = ∑
1
n!

Θα1 · · ·ΘαnDα1 · · · Dαn φ(x, θ)|θ=0, (12)

where Dαφ(x, θ) are Lorentz covariant fermionic derivatives under local superspace co-
ordinate transformations (x, θ) → (x′, θ′) and local Lorentz transformations. The super-
gravity transformations are field dependent local superspace plus Lorentz transformations
δξΦA(x, θ) = −ξBDBΦA(x, θ), where A = (µ, α) are multiindices formed by a spacetime
index, and a Lorentz 1

2 -spin index. For consistency, this formulation requires a covariant
formulation of the Wess-Zumino gauge [47]. In [48] it is shown how to apply this formal-
ism to homogeneous spaces, and how to construct invariant supergravity actions. In this
framework, in [49,50], the FRLW model with a scalar field has been worked out, with a
wave function similar to (11), differing only by the power of the scalar factor in front of
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it, due to a different operator ordering. Further, in these works the interpretation of the
scalar field as time is considered, with an effective time dependent wave function, which
corresponds to the conditional probability for a given value of the scalar field

Ψ(a, t) =
ψ(a, φ)√∫ ∞

0 da |ψ(a, φ)|2

∣∣∣∣∣∣
φ=t

. (13)

With this wave function, the mean value of the scalar factor gives a classical evolution [49]

a(t) =
∫ ∞

0
a|Ψ(a, t)|2da = Γ(4/3)

[
h̄c

2|W(t)|

]1/3
. (14)

As a consistency check, a computation of the uncertainty relation gives ∆a∆πa ≈ 0.53 h̄.
Moreover, with an exponential superpotential an inflationary scenario can be obtained,

which lasts enough e-folds [50]. The exit of inflation requires fine tuning of a constant which
must be added to the superpotential. To illustrate it, we consider a Gaussian superpotential

W(t) =
c4M3

p

h̄2 t−2
(

1
λ

e−t + 1
)

(15)

with λ = 10−80, and c = 1, h̄ = 1, Mp = 1. With this potential it can be seen that
a(0) = 0, ȧ(0) = ∞ , and ä(0) = −∞. The acceleration increases quickly, and becomes
positive at t ≈ 0.45, and stays positive up to t ≈ 183. In this time interval, there are
log(a(183)/a(0.45)) ≈ 65 e-folds, see Figures 1 and 2. We show also the potentials corre-
sponding to this behavior in the analog FLRW model with a scalar field φ, for k = 0, 1,
Figure 3.

Figure 1. Wave function. Left: wave function. Right: effective wave function (at a = 0 there are
numerical issues).

Figure 2. Scale factor. Left: acceleration at inflation begin. Center: scale factor (log scale). Right:
acceleration at inflation exit.
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Figure 3. Analog potential for FLRW model.

3. Noncommutative Quantum Cosmology

Noncommutative field theories [8,9], have many remarkable properties as the UV/IR
mixing. Some similar features were studied in the case of gravitational theories. There
are many articles on the subject, in particular, our group participated with a number of
gravity proposals in various versions [51–53]. In the context of some noncommutative
gravity theories, one natural question was to carry out a canonical quantization analysis
following ADM formalism [3]. However the situations turns out quite complicated. Instead
of that in Ref. [10], we proposed to carry out the standard ADM formalism to get the
WDW equation and at that level, to propose a non-commutative deformation of the WDW
equation and look for solutions to this deformed equation.

The first example considered in this context was an anisotropic universe, the Kantow-
ski-Sach model [10]. Further development (without pretending to be exhaustive) on this
subject can be found in Refs. [54–71]. In Misner’s parametrization the metric is written as

ds2 = −N2dt2 + e2
√

3βdr2 + e−2
√

3βe−2
√

3Ω(dθ2 + sin2 θdϕ2) (16)

The quantum model of Kantowski-Sach cosmology is implemented through the
quantization of its WDW equation, i.e., the hamiltonian constraint

e
√

3β+2
√

3Ω
[

P2
Ω − P2

β + 48e−2
√

3Ω
]

ψ(Ω, β) = 0, (17)

where PΩ = −i ∂
∂Ω and Pβ = −i ∂

∂β . The physical observables in coordinate representation
are the position operators qj and the conjugate momenta pk, where q1 = Ω, q2 = β and
p1 = PΩ, p2 = Pβ. These operators satisfy the commutation relations

[qj, pk] = iδjk, [qj, qk] = 0, [pj, pk] = 0. (18)

The noncommutative Wheeler-DeWitt equation is

e
√

3β+2
√

3Ω ?

{
− ∂2

∂Ω2 +
∂2

∂β2 + 48e−2
√

3Ω
}
? ψ(Ω, β) = 0, (19)

where ? is the Moyal product (for a complete review, see for instance, [72])

f (Ω, β) ? g(Ω, β) = f (Ω, β) exp
{

i
θ

2

( ←
∂ Ω
→
∂ β −

←
∂ β

→
∂ Ω

)}
g(Ω, β), (20)

for a constant noncommutativity parameter θ.
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Thus the Moyal deformed WDW equation is given by{
− ∂2

∂Ω2 +
∂2

∂β2 + V(Ω, β)

}
? ψ(Ω, β) = 0, (21)

where V(Ω, β) = 48e−2
√

3Ω is the potential. Using the properties of the star product,
Equation (20), we have V(Ω, β) ? ψ(Ω, β) = V(Ω− 1

2 θPβ, β− 1
2 θPΩ)ψ(Ω, β), and it can be

rewritten as {
− ∂2

∂Ω2 +
∂2

∂β2 + 48e−2
√

3Ω+
√

3θPβ

}
ψ(Ω, β) = 0. (22)

A solution to Equation (22) can be found using the solution to the same equation
with θ = 0, which is the usual WDW equation for the Kantowski-Sachs model in GR. This
solution in GR is given by

ψ±ν (Ω, β) = e±i
√

3νβKiν

{
4 exp

[
−
√

3Ω
]}

. (23)

Now assuming an ansatz for the deformed Equation (22) in the form

ψ±ν (Ω, β) = e±i
√

3νβχ(Ω). (24)

Taking into account the translation e
√

3θPβ ψ(Ω, β) = ψ(Ω, β− i
√

3θ), it is possible to
find that the function χ(Ω) satisfies the modified Bessel equation and Equation (22). Thus,
it was shown in [10] that Equation (22) has a solution given by

ψ±ν (Ω, β) = e±i
√

3νβKiν

{
4 exp

[
−
√

3
(

Ω∓
√

3
2

νθ

)]}
. (25)

Equation (22) represents a noncommutative deformation of the ordinary WDW equa-
tion for the Kantowski-Sachs cosmological model. This implies an additional correction
to the ordinary WDW equation due to an assumed noncommutative structure of the
minisuperspace. This noncommutativity is regarded as an indirect consequence of the non-
commutive gravity in spacetime, which seems to be a better approach to study microscopic
properties of gravity. In Ref. [10] it was plotted the probability, constructed from the wave
function solution (25), depending on coordinates Ω and β for various values of θ, including
the case of GR with θ = 0. In GR the probability obtained from the solution (weighted
with a Gaussian wave packet) has just one peak near Ω = 0 and β = 0 which indicates
where the universe is more probable to be placed. For nonvanishing theta θ 6= 0 it was
found a different behavior than that of GR. In this last case there was a big peak together
with other many different smaller peaks, which were interpreted as other (baby) additional
universes where the universe may to stay. Thus a bold consequence of the noncommutative
minisuperspace is the emergence of many other universes in which the universe can carry
out vacuum transitions by tunneling.

4. GUP’s in Quantum Cosmology

In this section we review an application of Generalized Uncertainty Principles (GUP)
to quantum cosmology [19,61,62,64,66]. In order to be concrete in [19] it was considered
the Kantowski-Sachs model, an homogeneous and anisotropic cosmological model in
the minisuperspace. The GUP involves a modification of the Heisenberg uncertainty
relation at very high energies (near the Planck scale), a behavior expected for the very
early universe. This implies a modification of the Heisenberg algebra of commutators, by
terms with powers of the momentum. As it is shown in [19], this implies a deformation
of the Wheeler-DeWitt equation. It is worth mentioning that the application of the GUP
in this context involves a minimal uncertainty of the quantum dynamical variables in
the minisuperspace. This UV modification of the Heisenberg algebra is for the phase
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space minisuperspace variables, and not properly for spacetime variables. However, very
interesting consequences of this hypothesis arise, such as black holes without singularity
as we will review in the next section.

The WDW Equation (17) has four quantum dynamical variables: the operators Ω and
β, and their conjugate momenta PΩ and Pβ, which satisfy the commutation relations (18).

Now, if we consider the commutation relation

[qj, pk] = iδjk[1 + γ2 p`p`], (26)

where q1 = Ω, q2 = β, p1 = PΩ and p2 = Pβ, and γ is a parameter with units of the inverse
of the momentum.

The procedure involves to perform a suitable change of variables

qj = (1 + γ2 p`p`)q′j, (27)

where q′j = i ∂
∂pj

such that [q′j, pk] = iδjk. This change does not respect entirely the Heisen-
berg algebra, but a noncommutative extension since

[qj, qk] = 2iγ2(1 + γ2 p`p`)(pjq′k − pkq′j). (28)

In particular, for the KS model we have that the potential V(Ω, β) will be modified
within the deformed algebra. An approximation to order γ2 for the potential V can be
written as

V ≈ −48e−2
√

3(1−4γ2)Ω′ e−2
√

3γ2Ω′(−P2
Ω+P2

β)e12iγ2Ω′PΩ . (29)

Assume a representation PΩ = −i ∂
∂Ω′ and Pβ = −i ∂

∂β′ , it is easy to see that

e12iγ2Ω′PΩ ψ(Ω′, β) = ψ(e12γ2
Ω′, β). (30)

Thus under the same ansatz as in the noncommutative case [10]

ψ(e12γ2
Ω′, β′) = e

√
3νβ′χ(Ω′), (31)

the WDW Equation (17) turns out to be(
d2

dΩ′2
+ Vγ,ν + γ2Ṽ

)
χ(Ω′) = 0, (32)

where
Vγ,ν = 3ν2 + 48e−2

√
3(1−4γ2)Ω′ (33)

and
Ṽ = −4608

√
3Ω′e−4

√
3(1−4γ2)Ω′ . (34)

The potential Vγ,ν is the modified potential of the ordinary Kantowski-Sach model.
Moreover, Ṽ is the first correction due to the modified uncertainty relation (26). The
relevant contribution of the later potential is concentrated about the value of Ω′ given by
Ω′ = 1

4
√

3(1−4γ2)
.

It can be observed that the potential Vγ,ν dominates over Ṽ for values of γ satisfying

γ << 1
2

√
e3/2

24+e3/2 ≈ 0.198. For values γ ≥ 1
2

√
e3/2

24+e3/2 the potential Ṽ dominates over Vγ,ν

and it produces a well. One can see that this well has a local minimum at

Ω′min =

√
3
[

1− 2W(−
√

e(1−4γ2)
96γ2 )

]
12(1− 4γ2)

, (35)
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where W(z) is the Lambert function satisfying the equation z = WeW . This function has

real values for γ > 1
2

√
e3/2

24+e3/2 . In Figure 4 we show how the potential of Equation (32),

Vγ,ν + γ2Ṽ, changes under the variation of the Barbero-Immirzi parameter γ.

Figure 4. Potential of (32), it is shown how it changes under the variation of the Barbero-Immirzi
parameter. For γ ≥ 0.5 it becomes unstable.

Thus, under a variables change y ≡ Ω′ −Ω′min, Equation (32) turns out into a quantum
mechanical harmonic oscillator equation[

− d2

dy2 + ω2y2
]

χ(y) = Eχ(y), (36)

where ω is the frequency of the oscillator and E is the energy which can be written as

ω2 = 3(1− 4γ2)3

[
W(−

√
e(1−4γ2)

96γ2 ) + 1
]

γ2W2(−
√

e(1−4γ2)
96γ2 )

, (37)

E = −3
2

{
ν− 1− 4γ2

12γ2W(−
√

e(1−4γ2)
96γ2 )

− 1− 4γ2

24γ2W2(−
√

e(1−4γ2)
96γ2 )

}
. (38)

The requirement that E > 0 to obtain a bounded state from below implies that

|ν| < −

√
(1− 4γ2)[12W(−

√
e(1−4γ2)

96γ2 ) + 6]

12γW(−
√

e(1−4γ2)
96γ2 )

. (39)

Thus, the condition of the existence for real values of ν implies that γ ≥ 1
2

√
e

12+e .
Then the quantum spectrum of the harmonic oscillator is given by

E = ω

(
n +

1
2

)
, (40)

where n is a natural number. As a consequence of this fact, the parameter ν is quantized in
the form

ν =

√
1− 4γ2

2
√

6

{2W(−
√

e(1−4γ2)
96γ2 ) + 1

γ2W2(−
√

e(1−4γ2)
96γ2 )

+ 8
√

3(2n + 1)

√
(1− 4γ2)

[
W(−

√
e(1−4γ2)

96γ2 ) + 1
]

γW(−
√

e(1−4γ2)
96γ2 )

}1/2

. (41)
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In this derivation it was assumed a quadratic degree of approximation in an expansion
of γ. It is possible to obtain some higher order terms, the subsequent terms in the expansion
which turn the harmonic oscillator into an anharmonic oscillator. This systems can be
solved in perturbation theory, considering the nonlinear terms as a perturbation. Thus it is
possible to find perturbatively the first correction to the energy levels and the corresponding
Hilbert space.

5. Deformed Dynamics and the Interior of Black Holes

In this section we comment on other application of GUP to gravitational systems. We
review the case of the application of GUP to the study of the dynamics in the interior of a
Schwarzschild black hole (SBH). SBH is parametrized by the Schwarzschild coordinates
(t, r, θ, φ). The interior of a SBH is described by a Kantowski-Sach metric (see Equation (16))
defined on a spacetime with topology R× S2, which has an infinite volume since the
noncompact nature of it. However, for a fiducial finite interval L0 in R, this spacetime has
finite volume. We can define local coordinates in the four dimensional spacetime R2 × S2

to be (T, x, θ, φ).
The idea of [20] consists to apply GUP to the hamiltonian classical dynamics described

by the Ashtekar-Barbero hamiltonian HAB, and deform the canonical algebra in terms
of the GUP parameter γ. First, we described the classical hamiltonian dynamics. The
dynamical variables (b, pb, c, pc) are smooth functions depending only on the variable T or
t. After gauge fixing the hamiltonian it reads

HAB = − 1
2Gγ

[
(b2 + γ2)

pb
b

+ 2cpc

]
. (42)

The canonical algebra is given by

{b, pb} = Gγ, {c, pc} = 2Gγ. (43)

The equations of motion of HAB are

db
dT

= {b, HAB} = −
1
2

(
b +

γ2

b

)
, (44)

dpb
dT

= {pb, HAB} =
pb
2

(
1− γ2

b2

)
, (45)

dc
dT

= {c, HAB} = −2c, (46)

dpc

dT
= {pc, HAB} = 2pc. (47)

In the Schwarzschild time t the solutions take the form

b(t) = ±γ

√
2GM

t
− 1, (48)

pb(t) = `L0t

√
2GM

t
− 1, (49)

c(t) = ∓γGM`L0

t2 , (50)

pc(t) = t2, (51)

where ` satisfies the equation p2
b(t) = `

( 2GM
t − 1

)
L2

0t2. Here pc can be interpreted as the
square of the radius of the infalling 2-spheres and consequently is zero at t = 0. This
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interpretation results from the fact that the Kretschmann invariant K = RabcdRabcd is
proportional to 1

p3
c
.

Now, it is possible to deform the classical algebra (43) with the GUP, and find a
modified dynamics. This can be achieved imposing minimal uncertainty in pb and pc. Thus
the modified algebra according to GUP is

{b, pb} = 1, {c, pc} = 1 (52)

such that
{b, pb}q,p = 1 + βbb2, {c, pc}q,p = 1 + βcc2, (53)

where βb and βc are suitable parameters. The modified algebra with a minimal uncertainty
in pb and pc is

[b, pb] = iGγ(1 + βbb2), [c, pc] = i2Gγ(1 + βcc2). (54)

Equivalently this yields

∆b∆pb ≥
Gγ

2

[
1 + βb(∆b)2

]
, (55)

∆c∆pc ≥ Gγ

[
1 + βc(∆c)2

]
. (56)

The GUP modified equations of motion are

db
dT

= {b, HAB} = −
1
2

(
b +

γ2

b

)
(1 + βbb2), (57)

dpb
dT

= {pb, HAB} =
pb
2

(
1− γ2

b2

)
(1 + βbb2), (58)

dc
dT

= {c, HAB} = −2c(1 + βcc2), (59)

dpc

dT
= {pc, HAB} = 2pc(1 + βcc2). (60)

In the Schwarzschild time t the solutions take the form

b(t) = ±γ

√
2GMtβbγ2 − t(2γ2GM)βbγ2√

t(2γ2GM)βbγ2 − 2βbγ2GMtβbγ2
, (61)

pb(t) =
`c√
−βc

t−βbγ2

√[
2GMtβbγ2 − t(2γ2GM)βbγ2

][
t(2γ2GM)βbγ2 − 2βbγ2GMtβbγ2

]
, (62)

c(t) = ∓ `c√
−βc

γGM√
t4 + `2

c γ2G2M2
, (63)

pc(t) =
√

t4 + `2
c γ2G2M2, (64)

where it was introduced the fundamental physical length `c ≡ −βcL0. This can be con-
sidered as a prescription to cure the dependence on the fiducial length L0. Moreover, the
mentioned interpretation of pc(t), as the 2-sphere inside the black hole, leads from the last
Equation (64) to the existence of a minimum value for pc and consequently the resolution
of the black hole singularity at t = 0. See Figure 5.
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Figure 5. Comparison of the behavior of solutions of the unmodified (βb = βc = 0) with the modified
cases for the whole interior. G = M = `c = 1.
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