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Abstract: We review the geometric superspace approach to the boundary problem in supergravity,
retracing the geometric construction of four-dimensional supergravity Lagrangians in the presence
of a non-trivial boundary of spacetime. We first focus on pure N = 1 and N = 2 theories with
negative cosmological constant. Here, the supersymmetry invariance of the action requires the
addition of topological (boundary) contributions which generalize at the supersymmetric level the
Euler-Gauss-Bonnet term. Moreover, one finds that the boundary values of the super field-strengths
are dynamically fixed to constant values, corresponding to the vanishing of the OSp(N |4)-covariant
supercurvatures at the boundary. We then consider the case of vanishing cosmological constant
where, in the presence of a non-trivial boundary, the inclusion of boundary terms involving additional
fields, which behave as auxiliary fields for the bulk theory, allows to restore supersymmetry. In all the
cases listed above, the full, supersymmetric Lagrangian can be recast in a MacDowell-Mansouri(-like)
form. We then report on the application of the results to specific problems regarding cases where the
boundary is located asymptotically, relevant for a holographic analysis.

Keywords: supergravity; boundary; holography

1. Preamble

As is well known, Einstein’s theory of general relativity describes gravitation in terms
of fluctuations of the geometry of spacetime. In particular, the gravitational field is ex-
pressed by the metric of spacetime, and Lagrangians describing gravitational systems
have to be invariant under general coordinate transformations, associated with space-
time diffeomorphisms. This fundamental property is shared by all theories that include
gravitation in their formulation, and then in particular by supergravity theories, where
spacetime diffeomorphisms are generated when acting twice with local supersymmetry
transformations.

The presence of a spacetime defect, and in particular of a boundary, is problematic
because it introduces a length scale in the theory and breaks diffeomorphisms invariance.
To recover such invariance of the action it is necessary to modify the theory by adding
appropriate boundary contributions to the Lagrangian. This issue, both for gravity and
supergravity Lagrangians, has been analyzed in different contexts from the early seventies
on, after the pioneering works [1,2], in first attempts to study the quantization of gravity
within a path integral approach.

The boundary problem in gravity was carefully analyzed in the geometric Cartan
approach in [3–8]. In this framework, it was shown that the diffeomorphisms invariance of
the bulk Einstein Lagrangian plus cosmological constant, which is broken in the presence
of a boundary, can be restored by adding the topological Euler-Gauss-Bonnet (EGB) term

LEGB = Rab ∧Rcdεabcd = d
(

ωab ∧Rcd + ωa
f ∧ω f b ∧ωcd

)
εabcd (1)
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to the bulk Lagrangian of the theory. This leads to a background-independent definition of
Noether charges, without the need of explicitly imposing Dirichlet boundary conditions on
the fields (cf. also [9–13]).

In the supergravity context, spacetime geometries including defects and boundaries
are quite ubiquitous, as supergravity gives an effective field theory description at low
energy (with respect to the Planck scale) of a microscopic quantum gravity theory described
in terms of superstrings. Indeed, a non-perturbative formulation of superstring theory
requires the inclusion of dynamical spacetime defects, the D-branes, which are BPS objects
satisfying a no-force condition that allows them to back-react non-trivially on the target
space geometry of the low-energy theory, as spacetime defects (black p-branes) and non-
trivial boundaries. This mechanism attracted further attention in the last 25 years, since
it is at the heart of the formulation of the well-celebrated AdSd+1/CFTd holographic
duality [14]. Indeed, the analysis of the black p-brane effective geometry emerging from
the superposition of a large number of D3-branes in the microscopic theory, in the special
limit considered in [14] led to establish the holographic correspondence [14–17]. The latter
is a duality between supergravity on the near-horizon geometry of a black p-brane, that
is on asymptotically AdSp+1 spacetime times a compact manifold, on one hand, and a
conformal quantum field theory living on the stack of coincident Dp-branes generating at
low energies the above geometry, on the other hand.

Such correspondence was then very fruitfully expressed in quite general terms as
a duality between AdSd+1 supergravity and a conformal quantum field theory, CFTd,
living at its conformal boundary, and then further generalized as a gauge/gravity corre-
spondence between a classical gravity theory (not necessarily with an AdS background)
and a quantum field theory (not necessarily conformal) defined at its boundary. It is
a strong/weak coupling duality between gravity at large (small) curvature radius and
gauge theory at strong (weak) coupling, that implies a one-to-one correspondence between
quantum operators O in the boundary field theory and fields φ of the bulk supergravity
theory. The formulation of the aforementioned duality, which then allowed to adapt tools
from gravitational theories to explore non-perturbative properties of gauge theories and
viceversa, requires to supplement the supergravity action functional with appropriate
boundary conditions φ(0) for the supergravity fields, which act as sources for the operators
of the quantum field theory.

The literature on AdS/CFT and on its far reaching developments in various directions
is so huge that we refrain from reviewing here further this seminal subject in general, and
also from listing all the important references, which in any case could hardly be exhaustive.
We limit ourselves here to refer to the first publications and to general reviews containing
more extended reference lists.

A holographic renormalization scheme was built on [18–23] to dispose of the diver-
gences that show up in both sides of the correspondence. In particular, as far as the metric
field is concerned, the bulk metric is divergent near the asymptotic boundary. However,
these divergences can be successfully removed, in the holographic renormalization framework,
through the inclusion of appropriate counterterms at the boundary.

The AdS/CFT duality is an important inspirational tool for the present review, but
let us stress that we will actually focus on its relevance from the (super)gravity side of the
correspondence.

In the geometrical description of [3–8,24,25], using a Fefferman-Graham parametriza-
tion of spacetime near the boundary, it was shown that the expansion of the boundary
Lagrangian in (1), in the radial coordinate orthogonal to the boundary, is precisely the
contribution needed to regularize the action and the related (background-independent)
conserved charges. This contribution indeed reproduces the resummation (in an expansion
in powers of the radial coordinate) of the holographic renormalization counterterms. The
regularization involving the EGB term (1) can be compared to the holographic regulariza-
tion procedure by adding and subtracting the York-Gibbons-Hawking term [1,2] from the
Einstein-Hilbert action plus a boundary term that is a specific polynomial in the extrinsic
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and intrinsic curvatures [24]. In particular, in four dimensions such boundary term, known
as second Chern form and referred to as Kounterterm in [24], emerges from the integration
of the EGB term when applying Euler’s theorem in the presence of a boundary (namely,
considering the boundary formulation of topological invariants): the integration gives a
term proportional to the Euler characteristic plus the integral of the second Chern form
over the boundary. Following the prescription above, one obtains the terms that define the
Dirichlet problem in gravity plus a counterterm Lagrangian. Performing the asymptotic
expansion of the latter one recovers the results of the holographic regularization scheme.
The divergence cancellation provided by the counterterm series can be finally regarded as a
“topological regularization”. Indeed, it is equivalent to adding the EGB term with a coupling
such that the regularized action takes a MacDowell-Mansouri form [26].

Let us remark that most of the work on the role of boundaries in supergravity, in the
AdS/CFT context and also beyond it, mainly concerned the bosonic sectors of the given
theories, while the inclusion of superpartners was not the subject of a large interest in the
literature. Some relevant contributions that are particularly worth mentioning, in various
contexts and with different approaches, are [27–33].

A systematic way to face (in principle) the boundary problem in supergravity was
found in [34] within the geometric approach to supergravity in superspace [35], also
known as the “rheonomic approach”. This approach gives a geometric interpretation to the
supersymmetry transformations rules, as diffeomorphisms in the fermionic directions of
superspace. For a recent and nice review of this topic we refer the reader to [36].

In [34], the supersymmetric Lagrangian in superspace in the presence of a non-trivial
spacetime boundary was constructed, working in the geometric approach, for the four-
dimensional N = 1 and N = 2 pure supergravity theories with negative cosmological
constant. It turned out that the supersymmetry invariance of the action is achieved with the
inclusion of topological (boundary) terms corresponding to a supersymmetric extension
of the EGB term (1). Moreover, in this framework the field equations involve non-trivial
boundary contributions, and imply that the boundary values of the super field-strengths
are dynamically fixed to constant values in the anholonomic basis of the bosonic and
fermionic vielbein. The aforementioned conditions on the supercurvatures correspond
to the vanishing of the OSp(1|4)- and OSp(2|4)-covariant super field-strengths at the
boundary, respectively for the N = 1 and the N = 2 theory. The resulting supersym-
metric Lagrangian acquires a MacDowell-Mansouri form [26], quadratic in the OSp(N |4)
supercurvatures.

Further applications of the superspace geometric approach to supergravity in the
presence of a non-trivial boundary were subsequently presented in [37,38], where, however,
models with an enlarged definition of supergravity and exhibiting a generalized cosmo-
logical constant [39–45]1 were considered. Let us also mention that recently the geometric
approach to N = 1 and N = 2 supergravity theories with boundary was applied in [46] in
the context of loop quantum gravity to derive the so-called Holst-MacDowell-Mansouri
action (involving, in particular, a parity odd term named Hojman term [47,48], and also
known as Holst term [49]).

A general feature of all the models including boundaries that we have mentioned
above is the presence in the bulk of a (negative) cosmological constant. The limit case in
which the cosmological constant vanishes is a subtle issue, not explored in [34]. This limit
is sometimes referred to as “flat” supergravity since the Lagrangian does not feature any
explicit internal scale. Such case was first considered in [2], and at the level of supergravity,
including fermion contributions, consistent boundary conditions in flat supergravity have
been studied in [11,28,50].

In the geometric approach, a first result in this line of research was presented in [51],
where the supersymmetry invariance of flat supergravity in four dimensions with boundary
was explored. The supersymmetry invariance of the Lagrangian still requires to add
appropriate boundary terms but, in this case, this is achieved by including additional
1-form fields which contribute only to the boundary Lagrangian. In the same paper it
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was shown that the supersymmetry-invariant theory found is the vanishing cosmological
constant limit of a particular deformation of AdS4 supergravity with boundary involving
a fields redefinition and exhibiting a generalized cosmological constant. Also in these
cases, the resulting Lagrangian can be written in a MacDowell-Mansouri-like form in
terms, as we will review in the following, of AdS-Lorentz supercurvatures in the theory
with the generalized cosmological constant, and of the so-called minimal super-Maxwell
curvatures [43,52,53] in its flat limit.

From the physical point of view, the deformation of the supergravity theory is func-
tional to circumvent an obstruction in getting the flat supergravity as a limit of AdS4
supergravity, in cases where spacetime has a non trivial boundary. In these situations, the
straightforward zero cosmological constant limit of AdS4 supergravity has a divergent
boundary term. On the other hand, the deformation considered in [51] corresponds to
redefine spin connection and gravitino in the bulk AdS4 supergravity by adding new tensor
1-forms, which vanish in the limit, but contribute, independently of the original fields, to
the boundary Lagrangian. This allows to include in the boundary Lagrangian only those
contributions that do not diverge in the flat limit.

At the algebraic level, the AdS-Lorentz supercurvatures are covariant with respect
to a superalgebra corresponding to a supersymmetric extension of the AdS-Lorentz
algebra [54–57], so(D− 1, 1)× so(D− 1, 2), which is a particular semi-simple extension of
the Poincaré algebra involving the explicit presence of a scale parameter and an extra (with
respect to the Poincaré symmetry) bosonic generator Zµν = −Zνµ. Correspondingly, the
AdS-Lorentz superalgebra is a semi-simple extension of the super-Poincaré algebra.

The Maxwell superalgebra on which the flat limit theory is based can be obtained
by performing an Inönü-Wigner contraction on the length parameter of the AdS-Lorentz
superalgebra.2 This is possible since also the Maxwell algebra involves an extra generator
with respect to the Poincaré symmetry, namely Zµν, which was originally associated
with the electromagnetic field. Correspondingly, the minimal super-Maxwell curvatures
we mentioned above correspond to a supersymmetric extension of the purely bosonic
Maxwellian ones and can be obtained by performing an Inönü-Wigner contraction on the
AdS-Lorentz supercurvatures. A peculiarity of the minimal supersymmetric extension
of the Maxwell algebra is that its closure requires an extra odd generator, Σα, which is
nilpotent, besides the supercharge Qα, dual to the gravitino 1-form field ψα. This implies
the presence, in the dual formulation of the superalgebra in terms of Maurer-Cartan
equations, of the corresponding dual 1-form spinor field, χα.3 Hence, with respect to the
super-Poincaré algebra the super-Maxwell one is endowed with the extra even generators
Zab = −Zba, written with Lorentz indices a, b, . . . = 0, 1, 2, 3 in four spacetime dimensions,
and odd generators Σα, dual to the bosonic 1-form field Aab = −Aba and to the Majorana
spinor 1-form χα, respectively.

For further details on the nowadays extended family of (super-)Maxwell algebras we
refer the interested reader to [51] and references therein. Here the crucial point will just
be that the super-Maxwell curvatures can be obtained by performing an Inönü-Wigner
contraction on the length parameter of the super AdS-Lorentz ones.

The present review is essentially divided into two parts. In the first one we will deal
with the geometric approach to the boundary problem in supergravity under a rather
general perspective, independently of the choice of the boundary. With this we mean
that we will consider the consequences of having non-vanishing fields on the boundary
slice. However, we will not address in this part the question of where the boundary is
located, nor whether it is space-like, time-like, or light-like. In the second part, we will
show some applications of the results to specific problems, which require an explicit choice
of the boundary. This issue also includes an amount of supersymmetry to be preserved on
the boundary.

The remaining of this paper is structured as follows: In Section 2 we recall the key
aspects of the geometric approach to supergravity in superspace in the presence of a
non-trivial boundary of spacetime. In Section 3 we review the geometric approach to
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the boundary problem in asymptotically AdS4 supergravities, focusing, in particular, on
the N = 1 and N = 2 pure supergravity theories. Section 4 is devoted to the boundary
problem in four-dimensional supergravity in the absence of any internal scale in the
Lagrangian, in which case supersymmetry invariance of the Lagrangian is recovered by
supplementing the theory with appropriate boundary contributions given in terms of
additional gauge fields which, however, do not appear in the bulk Lagrangian. Finally, the
aforementioned theory is shown to properly emerge in the vanishing comological constant
limit of a peculiar deformation, involving fields redefintion, of AdS4 supergravity. Finally,
in Section 5 we report on applications of the results to specific problems.

2. Geometric Approach in the Presence of a Non-Trivial Boundary of Spacetime

Let us shortly review the geometric approach to supergravity developed in [35],
restricting here the analysis to the case of D = 4 spacetime dimensions.

The geometric approach to supergravity [35] is a superspace approach. The theory
is given in terms of 1-form superfields µA(xµ, θαA) defined on N -extended superspace
M4|4N (xµ, θαA), where xµ are commuting bosonic coordinates while θαA are fermionic
Grassmann coordinates (µ = 0, 1, 2, 3 denotes spacetime indices, α = 1, . . . , 4 spinor indices,
which we will generally omit in the following, and A = 1, . . . ,N is an R-symmetry index
labelling the number of supersymmetries). Here, the index A collectively labels all the
1-forms of the theory. These include in particular the supervielbein {Va, ψA}, which defines
an orthonormal basis of superspace, Va being the bosonic vielbein (a = 0, 1, 2, 3 denotes
anholonomic tangent space indices) and ψA the N -extended gravitino 1-form. Besides
them, µA also include the Lorentz spin connection ωab and all the internal symmetry 1-form
gauge fields. The set {µA} defines the Maurer-Cartan 1-forms of the theory, which encode
the algebraic structure of the given supergravity theory through their Maurer-Cartan
structure equations

RA ≡ dµA +
1
2

CABCµB ∧ µC , (2)

where CABC are the structure constants of the supersymmetry algebra on which the super-
gravity theory considered is based. Here RA denote the supercurvature 2-forms, which are
the field-strengths of the theory (also referred to as super field-strengths), whose vacuum
value (RA = 0) gives the superalgebra in its dual Maurer-Cartan formulation.

In the geometric superspace approach, supersymmetry transformations on spacetime
are associated with diffeomorphisms in the fermionic (θαA) directions of superspace. In
this setting, supergravity theories are formulated from the condition of invariance under
“general super-coordinate transformations”, generalizing to superspace the geometric
description of general relativity in terms of spacetime diffeomorphisms.

In this setting, we denote by L[µA] the (bosonic) Lagrangian 4-form in superspace and
the action is obtained by integrating L on a generic bosonic hypersurfaceM4 ⊂ M4|4N
immersed in superspace, namely

S =
∫
M4⊂M4|4N

L[µA] . (3)

Indeed, in the geometric framework the Lagrangian is written in a background-independent
(geometric) way, that is to say, independent of the choice of a metric. It is therefore invariant
under general coordinate transformations in superspace (which include supersymmetry
transformations on spacetime).4 Therefore, one can exploit general super-coordinate trans-
formations to freely choose anyM4 ⊂M4|4N as the bosonic submanifold of integration in
superspace, since any local deformation of the integration manifold can be reabsorbed in a
superdiffeomorphism [35,36,66,67].

Let us stress that the superfield 1-forms µA(xµ, θαA), together with their field-strengths
RA(xµ, θαA), are functions of all the coordinates of superspace,

µA(x, θ) = µAµ (x, θ)dxµ + µAαA(x, θ)dθαA , (4)
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and they are related to the corresponding spacetime quantities µA(x) = µAµ (x)dxµ by
the restriction

µA(x) = µA(x, θ)|θ=dθ=0 = µAµ (x, 0)dxµ . (5)

In principle, the theory defined in superspace could exhibit extra dynamics with respect
to its spacetime projection. If this were the case, the resultant theory would fail to be
equivalent to supergravity formulated in terms of a local spacetime (super)symmetry. As
we are going to discuss in the following, what allows the formulation of supergravity in
superspace to be equivalent to the one on spacetime is the so-called rheonomy principle.

2.1. The Principle of Rheonomy

In order for the theory on superspace to have the same physical content as the theory
on spacetime, some constraints have to be imposed on the supercurvatures (they were
named “rheonomic constraints” in [35], whence the name “rheonomy” under which the
geometric approach is also known). More precisely, in this framework the four-dimensional
supergravity theories are formulated geometrically in terms of the supervielbein and of
supercurvature 2-forms (2), covariant under the superspace and internal symmetries of
the theory. They extend to the supersymmetry representation of the given theory what in
Einstein’s theory is the Riemann tensor 2-form.

However, the supercurvatures can be actually expressed in two different ways, that
have to be equivalent:

• They are defined off-shell from their symmetry properties, as in (2), in terms of Lorentz
and R-symmetry covariant exterior derivatives of the superfield 1-forms µA, and have
to satisfy consistency constraints given by the closure of Bianchi identities (d2 = 0).

• However, being 2-forms in superspace, they can also be expanded along the super-
vielbein basis {Va, ψA} of superspace,

RA = RAab(x, θ)Va ∧Vb + RAa αA(x, θ)Va ∧ ψαA + RAαA βB(x, θ)ψαA ∧ ψβB , (6)

where the superspace tensors RAab, appearing in the decomposition along bosonic
vielbein only, are referred to as “inner components”, while the ones which appear in
the decomposition along at least one fermionic direction, RAa αA and RAαA βB, are the
“outer components”. Equation (6) gives the so-called rheonomic parametrization of the
supercurvatures, as they were defined in [35].

The components in the parametrization of the supercurvatures can be determined by
requiring that the supercurvatures satisfy the corresponding Bianchi identities also when
expressed in terms of their parametrizations. However, this result can only be achieved
on-shell, since the supersymmetry algebra only closes on-shell when represented in terms
of dynamical fields. One generally finds that the outer components of the supercurvatures
have to be expressed, on-shell, as linear tensor combinations of the inner ones (which
are actually known in the literature as supercovariant field-strengths). These conditions are
called rheonomic constraints. The same conclusion can be reached at the Lagrangian level,
by decomposing the field equations with respect to independent sectors in supervielbein
polynomials in superspace. From the physical point of view, the restriction on the super-
space parametrizations given by the rheonomic constraints guarantees that no additional
degrees of freedom are introduced in the theory in superspace compared to those already
present in spacetime.

Let us briefly comment on the general fact that the Bianchi identities of the theory
in superspace are in fact not identities, but relations among the superfields and their
curvatures, which are only satisfied on-shell. This property is a reflection of the fact that the
Bianchi identities guarantee the closure of the given algebra when represented in terms
of fields. In this respect, the supersymmetry algebra is peculiar since supersymmetry
representations have to contain the same number of bosonic and fermionic degrees of
freedom (d.o.f. in the following). However, the on-shell condition changes in different
ways the number of d.o.f. of fields of different spin (e.g., spinors halve their d.o.f., while
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gauge vectors lower of one their d.o.f., and scalars do not change them). As a consequence,
when supersymmetry is realized in terms of field representations (supermultiplets), as it
happens in supergravity theories, it is an on-shell symmetry.5

Once the rheonomic constraints are exploited to find the parametrizations of all the
supercurvatures, the latter then provide the supersymmetry transformation laws of the
fields on spacetime, that leave invariant the spacetime Lagrangian up to boundary terms.
Indeed, as already mentioned, in the geometric framework the supersymmetry transforma-
tion laws of the fields in superspace can be read as diffeomorphisms generated by tangent
vectors ε ≡ ε̄AQA in the fermionic directions of superspace (QαA being the supersymme-
try generators and εA an infinitesimal spinor to be identified with the supersymmetry
parameter), and can therefore be expressed in terms of Lie derivatives.

Let us define ıε as the contraction operator along odd directions of superspace with
parameter εA, satisfying the property ıε(ψA) = εA, ıε(µA) = 0 for µA 6= ψA. Then, we can
write the supersymmetry transformation of a generic (tensor) superfield 1-form Φ(x, θ) as

δεΦ = `εΦ = ıε(dΦ) + d(ıεΦ) = ıε(∇Φ) +∇(ıεΦ) , (7)

where ∇ generically denotes covariant derivative with respect to the tensorial structure of
the given superfield Φ. Note that, in performing the contraction, one has to use for ∇Φ

its rheonomic parametrization as a 2-form in superpace, and not its formal definition as a
covariant tensor under the symmetries of the given theory. This is a crucial requirement
implementing, in the geometric approach, the condition that supersymmetry is realized
on field representations as an on-shell symmetry, and then allowing the equivalence of
diffeomorphisms in odd directions of superspace with supersymmetry transformations
on spacetime. The same argument can be naturally generalized to the supersymmetry
transformation of fields which are 0-forms and to higher-degree forms as well, by applying
the principle of rheonomy on the same lines as for 1-forms.

For a complete presentation of the rheonomic approach to supergravity in superspace
we refer the reader to the original source [35] and to the recent review [36].

2.2. Supersymmetry Invariance of the Action

The principal demand of any supergravity theory is the invariance of the action under
supersymmetry transformations,

δεS ≡
∫
M4

δεL = 0 , (8)

for ε ≡ ε̄AQA. Let us stress that in the geometric action the four-dimensional spacetime is
consistently embedded as a four-dimensional hypersurfaceM4 ⊂ M4|4N on which the
integration is performed. In fact, we can safely ignore the contribution from the integration
manifoldM4 when implementing the variational principle, since any variation ofM4
can be compensated by a superdiffeomorphism under which the geometric Lagrangian
is invariant [35,36,66,67]. Supersymmetry transformations relate the Lagrangian onM4
to the one on any other submanifoldM′

4, entailing independence of the submanifold of
integration in the action.

As we have just mentioned above, in the geometric approach the supersymmetry
transformations are given by diffeomorphisms in the fermionic directions of superspace,
so that the condition for the superspace Lagrangian 4-form to be invariant under local
supersymmetry is

δεL = `εL = ıε(dL) + d(ıεL) = 0 . (9)

Notice that the first contribution in (9), which would be identically zero in spacetime, is
instead non-trivial here, since L is not a top form in N -extended superspace (which has
dimension 4 + 4N ), so that the 5-form dL is non-vanishing in superspace. The second
contribution in (9) is a boundary term that does not affect the bulk result, and that can
be discarded in the absence of non-trivial boundaries, due to the general convergence
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conditions imposed in that case on the fields at spatial infinity. Hence, a necessary condition
for a supersymmetry-invariant supergravity Lagrangian is

ıε(dL) = 0 , (10)

corresponding to requiring supersymmetry invariance in the bulk of superspace. From
now on we assume true the condition (10), and the Lagrangians satisfying it will be referred
to as bulk supergravity Lagrangians, Lbulk. On the other hand, supersymmetry invariance of
the action then requires the weaker condition on the bulk Lagrangian

δεS =
∫
M4

d(ıεLbulk) =
∫

∂M4

ıεLbulk = 0 , (11)

that is
ıεLbulk|∂M4 = dϕ , (12)

where ∂M4 is the boundary ofM4 and where dϕ here is used to denote an exact quantity.
However, Equation (12) is in general not satisfied by Lbulk in the presence of non-trivial
boundary conditions on the boundary ∂M4. In this case, supersymmetry invariance
requires to add topological (boundary) terms. Thus, one has to consider the full Lagrangian

Lfull = Lbulk + Lbdy , (13)

where Lbdy is given by boundary contributions, which do not affect Lbulk:

Lbdy = dB(3) , (14)

B(3) denoting a 3-form. Due to the form of the boundary Lagrangian, (14), we immediately
see that ıε(dLfull) = 0. But the crucial point is that the inclusion of such boundary
contribution allow to reestablish the supersymmetry invariance of the total Lagrangian,
besides introducing a boundary dynamics. In particular, as we will discuss in the following,
the condition

ıεLfull|∂M4 = 0 (15)

(up to an irrelevant total derivative dϕ) determines the coefficients appearing in Lbdy.
Furthermore, the boundary contributions to the field equations6 of the theory onM4|4N
fix in a dynamical way the supercurvatures on ∂M4 to constant values in the anholonomic
basis of the bosonic and fermionic vielbein.

3. Facing the Boundary Problem in AdS4 Pure Supergravities

In this section, following [34], we review the geometric construction of the four-
dimensionalN = 1 andN = 2 pure supergravity Lagrangians with negative cosmological
constant in the presence of a non-trivial boundary of spacetime. These are the simplest
theories that can be considered, since for these cases the supergravity multiplets do not
include fields of spin lower than 1. This implies that the theory can be formulated fully
geometrically only in terms of 1-form fields and their supercurvatures.

As we are going to review, the boundary terms needed to recover supersymmetry
invariance of the action can be interpreted as the N -supersymmetric extension of the
Euler-Gauss-Bonnet term.

3.1. N = 1 Case

The field content of theN = 1, D = 4 pure supergravity theory is given by the bosonic
vielbein 1-form Va, the Lorentz spin connection ωab and one gravitino 1-form ψα, which is
a Majorana spinor spanning the fermionic directions of N = 1 superspace. Here and in the
following sections, our convention for the metric signature is mostly minus.

Since pure N = 1 supergravity is the simplest supersymmetric extension of Einstein’s
general relativity, we will use this model as an example of application of the geometric
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approach to supergravity discussed in Section 2.1, also holding beyond the specific focus
on the boundary problem of the present review.

The Lorentz-covariant supercurvatures of the theory are defined as follows:7

Rab ≡ dωab + ωa
c ∧ωcb ,

Ra ≡ DVa − i
2

ψ̄γa ∧ ψ = dVa + ωa
b ∧Vb − i

2
ψ̄γa ∧ ψ ,

ρ ≡ Dψ = dψ +
1
4

ωabγab ∧ ψ ,

(16)

where Rab is the Lorentz supercurvature 2-form, Ra is the supertorsion, ρ is the grav-
itino super field-strength, D ≡ d + ω denotes the Lorentz-covariant differential operator
(acting differently in the fundamental and in the spinorial representation), while γa and
γab = γ[aγb] are gamma matrices in four dimensions.8 In the following, to lighten the
notation we will generally omit writing the wedge product between differential forms.

The requirement that the supercurvatures (16) satisfy (on-shell) the Bianchi identities

DRab = 0 ,

Dρ =
1
4
Rabγabψ ,

DRa = Ra
bVb + iψ̄γaρ

(17)

determines the general expression of their parametrizations to be
Rab = Rab

cdVcVd + i
(

ρ̄abγc − 2ρ̄
[a

cγb]
)

ψVc + 1
2` ψ̄γabψ ,

ρ = ρabVaVb + i
2`γaψVa ,

Ra = 0 ,

(18)

where the tensorsRab
cd and ρab defining the components of the supercurvatures along two

bosonic vielbein are the supercovariant field-strengths. Note that, as it was first shown
in [69], the paramerizations (18) allow the inclusion of terms proportional to a parameter `
(a Fayet-Iliopoulos term [70]) with the dimensions of a length (in natural unites). As we are
going to see, the parameter ` can be interpreted as radius of AdS4 background spacetime,
while the limit ` → ∞ describes the supergravity theory on a Minkowski background.9

In terms of the supercurvatures (16) and of their parametrizations (18), following the
prescriptions in Section 2.1, one can determine the supersymmetry transformations of the
fields in the supergravity multiplet to be

δεωab = i
(

ρ̄abγc − 2ρ̄
[a

cγb]
)

εVc + 1
` ε̄γabψ ,

δεψ = Dε + i
2`γaεVa ,

δεVa = iε̄γaψ .

(19)

We now consider the bulk Lagrangian of the theory in superspace, whose equations
of motion admit an AdS4 vacuum solution with negative cosmological constant Λ = − 3

`2 .
The bulk Lagrangian 4-form reads

LN=1
bulk =

1
4
RabVcVdεabcd − ψ̄γ5γaρVa − i

2`
ψ̄γ5γabψVaVb − 1

8`2 VaVbVcVdεabcd , (20)

where εabcd is the four-dimensional Levi-Civita tensor. It is written in first-order formalism
for the spin connection ωab, whose field equation enforces (up to boundary terms, which
will be considered in a while) the vanishing of the supertorsion Ra defined in (16), as
equivalently found in (18) by solving the Bianchi relations.
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The Lagrangian (20) is off-shell invariant under supersymmetry, since the condi-
tion (10) holds,

ıε(dLN=1
bulk ) = 0 , (21)

as it can be explicitly checked using (16) to evaluate dLN=1
bulk off-shell, and then (18) to

perform the contraction of the supercurvatures in (21) along the odd directions ε ≡ ε̄Q
of superspace.

On the other hand, as discussed in Section 2.2, when the background spacetime has a
non-trivial boundary, the condition ıεL|∂M4 = 0 (modulo an exact differential) is in general
not satisfied, and it is necessary to check it explicitly to get supersymmetry invariance of
the action. In fact, in the case at hand we find that, without imposing boundary conditions
on the fields,

ıεLN=1
bulk |∂M4 6= dϕ ⇒ δεSbulk 6= 0 . (22)

As shown in [34], the supersymmetry invariance of the theory is restored by adding
appropriate boundary terms LN=1

bdy = dB(3) to the superspace Lagrangian

LN=1
bulk → LN=1

full ≡ L
N=1
bulk + LN=1

bdy , (23)

which do not alter dLN=1
bulk so that still ıε(dLN=1

full ) = 0. Here, the possible boundary terms,
compatible with the parity and Lorentz invariances of the theory, are

d
(

ωab ∧Rcd + ωa
f ∧ω f b ∧ωcd

)
εabcd = Rab ∧Rcdεabcd ,

d(ψ̄ ∧ γ5ρ) = ρ̄ ∧ γ5ρ− 1
4
Rab ∧ ψ̄γ5γab ∧ ψ .

(24)

We therefore consider the boundary Lagrangian

LN=1
bdy = αRabRcdεabcd − iβ

(
ρ̄γ5ρ− 1

4
Rabψ̄γ5γabψ

)
, (25)

where the coefficients α and β are real parameters to be determined by the request of
supersymmetry invariance of the full Lagrangian

LN=1
full =

1
4
RabVcVdεabcd − ψ̄γ5γaρVa − i

2`
ψ̄γ5γabψVaVb − 1

8`2 VaVbVcVdεabcd

+ αRabRcdεabcd − iβ
(

ρ̄γ5ρ− 1
4
Rabψ̄γ5γabψ

)
,

(26)

that is by imposing the condition[
d
(

ıε(LN=1
full )

)]
M4

= 0 ⇒
[
ıε(LN=1

full )
]

∂M4
= dϕ . (27)

We should now consider the boundary contributions in the field equations from the
full Lagragian (26), which result in the following constraints on the supercurvatures, to
hold on the boundary:

δLN=1
full

δωab = 0 ⇒ Rab|∂M4 = − 1
8α

(
VaVb + 1

2 βψ̄γabψ
)

∂M4
,

δLN=1
full
δψ = 0 ⇒ ρ|∂M4 = i

2β (γaψVa)∂M4
.

(28)

The above conditions imply that both the supercurvatures Rab and ρ on ∂M4 are not
propagating, but rather dynamically fixed to constant values in the anholonomic basis of
the bosonic and fermionic vielbeins.
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Finally, we have to impose supersymmetry invariance. Upon use of (28), we find

ıε(LN=1
full )|∂M4 = 0 ⇔ β

16α
− 1

2β
= −1

`
. (29)

Solving the latter for β (with the condition β 6= 0) we get

β = −8
`

α(1 + k) , where k = ±
√

1 +
`2

8α
∈ R . (30)

The above relations can be solved in terms of the real parameter k 6= −1, to give

α = −1
8

`2

1− k2 , β =
`

1− k
, (31)

that is  Rab|∂M4 =
[

1−k2

`2 VaVb + 1+k
2` ψ̄γabψ

]
∂M4

,

ρ|∂M4 = i(1−k)
2` [γaψVa]∂M4

.
(32)

Let us remark that the boundary terms (25), with parameters satisfying (31), are the N = 1
supersymmetric extension of the Euler-Gauss-Bonnet term.

Interestingly, setting k = 0, which implies α = − `2

8 and β = `, the full Lagrangian (26)
takes the form10

LN=1
full = − `2

8
Rab ∧ Rcdεabcd − i`ρ̄γ5 ∧ ρ , (33)

which is written in terms of the OSp(1|4)-covariant supercurvatures

Rab ≡ Rab − 1
`2 VaVb − 1

2`
ψ̄γabψ ,

ρ ≡ ρ− i
2`

γaψVa ,

Ra ≡ Ra ,

(34)

vanishing on the boundary due to (28).
When written in the form (33) holding for k = 0, the Lagrangian LN=1

full can be
recognized to be the MacDowell-Mansouri Lagrangian [26], which is quadratic in the
OSp(1|4)-covariant super field-strengths.11 In fact, it corresponds the N = 1 supersym-
metric extension of what was found for AdS4 gravity in [24], where the topologically
renormalized action including the Euler-Gauss-Bonnet term was cast in the MacDowell-
Mansouri form [26].

Note that, in terms of the OSp(1|4) supercurvatures (34), the constraints (28) coming
from the boundary contributions in the field equations take the simple form

Rab|∂M4 = 0 , ρ|∂M4 = 0 , Ra|∂M4 = 0 , for k = 0 , (35)

where the last relation follows because the supertorsion Ra vanishes on-shell in the whole
superspace and then in particular, for continuity, we also have Ra|∂M = 0. Note that
Equation (35) imply that, for the case k = 0, the fields of the theory satisfy the Maurer-
Cartan equations of the OSp(1|4) algebra, that is the boundary in this case enjoys global
invariance under OSp(1|4) symmetry. This is the N = 1 supersymmetric extension of the
results in [3–8], following from the request of invariance of the gravity Lagrangian under
spacetime diffeomorphisms.

Let us emphasize that the same supergroup OSp(1|4) is also the N = 1 supercon-
formal symmetry of N = 1 superspace in three dimensions, which allows for a natural
holographic interpretation of the above result in a holographic context.
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However, the N = 1 supergravity theory we have discussed also allows for k 6= 0, in
which case the MacDowell-Mansouri Lagrangian above is supplemented by extra boundary
terms breaking the OSp(1|4) structure of the theory. This freedom is peculiar of the minimal
theory, and can be traced back to the fact that N = 1 is the least supersymmetric theory,
and therefore the least constrained by supersymmetry in four dimensions. On the contrary,
as we are going to see in the following, in theN = 2 case all the coefficients of the boundary
terms needed to restore supersymmetry invariance will result to be fixed to the values
corresponding to rigid superconformal invariance of the boundary theory.

3.2. N = 2 Case

Now that we have taken some familiarity with the geometric approach to the boundary
problem in the case of N = 1, pure AdS4 supergravity, let us move on, still following [34],
to the slightly more complicated case of N = 2, D = 4 pure supergravity with negative
cosmological constant Λ = − 3

`2 in the presence of a non-trivial boundary of spacetime. In
this case, as we shall see in the following, all the coefficients of the boundary terms will
be fixed and no terms breaking the global boundary invariance OSp(2|4) are allowed by
supersymmetry invariance.

The field content of the theory is given by the bosonic vielbein 1-form Va, the gravitini
1-forms ψA, which are Majorana spinors (the index A = 1, 2 is in the fundamental represen-
tation of the R-symmetry group), the SO(1, 3) spin connection ωab, and the graviphoton
A0, which is an Abelian gauge connection, and in the following will be simply denoted
by A.

The bulk theory on AdS background can be obtained from the general N = 2 matter
coupled supergravity theory of [73] by setting to zero the gauge supermultiplets (so that
the index Λ enumerating the gauge vectors only takes the value Λ = 0 corresponding to
the graviphoton), and also the hypermultiplets, while keeping, however, a non-vanishing
Fayet-Iliopoulos term P, proportional to the inverse of the AdS4 radius `, out of the SU(2)-
valued momentum maps Px

Λ=0 (x = 1, 2, 3) in the hypermultiplet sector.12 More precisely,
the gravitino mass matrix reduces to the term SAB = i

2 (σ
x)A

CεCBPx
0 L0 = PL0δAB = 1

` δAB.
The choice of the Fayet-Iliopoulos term P, as pointing in a given fixed SU(2) direction,
breaks the R-symmetry, which would be U(2) for the ungauged theory, to SO(2) for AdS4
supergravity.

The bulk Lagrangian 4-form in N = 2 superspace is [34,73]

LN=2
bulk =

1
4
RabVcVdεabcd + ψ̄Aγaγ5ρAVa +

i
2

(
F +

1
2

ψ̄AψBεAB

)
ψ̄Cγ5ψDεCD

− i
2`

ψ̄Aγabγ5ψAVaVb − 1
8`2 VaVbVcVdεabcd

+
1
4

(
F̃cdVaVbF− 1

12
F̃lm F̃lmVaVbVcVd

)
εabcd ,

(36)

which is written at first order for the spin connection ωab and for the gauge field A. In
particular, from the variation of (36) with respect to the tensor 0-form F̃cd we get the
condition F̃ab = Fab, Fab being the component along the purely bosonic vielbein of the
field-strength 2-form F, that is the corresponding supercovariant field-strength. On the
other hand, the field equation of the spin connection constrains the supertorsion

Ra ≡ DVa − i
2

ψ̄AγaψA (37)
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to vanish on-shell. Finally, the superspace 2-form supercurvatures appearing in (36) are
defined by

Rab ≡ dωab + ωacωc
b ,

ρA ≡ DψA −
1
2`

AεABψB = dψA +
1
4

ωabγabψA −
1
2`

AεABψB ,

F ≡ dA− ψ̄AψBεAB .

(38)

Analogously to the previously discussed N = 1 case, a consistent definition of the
supersymmetric action in the presence of a non-trivial spacetime boundary requires the
full Lagrangian to include a boundary contribution, namely

LN=2
full = LN=2

bulk + LN=2
bdy , (39)

where, for the case at hand, following the same procedure we have reviewed for the N = 1
theory, the boundary Lagrangian is now given by

LN=2
bdy =

1
4

d{α(ωabRcd −ωa
f ω f bωcd)εabcd + iβ

(
SABψ̄AρB − S̄ABψ̄AρB

)
+ θAF} , (40)

where the N = 2 supersymmetry invariance determines the coefficients to be

α =
`2

2
, β = 8`2 , θ = 0 . (41)

These are the values reproducing as the boundary Lagrangian the N = 2 supersymmetric
generalization of the purely bosonic Euler-Gauss-Bonnet term, that is

LN=2
bdy = − `2

8

(
RabRcdεabcd +

8i
`

ρ̄Aγ5ρA −
2i
`
Rabψ̄Aγabγ5ψA +

4i
`2 dAψ̄Aγ5ψBεAB

)
. (42)

Let us mention in particular that the supersymmetry invariance of LN=2
full does not

allow for a theta-term in the gauge sector.
The supersymmetric full Lagrangian then reads

LN=2
full =

1
4
RabVcVdεabcd + ψ̄Aγaγ5ρAVa +

i
2

(
F +

1
2

ψ̄AψBεAB

)
ψ̄Cγ5ψDεCD

− i
2`

ψ̄Aγabγ5ψAVaVb − 1
8`2 VaVbVcVdεabcd

+
1
4

(
F̃cdVaVbF− 1

12
F̃lm F̃lmVaVbVcVd

)
εabcd

− `2

8

(
RabRcdεabcd +

8i
`

ρ̄Aγ5ρA −
2i
`
Rabψ̄Aγabγ5ψA +

4i
`2 dAψ̄Aγ5ψBεAB

)
.

(43)

Remarkably, the full Lagrangian (43) can be equivalently rewritten in terms of the OSp(2|4)-
covariant supercurvatures, defined as13

Rab ≡ Rab − 1
`2 VaVb − 1

2`
δABψ̄AγabψB ,

Ra ≡ DVa − i
2

ψ̄AγaψA ,

ρA ≡ ρA −
i

2`
δABγaψBVa ,

F ≡ F .

(44)
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In fact, when expressed in terms of the supercurvatures (44) the full Lagrangian acquires
the following form:

LN=2
full = − `2

8
Rab ∧ Rcdεabcd − i`ρ̄Aγ5 ∧ ρA +

1
4

F ∧∗ F , (45)

where ∗F denotes the Hodge-dual on spacetime of the super field-strength F.14 The La-
grangian (45) results to be written à la MacDowell-Mansouri [26], that is quadratic in the
supercurvatures (44), and, in fact, it depends on the fields of the theory only through their
OSp(2|4)-covariant supercurvatures (44). Analogously to the N = 1 case, the resulting
MacDowell-Mansouri Lagrangian has an OSp(2|4) structure, but it is not OSp(2|4) invari-
ant, since its couplings (in particular the Levi-Civita symbol εabcd and the matrix γ5) are
Lorentz invariant tensors, but not OSp(2|4) invariant ones.

Finally, as it happened in N = 1 for the OSp(1|4) supercurvatures, here the field
equations on the boundary ∂M4 can be simply rewritten as the constraint of vanishing at
the boundary of the OSp(2|4) supercurvatures (44), that is

Rab|∂M4 = 0 , ρ|∂M4 = 0 , F|∂M4 = 0 , Ra|∂M4 = 0 . (46)

Thus, the boundary conditions resulting from the equations of motion, when expressed in
terms of four-dimensional superfields and their derivatives, look like Neumann boundary
conditions on the supercurvatures (44), and are in fact the conditions for global N = 2
superconformal invariance of the boundary theory.

We conclude by mentioning that, in the geometric approach to supergravity in super-
space, in order to obtain the Lagrangian in ordinary spacetime, one has to perform the
restriction θαA = dθαA = 0, being θαA the fermionic Grassmann coordinates of superspace
(A = 1, 2 in the N = 2 case, while the index A drops out in N = 1), so that the hypersur-
face, on which we integrate to get the action, immersed in superspace is identified with
spacetime (see, e.g., [35,36] and Appendix A of Ref. [34] for details on the derivation of the
spacetime Lagrangian from the geometric approach).

Future developments of the construction we have reviewed in this section may include
the extension of the geometric approach to the boundary problem to higher-dimensional,
as well as to N -extended, pure or matter coupled, supergravity models including fields
with spin lower than one.

In this context, let us stress that the supersymmetric extension of the Euler-Gauss-
Bonnet term is unique for a given theory with N ≥ 2 supersymmetries, and it is a total
derivative, corresponding to a boundary term in superspace. The possible definition of a
topological index in superspace associated with this invariant is still an open question. This
issue could be properly investigated using the formalism of integral forms in superspace
developed in [71,72].

4. Supersymmetry Invariance of Flat Supergravity with Boundary

An interesting question, which was also an open problem of Ref. [34], is what happens
in the vanishing cosmological constant limit (Λ → 0, that is ` → ∞) in the presence of a
spacetime boundary. In particular, the vanishing cosmological constant limit cannot be
naively applied to the supersymmetric (full) MacDowell-Mansouri Lagrangian (33), the
boundary contributions all vanishing in the limit `→ ∞.

This issue has been extensively addressed in particular for the case where the boundary
is placed asymptotically at infinity. In this case it was shown that an infinite-dimensional
group, named BMS group (and its supersymmetric extensions), emerges as asymptotic
symmetry [76–89].

Concerning D = 4 supergravity with boundary, whose construction in the geometric
approach has been reviewed in Sections 2 and 3, a question that naturally arises is whether,
in the limit case of vanishing cosmological constant, a geometric boundary Lagrangian
Lbdy exhibiting super-BMS symmetry exists. To answer this question one should first of
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all consider the case of a boundary placed at asymptotic infinity, in such a way to allow
the BMS symmetry to possibly emerge. On the other hand, in order to implement the
geometric approach scheme to the boundary theory, the kind and position of the boundary
is not required to be specified, all the results being expressed in terms of tensors with
SO(1, 3) covariant indices.

In the following, we are going to review how the boundary contributions can be
taken into account in the geometric approach, disregarding here an explicit choice of the
boundary. This will be the subject of Section 4.2.

However, the choice of a boundary is crucial in applications of the formalism to a
holographic context. Before proceeding with the geometric analysis of pure N = 1, D = 4
“flat supergravity”15, let us first briefly sketch, in the following Section 4.1, some key aspect
of the asymptotic symmetries of asymptotically flat spacetimes.

4.1. Symmetry Structure of Asymptotically Flat Spacetimes

Asymptotic symmetries of asymptotically flat spacetimes have been subject of great
interest in recent years (the literature on this topic is huge; let us refer the reader to,
e.g., [76–89]). In particular, they play an important role in the formulation of a holographic
description of gravity in this case. We will further elaborate on this issue in Section 5.

It is still unclear which is the maximal set of symmetries admitted by a four-dimensional
theory including gravity with asymptotically locally flat boundary conditions. On the other
hand, it is known that with Dirichlet-type boundary conditions, where the non-degenerate
spatial part of the boundary metric is taken to be a round 2-sphere, the asymptotic sym-
metry algebra is the so-called bms4 algebra, which includes the Poincaré algebra as its
maximal finite-dimensional subalgebra.

In a theory of gravity, the asymptotic symmetry group describes the symmetries at the
boundary of spacetime. Often, it is larger than the isometry group of the vacuum state of
the bulk.16 For instance, in AdS3 the asymptotic symmetry is enhanced to two copies of
the infinite-dimensional Virasoro algebra [90], and this infinite-dimensional enhancement
of symmetries is at the core of the well-celebrated AdS3/CFT2 correspondence. Another
remarkable example is the case of asymptotically flat spacetimes at null (i.e., light-like)
infinity. There, the asymptotic symmetry group is the infinite-dimensional Bondi-Metzner-
Sachs (BMS) group [76–78], instead of the conventionally expected Poincaré group. In
particular, the asymptotic symmetry of four-dimensional flat spacetime is referred to as the
BMS4 symmetry group.

The BMS group consists of the semi-direct product of the group of globally defined
conformal transformations of the unit 2-sphere (isomorphic to the orthochronous homoge-
neous Lorentz group) times the infinite-dimensional Abelian normal subgroup of so-called
supertranslations. The latter are translations along the null direction which depend on
the angles of the sphere at infinity. In particular, the Abelian group of supertranslations
is infinite-dimensional so that the topology that makes BMS a continuous group is not
unique. In physical terms, the supertranslations arise because there are infinitely many
directions from which observers at infinity, which are not synchronized and whose world
lines coincide with the null generators of null infinity in a certain limit, can observe the
system and because each observer is free to choose its own origin of proper time [91].
A supertranslation is a shift of the parameter along each null generator of null infinity
corresponding to a change of origin for each individual observer. A choice of origin on each
null generator of null infinity is referred to as a “cut” of the latter: it is a two-dimensional
surface of spherical topology which intersects each null generator exactly once.17

The BMS group is expected be a symmetry of the gravitational S-matrix [83]. In
particular, the proposal in [83] is that this is the case for an infinite-dimensional subgroup
of the full BMS group (a certain combination, also referred to as the diagonal BMS group,
of the group acting at future null infinity and the one acting at past null infinity).18 Such
diagonal subgroup of the product of the past and future BMS groups results therefore
to be a symmetry of both classical and quantum gravitational scattering [83]. Intriguing
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connections among the BMS symmetry group, the S-matrix of a quantum theory of gravity,
soft gravitons, memory effects, and the black hole information loss paradox have been put forward
in fairly recent literature, and not only in the context of theories of gravity. We refer the
reader to, e.g., [86,93] and references therein for further details on these points.

Besides, the analysis of the asymptotic symmetry in a theory of gravity is extremely
useful in the context of holography, in particular concerning the physical aspects of the dual
field theory: following the celebrated case of the AdS/CFT duality, from which the idea and
tools of holography at the boundary of a gravitational theory arose, one first of all assumes
as a necessary condition that the asymptotic symmetry group of the bulk dictates the global
symmetries of the dual field theory living on the boundary of the spacetime. Therefore,
in a holographic formulation of quantum gravity in asymptotically flat spacetimes, one
would expect the putative dual field theory to be a BMS invariant theory living on the
null boundary of spacetime [86]. This results to be the guideline for the formulation of
the so-called celestial holography (see, e.g., [94,95]), which, in short, is the statement that the
holographic dual of quantum gravity in asymptotically flat four-dimensional spacetime is
a conformal field theory living on the two-dimensional celestial (spatial) sphere.

In all the frameworks sketched above for flat holography,19 the asymptotic boundary is
a spatial surface placed at null infinity. However, null surfaces have in general a degenerate
metric, so that any given holographic model has to deal with a consistent definition of
the two-dimensional induced spatial metric. As pointed out in [87], one way to deal with
this problem consists in considering a systematic singular limit where an infinite boost
is implemented on a space-like surface of a relativistic field theory. This can be achieved
by sending the speed of light in the field theory to zero [96]. At the group theoretical
level, this limit corresponds to the contraction of the Poincaré group to what is known
as the Carrollian group. Fields living on a null hypersurface of spacetime necessarily
propagate at the speed of light, and they must therefore be massless. This leads to consider,
as underlying symmetry of such a field theory, a conformal extension of the Carroll group.
Interestingly, the conformal Carroll group was recently shown to be isomorphic to the
BMS group [84]. All of this can be seen as a heuristic argument as to why there is a BMS
symmetry associated to any field theory constructed on a null surface. Such field theories
will then be conformal and defined on manifolds where the Lorentzian structure has been
replaced by a Carrollian one.

At the supersymmetric level, graded extensions of the bms4 algebra emerge as asymp-
totic symmetries of supergravity on asymptotically flat spacetimes. Such extensions are
generically named super-bms4 algebras, but can contain either a finite number [97,98] or an
infinite number [99–102] of fermionic generators. In particular, an N = 1 structure with
an infinite-dimensional odd sector was shown to appear in [100,102,103] as asymptotic
symmetry algebra of N = 1 supergravity at null infinity, a subalgebra of which can also
be realized as asymptotic symmetry at spatial infinity [102]. There also exists another
extension of the bms4 algebra, inequivalent to the one of [100,103], with only four fermionic
generators [97,98].

4.2. Construction of the Flat Model

Independently on the location of the boundary, under quite general conditions a
boundary Lagrangian allowing to restore the supersymmetry invariance of pure N = 1,
D = 4 “flat supergravity” was constructed in [51], within a geometric superspace approach.
The theory required the inclusion of appropriate boundary terms depending on some
auxiliary fields: an extra bosonic gauge field, Aab

µ = −Aba
µ , and an extra fermionic one,

χµ. The full supersymmetric action, given by the bulk plus boundary contributions, was
eventually recast in a MacDowell-Mansouri-like form [26].

As we will discuss in the following, the auxiliary 1-form fields Aab and χ enter the
Lagrangian only through boundary contributions (total derivatives), but they are naturally
defined in the whole superspace. Their inclusion in the supergravity multiplet allows the
matching off-shell of the bosonic and fermionic degrees of freedom in the bulk. From the
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bulk perspective, they have the role of implementing the consistency of the theory, since
their field equations are the Bianchi identities associated with the spin connection and
gravitino 1-forms. On the other hand, as proven in [51], the condition for the theory to be
supersymmetry invariant in the bulk plus boundary enforces the auxiliary fields to be, on
the boundary, the Maurer-Cartan 1-forms of a rigid super-Maxwell algebra.

We will also review, following [51], how the structure sketched above can be obtained
in the `→ ∞ limit of a deformation of AdS4 supergravity involving fields redefinition and
exhibiting a generalized cosmological constant. A thorough understanding of the physical
meaning of the extra fields Aab and χ under the boundary perspective could be achieved
by studying an intrinsic three-dimensional description of the theory, which requires an
explicit choice of boundary. This is beyond the aim of the present review, and will be
discussed elsewhere.

Before proceeding with the geometric approach to the boundary problem in the flat
supergravity case, let us mention that the inclusion of extra fields in the construction of
N = 1, D = 4 flat bulk plus boundary supergravity in the presence of auxiliary fields was
also previously considered in [10,11], but in different terms than what we will see below,
following the tensor calculus approach. More precisely, in [11] a consistent flat supergravity
with boundary was constructed within the old-minimal auxiliary fields completion of
minimal supergravity. In that model, the extension of the off-shell description with the
inclusion of a compensator axial-vector field was required and shown to be associated with
the first component of the extrinsic curvature multiplet.

We are now going to consider flat supergravity on a manifold with boundary and to
apply the geometric approach to restore the supersymmetry of the theory by introducing
in a geometric way appropriate boundary terms to the Lagrangian. In this way, as shown
in [51], the action including the boundary contributions results to be invariant under
supersymmetry transformations.

We focus on the N = 1, D = 4 case, following [51]. The field content of the model
is the same of Section 3.1. The Lorentz-covariant super field-strengths of the theory are
given by (16).20 The minimal four-dimensional ungauged supergravity Lagrangian, when
written as a first-order one, reads21

Lflat
bulk =

1
4
RabVcVdεabcd − ψ̄γ5γaρVa , (47)

as can also be obtained by taking the flat (` → ∞) limit of (20). The Lagrangian (47) is
simply given by the Einstein-Hilbert (EH) and Rarita-Schwinger terms, and it scales (in
natural units) as L2, being L2 the scale-weight of the EH term. In fact, [ωab] = L0, [Va] = L,
and [ψ] = L1/2.

Now, in the presence of a spacetime boundary, unless trivial boundary conditions are
imposed on the fields, the supersymmetry invariance of the theory is broken, and in order to
restore it we shall add boundary terms to the theory. As we have already seen in Section 3,
genuine boundary contributions to be considered should scale homogeneously with the
other terms of the Lagrangian; in particular they must have the same scale-weight as the
EH term. However, the only Lorentz-invariant boundary terms that can be constructed
using the spin-connection ωab, the vielbein Va, and the gravitino ψ are those given in (24),
which scale with L0 and L, respectively in order of appearence in (24), and the inclusion
of such boundary terms leads to the full Lagrangian (33), whose direct flat limit does not
appear to be well-defined.

The alternative approach proposed in [51] consists in adding new gauge fields with
higher scale-weight with respect to that of the fields already present in the theory. In
particular, the minimal choice to restore supersymmetry invariance is given by the addition
of an antisymmetric bosonic 1-form gauge field Aab = −Aba with scale-weight L2 and a
fermionic 1-form gauge field χ with scale-weight L3/2. The total number of the off-shell
d.o.f. of the new gauge fields Aab

µ is 3× 6 = 18, while that of χµα is 3× 4, exactly as the
gravitino. With their inclusion, then, the total number of bosonic bulk d.o.f., including the
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6 d.o.f. of the off-shell metric, is nB = 6 + 18 = 24, matching the total number of fermionic
d.o.f. nF = 12 + 12 = 24. A crucial aspect concerning these auxiliary fields is that their
inclusion in the theory allows not only the off-shell matching of the bosonic and fermionic
d.o.f. but also to restore the supersymmetry invariance in the context we are considering.
In this sense, they play a topological role as they appear only in the boundary Lagrangian
necessary to restore supersymmetry in the geometric approach.

Then, the only boundary contributions constructed by using the original field con-
tent of the theory together with Aab and χ that are compatible with parity and Lorentz
invariance and that do not involve a scaling parameter are

d
(

Aab ∧Rcd + ωa
f ∧ω f b ∧ Acd + 2ωa

f ∧ A f b ∧ωcd + ωab ∧ F cd
)

εabcd = 2Rab ∧ F cdεabcd ,

d(ψ̄γ5 ∧ σ + χ̄γ5 ∧ ρ) = 2σ̄γ5 ∧ ρ− 1
2
Rab ∧ χ̄γ5γab ∧ ψ ,

(48)

where we have defined

σ ≡ Dχ ,

F ab ≡ DAab .
(49)

Thus, the boundary Lagrangian reads

Lflat
bdy = α′

(
2RabF cdεabcd

)
− iβ′

(
2σ̄γ5ρ− 1

2
Rabχ̄γ5γabψ

)
, (50)

where α′ and β′ are constant dimensionless parameters amounting to the normalization of
the auxiliary fields, which can be chosen at our wish. Notice that the boundary Lagrangian
(50) has scale-weight L2 as the bulk Lagrangian (47). Therefore, we are left with the
following full Lagrangian:

Lflat
full = L

flat
bulk + L

flat
bdy

=
1
4
RabVcVdεabcd − ψ̄γ5γaρVa

+ α′
(

2RabF cdεabcd

)
− iβ′

(
2σ̄γ5ρ− 1

2
Rabχ̄γ5γabψ

)
.

(51)

Naturally, the boundary terms (48) do not affect the bulk and, in particular, we have
ıε(dLflat

full) = 0.
Then, the supersymmetry invariance of the full Lagrangian (51) requires to verify the

condition ıε

(
Lflat

full
)
|∂M4 = 0. As already seen in Section 3.1, also here the field equations

acquire non-trivial boundary contributions coming not only from the boundary Lagrangian
but also from the bulk one (from the total differentials originating from partial integration),
yielding, in particular, the following constraints to hold on the boundary:

Rab|∂M4 = 0 ,

F ab|∂M4 = − 1
8α′

(
VaVb + β′χ̄γabψ

)
∂M4

,

ρ|∂M4 = 0 ,
σ|∂M4 = i

2β′ (γaψVa)∂M4
.

(52)

Thus, the supercurvatures result to be dynamically fixed, on the boundary, to constant
values in an enlarged anholonomic basis (indeed, on the boundary they are fixed not only
in terms of the supervielbein {Va, ψ} but also of the extra 1-form field χ). Computing
ıε

(
Lflat

full
)

from (51) and then considering its projection on the boundary, ıε

(
Lflat

full
)
|∂M4 , upon

use of (52) one finds
ıε

(
Lflat

full

)
|∂M4 = 0 . (53)
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Thus, the supersymmetry invariance of the full Lagrangian is restored in the presence
of a boundary of spacetime if we include the boundary terms proportional to α′ and β′

(with α′ 6= 0, β′ 6= 0). The emerging algebraic structure is more transparent once the
normalization coefficients α′ and β′ are fixed to the values α′ = − 1

8 and β′ = 1. For these
values the full Lagrangian can be rewritten in a MacDowell-Mansouri-like form [26] as22

Lflat
full = −

1
4
Rab ∧ F̂ cdεabcd − 2iΞ̄γ5 ∧ ρ , (54)

where we have defined

F̂ ab ≡ F ab −VaVb − χ̄γabψ ,

Ξ ≡ σ− i
2

γaψVa .
(55)

Hence, enlarging the field content of the theory we have been able to restore supersymmetry
(which results to be restored for any value of α′ and β′) and, furthermore, to end up with
a full Lagrangian in the MacDowell-Mansouri-like form for specific values of α′ and β′.
The enlargement, however, does not modify the bulk Lagrangian, as it affects only the
boundary, allowing to restore the supersymmetry invariance.

Remarkably, the supercurvatures (55), together with (see (52))

Rab ≡ Rab ,

Ψ ≡ ρ ,

Ra ≡ DVa − i
2

ψ̄γaψ ,

(56)

turn out to reproduce the so-called (minimal) Maxwell-covariant supercurvatures (see,
e.g., [43,52,53]). The minimal Maxwell superalgebra, dual to the “vacuum” Maurer-Cartan
structure given by the vanishing of the supercurvatures in (55) and (56), was first introduced
in [52] in order to describe a generalized four-dimensional superspace in the presence of a
constant Abelian supersymmetric field-strength background. Such superalgebra extends
the Maxwell algebra, whose generators are {Jab, Pa, Zab}, respectively dual to ωab, Va, and
Aab, by incorporating two fermionic generators, Q and Σ, dual to ψ and χ, respectively.
At the purely bosonic level, the Maxwell algebra was introduced in [58,104]. At the super-
symmetric level, super-Maxwell algebras were considered in particular in three spacetime
dimensions, as they allowed to reproduce three-dimensional Chern-Simons supergravity
models in, e.g., [105,106].23 The rigid super-Maxwell algebra in four dimensions has the
following structure of (anti)commutators:

[Jab, Jcd] ∝ ηbc Jad − ηac Jbd − ηbd Jac + ηad Jbc ,

[Jab, Pc] ∝ ηbcPa − ηacPb , [Pa, Pb] ∝ Zab ,

[Jab, Zcd] ∝ ηbcZad − ηacZbd − ηbdZac + ηadZbc ,

[Jab, Q] ∝ γabQ , [Jab, Σ] ∝ γabΣ , [Pa, Q] ∝ γaΣ ,

{Q, Q} ∝ CγaPa , {Q, Σ} ∝ CγabZab ,

(57)

where C denotes the charge conjugation matrix.
We can now interpret the boundary constraints (52),

Rab|∂M4 = 0 , F̂ ab|∂M4 = 0 , Ψ|∂M4 = 0 , Ξ|∂M4 = 0 , (58)

as the condition that the super-Maxwell algebra emerges as global symmetry at the bound-
ary. Furthermore, consistency of the bulk theory requires Ra = 0 and hence, for continuity,
we will also require Ra|∂M4 = 0, as we will see below.
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Then, the full Lagrangian (54) can be rewritten in terms of the Maxwell supercurva-
tures given in (55) and (56) as

Lflat
full = −

1
4

Rab ∧ F̂ cdεabcd − 2iΞ̄γ5 ∧Ψ . (59)

Note that Aab and χ appear only in the boundary Lagrangian, but they act as auxiliary
fields under the bulk perspective, implementing the Bianchi identities of Lorentz and
supersymmetry respectively, associated with ωab and ψ. Indeed, their equations of motion
(e.o.m.) yield, respectively (up to boundary terms),

e.o.m. Aab ↔ DRab = 0 ,

e.o.m. χ ↔ Dρ− 1
4
Rabγabψ = 0 .

(60)

On the other hand, those of ωab and ψ read

e.o.m. ωab ↔ DF̂ ab − 2R[a
c Ac|b] + Ξ̄γabψ− χ̄γabΨ = 0 ,

e.o.m. ψ ↔ DΞ− 1
4

Rabγabχ +
i
2

γaΨVa = 0 .
(61)

in a kind of, let us say, “symmetric way” with respect to the e.o.m. of Aab and χ.
Comparing the latter with the Bianchi identities of the super-Maxwell algebra as-

sociated with the auxiliary fields, we can see that, imposing the supertorsion constraint
Ra = 0, they coincide. In this sense, the supertorsion constraint appears as a consistency
requirement for the full MacDowell-Mansouri theory (while, as usual, it can be proven
that it naturally emerges from the study of the field equations of the bulk Lagrangian in
the absence of the boundary contribution Lflat

bdy). Hence, the fields equations of ωab and ψ

implement the Bianchi identities of the super-Maxwell algebra associated with Aab and χ,
respectively. Let us observe that the Rarita-Schwinger equation of motion of the gravitino
is hidden in the second of the above equations. It can be retrieved if we restrict the auxiliary
field χ to be defined only on the boundary, in which case, in the bulk, χ = 0, and the second
equation in (61) reduces, in the bulk, to the Rarita-Schwinger equation.

Finally, the field equations of Va read

1
2

VbRcdεabcd − ψ̄γaγ5ρ = 0 . (62)

They are the Einstein equations in superspace, written in the Einstein-Cartan formalism,
with energy momentum tensor associated with the propagating gravitino field.

We observe that the full Lagrangian (54) cannot be directly obtained as a flat limit
of (33). In particular, in the present case we have new 1-form gauge fields with the
associated field-strengths contributing to the full Lagrangian. Nevertheless, as we are
going to review in the following Section 4.3, the Lagrangian (54) can be retrieved as zero
cosmological constant (that is infinite AdS radius) limit `→ ∞ from a theory originating
from AdS4 supergravity, but with super AdS-Lorentz covariance, where the extra 1-form
gauge fields do not appear only in the boundary Lagrangian but also in the bulk one.

4.3. Recovering Flat Supergravity with Boundary from Super-AdS4

Coupling of the gravitational field with bosonic 1-form fields carrying Lorentz indices
typically arises in generalized models of (super)gravity, where an internal scale parameter,
`, can be introduced and associated with a generalized definition of cosmological constant
(see, e.g., [37–39,43,44]). The structure group in this case is given by a super AdS-Lorentz
group, which can be found by performing a particular algebraic expansion, named S-
expansion [110], of the N -extended OSp(N , 4) super AdS4 group.
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One can then construct a Lagrangian covariant under the super AdS-Lorentz group in
the presence of a spacetime boundary. Remarkably, the ` → ∞ limit of the above theory
is able to reproduce the full Lagrangian (59) of flat supergravity, showing also how the
auxiliary fields Aab and χ emerge in this limit, out of the bulk fields of the theory with
generalized cosmological constant.

Let us discuss here how the generalized supergravity model discussed in the present
section arises from standard supergravity, and why the inherent deformation of the Lorentz
structure group is particularly useful in order to reproduce, in the zero cosmological
constant limit, the theory of flat supergravity with boundary discussed in Section 4.2.

As already emphasized, the full Lagrangian of flat supergravity with boundary cannot
be found as a straightforward limit from the one of pure AdS4 supergravity, the limit being
singular and the boundary contributions all being vanishing in the limit. Nevertheless, as
we are going to discuss in the following, in [51] a well-defined zero cosmological constant
limit from pure AdS4 supergravity was engineered, by allowing different scalings of the
various fields of the theory and using the gained flexibility to write a boundary Lagrangian
with a well-defined limit `→ ∞.

To clarify the procedure, let us start from the AdS4 supergravity theory discussed
in Section 3.1, with supecurvatures defined as in (16), and perform the following field
redefinitions, both vanishing in the zero cosmological constant limit `→ ∞:

• We introduce a torsionful spin connection

ω̂ab ≡ ωab +
1
`2 Aab , (63)

where Aab is a tensor 1-form, so that

Rab → R̂ab = dωab + ωa
cωcb +

1
`2D(ω)Aab +

1
`4 Aa

c Acb ≡ Rab +
1
`2F

ab ,

Ra → R̂a = D(ω)V
a +

1
`2 Aa

bVb − i
2

ψ̄γaψ ,
(64)

where
Fab ≡ D(ω)Aab +

1
`2 Aa

c Acb .

• We redefine the gravitino 1-form with the introduction of the new spinor 1-form χ,

ψ→ ψ +
1
`

χ , (65)

so that

R̂a → Ra ≡ D(ω)V
a − i

2
ψ̄γaψ +

1
`2 Aa

bVb − i
`

ψ̄γaχ− i
2`2 χ̄γaχ ,

ρ→ ρ̂ = D(ω)ψ +
1
`

(
D(ω)χ +

1
4`

Aabγabψ +
1

4`2 Aabγabχ

)
≡ ρ +

1
`

Φ ,
(66)

where
Φ ≡ D(ω)χ +

1
4`

Aabγabψ +
1

4`2 Aabγabχ .
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All together, the redefined super field-strengths read

Rab ≡ dωab + ωa
cωcb ,

Ra ≡ DVa − i
2

ψ̄γaψ +
1
`2 Aa

bVb − i
`

ψ̄γaχ− i
2`2 χ̄γaχ ,

ρ ≡ Dψ ,

Fab ≡ DAab +
1
`2 Aa

c Acb ,

Φ ≡ Dχ +
1
4`

Aabγabψ +
1

4`2 Aabγabχ .

(67)

In terms of the redefined fields and of their field-strengths, the bulk Lagrangian (20) of
pure AdS4 supergravity was constructed in [51]24 and it reads

L`bulk =
1
4

εabcdRabVcVd +
1

4`2 εabcdFabVcVd − ψ̄γ5γaρVa − 1
`

ψ̄γ5γaΦVa

− 1
`2 χ̄γ5γaΦVa − 1

`
χ̄γ5γaρVa − 1

8`2 εabcdVaVbVcVd

− i
2`

ψ̄γ5γabψVaVb − i
`2 χ̄γ5γabψVaVb − i

2`3 χ̄γ5γabχVaVb .

(68)

Thinking now at ψ and χ as independent odd directions of an enlarged superspace,
the Lagrangian (20) is left invariant under generalized supersymmetry transformations
ε, ε, associated with diffeomorphisms in the directions of ψ and χ, respectively. They are
given by

δεωab = i
[
ρ̄abγc − 2ρ̄

[a
cγb] + 1

`

(
Φ̄abγc − 2Φ̄[a

cγb]
)]

εVc + 1
` ε̄γabψ ,

δεψ = Dε ,
δεVa = iε̄γaψ + i

` ε̄γaχ ,
δε Aab = ε̄γabχ ,
δεχ = i

2 γaεVa + 1
4`γabεAab ,

(69)

along with 

δεω
ab = i

`

(
ρ̄abγc − 2ρ̄

[a
cγb]

)
εVc ,

δεψ = 0 ,
δεVa = i

` ε̄γaψ + i
`2 ε̄γaχ ,

δε Aab = i
(

Φ̄abγc − 2Φ̄[a
cγb]

)
εVc + ε̄γabψ + 1

` ε̄γabχ ,

δεχ = Dε + i
2`γaεVa + 1

4`2 γabεAab ,

(70)

where ρab and Φab denote the components along the purely bosonic vielbein of the field-
strength 2-forms ρ and Φ, respectively, namely the corresponding supercovariant field-
strengths.

The vanishing cosmological constant limit ` → ∞ of (68) yields the flat bulk super-
gravity Lagrangian (47), exactly as starting from the equivalent Lagrangian (20). However,
the bulk Lagrangian (68) now includes terms involving the dimensionful 1-form fields
Aab and χ. In the flat supergravity case reviewed in Section 4.2, the contribution of such
1-forms to the boundary Lagrangian was crucial to restore supersymmetry invariance in
the presence of a boundary.

In [51], the supersymmetry invariance of the theory with generalized cosmological
constant was analyzed in the presence of a non-trivial boundary, with the aim of finding a
consistently defined flat limit `→ ∞ in which the results reviewed in Section 4.2 could be
recovered. In order to restore supersymmetry, it is necessary to add boundary terms.
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In the case at hand, the dimensionful 1-forms Aab and χ already appear in the bulk
Lagrangian (68), and they can also be included within total derivative terms contributing
to the boundary Lagrangian, more general to the ones directly obtained from (25) when
performing the redefinition of spin connection and gravitino. In particular, one can allow
independent couplings in each total derivative term. All possible boundary terms, com-
patible with the symmetries of the theory, that can be added (without including extra new
fields) yield the following boundary Lagrangian:

L`bdy = λεabcdRabRcd − iπ
(

ρ̄γ5ρ− 1
4

Rabψ̄γ5γabψ

)
+ µεabcd

(
2RabFcd +

1
`2F

abFcd
)

− iν
(

2ρ̄γ5Φ + Φ̄γ5Φ− 1
2

Rabψ̄γ5γabχ− 1
4`

Fabψ̄γ5γabψ

− 1
2`2F

abψ̄γ5γabχ− 1
4`

Rabχ̄γ5γabχ− 1
4`3F

abχ̄γ5γabχ

)
,

(71)

where λ, π, µ, ν are independent constant parameters. Let us remark that a necessary
condition, in order to have a consistently defined limit ` → ∞ at the level of the full
Lagrangian, is that the Lagrangian should not contain terms diverging in the limit. For
this reason, terms involving positive powers of ` must be excluded. Inspecting (71), all
terms scale as a length squared, L2, with the exception of those proportional to λ and π.
In order to have an appropriately scaled boundary Lagrangian one should define new
dimensionless constants, λ′ and π′, such that λ = `2λ′ and π = `π′. However, this implies
positive powers of ` in (71). Thus, we conclude that the contributions proportional to λ
and π must be dropped out from the boundary Lagrangian. Finally, we are left with the
full Lagrangian

L`full = L`bulk + L`bdy

=
1
4

εabcdRabVcVd +
1

4`2 εabcdFabVcVd − ψ̄γ5γaρVa − 1
`

ψ̄γ5γaΦVa

− 1
`2 χ̄γ5γaΦVa − 1

`
χ̄γ5γaρVa − 1

8`2 εabcdVaVbVcVd

− i
2`

ψ̄γ5γabψVaVb − i
`2 χ̄γ5γabψVaVb − i

2`3 χ̄γ5γabχVaVb

+ µεabcd

(
2RabFcd +

1
`2F

abFcd
)

− iν
(

2ρ̄γ5Φ + Φ̄γ5Φ− 1
2

Rabψ̄γ5γabχ− 1
4`

Fabψ̄γ5γabψ

− 1
2`2F

abψ̄γ5γabχ− 1
4`

Rabχ̄γ5γabχ− 1
4`3F

abχ̄γ5γabχ

)
.

(72)

Again, from the study of the field equations in the presence of a boundary, the supercurva-
tures (67) result to be fixed, on the boundary, to constant values in an enlarged anholonomic
basis given by the supervielbein together with the 1-form field χ,

Rab|∂M4 = − ν
16µ`

(
ψ̄γabψ

)
∂M4

,

Fab|∂M4 = − 1
8µ

(
VaVb + νχ̄γabψ + ν

2` χ̄γabχ
)

∂M4
,

ρ|∂M4 = 0 ,

Φ|∂M4 = i
2ν

(
γaψVa + 1

`γaχVa
)

∂M4
,

(73)
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and, consequently, the condition ıε

(
L`full

)
|∂M4 = 0 for supersymmetry of the full La-

grangian is realized when the following relation holds:

ν = −8µ(1 + h) , where h = ±
√

1 +
1

8µ
∈ R , (74)

with ν 6= 0, which implies h 6= −1. We can then solve the above in terms of the real
parameter h, obtaining

µ = −1
8

1
1− h2 , ν =

1
1− h

, (75)

which imply

Rab|∂M4 = (1 + h)
[

1
2` ψ̄γabψ

]
∂M4

,

Fab|∂M4 = (1 + h)
[
(1− h)VaVb + χ̄γabψ + 1

2` χ̄γabχ
]

∂M4
,

ρ|∂M4 = 0 ,
Φ|∂M4 = (1− h) i

2

[
γaψVa + 1

`γaχVa
]

∂M4
.

(76)

Observe that, setting h = 0, we obtain

µ = −1
8
⇒ ν = 1 . (77)

Remarkably, with these values of µ and ν, the full Lagrangian (72) acquires a MacDowell-
Mansouri-like form, that is

L`full = −
1
4
RabFcdεabcd −

1
8`2F

abFcdεabcd − 2iΩ̄γ5ρ− i
`

Ω̄γ5Ω , (78)

written in terms of the following super field-strengths:

Rab ≡ dωab + ωa
cωcb − 1

2`
ψ̄γabψ ,

Ra ≡ DVa − i
2

ψ̄γaψ +
1
`2 Aa

bVb − i
`

ψ̄γaχ− i
2`2 χ̄γaχ ,

ρ ≡ Dψ ,

Fab ≡ DAab −VaVb − χ̄γabψ +
1
`2 Aa

c Acb − 1
2`

χ̄γabχ ,

Ω ≡ Dχ− i
2

γaψVa − i
2`

γaχVa +
1
4`

Aabγabψ +
1

4`2 Aabγabχ .

(79)

In particular, considering the case h = 0, from the boundary conditions (76), arising from
the study of the field equations in the presence of a boundary, one can prove that the
supercurvatures defined in (79) vanish at the boundary. Thus we have recovered the
supersymmetry invariance of the theory with generalized cosmological constant in the
presence of a non-trivial boundary of spacetime and, furthermore, the flat limit ` → ∞
is now well-defined in the MacDowell-Mansouri-like formalism. Indeed, the vanishing
cosmological constant limit of the full Lagrangian (78) yields precisely the flat supergrav-
ity model with boundary that we derived in Section 4.2. In particular, in this case not
only the bulk Lagrangians are properly related through the flat limit but also the bound-
ary contributions. Moreover, the supercurvatures (79) boil down to the super-Maxwell
curvatures (55) and (56) in the flat limit `→ ∞.

Let us conclude this analysis by observing that setting the right-hand side of supercur-
vatures (79) to zero, which defines the vacuum of the theory, we obtain the Maurer-Cartan
equations associated with a supersymmetric extension of the so-called AdS-Lorentz alge-
bra. Such bosonic algebra is a semi-simple extension of the Poincaré algebra and it was
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first introduced in [54,55].25 The supersymmetric extension of the AdS-Lorentz algebra
obtained in the present case contains two fermionic charges, Q and Σ, respectively dual to
the spinor 1-form fields ψ and χ, as the minimal AdS-Lorentz superalgebras introduced
in [43]. However, it does not involve additional bosonic generators with respect to the ones
generating the AdS-Lorentz algebra in order for the (super-)Jacobi identities to be satisfied.
In this context, let us stress that the supersymmetrization of the AdS-Lorentz algebra is not
unique. In fact, for instance, an AdS-Lorentz superalgebra with just one fermionic charge
was considered in [54,114]. In the limit ` → ∞ the AdS-Lorentz superalgebra associated
with (79) precisely boils down to the super-Maxwell algebra defining the vacuum structure
arising from the vanishing of the super field-strengths (55) and (56).

5. Applications of the Formalism to Asymptotic Boundaries

The formalism described in the previous sections is very general, and particularly
well suited to be adapted to an holographic framework, in the spirit of the AdS/CFT
duality [14–16]. In all the models considered above, the boundary terms added in the
Lagrangian to restore supersymmetry invariance were written in terms of four-dimensional,
SO(1, 3)-Lorentz covariant tensor quantities. However, to properly unveil the role of the
various boundary terms, it is necessary to express them as proper three-dimensional
contributions, the result depending on the general features of the boundary considered,
and on its space-like, time-like, or light-like nature.

An interesting application was found in [115], where the results of [34] were applied
by choosing a specific, locally AdS3 boundary geometry: a peculiar three-dimensional
theory exhibiting “unconventional supersymmetry” [116] (referred to, in the following,
as AVZ model, from the names of the authors) was retrieved at the asymptotic boundary
of pure N = 2 AdS4 supergravity. The AVZ model is based on a 3d Chern-Simons (CS)
Lagrangian with OSp(2|2) supergroup, but features a Dirac spinor, that we are going to call
χ(AVZ),26 as the only propagating degree of freedom. The AVZ model is interesting, among
other peculiar features, because it was proven to have important applications in condensed
matter physics, in particular in the description of graphene-like systems near the Dirac
points. The Dirac spinor χ(AVZ) of the AVZ model emerges by imposing the condition on
the spacetime component of the odd CS connection 1-form Ψ

χ(AVZ)
α = i

(
γi
)

αβ
Ψβ

µeµ
i , (80)

eµ
i being the (inverse) dreibein of the base spacetime where the CS action is integrated

on, and γi a set of gamma matrices on it (while, here, α, β, . . . = 1, 2 are spinorial SL(2,R)
Lorentz indices, i = 0, 1, 2 anhonolonomic SL(2,R) vector indices, and µ = 0, 1, 2 the
corresponding curved indices). The above ansatz can be read as the condition that the
spin-1/2 part (associated with gauge freedom), out of the spin-(1× 1/2) = 3/2 + 1/2
component on the base space, Ψβ

µ, of the odd generator, is propagating on the base space.
The same relation also requires to choose a metric on the base space. Note that, in 3d
Chern-Simons theories, the two features mentioned above (introduction of a background
dependence, and local dynamics) are both typical of a (even partial) gauge fixing of the
gauge symmetry of the CS connection. Indeed, as pointed out in [117], the relation (80)
can be interpreted in terms of a particular gauge fixing of the odd symmetry in the CS
action. Such condition, however, identifies indices in the spinor representation of the gauge
supergroup, carried by the odd generator Ψβ, with spinor indices on the base space, that is
it identifies the subgroup SL(2,R) ⊂ OSp(2|2) of the gauge supergroup with the Lorentz
group SL(2,R)L on the base space. It therefore defines a non-trivial sector of the classical
CS theory. The correspondence was then extended in [75] to the case N > 2, assuming
trivial boundary conditions to hold for supergravity fields of spin lower than 1. This
allowed, as a first result, to give a precise map of the Semenoff and Haldane-type masses
appearing in the Dirac equation satisfied by the massive Dirac spinor of the AVZ model
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extended to OSp
(
N
2 |2
)
×OSp

(
N
2 |2
)

in terms of the torsion parameters of the model, on
the lines of [118,119]. To have retrieved the defining equations of the AVZ model, with
its intriguing condensed matter implications, at the boundary of AdS4 supergravity is an
interesting achievement in itself. However, it is still to be understood whether it is possible
to establish a precise holographic duality relation between AdS4 supergravity at large
radius and the AVZ model at the quantum level, in the spirit of the AdS/CFT duality. In
particular, in this case it is not clear whether the quantum boundary theory can still be
associated with a conformal field theory, since the mass term of the Dirac spinor, needed
for the correspondence with the gravity theory to take place, would plausibly break the
conformal invariance.

Independently from the possibility of a holographic description of the AVZ model,
the N = 2 model presented in Section 3 is particularly well suited to setup a holographic
investigation, by applying the holographic renormalization scheme [23], the condition
for regularizing the four-dimensional action being in fact, as we have seen, the request
of superconformal invariance of the boundary theory. As we have already discussed in
the preamble of the present review, at the bosonic level, and using a geometric, first-order
approach for describing gravity, in [6] it was shown that the Euler-Gauss-Bonnet term
needed to regularize the four-dimensional gravitational action can be expressed, when
written in well-adapted coordinates with radial direction orthogonal to the boundary, as
a functional of the chosen boundary metric, extrinsic curvature and intrinsic curvature.
Then, in [6,24], it was shown that the same term provides the resummation of all the terms
needed in the holographic renormalization scheme.

The four-dimensional N = 2 construction in [34] has been reconsidered in [74],
and an holographic framework for the four-dimensional N = 2 pure AdS4 supergravity
model, including all the contributions from the fermionic fields, was developed adopting a
Fefferman-Graham parametrization, and working in the first-order formalism for the spin
connection. The results of [74] show that the supersymmetric extension of the EGB term
corresponding to the N = 2 boundary Lagrangian found in [34], when expressed in three-
dimensional Fefferman-Graham intrinsic coordinates and expanded near the boundary
along the direction orthogonal to it, precisely produces the counterterms necessary to
implement the holographic renormalization program at the full supersymmetric level. It
indeed regularizes the effective action, exactly as the EGB term does for the bosonic case.

The analysis in [74] extends to theN = 2 case previous results for theN = 1 case [27].
Moreover, the holographic analysis in [74] includes all the components of the gravitini (the
ones along the boundary, ψµ, but also those orthogonal to it, ψz). This was functional, in
particular, as a step towards exploring a holographic description of the AVZ model at the
quantum level. Indeed, as shown in [115], the correspondence between AdS4 N -extended
supergravity and the AVZ model requires to consider a torsionful version of the latter,
based on the super-AdS3 symmetry supergroup OSp(2|2)× SO(1, 2). In this setup, the
ansatz (80) was interpreted in terms of the condition projecting out the spin-1/2 component
of the gravitino. Such condition, which is required to hold on-shell in the four-dimensional
supergravity theory, reads

ΓaVµ̂
a Ψµ̂ = 0 , (81)

where, as before, a = 0, 1, 2, 3, µ̂ = 0, 1, 2, 3 denote four-dimensional anholonomic and
world indices, respectively, Γ̂a here refer to gamma matrices in four dimensions, and Va is
the bosonic vielbein in four-dimensions. As discussed in [115], the ansatz (80) follows by
requiring that, in the dimensional reduction from four to three dimensions, the relation (81)
is realized non trivially, namely that it decomposes into

ΓiVµ̂
i Ψµ̂ = −Γ3Vµ̂

3 Ψµ̂ ∝ χ(AVZ) , (82)

where both terms in the decomposition have to be non-vanishing (differently from what
is general assumed in the holographic framework), being proportional to the dynamical
spinor of the AVZ model.
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The study in [74] aimed to explore the relation between the classical local symmetries
of the N = 2 AdS4 supergravity theory defined on the bulk and the quantum symmetries
in the boundary field theory (namely, the asymptotic symmetries, at radial infinity, of the
gravitational background). The latter appear as residual symmetries left over after the
gauge fixing of bulk local symmetries and whose parameters take value on the boundary.
According to the observation in (82), to make contact with the AVZ model, in [74] the
holographic gauge fixing27 was performed by refraining from imposing the standard
condition ΓiVµ̂

i Ψµ̂ = 0 on the gravitino field at the boundary, in the reduction to three
dimensions.

Ref. [74] also includes a general discussion of the gauge fixing conditions on the
bulk fields yielding the asymptotic symmetries at the boundary. The corresponding
currents of the boundary theory have been constructed and shown to satisfy the associated
Ward identities, once the field equations of the bulk theory are imposed. The asymptotic
behaviour of the gravitini is determined by the supertorsion constraints, associated with
supersymmetry both in four- and three-dimensional spacetimes. The near-boundary
analysis of supergravity fields and local parameters was carried out in [74] adopting the
Fefferman-Graham parametrization for the metric and by performing the holographic
gauge fixing of the bulk local symmetries, which provides the radial expansion of gauge
fields and parameters. The residual transformations, leaving invariant the aforementioned
gauge fixing, give rise to symmetry transformations on the boundary fields, associated
with Noether currents conservation laws. Although in the first part of [74] the multipliers
in the holographic gauge fixing were fixed as generally as possible to pave the way for
the possible holographic description of both the standard superconformal field theory
(SCFT) and the AVZ model, the second part of the work was then centered on the standard
SCFT case.

As the asymptotic symmetries of pure N = 2 AdS4 supergravity turn out to be given
by the three-dimensional superconformal transformations, the latter are also asymptotic
symmetries of an underlying boundary SCFT, according to the AdS/CFT correspondence,
where the boundary fields act as sources for the corresponding operators in the dual SCFT.
The superconformal tranformations are associated with local parameters and conserved
currents (which are the quantum operators in the SCFT). The analysis of the quantum
symmetries in a three-dimensional field theory holographically dual to N = 2 AdS4
supergravity was done in [74] by explicitly deriving the expressions of the supercurrents
and the corresponding conservation laws. The Ward identities expressing the above
conservation laws on the supercurrents at the quantum level were then shown to hold
off-shell in the boundary theory once the bulk field equations are imposed.

The boundary conditions on the supercurvatures are crucial to guarantee consistency
of the holographic construction. In particular, the finiteness of the quantum generating
functional of the boundary theory was shown to require the vanishing on the boundary of
the super-AdS curvatures, which was also proven, in [34], to be a necessary condition for a
consistent definition of the bulk supergravity theory.

Finally, let us comment on possible future applications of our formalism to the flat
supergravity case, in a holographic context.

As shortly reviewed in Section 4.1, the asymptotic symmetry of spacetime at null
infinity is expected to be given by the infinite dimensional BMS4 group. On the other hand,
in a holographic context a natural boundary dual to flat gravity has been recently identified
in a seemingly unrelated theoretical framework, the one describing the so-called Carrollian
fluids (see, e.g., [120–123]). These are fluids in 2 space dimensions whose dynamics is left
invariant by the action of the infinite-dimensional ultra-relativistic conformal Carroll group.

Remarkably, the BMS4 and the (infinite-dimensional) conformal Carroll group were
recently shown to be isomorphic [84], thus strengthening the idea of the validity of a
gauge/gravity holographic duality also for asymptotically flat spacetimes. Let us then
briefly sketch in the following some group-theoretical motivations of this correspondence,
following [123], where it was proven that a holographic description of four-dimensional
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asymptotically locally flat spacetimes can be obtained smoothly, in a peculiar zero cosmo-
logical constant limit of AdS holography. A (conformal) Carrollian geometry was shown
to emerge in flat holography, since in the construction of [123] the vanishing of the bulk
cosmological constant appears, from the boundary perspective, as a zero speed of light
limit, also known as Carrollian limit. More precisely, in [123] the starting point is a four-
dimensional bulk Einstein spacetime with negative cosmological constant Λ = −3κ2, dual
to a boundary relativistic fluid. Then, the Ricci-flat limit is achieved in the limit κ → 0
and, although no conformal boundary exists in this case, a two-dimensional spatial conformal
structure emerges at null infinity. As the Einstein bulk spacetime derivative expansion given
in [123] is performed along null tubes, it provides an appropriate setup to study both
the nature of the two-dimensional spatial boundary and the dynamics of the degrees of
freedom it hosts as holographic duals to the bulk Ricci-flat spacetime. Following [123],
by parametrizing à la Randers–Papapetrou the three-dimensional boundary spacetime metric,
that is

ds2 = −κ2(Ωdt− badxa)2 + dl2 ,

dl2 = aabdxadxb ,
(83)

where the tensors Ω, ba, aab are functions of all spacetime coordinates and dl2 is the
two-dimensional spatial metric,28 for vanishing κ the time decouples in the boundary
geometry. Here, let us mention that there actually exist two decoupling limits, associated
with two inequivalent contractions of the Poincaré group: the Galilean (generally referred
to as “non-relativistic”) limit, which is formally obtained by sending the speed of light to
infinity, and the Carrollian (often called “ultra-relativistic”) limit, which is formally reached
sending the speed of light to zero.29 Now, as in (83) κ plays effectively the role of speed
of light (while being proportional to the inverse of the AdS radius of the bulk asymptotic
geometry), the flat limit κ → 0 is precisely a Carrollian limit. This is the way in which a
Carrollian boundary geometry (i.e., covariant under Carrollian diffeomorphisms), consisting of a
spatial surface endowed with a positive-definite metric dl2 = aabdxadxb and a Carrollian
time t ∈ R, emerges in this context. The Carrollian surface results to be the natural host
for a conformal Carrollian fluid (characterized by energy density and pressure related by
a conformal equation of state, heat currents and traceless viscous stress tensor), which
has to be considered as the holographic dual of a Ricci-flat spacetime, its Carrollian fluid
dynamics being dual to the gravitational bulk dynamics at the zero cosmological constant
limit. Conversely, as pointed out in [123], any Carrollian fluid evolving on a spatial surface
with Carrollian geometry is associated with a Ricci-flat geometry. Flat holography is being
the object of a large interest, and has been further investigated in various directions in the
recent literature [86,124–126], mostly at the bosonic level.

A supersymmetric extension of the duality encoded in flat holography was poorly
investigated so far. More specifically, referring to the formalism reviewed in the previous
sections of the present paper, its possible application to flat holography is still an open
problem. In Section 4 we reviewed how the supersymmetry invariance of flat supergrav-
ity with boundary can be recovered by inclusion of 1-form auxiliary fields, Aab and χ,
contributing to the boundary Lagrangian. This is independent from the location of the
boundary itself, and the same auxiliary fields are then expected to play a crucial role in the
application of our formalism to a flat-holography gauge/gravity correspondence. Further-
more, since the boundary symmetry of D = 4 flat supergravity was found in [51] to be the
super-Maxwell algebra, as reviewed in Section 4, we expect a relation to emerge, for the
case of an asymptotic boundary, between the super-Maxwell algebra and the asymptotic
boundary symmetry of asymptotically flat (super)space, that is super-BMS4 algebra (or,
equivalently, the super-Carroll algebra, see, e.g., [127–129]).

Verification of our hypotesis would require, as a first step, to perform an intrinsic
description of the boundary Lagrangian for the case of a null boundary geometry, and the
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corresponding decomposition of the tensorial structures with respect to those covariant
with respect to the symmetries on the chosen boundary. This is left to future investigation.
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Notes
1 With the terminology “generalized cosmological constant” we mean, according with the literature on the subject, a modification

of the standard volume 4-form in which a dependence on additional 1-form gauge fields explicitly appears.
2 The Maxwell algebra was firstly introduced to describe the symmetries of a particle moving in a background in the presence of a

constant electromagnetic field [58].
3 In the superstring and supergravity contexts, superalgebras including nilpotent fermionic generators were introduced in [59] to

consistently formulate the hidden algebra underlying eleven dimensional supergravity, and then analyzed in, e.g., [60–65].
4 For this to be possible, the Lagrangian 4-form has to be entirely expressed as wedge product of differential forms and their

exterior derivatives, without the use of tensor densities such as the Levi-Civita symbol εµνρσ. For this reason, the kinetic terms in
particular have to be written at first-order, thus avoiding the Hodge dual of the field-strengths, which is defined in terms of the
Levi-Civita symbol.

5 This restriction can be relaxed by including auxiliary fields in the theory, but this is however possible at the supergravity level
only in few cases (in theories exhibiting up to 8 supercharges, and with the inclusion of an infinite number of auxiliary fields for
the off-shell description of hypermultiplets). In those cases, the Bianchi identities are proper identities and the supersymmetry
algebra closes off-shell.

6 Typically, besides the contributions to the equations of motion coming from Lbdy we also have extra contributions from Lbulk,
neglected in the absence of a boundary, originating from the total differentials obtained by partial integration.

7 Regarding our notation, with respect to [34] here we define the Lorentz spin connection and curvature with extra minus signs,
that is ωab → −ωab andRab → −Rab, to better fit in the conventions more commonly adopted in the literature.

8 We adopt the same gamma matrices conventions of [34]. For useful formulas on gamma matrices and spinor identities in N = 1
we refer the reader to the Appendix of [68], where some typos appearing in [34] have also been fixed.

9 In [34], the AdS4 radius and the cosmological constant are expressed in terms of the parameter e = 1
2` .

10 In writing the expression above we are skipping some subtleties related to the fact that the extension of the action integral to
superspace requires, properly speaking, that the 4-form Lagrangian in superspace should be written at first-order, thus avoiding
use of the Hodge-dual which is not easily defined in superspace (unless one uses the formalism of integral forms in superspace,
see [71,72]). However, these subtleties do not affect the arguments reviewed here.

11 Here let us emphasize that, in complete analogy to what has been observed in [26] for the case of AdS4 gravity, the action
(33) is not invariant under local OSp(1|4) transformations, even though the supercurvatures (34) are covariant with respect to
OSp(1|4).

12 Here, as for the N = 1 case, we shall adopt the notation of [34], but performing the changes ωab → −ωab,Rab → −Rab, and
A→ − 1√

2
A. Our conventions on fermions can be found in Appendix A.2 of [74], where the notation of [75] was adopted. We

generally use Majorana spinors, and redefine the constants appearing in [34] as L0 = L = 1√
2

and 1
` = 2e = P√

2
=
√
−Λ

3 .

13 As we have done in the N = 1 case, we keep on adopting bold symbols to denote the OSp(2|4) super field-strengths, without
changing, however, their name with respect to the N = 1 case, to lighten the notation.

14 The same remark as for the N = 1 case, regarding use of the Hodge symbol in superspace, holds here (see footnote ).
15 Recall that here with the terminology “flat supergravity” we mean supergravity in the absence of any explicit internal scale in

the Lagrangian.
16 We refer the reader to [88] for a meticulous definition of asymptotic symmetry group, quotient of the group of residual gauge

transformations (or diffeomorphisms, for theories of gravity) modulo the group of trivial gauge transformations (or, again,
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diffeomorphisms, for theories of gravity). In particular, one should more properly state that the asymptotic symmetry group of a
class of theories is the union of the asymptotic symmetry groups of each (equivalent) formulation of that theory, enforcing in this
way the actual asymptotic symmetry group to be invariant under field redefinitions and gauge choices.

17 Further enhancements of the asymptotic symmetries of flat spacetime, extending the BMS group by including superrotations and
superboosts, were considered in [79,80,92].

18 In Strominger’s work [83] the BMS transformations acting on future null infinity (I+) are denoted by BMS+. They are an
infinite-dimensional set of “large” diffeomorphisms transforming one asymptotically flat solution of general relativity constraints
at I+ to a new, physically inequivalent solution. There is then an isomorphic structure at past null infinity (I−) acted on by a
second copy of the group denoted BMS−.

19 Flat holography denotes the application of the holographic correspondence to the case of asymptotically flat spacetime.
20 Notice that the fermionic bilinear in Ra in (16) has an additional “i” factor with respect to the one of [51]. We keep on adopting

this “i” factor to be coherent with the conventions adopted in the present paper.
21 To be coherent with respect to the notation previously adopted, we multiply the flat supergravity Lagrangian considered in [51]

by a factor 1
4 .

22 Notice that actually this is not a MacDowell-Mansouri Lagrangian, as the latter would be quadratic in the field-strengths, while
here we have the wedge product of different 2-form curvatures.

23 Further generalizations of the minimal Maxwell superalgebra can be found in [53,64,65,107–109], together with diverse applications.
24 Here again we adapt the conventions in such a way to be consistent with the ones previously adopted in the present paper.
25 Generalizations of the AdS-Lorentz algebra have been useful to recover diverse Lovelock theories from Chern-Simons and

Born-Infeld gravity models [111–113].
26 Note that the field χ(AVZ) is a Dirac spinor, not to be confused with the 1-form field χ of Section 4.
27 The holographic gauge fixing consists in using the freedom on local parameters to fix the Lagrange multipliers associated with

the radial components of the fields when doing the holographic analysis.
28 Here we rename the two-dimensional indices i, j, . . . of [123] as a, b, . . ., in order to avoid confusion with other indices adopted

in the present work.
29 Let us warn the reader that sometimes the terminology “non-relativistic” is used in the literature to denote both Galilean and

Carrollian structures, none of them being relativistic, even if they emerge in totally different regimes.
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