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Abstract: The relativistic wave equation for spin-1/2 particles in the interior Schwarzschild solution
in the presence of a uniform magnetic field is obtained. The fully relativistic regime is considered,
and the energy levels occupied by the particles are derived as functions of the magnetic field, the
radius of the massive sphere and the total mass of the latter. As no assumption is made on the relative
strengths of the particles’ interaction with the gravitational and magnetic fields, the relevance of our
results to the physics of the interior of neutron stars, where both the gravitational and the magnetic
fields are very intense, is discussed.

Keywords: dirac equation; curved spacetime; interior schwarzschild solution; landau levels; neutron stars

1. Introduction

The behavior of charged quantum particles inside a uniform magnetic field in
Minkowski spacetime displays quantized energy levels—the so-called Landau levels—that
were first derived by Rabi based on the relativistic Dirac equation [1] and by Landau
based on the Schrödinger equation [2] (see e.g., Ref. [3] for a textbook introduction). This
discovery led to many physical applications in condensed matter physics, such as the
explanation of the Landau diamagnetism [2], of the Shubnikov–de Haas effect [4], of the
de Haas-van Alphen effect [5] and of the integer quantum Hall effect [6]. Remarkably, the
Landau levels have even found astrophysical applications. In fact, the physics of neutron
stars and other highly magnetized stellar objects is expected to be governed to some extent
by the discrete nature of the energy levels occupied by the charged fermions moving under
the influence of the intense magnetic field of such astrophysical objects [7–16]. When
we recall that such highly compact astrophysical objects are also sources of very intense
gravitational fields, it becomes extremely important to investigate the fate of Landau levels
under the influence of a combination of a magnetic field and the gravitational field of a
spherical object. Such a study has recently been conducted in Refs. [17–19] based on the
Klein-Gordon and Schrödinger equations by considering the gravitational interaction of
the particle with a massive sphere as a small perturbation compared to the interaction of
the particle with the magnetic field. Although relying on the Schrödinger equation and
treating gravity perturbatively as done in these studies might be sufficient for laboratory
applications [20–23], when seeking astrophysical applications, implementing a general-
relativistic and a non-perturbative approach and appealing to the relativistic Dirac equation
are highly recommended.

The Dirac equation in a curved spacetime caused purely by an intense magnetic
field–known as the Melvin universe [24]—has been solved exactly in Ref. [25] where the
quantized energy levels were extracted. Contemplating curved spacetimes caused purely
by a magnetic field is motivated by the well-known fact that the strong magnetic fields
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of neutron stars could reach up to 1012−15 G on the surface of magnetars [26], and up to
1017 G in their interior (see, e.g., Refs. [27,28] and the references therein). On the other
hand, neutron stars are made of neutrons, as well as of a plasma of electrons, protons
and muons, the energies of which are affected by such strong magnetic fields. The aim
of the present paper is therefore to include the general-relativistic effect of the intense
gravitational field of such stellar objects by studying the dynamics of charged fermions
moving inside a massive spherical object in the presence of a uniform magnetic field. To
the best of our knowledge, such a study has not appeared in the literature before. Unlike
the purely magnetic spacetime considered in Ref. [25], however, we consider in the present
work the curved spacetime caused purely by the distribution of matter inside the core of
the stellar objects rather than by the uniform magnetic field. The contribution of the latter
to spacetime curvature will thus be considered negligible. The justification behind such an
assumption will be discussed in Section 2.

The remainder of this paper is structured as follows. In Section 2, we derive the Dirac
equation in a general static and spherically symmetric curved spacetime in the presence
of a uniform magnetic field. We discuss the various symmetries of the equation and
the complications one faces when attempting to solve the equation exactly. In Section 3,
we apply the equation obtained in Section 2 to the case of the interior Schwarzschild
solution. We then extract the quantized energy levels of charged fermions moving along
the equator inside a massive spherical object by keeping only the leading terms of the
differential equation. In Section 4, we briefly discuss the ways to overcome the limitations
we encountered in solving our equation in Section 3. In Section 5, we apply our results
to the study of the magnetization of neutron stars. We conclude this paper with a short
discussion section in which we summarize our findings.

2. Curved-Spacetime Dirac Equation in a Uniform Magnetic Field

Since our aim in this paper is to consider the Dirac equation in the static and spherically
symmetric interior Schwarzschild solution, let us start by deriving in this section the
equation for a general static and spherically symmetric curved spacetime in the presence
of a uniform magnetic field. For that purpose, let us write our spacetime metric in the
following general form:

ds2 = −A2(r) c2dt2 + B2(r)dr2 + r2(dθ2 + sin2 θdφ2), (1)

where the radial functions A(r) and B(r) are everywhere regular except, maybe, at the
origin r = 0. In addition, let us assume the constant and uniform magnetic field B to
be parallel to the z-direction. A convenient gauge for the vector potential would then be
Aµ = (0, 0, 0, 1

2 Br2 sin2 θ). The Dirac equation of a particle of mass m and of charge e (that
we take to be the negative charge of the electron for definiteness) moving inside a curved
spacetime and minimally coupled to a Maxwell field Aµ reads [29,30],

ih̄eµ
a γa
(

∂µ +
1
8

ω bc
µ [γb, γc]−

ieAµ

h̄

)
ψ = mcψ. (2)

The quantities eµ
a are the inverse of the spacetime tetrads ea

µ, whereas γa are the gamma
matrices, ω bc

µ is the spin connection and [γb, γc] is the commutator of the gamma matrices.
The spin connection is antisymmetric, ω bc

µ = −ω cb
µ , and it is expressed in terms of the

tetrad fields and the Christoffel symbols Γλ
µν of the spacetime by ω bc

µ = eb
ν∂µecν + Γλ

µνeb
λecν.
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On the other hand, two choices for the four curved-spacetime gamma matrices γµ =
ea

µγa are possible. One may choose either to work with the tetrads’ axes parallel to the
r, θ and φ coordinates, or choose to orient the tetrads’ axes parallel to some rectangular
coordinate system [31]. When combined with the standard representation of the constant
flat-spacetime gamma matrices γa, given explicitly by

γ0 =

(
1 0
0 −1

)
, γk =

(
0 σk
−σk 0

)
, (3)

where 1 is the 2× 2 unit matrix and σk (for k = 1, 2, 3) are the three Pauli matrices, the
curved-space gamma matrices γµ take on a simpler form in the first case than in the
second [31]. The spinor wavefunction ψ in the two cases will be different, but physical
quantities as well as the radial wave equation will all be the same as the two represen-
tations are simply related by a unitary transformation [31]. However, to deal with the
mixed cylindrical and spherical symmetries imposed, respectively, by the magnetic and
gravitational fields, it is easier to adopt the spherical-coordinates representation of the
gamma matrices, in which the three Pauli matrices take the form

σr =

(
cos θ sin θe−iφ

sin θeiφ − cos θ

)
, σθ =

(
− sin θ cos θe−iφ

cos θeiφ sin θ

)
, σφ =

(
0 −ie−iφ

ieiφ 0

)
. (4)

We now choose the spacetime tetrads for the metric (1) to be ea
µ = diag(A,B, r, r sin θ).

With these tetrads, we easily evaluate the nonvanishing components of the contracted spin
connection with the commutator of the gamma matrices to be:

1
8 ωab

0 [γa, γb] =
A′
2Bγ0γ1, 1

8 ωab
2 [γa, γb] =

1
2Bγ1γ2,

1
8 ωab

3 [γa, γb] =
sin θ

2B γ1γ3 +
cos θ

2
γ2γ3. (5)

Plugging these, together with the vector potential Aµ, into Equation (2) and then
multiplying the whole equation on the left by β = γ0 and using the definition αk = βγk of
the Dirac alpha matrices, the resulting equation reads,[

i∂t

Ac
ψ +

iα1

B

(
∂r +

1
r
+
A′
2A

)
+

iα2

r

(
∂θ +

cot θ

2

)
+

iα3

r sin θ

(
∂φ −

ieAφ

h̄

)]
ψ =

mc
h̄

βψ. (6)

We are interested in this paper in stationary states of energy E, for which we have
∂tψ = − i

h̄ Eψ. On the other hand, we may simplify further Equation (6) by setting ψ =

Ψ/(r
√
A sin θ). With these two replacements, the resulting equation in Ψ takes the form[

E
Ah̄c

+
iα1

B ∂r +
iα2

r
∂θ +

iα3

r sin θ

(
∂φ −

ieB
2h̄

r2 sin2 θ

)
− mc

h̄
β

]
Ψ = 0. (7)

This is the general equation obeyed by fermions under the influence of the uniform
magnetic field.

Unlike the well-known case of the Dirac equation in a spherically symmetric potential,
i.e., in a central potential (see, e.g., Ref. [32]), our Equation (7) may not be separated in
the radial variables r and the angular variables θ and φ. This is due to the mixture of
the spherical symmetry imposed by the gravitational field and the cylindrical symmetry
imposed by the vertical uniform magnetic field B. One might then be tempted to switch
to cylindrical coordinates (ρ, φ, z) to benefit from the cylindrical symmetry pertaining to
the magnetic field. Unfortunately, even doing so would not make Equation (7) easier to
solve. In fact, by making the substitutions ρ = r sin θ and z = r cos θ, Equation (7) would
contain operators of the form (ρ2 + z2)−

1
2 z ∂ρ and (ρ2 + z2)−

1
2 ρ ∂z. It is then evident that
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even if we neglect the z-variation of Ψ by assuming ∂zΨ ≈ 0, i.e., by neglecting the vertical
momentum of the particle, we would still be left with an equation that is not separable in
the variables ρ, z and φ.

It seems then that the only choice left is to set z = 0 as well. Physically, this is due (in
the absence of any other interaction of the particle) to the unstable nature of any position
z 6= 0, caused by the transverse gravitational attraction that pulls the particle away from
any plane other than the equator. This observation can also be reached by referring to
the variable θ in Equation (7). In fact, the only way of removing the θ-dependence in that
equation is to set θ = π

2 , i.e., to restrict ourselves to particles moving along the equatorial
plane. This is because setting θ = θ0 6= π

2 would prevent us from letting ρ = r sin θ0 vary
and have at the same time planar motion. If θ0 is set to a constant other than π

2 , then for ρ to
change, r must change too, which makes the particle leave the plane θ = θ0. Only along the
equatorial plane θ0 = π

2 does ρ = r sin π
2 = r become a variable describing planar motion.

We will come back to the possibility of considering a plane other than the equator
in Section 4. Before setting θ = π

2 , however, we should first extract the general single
differential equation from the coupled Dirac spinors.

3. The Quantized Energy Levels

To extract a quantization condition, if any, on the energy E from Equation (7), we need
first to decompose the Dirac spinor into a pair of 2-spinors as follows

Ψ(r, θ, φ) =

[
Φ(r, θ, φ)
Θ(r, θ, φ)

]
. (8)

Substituting this ansatz into Equation (7), the latter splits into the following coupled
first-order differential equations:(

E
Ah̄c

− mc
h̄

)
Φ +

[
iσr

B ∂r +
iσθ

r
∂θ +

iσφ

r sin θ

(
∂φ −

ieB
2h̄

r2 sin2 θ

)]
Θ = 0,(

E
Ah̄c

+
mc
h̄

)
Θ +

[
iσr

B ∂r +
iσθ

r
∂θ +

iσφ

r sin θ

(
∂φ −

ieB
2h̄

r2 sin2 θ

)]
Φ = 0. (9)

It is clear from these coupled differential equations that given the ρ-dependence of
all the coupling terms, extracting one of the 2-spinors from one equation and substituting
it into the other would result in a very complicated single equation. This is unlike what
happens with the standard Dirac equation for the case of the central potential of the
hydrogen atom [32]. It would be natural then at this stage to attempt to solve this system of
equations by applying the approach developed in Refs. [33–35], which consists of applying
a gauge transformation followed by a unitary transformation to turn one of the coupling
terms in one of the two equations into a constant. Indeed, such a method considerably
simplifies the resulting final single equation one arrives at. Unfortunately, such an approach
cannot be consistently applied in our case because that approach is specifically designed
only for a certain type of interactions of the particle with the gauge field, which is not the
case for our present physical system1. The other possibility would then be to attempt to
rather adopt the approach developed in Ref. [36] for the Dirac equation in curved spacetime.
Unfortunately, that approach is not helpful to us either as it becomes rapidly involved even
when the particle is not coupled to a gauge potential. For this reason, such an approach
has been applied in Ref. [36] only in 1 + 1 dimensions. We are thus left only with the old
strategy for dealing with coupled differential equations of the type (9).
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Extracting the 2-spinor Θ from the second line of Equation (9) and plugging it into the
first, we obtain the following single equation for the 2-spinor Φ:

Φ,rr

B2 +

(
2
Br
− B,r

B3 +
A,rE

AB2[E +Amc2]

)
Φ,r

+
Φ,θθ

r2 +

(
i[B − 1]σφ

Br2 +
cot θ

r2 +
iσφ

r
A,rE

AB[E +Amc2]

)
Φ,θ

+
Φ,φφ

r2 sin2 θ
+

(
i[1−B]σθ

Br2 sin θ
− ieB

h̄
− iσθ

r sin θ

A,rE
AB[E +Amc2]

)
Φ,φ

+

(
E2

A2h̄2c2
− m2c2

h̄2 −
e2B2r2 sin2 θ

4h̄2 − [B + 1]eBσθ sin θ

2h̄B +
σreB cos θ

h̄

− A,rEeBr σθ sin θ

2h̄AB[E +Amc2]

)
Φ = 0. (10)

With this result, we can now proceed to restrict the motion of the particle to the
equatorial plane by setting θ = π

2 . Therefore, we also need to perform the replacement
r sin θ = r ≡ ρ everywhere in this equation. On the other hand, for the θ-derivatives,
we use the following identities valid for motion restricted to a plane: ∂θ = r cos θ∂ρ and
∂2

θ = −r sin θ∂ρ + r2 cos2 θ∂2
ρ. Therefore, for θ = π

2 we should discard the partial derivative
∂θ and perform the replacement ∂2

θ → −ρ ∂ρ. The above equation then becomes

Φ,ρρ

B2 +

(
2−B
Bρ

−
B,ρ

B3 +
A,ρE

AB2[E +Amc2]

)
Φ,ρ

+
Φ,φφ

ρ2 +

(
i[B − 1]σz

Bρ2 − ieB
h̄

+
iσz

ρ

A,ρE
AB[E +Amc2]

)
Φ,φ

+

(
E2

A2h̄2c2
− m2c2

h̄2 −
e2B2ρ2

4h̄2 +
[B + 1]eBσz

2h̄B +
A,ρEeBρ σz

2h̄AB[E +Amc2]

)
Φ = 0. (11)

We have used here the fact that according to Equation (4), the spherical-coordinates
Pauli matrix σθ reduces to −σz for θ = π

2 (as expected), where σz is the usual third Pauli
matrix in Cartesian coordinates. On the other hand, according to expressions (4) of the
Pauli matrices, we see in Equation (11) that all the terms are diagonal and that the equation
does not involve the angular variable φ explicitly. Therefore, without loss of generality, we
can write the two independent solutions Φ+(ρ, φ) and Φ−(ρ, φ) of the equation in a basis
made of the spin-eigenstates along the z-direction with eigenvalues s = ±1, respectively.
We thus introduce arbitrary radial functions f+(ρ) and f−(ρ) such that

Φ+(ρ) = ei`φ

[
f+(ρ)

0

]
, Φ−(ρ) = ei`φ

[
0

f−(ρ)

]
. (12)

Imposing the periodic condition along the equator, Φ(ρ, φ + 2π) = Φ(ρ, φ), we learn
that the quantum number ` must be an integer number, which we take here to be non-
negative in accordance with the negative sign we chose for the charge e. Plugging these
ansatzes into Equation (11) yields the following second-order differential equation in ρ:

f ′′s
B2 +

(
2−B
Bρ

− B
′

B3 +
A′E

AB2[E +Amc2]

)
f ′s

+

(
E2

A2h̄2c2
− m2c2

h̄2 +
eB`

h̄
− e2B2ρ2

4h̄2 − B`
2 + [B − 1]s`
Bρ2 +

[B + 1]eBs
2h̄B

−
A′Es

[
2h̄`− eBρ2]

2h̄ρAB[E +Amc2]

)
fs = 0, (13)
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Here, and henceforth, a prime denotes a derivative with respect to the variable ρ,
and the function fs(ρ) stands for the two cases f±(ρ) of s = ±1, respectively. Next, we
introduce the following ansatz:

fs(ρ) =

(
B
AE + Bmc2

) 1
2

Fs(ρ), (14)

for some radial function Fs(ρ). Please note that only the convergence of the radial function
Fs(ρ) is required henceforth, for the argument of the square root in this ansatz converges
for both large and small values of ρ as we shall see below after introducing the explicit
components of the spacetime metric. Plugging now this ansatz into Equation (13), the latter
takes the following form:

F′′s
B2 +

2−B
Bρ

F′s +
[

E2

A2h̄2c2
− m2c2

h̄2 +
eB`

h̄
− e2B2ρ2

4h̄2 − B`
2 + (B − 1)s`
Bρ2

+
(B + 1)eBs

2h̄B − A
′Es(2h̄`− eBρ2)

2h̄ρAB(E +Amc2)
− 1

2B2

(
A′E

A[E +Amc2]
− B

′

B

)′
−
(

A′E
2AB[E +Amc2]

− B
′

2B2

)2

− 2−B
2Bρ

(
A′E

A[E +Amc2]
− B

′

B

)]
Fs = 0. (15)

Finally, the following ansatz,

Fs(ρ) = Gs(ρ) exp
[∫

(1−B)2

2ρ
dρ

]
, (16)

for an arbitrary radial function Gs(ρ), allows us to convert Equation (15) into the following
more useful form:

G′′s +
G′s
ρ

+

[
E2

A2h̄2c2
− m2c2

h̄2 +
eB`

h̄
− e2B2ρ2

4h̄2 − `2

ρ2 +
(1−B)s`
Bρ2 +

(1 + B)eBs
2h̄B

−
A′Es

[
2h̄`− eBρ2]

2h̄ρAB[E +Amc2]
− 1

2B2

(
A′E

A[E +Amc2]
− B

′

B

)′
−
(

A′E
2AB[E +Amc2]

− B
′

2B2

)2

− 2−B
2Bρ

(
A′E

A[E +Amc2]
− B

′

B

)
− B

′(1−B)
B2ρ

− (1−B)4

4B2ρ2

]
B2Gs = 0. (17)

It is clear that Equation (17) would not be easy to solve exactly. However, we can
clearly see now which terms of the equation could safely be dropped out even without
making any prior assumption on the orders of magnitude of the various physical quantities
involved, such as the energy of the particle and the strengths of the gravitational and
magnetic interaction terms. In Section 4, we shall come back to this point to discuss the
order of magnitude of the correction that would have been brought to our final result for
the energy levels of the particle if we had kept those extra terms.

Now, while Equation (17) seems analytically challenging to solve even when keeping
only the dominant terms, the fact that the metric components A2 and B2 of the interior
Schwarzschild solution depend on ρ2 instead of ρ will greatly simplify our task as we shall
see shortly. For a spherical body of mass M, of radius R and of uniform density, the interior
Schwarzschild solution describing the gravitational field inside the body is given by the
metric (1), with [37]

A(ρ) = 3
2

(
1− rs

R

) 1
2 − 1

2

(
1− rsρ2

R3

) 1
2

, B(ρ) =
(

1− rsρ2

R3

)−1/2

, (18)

where rs = 2GM/c2 is the Schwarzschild radius of the massive body. For convenience,
we introduce the dimensionless parameter η = 3

2 (1−
rs
R )

1
2 and the inverse length squared
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λ = rs
R3 . Please note that by choosing this metric, we have ignored the possible geometric

effect of the magnetic field on the spacetime. We will come back to this point in Section 4
as well.

Let us now show the convergence of the square root in our ansatz (14). Please
note that for very small values of ρ, the functions (18) approximate to A ∼ η − 1

2 + λ
4 ρ2

and B ∼ 1 + λ
2 ρ2, from which we see that the leading-order ρ-dependent term in the

argument of the square root in Equation (14) is proportional to ρ2. This establishes thus
the convergence of that square root for very small ρ. On the other hand, for ρ ≥ R, the
functions (18) lead, by continuity, to the metric components of the exterior Schwarzschild
solution, for we have then A = B−1 = (1− rs

ρ )
1
2 . Therefore, for very large values of ρ, the

functions A and B in the argument of the square root in our ansatz (14) approximate to
A ∼ 1− rs

2ρ and B ∼ 1 + rs
2ρ . This implies that the leading-order ρ-dependent term in the

argument of the square root is proportional to 1/ρ. This establishes thus the convergence
of that square root for large values of ρ as well, whence we deduce the convergence of that
square root for all values of ρ.

Next, we use the functions (18) to expand 1/A and 1/A2, up to the first order in the
parameter λ, as follows:

1
A ∼

2
(2η − 1)

− λρ2

(2η − 1)2 ,

1
A2 ∼

4
(2η − 1)2 −

4λρ2

(2η − 1)3 . (19)

Expanding only up to the first order in λ is justified by the order of magnitude of
λ (even for neutron stars as we will see in Section 4). On the other hand, we also have
1/B ∼ 1− λ

2 ρ2 and B2 ∼ 1 + λρ2. With these expansions, Equation (15) takes, up to the
first order in the parameter λ, the following form:

d2Gs

dρ2 +
1
ρ

dGs

dρ
+

[
4E2

(2η − 1)2h̄2c2
− m2c2

h̄2 +
eB(`+ s)

h̄
+

λeBs
4h̄
− λ(2`2 + s`− 2)

2

− 2λ(s`+ 1)

(2η − 1)[2 + (2η − 1)mc2

E ]
− `2

ρ2 −
(

e2B2

4h̄2 +
λm2c2

h̄2 +
8λE2[η − 1]

h̄2c2[2η − 1]3
+

λeB[2`+ s]
2h̄

+
λeBs

h̄(2η − 1)[2 + (2η − 1)mc2

E ]

)
ρ2 − λe2B2

4h̄2 ρ4

]
Gs = 0. (20)

This equation has the form

G′′s +
G′s
ρ

+

(
ε− `2

ρ2 − κ2ρ2 − τ2ρ4
)

Gs = 0, (21)

where a prime denotes a derivative with respect to ρ and the constants ε, κ2 and τ2 are
straightforwardly read off from Equation (20). Setting Gs = χs/

√
ρ in Equation (21), the

latter takes the form

χ′′s +

(
ε−

`2 − 1
4

ρ2 − κ2ρ2 − τ2ρ4

)
χs = 0. (22)

This is a Schrödinger equation with a centrifugal barrier term and an isotropic quartic
anharmonic oscillator potential term. Please note that (i) in the case of a weak gravitational
interaction compared to the magnetic one, i.e., for λ � |e|B/h̄, and/or (ii) in the case of
charged fermions moving very close to the center of the spherical mass, i.e., for ρ� R, the
purely quartic term τ2ρ4 can be dropped out. In that case, Equation (22) reduces to the
one that has already been solved exactly in Ref. [17], where the quantized eigenvalues εn,`
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have been extracted. We will come back to these special cases in Section 3.1. Here, we will
extract the eigenvalues from Equation (22) by keeping the quartic term.

It is shown in Ref. [38] that even though Equation (22) is not solvable exactly, one
may still extract an approximate analytical expression for its eigenvalues using the Jef-
freys–Wentzel–Kramers–Brillouin (JWKB) approximation. To the fourth order in the ap-
proximation, the result reads [38]

εn,`,s = (2τ)
2
3

8

∑
k=0

[
3
√

π Γ( 3
4 )√

2 Γ( 1
4 )

(2n + 1 + `)

] 4−2k
3

Nk(κ, τ, `), (23)

where the explicit expressions of the nine terms Nk(κ, τ, `) are given in Appendix A. It is
clear from this expression that the usual flat-space Landau levels of a charged fermion
moving under the influence of a uniform magnetic field are dramatically altered. In
fact, instead of the splitting of the levels that occurs due to a weak gravitational field
outside [17] or inside a spherical mass [19], what happens here is a complete redistribution
of the levels. Both the separation of the latter and their strengths are redefined for each
principle quantum number n.

For the sake of illustration and simplicity, we display here explicitly the expression
we obtain when keeping only the first term of the sum in Equation (23). By substituting the
constants ε, κ and τ, as well as the term N0 = 1 (as given in Appendix A) into Equation (23),
we find

En,`,s =

(
η − 1

2

){
m2c4 − h̄c2eB

(
`+ s +

λs
4

)
+

λh̄2c2(2`2 + s`− 2)
2

+
2λh̄2c2(s`+ 1)

(2η − 1)[2 + (2η − 1)mc2

E ]
+ h̄2c2

[
(2n + 1 + `)

3 Γ( 3
4 )

Γ( 1
4 )

] 4
3
(

πeB
√

λ

2h̄

) 2
3
} 1

2

. (24)

This does, in fact, not look at all like the familiar Landau levels. It must be noted
here that this formula does not reduce to the flat-space result when setting λ = 0 because
the expansion in terms of the JWKB integrals is about the pure quartic oscillator levels,
not the other way around [38]. Therefore, to achieve a high accuracy in the Formula (23),
κ2 should not be larger than τ2. To properly recover the flat-space case, one needs to set
λ = 0 in Equation (20). Similarly, when the gravitational interaction is weaker than the
magnetic interaction, one needs to extract the corresponding Landau levels by starting
from Equation (20) as we shall do now.

3.1. Weak Quartic Term

When the gravitational interaction is weak compared to the magnetic interaction
and/or when the charged particles move very closely to the center of the spherical mass,
the quartic term τ2ρ4 in Equation (21) can safely be dropped out so that the equation takes
the form,

G′′s +
G′s
ρ

+

(
ε− `2

ρ2 − κ2ρ2
)

Gs = 0. (25)

The solution to this equation is easily found to be given in terms of the confluent
hypergeometric function as follows (see Ref. [17] for the details of the derivation):

Gs(ρ) = Cρ`e−
|κ|
2 ρ2

1F1

(
1 + `

2
− ε

4|κ| ; `+ 1; |κ|ρ2
)

. (26)

This solution is one of the two independent solutions of Equation (20) that is finite at
the origin ρ = 0. C is one of the constants of integration, and 1F1(a; b; ξ) is the confluent
hypergeometric function of a variable ξ for any values of the parameters a and b, except
when b is a negative integer for which case the function has a simple pole [39]. Therefore,
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to guarantee a square-integrable character for the wavefunction, the following condition
must be imposed for an arbitrary positive integer n:

1 + `

2
− ε

4|κ| = −n, (27)

for which case, the confluent hypergeometric function becomes indeed a polynomial
of finite degree n. By substituting into this condition, the values of ε and κ as read off
from Equation (20), we arrive at the following condition involving the energy E of the
charged fermion:

4E2

(2η − 1)2h̄2c2
− m2c2

h̄2 +
eB(`+ s)

h̄
+

λeBs
4h̄
− λ(2`2 + s`− 2)

2

− 2λ(s`+ 1)

(2η − 1)[2 + (2η − 1)mc2

E ]
= (2n + 1 + `)

[
e2B2

h̄2 +
4λm2c2

h̄2 +
32λE2(η − 1)
h̄2c2(2η − 1)3

+
2λeB(2`+ s)

h̄
+

4λeBs

h̄(2η − 1)(2 + [2η − 1]mc2

E )

] 1
2

. (28)

We may solve this equation for E by keeping again only the first-order terms in
the parameter λ, to arrive at the following quantization condition on the energy E of
the particle:

En,`,s = h̄c
(

η − 1
2

){
m2c2

h̄2 −
eB(`+ s)

h̄
− λeBs

4h̄
+

λ(2`2 + s`− 2)
2

+
λ(s`+ 1)
(2η − 1)

√
1 + (2n + 1− s) h̄eB

m2c2

1 +
√

1 + (2n + 1− s) h̄eB
m2c2

+ (2n + 1 + `)

[
e2B2

h̄2 +
4λm2c2

h̄2

+
2λeB(2`+ s)

h̄
+ (η − 1)

8λ(m2c2 + [2n + 1− s]h̄eB)
h̄2(2η − 1)

+
2λeBs

h̄(2η − 1)

√
1 + (2n + 1− s) h̄eB

m2c2

1 +
√

1 + (2n + 1− s) h̄eB
m2c2

] 1
2
} 1

2

. (29)

We readily note that for M = 0 (i.e., by setting η = 3
2 and λ = 0), the result (29) reduces

to the usual quantized energy levels of a charged fermion inside a uniform magnetic field
in Minkowski spacetime: En,s = [m2c4 + h̄c2(2n + 1− s e

|e| )|e|B]
1
2 . In addition, we also note,

by setting B = 0, that even in the absence of the magnetic field the gravitational field
induces quantized energy levels. Furthermore, we neatly recognize a general-relativistic
correction to the pure relativistic Landau levels arising from the magnetic field. Such a
correction arises from the factor (η − 1

2 ) multiplying the right-hand side.
We are now going to discuss the ways to overcome the limitations we encountered in

this section and what modifications would be brought to the results we obtained so far.

4. Refinements and Prospective Extensions

Two limitations, we could not avoid when deriving our results in the previous section,
were (i) the fact that we considered only the possible motion of the particle along the
equator inside the massive sphere and (ii) the fact that we ignored the geometric effect
that might be caused to spacetime by the magnetic field. The two other limitations we
imposed on our analysis were (iii) the uniform mass density we assumed for the interior
of the spherical mass and (iv) the first-order approximation in λ we limited ourselves to
when writing Equation (20) to be able to solve the latter exactly. Our aim in this section is to
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address these limitations and argue that they do not actually alter much the actual physical
conclusions we would have reached had we not adopted those various approximations.

The first limitation consists of the restricted number of degrees of freedom we imposed
on the charged fermion. By restricting the motion of the particle to the equatorial plane
inside the massive sphere, we implicitly assumed the particle’s motion to be confined to
such a plane due to the collective interaction of the particles among themselves. However,
it is actually possible, for the same reason, to also consider the possibility of motion along a
plane other than the equatorial plane. In fact, the vertical pull of gravity is then balanced by
these other interactions so that only the horizontal variation of the gravitational potential
matters. For such a case, however, we need to switch entirely to cylindrical coordinates.
The interior Schwarzschild solution needs to be expressed in such coordinates and we need
to set r2 = ρ2 + z2

0 for some vertical distance z0 from the equator in the resulting differential
equation that would be similar in form to Equation (10). As the differential operator ∂θ

would be replaced by z0∂ρ and the operator ∂2
θ would be replaced by z2

0∂2
ρ − (ρ + z0)∂ρ, the

equation would still be a second-order differential equation in the single variable ρ. A first-
order approximation in the parameter λ might then be adopted. Although such an equation
would certainly not be as easy to solve as Equation (20), we expect the energy of the particle
to be only shifted by a constant while obeying a quantization condition similar to our
results (23) and (29). A further refinement consists then of considering the case ∂zΨ 6= 0
and a non-constant z. Unfortunately, the fact that two variables would then be involved,
no simple procedure could be expected. A separate future work should specifically be
devoted to solving that case using cylindrical coordinates. Indeed, the problem of solving
our very general Equation (10) without restricting the latter to the equatorial plane might
be very important for other astrophysical applications besides neutron stars. We believe
that the problem might very well be tackled by adapting to our case the existing numerical
methods that have already proved fruitful elsewhere for solving such equations (see, e.g.,
the recent work [40] and the references therein).

The second interesting refinement that should be discussed here is the possibility of
adding to the metric components, given by Equation (18), the spacetime curvature caused
by the magnetic field. The geometric effect of combining the external gravitational field
sourced by a spherical mass with a uniform magnetic field B gives rise to the so-called
Schwarzschild–Melvin spacetime [41]. Therefore, an analogue modification to the interior
Schwarzschild metric components given by Equation (18) is also expected when including
the spacetime curvature caused by B. However, since the corrections brought to the familiar
exterior Schwarzschild solution by the magnetic field are of the order of ε0GB2/c2, where
ε0 is the vacuum permittivity constant [42], we expect the correction that would be brought
to the parameter λ in our result (29) to be of the order of ∼ε0GB2/c2 as well. For a neutron
star of mass ∼1.4 M� and of radius 10 km, the Schwarzschild radius is about ∼4.1 km for
which we find that λ ∼ 0.004 km−2. On the other hand, for such a neutron star with an
interior magnetic field as strong as ∼1017 G, we have ε0GB2/c2 ∼ 7× 10−9 km−2. The
expected correction is thus quite insignificant.

The third limitation arises from having discarded in Equation (20) terms of the second
order and higher in the parameter λ. We can justify now such an approximation by the
fact that, as we just saw for a typical neutron star, λ ∼ 4× 10−3 km−2. This entails that
if we had kept those higher order terms the expected correction to be brought to the
quantized energy levels (29) can be obtained using time-independent perturbation theory
in the manner worked out in Refs. [17,18] for the case of Landau levels in the exterior
Schwazschild solution.

Another refinement that should be taken into account is the fact that matter density
inside neutron stars is not really uniform as we have assumed it in our calculations in the
previous section. The interior matter density increases with increasing depth. However,
the core of a neutron star makes up the largest part of the star and may be subdivided into
outer and inner parts, each characterized by slowly varying mass densities with depth [43].
For this reason, although considering a uniform mass density is only a simplifying model
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for the interior of a neutron star, we expect that the conclusions that would be derived by
assuming a slowly varying ρ-dependent mass density would not differ much from those
obtained here. Unfortunately, an analysis based on the interior Schwarzschild solution
with a ρ-dependent mass density is beyond the scope of the present paper and should be
considered in future works as well. It must also be noted here that numerical methods
would certainly be beneficial for such a task.

The last two extensions of this work we would like to mention here is the possibility of
studying the effect of the interior Schwarzschild solution on (i) charged fermions when the
magnetic field is nonuniform and (ii) on the neutron star matter when the latter is taken to
be a superfluid [44]. For the former case, one needs to use again numerical methods (as in
Ref. [45]) to solve the resulting equation, whereas for the latter case, one needs to consider,
instead of the Dirac equation, the Gross–Pitaevskii equation coupled to the magnetic field
inside the interior Schwarzschild solution.

5. Applications

Despite the limitations we discussed above, it is still interesting to apply our results
to some systems that rely on the Landau energy levels of charged fermions. We will first
examine the charged fermions inside a neutron star, and then we examine charged fermions
inside a laboratory-made spherical mass.

5.1. Inside a Neutron Star

We propose to use here our results (23) and (29) to examine the effect of gravity on the
magnetization M inside a neutron star. The magnetization M is given by the following
general formula [9]:

M = ∑
i=e,µ,p

(
∂εi
∂B
− µi

f
∂ni
∂B

)
, (30)

where the summation is over the electrons, muons and protons, respectively; εi are the
energy densities of those charged fermions and ni are their number densities. The magnetic
field B in this formula is the original seed field (magnetizing field) that is thus gradually
modified by the magnetization into H = B + 4πM , in CGS units [46]. A strong magnetiza-
tion has been suggested by some authors to play a role even in giving rise to the original
(primal) magnetic field itself [47]. However, despite considerable research on the topic,
there is in the literature no consensus yet on the origin of such strong seed magnetic fields
at the surface nor in the core of such compact stars. For a quick guide through the various
proposals put forward in the literature, see, e.g., the reviews [48,49].

Considering the magnetizing field B to be constant in time and uniform over the
radius of the star, as we do in this paper, is also only an approximation. However, given
that the relaxation times of the star’s magnetic field decay is of the order of ∼103 years [50],
our present assumption of a constant magnetic field fits amply within the early stages of
the magnetic evolution of the star. Similarly, assuming a slow variation of the magnetic
field with distance inside highly magnetized stars as presented, for example, in Ref. [51] is
still consistent with our present purpose of providing a preliminary study on the effect of
gravity on the magnetic properties of such compact stellar objects.

First, recall that when ignoring the contribution of the gravitational field, the quantities
εi and ni are given by [9]

εi =
|e|B
4π2 ∑

s

nmax

∑
n=0

(
µi

f ki
f ,n,s + m̃i2

n,s ln

∣∣∣∣∣µ
i
f + ki

f ,n,s

m̃i
n,s

∣∣∣∣∣
)

,

ni =
|e|B
2π2 ∑

s

nmax

∑
n=0

ki
f ,n,s, (31)
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where

m̃i2
n,s = mi2 +

(
2n + 1− e

|e| s
)
|e|B,

ki2
f ,n,s = µi2

f − m̃i2
n,s. (32)

The Fermi energies µi
f are fixed by the chemical potentials and the maximum integer

nmax in the summations represents the integer preceding the value of n for which ki2
f ,n,s

becomes negative. As the equations are more involved, we will work in this subsection in
the natural units h̄ = c = 1. Formula (30) then gives [9]

M = ∑
i=e,µ,p

[
εi − µi

f ni

B
+

B
2π2 ∑

s

nmax

∑
n=0

(
n +

1
2
− s

2

)
ln

∣∣∣∣∣µ
i
f + ki

f ,n,s

m̃i
n,s

∣∣∣∣∣
]

. (33)

We will adapt these general formulas to our case. Since the formulas to be developed
here are more relevant for very strong magnetic fields, we also extract from Equation (29)
the following approximation for the quantized energy levels:

En,`,s =

(
η − 1

2

){
m2+

(
2n + 2`+ 1− e

|e| s
)
|e|B−λeBs

4h̄
+

λ(2`2 + s`− 2)
2

+
λ(s`+ 1)

2η − 1

+ (2n + 1 + `)

[
λ(2`+ s) + (η − 1)

4λ(2n + 1− s)
2η − 1

+
λs

2η − 1

]} 1
2

. (34)

Please note that in the absence of gravity, i.e., when λ = 0, this formula reduces to
the first identity in Equation (32). Let us then start with the consequences of this formula
which is valid either (i) for weak gravitational fields and/or (ii) for fermions very close to
the center of the star. Since the terms proportional to λ in this expression de not contain
B, it is straightforward to compute the B-derivatives in Equation (30). The result for the
magnetization remains thus exactly the same as in Equation (33), but with m̃i2

n,s replaced by
En,`,s as given by Equation (34):

M = ∑
i=e,µ,p

[
εi − µi

f ni

B
+

B(2η − 1)
4π2 ∑

s

nmax

∑
n=0

(
n +

1
2
− s

2

)
ln

∣∣∣∣∣µ
i
f + ki

f ,n,s

Ei
n,`,s

∣∣∣∣∣
]

. (35)

We neatly see the general-relativistic correction factored out in the second term of the
sum. More important, however, is the fact that the general expression of the magnetization
remains unaltered in this case.

On the other hand, for the case of a non-negligible gravitational field the quartic term
in Equation (20) should be taken into account, leading to the result (24) for En,`,s at the first-
order term of the JWKB approximation. As the Landau levels are completely destroyed, we
see that even at this order in the approximation the magnetization is completely different
from the expression (35). Actually, even Formulas (31) and (32) do not hold anymore,
for such formulas were derived by assuming the linear dependence (32) of m̃i2

n,s on the
integer n. As expression (24) of En,`,s in terms of n displays no such linearity, and since that
expression (24) is itself only an approximation for the highly nonlinear full expression (23),
we conclude that the Landau-levels-based formalism for computing the magnetization M
of neutron stars does not generally apply to the charged plasma in the core of highly dense
neutron stars. The condition for the applicability of the formalism is to have the quartic
anharmonic oscillator potential term in Equation (22) negligible, i.e., to have λ� |e|B/h̄
or to apply the formalism only to fermions close to the vicinity of the star’s center. In other
words, we conclude that only for a magnetic neutron star of mass M, of radius R and with
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a magnetic field B such that |e|BR3c2 � GMh̄, that the usual formalism generally applies
to the charged matter inside the core of the star.

Magnetization in neutron stars affects both the equation of state of the stars’ matter and
the stars’ structure and properties, such as their masses and transport properties. Indeed,
both the pressure anisotropy and the softening of the equation of state of the stars matter
is believed to be related to magnetization and the distribution of the charged fermions as
they occupy the Landau levels. The equation of state determines, in turn, the mass-radius
relation of neutron stars (see, e.g., the recent work [52] and the references therein).

It is believed that the net magnetization in neutron stars remains negligible until
around 1016 G, beyond which it starts increasing and becomes oscillatory under the de
Haas-van Alphen effect. Since we just saw that the Landau levels become dramatically
altered only for non-negligible gravitational fields compared to the magnetic interaction,
we conclude that such oscillations will not be much affected in typical stars. For weaker
magnetic fields, however, the general-relativistic correction we found in Equation (35) for
the magnetization might leave an observable signature on the equation of state of the star’s
matter and, hence, on the mass-radius relation of the star as well. More work dedicated
specifically to such an interesting investigation is required though.

5.2. At a Laboratory Level

Another application of our results is to consider physical systems at the laboratory
level. In this case, an interesting system would be the free electrons moving inside a
massive metallic sphere put inside a uniform magnetic field. For this case, the gravitational
contribution is much weaker than the magnetic interaction, so Equation (29) is what we
need to apply here. Expanding that expression up to the first order in λ, we obtain

En,`,s ≈
(

η − 1
2

){
m2c4 + h̄c2

(
2n+2`+1− e

|e| s
)
|e|B− h̄c2λeBs

4
+

h̄2c2λ(2`2+s`−2)
2

+
λh̄2c2(s`+ 1)

(2η − 1)

√
1 + (2n+1−s) h̄eB

m2c2

1 +
√

1 + (2n+1−s) h̄eB
m2c2

+ (2n + 1 + `)h̄2c2λ

[
2m2c2

h̄eB
+ 2`+ s

+ (η − 1)
4(m2c2 + [2n + 1− s]h̄eB)

h̄eB(2η − 1)
+

s
2η − 1

√
1 + (2n + 1− s) h̄eB

m2c2

1 +
√

1 + (2n + 1− s) h̄eB
m2c2

]} 1
2

. (36)

These are the energy levels of the electrons inside the massive sphere. The λ-terms
are the corrections brought to the familiar levels observed in the absence of gravity. This
expression is valid for both relativistic and non-relativistic fermions, and it reduces to the
familiar relativistic Landau levels in the absence of gravity. This result offers novel ways for
exploiting the Landau levels of fermions in the presence of gravity at the laboratory level.

6. Summary

We have obtained the Dirac equation for a charged fermion in a general static and
spherically symmetric curved spacetime in the presence of a static and uniform magnetic
field. We applied the general equation we obtained to the case of fermions in the interior
Schwarzschild solution describing the gravitational field inside a massive sphere of uniform
density, and we derived the quantized energy levels of the charged particles. We found
that our result reduces to the familiar flat-spacetime relativistic Landau levels of charged
fermions inside a uniform magnetic field only when the gravitational interaction is weaker
than the magnetic interaction and/or when the charged particles move very closely to the
center of the spherical mass.

We then discussed, based on these results, the consequences on the physics of neutron
stars. We found that the magnetization of the core of the latter would dramatically be
altered for an extremely high gravitational field compared to the magnetic interaction
and/or when not focusing solely on the fermions in the vicinity of the center of the star.
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We arrived at the conclusion that in the general case, the usual formalism for extracting
the magnetization of neutron stars applies only when the latter satisfy the condition
|e|BR3c2 � GMh̄. Although we arrived at such a conclusion by relying on a first-order
approximation in the gravitational parameter λ, the generality of our results is not affected.
In fact, such a first-order approximation remains valid for any relative strengths of the
gravitational and magnetic interactions experienced by the charged particles inside typical
neutron stars. Any extra correction to those levels would be obtained simply using time-
independent perturbation theory.

In Section 4, we outlined a few refinements that might be brought to our model and the
prospective outlook on future improvements that will allow us to go beyond the limitations
we imposed on our present study. However, even with the simple model dealt with here,
we have already glimpsed with new insights into the contribution of gravity in shaping
the magnetization of highly compact neutron stars and into novel ways of exploiting the
dynamics of charged fermions in the presence of gravity at the laboratory level.
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Appendix A. Explicit Expressions for Nk(κ, τ, `)

Setting ζ = [2Γ( 3
4 )/Γ( 1

4 )]
2, where Γ(z) is the gamma function and ς = (

√
2/τ)

4
3 κ2, the

explicit expressions of the nine terms Nk(κ, τ, `) for k = 0, ..., 8 appearing in Equation (23)
are given by [38,53]:
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N0 = 1, N1 =
ςζ

2
, N2 = − ς2

32

(
1− 3ζ2

)
, N3 =

√
ζ

24

(
6 +

ς3ζ2

8
− 12`2

)
,

N4 = − ς

192

[
2 + 6ζ2 − ς

64

(
1− 5ζ4

)
− 12(1 + ζ2)`2

]
,

N5 =
ς2ζ

1280

(
10− ς3

16
− 60`2

)
,

N6 =
1

192

[
− 11

8
− 15ζ2

8
+

5ς3

64
(−1 + 4ζ2 + ζ4) +

7ς6

6144
(3ζ2 + ζ6)

+

(
25− 15ζ − ς3

16
(5 + 60ζ2 − 5ς4)

)(
1
4
− `2

)
+ (10− 30ζ2)

(
1
4
− `2

)2
]

,

N7 =
7ςζ

768

[
− 39

4
+

3ζ2

4
+

ς3

64

(
7
2
− 10ζ2

3
− ζ4

2

)
− ς6ζ2

1536

(
4
5
+

ζ4

7

)
(A1)

+

(
28− 6ζ4 − ς3

32

(
7 + 20ζ2 − ζ4

))(
`2 − 1

4

)
−
(

8− 12ζ2
)(

`2 − 1
4

)2
]

,

N8 =
9ς2

4096

[
23
24

+
95ζ2

2
− 9ζ4

8
+

ς3

64

(
1
9
− 9ζ2 + 3ζ4

)
+

ς6

4096

(
1
63

+
9ζ4

5

)

−
(

31
3

+ 96ζ2 − 9ζ4 − ς3

64

(
4
3
+

192
5

ζ2 + 36ζ4
))(

`2 − 1
4

)

+

(
14
3

+ 16ζ2 − 18ζ4
)(

`2 − 1
4

)2
]

.

Note
1 FH is grateful to Prof. A. D. Alhaidari for the helpful discussion on this subtle point.
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