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Abstract: We investigate the cosmological evolution for the physical parameters in Weyl integrable
gravity in a Friedmann–Lemaître–Robertson–Walker universe with zero spatial curvature. For the
matter component, we assume that it is an ideal gas, and of the Chaplygin gas, from the Weyl
integrable gravity a scalar field is introduced by a geometric approach which provides an interaction
with the matter component.We calculate the stationary points for the field equations and we study
their stability properties. Furthermore, we solve the inverse problem for the case of an ideal gas and
prove that the gravitational field equations can follow from the variation of a Lagrangian function.
Finally, variational symmetries are applied for the construction of analytic and exact solutions.

Keywords: cosmological dynamics; Weyl integrable theory; scalar field; interaction

1. Introduction

The cosmological constant component in the Einstein-Hilbert Action Integral is the
simplest dark energy candidate to describe of the recent acceleration phase of the universe,
as it is provided by the cosmological observations [1]. In the so-called ΛCDM cosmology
the universe is considered to be homogeneous and isotropic, described by the Friedmann–
Lemaître–Robertson–Walker (FLRW) geometry with spatially flat term, where the matter
component consists of the cosmological constant and a pressureless fluid source which
attributes the dark matter component of the universe. The gravitational field equations are
of second-order and can be integrated explicitly. Indeed, the field equations can be reduced
to that of the one-dimensional “hyperbolic oscillator”. However, as the cosmological
observations are improved, Λ-cosmology loses the important position in the “armoury” of
cosmologists. For an interesting discussion on the subject we refer the reader to the recent
review [2]. Furthermore, because of the simplicity of the field equations in Λ-cosmology,
the cosmological constant term cannot provide a solution for the description of the complete
cosmological evolution and history.

In order to solve these problems, cosmologists have introduced various solutions in
the literature by introducing new degrees of freedom in the field equations. Time-varying
Λ term, scalar fields and fluids with time-varying equation of state parameters, like the
Chaplygin gases have been proposed to modify the energy-momentum tensor of the field
equations [3–8]. On the other hand, a different approach is inspired by the modification
of the Einstein-Hilbert Action integral, and leads to the family of theories known as al-
ternative/modified theories of gravity [9–11]. Another interesting consideration is the
interaction between the various components of the energy momentum tensor [12]. Interac-
tion in the dark components of the cosmological model, that is, between, the dark energy
and the dark matter terms, is supported by cosmological observations [13–16].

For a given proposed dark energy mode model, there are systematic methods for
the investigation of the physical properties of the model. The derivation of exact and
analytic solutions is an essential approach because analytic techniques can be used for the
investigation of the cosmological viability of the model [17–20]. Furthermore, from the
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analysis of the asymptotic dynamics, that is, of the determination of the stationary points,
the complete cosmological history can be constructed [21–23]. Indeed, constraints for the
free parameters of a given model can be constructed through the analysis of the stationary
points and the specific requirements for the stability of the stationary points [24–28].

In this piece of work, we study the evolution of the cosmological dynamics for the
theory known as Weyl integrable gravity (WIG) [29–35]. In WIG a scalar field is introduced
into the Einstein-Hilbert Action Integral by a geometric construction approach. Indeed,
in Riemannian geometry the basic geometric object is the covariant derivative ∇µ and
the metric tensor gµν, such that it has no metricity component, i.e., ∇κ gµν = 0 [36].
In Weyl geometry the fundamental geometric objects are the gauge vector field ωµ and
the the metric tensor gµν, such that ∇̃κ gµν = ωκ gµν, where now ∇̃µ notes the covariant
derivative with respect to the affine connection Γ̃κ

µν which is defined as Γ̃κ
µν = Γκ

µν −
ω(µδκ

ν)
+ 1

2 ωκ gµν. When ωµ is defined by a scalar field φ, Γ̃κ
µν describes the affine connection

for the conformal metric g̃µν = φgµν. The field equations of the WIG in the vacuum are
equivalent to that of General Relativity with a massless scalar field, with positive or
negative energy density. However, when a matter source is introduced, interaction terms
appear as a natural consequence of the geometry of the theory [36]. In geometric terms of
the interaction context, we investigate the dynamics of the cosmological field equations
so that we construct the cosmological history and investigate the viability of the theory.
Furthermore, the integrability property for the field equations is investigated by using the
method of variational symmetries for the determination of conservation laws.

In Section 2 we present the basic elements for the WIG theory. Furthermore, we
write the field equations for our cosmological model in a spatially flat FLRW background
space. In Section 3 we present the main results of our analysis in which we discuss the
asymptotic dynamics for the field equations in the cases for which the matter source is
an ideal gas, or a Chaplygin gas. Moreover, we investigate the dynamics in the presence
of the cosmological constant term. In Section 4 we show that the field equations have
a minisuperspace description when the matter source is an ideal gas. Specifically, we
solve the inverse problem and we construct a point-like Lagrangian which describes the
cosmological field equations. With the use of the variational symmetries we determine a
conservation law and we present the analytic solution for the field equations by using the
Hamilton-Jacobi approach. Our results are summarized in Section 5.

2. Weyl Integrable Gravity

Consider the two conformal related metric tensors gµν, g̃µν such that g̃µν = φgµν.
The Christoffel symbols of the two conformal related metrics are related as

Γ̃κ
µν = Γκ

µν − φ,(µδκ
ν) +

1
2

φ,κ gµν. (1)

In Weyl geometry the fundamental objects are the metric tensor gµν and the covari-
ant derivative ∇̃µ defined by the Christoffel symbols Γ̃κ

µν. Hence, the curvature tensor
is defined

∇̃ν

(
∇̃µuκ

)
− ∇̃µ

(
∇̃νuκ

)
= R̃κλµνuλ. (2)

Consequently, the Ricci tensors of the two conformal metrics are related as follows:

R̃µν = Rµν − ∇̃ν

(
∇̃µφ

)
− 1

2
(
∇̃µφ

)(
∇̃νφ

)
− 1

2
gµν

(
1√−g
∇̃ν∇̃µ

(
gµν
√
−gφ

)
− gµν

(
∇̃µφ

)(
∇̃νφ

))
, (3)

thus the Ricci scalar

R̃ = R− 3√−g
∇̃ν∇̃µ

(
gµν
√
−gφ

)
+

3
2
(
∇̃µφ

)(
∇̃νφ

)
. (4)
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In WIG the the fundamental Action Integral is defined by using the Weyl Ricci scalar
R̃ and the scalar field φ by the expression

SW =
∫

dx4√−g
(

R̃ + ξ
(
∇̃ν

(
∇̃µφ

))
gµν −Λ

)
, (5)

where ξ is a coupling constant. From (5) we observe that φ is a massless scalar field.
However, more generally, a potential function may be considered.

From the Action Integral (5) the Weyl-Einstein equations are as [36]

G̃µν + ∇̃ν

(
∇̃µφ

)
− (2ξ − 1)

(
∇̃µφ

)(
∇̃νφ

)
+ ξgµνgκλ

(
∇̃κφ

)(
∇̃λφ

)
−Λgµν = 0, (6)

where G̃µν is the Weyl Einstein tensor. By using the Riemannian Einstein tensor Gµν, the
Weyl-Einstein field Equations (6) become [36]

Gµν − λ

(
φ,µφ,ν −

1
2

gµνφ,κφ,κ

)
−Λgµν = 0, (7)

where λ is defined as 2λ ≡ 4ξ − 3. Equations (7) are nothing else than the field equations
of Einstein’s General Relativity with a massless scalar field. When λ > 0, the scalar field φ
is a quintessence while, when λ < 0, φ is a phantom field [36]

Moreover, for the equation of motion of the scalar field φ, the Klein-Gordon equation
is [36] (

∇̃ν

(
∇̃µφ

))
gµν + 2gµν

(
∇̃µφ

)(
∇̃νφ

)
= 0, (8)

or by using the Riemannian covariant derivative ∇µ, expression (8) is written in the usual
form gµν∇ν∇µφ = 0.

As it was found in [36], the introduction of a perfect fluid in the gravitational model
leads to the following set of gravitational field equations [36]

G̃µν + ∇̃ν

(
∇̃µφ

)
− (2ξ − 1)

(
∇̃µφ

)(
∇̃νφ

)
+ ξgµνgκλ

(
∇̃κφ

)(
∇̃λφ

)
−Λgµν = e−

φ
2 T(m)

µν , (9)

that is,

Gµν − λ

(
φ,µφ,ν −

1
2

gµνφ,κφ,κ

)
−Λgµν = e−

φ
2 T(m)

µν , (10)

where T(m)
µν = (ρm + pm)uµuν + pmgµν.

Moreover, the modified Klein-Gordon equation follows [36]

− gµν∇ν∇µφ =
1

2λ
e−

φ
2 ρm. (11)

Equation (11) follows from the identity Gµν
;ν = 0, which provides the conserve of the

effective energy-momentum tensor.

FLRW Spacetime

Following the cosmological principle, in very large scales the universe is considered
to be isotropic and homogeneous. Hence, the physical space is described by the FLRW
spacetime, where the three-dimensional surface is a maximally symmetric space and
admits six isometries. However, from cosmological observations the spatial curvature
is very small, which means that we can consider as background space the spatially flat
FLRW metric

ds2 = −dt2 + a2(t)
(

dr2 + r2
(

dθ2 + sin2 θdϕ2
))

. (12)
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Moreover, we assume the co-moving observer uµ = δt
µ, with expansion rate θ = 3 ȧ

a ,
for the line element (12) and for a scalar field φ = φ(t), the gravitational field equations are

θ2

3
− λ

2
φ̇2 −Λ− e−

φ
2 ρm = 0, (13)

θ̇ +
1
3

θ2 +
1
2

e−
φ
2 (ρm + 3pm) + λφ̇2 −Λ = 0, (14)

φ̈ + θφ̇ +
1

2λ
e−

φ
2 ρm = 0 (15)

and
ρ̇m + θ(ρm + pm)− ρmφ̇ = 0. (16)

From the modified Friedmann equations we observe the existence of a non-zero
interacting term for scalar field φ and the matter component ρm. When λ > 0, energy
decays from scalar field to the ρm, while for λ < 0 energy decays from ρm to the field φ.
Furthermore, the effective equation of state parameter for the effective cosmological matter
is defined as we f f = −1− 2 θ̇

θ2 .
Finally, for the nature of the matter source ρm in the following we consider that ρm is

an ideal gas, or a Chaplygin gas.

3. Cosmological Dynamics

We continue our analysis with the investigation of the stationary points for the cosmo-
logical field equations. In order to proceed with the study we define the new dimensionless
variables in the context of θ-normalization

x =

√
3
2

φ̇

θ
, ΩΛ =

3Λ
θ2 , Ωm =

3ρm

θ2 e−
φ
2 (17)

where for the equation of state parameter for the matter source we consider (i) ideal gas
pm = (γ− 1)ρm, 0 ≤ γ < 2, and (ii) Chaplygin gas pm = A0

ρα
m

, α ≥ 1. Moreover, we define

the new independent parameter to be τ = ln(a), such that x′ = dx
dτ .

At the stationary points the effective equation of the state parameter is defined as
we f f = we f f (x, ΩΛ, Ωm), so that the asymptotic solution is described by the scale factor

a(t) = a0t
2

3(1+we f f ) , we f f 6= −1 and a(t) = a0eH0t, when we f f = −1.

3.1. Ideal Gas with Λ = 0

Assume the equation of state of an ideal gas pm = (γ− 1)ρm, without the cosmological
constant term. Then in the new dimensionless variables (17) the field equations are

Ωm = 1− λx2 , (18)

x′ = −

(
1− λx2)(√6− 6(γ− 2)λx

)
12λ

. (19)

Moreover, Ωm is bounded as 0 ≤ Ωm ≤ 1, such that the solution is physically acceptable,
that is, from (18) it follows that there are physical stationary points only when λ > 0.

The stationary points of Equation (19) are

A±1 : x±1 =
1√
λ

, A2 : x2 =
1√

6(γ− 2)λ
. (20)

Points x±1 describe asymptotic solutions where only the scalar field contributes to the
cosmological fluid. The effective equation of state parameter is derived to be we f f

(
x±1
)
= 1,

from which we infer that the solution is that of a stiff fluid. On the other hand, the point x2
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is physically acceptable when λ ≥ 1
6(γ−2)2 , and the point describes a scaling solution with

we f f (x2) = −1 + γ + 1
6λ(γ−2) . For γ < 2

3 , λ > 1
8(1−2γ)+6γ2 it follows that we f f (x2) < − 1

3
which means that the asymptotic solution describes an accelerated universe, where in the
limit λ = 1

8(1−2γ)+6γ2 , the asymptotic solution is that of the de Sitter universe.
We proceed with the investigation of the stability properties for the stationary points.

We linearize Equation (19) and we find the eigenvalues e1
(

x±1
)
= 2− γ∓ 1√

6λ
, e1(x2) =

−1 + γ
2 + 1

12λ(2−γ)
. Thus, point x−1 is always a source, x+1 is an attractor when λ < 1

6(γ−2)2 ,

while x2 is the unique attractor when it exists.

3.2. Ideal Gas with Λ 6= 0

In the presence of the cosmological constant, that is, Λ 6= 0, and when the matter
term is that of the ideal gas, the field equations are written as follows

Ωm = 1− λx2 −ΩΛ , (21)

Ω′Λ = −ΩΛ

(
(γ− 2)λx2 + γ(ΩΛ − 1)

)
(22)

and
x′ =

1
12λ

((
λx2 − 1

)(√
6− 6(γ− 2)λx

)
+
(√

6− 6γλx
)

ΩΛ

)
. (23)

Furthermore, we assume that |ΩΛ| ≤ 1, from which we infer that x is also bounded,
and we do not have to study the dynamical system for the existence of stationary points
at infinity.

The stationary points of the dynamics system (22), (23) are defined in the plane
{x, ΩΛ}, that is B = (x(B), ΩΛ(B)). The points are

B±1 =

(
± 1√

λ
, 0
)

, B2 =

(
1√

6(γ− 2)λ
, 0

)
, (24)

B3 = (0, 1) , B4 =
(√

6γ, 1 + 6(2− γ)γλ
)

. (25)

Points B±1 , B2 are actually the stationary points A±1 and A2, respectively, for which
the cosmological constant component is zero. The physical properties are the same as
before. However, we should investigate the stability analysis.

For point B3 we derive we f f (B3) = −1, Ωm(B3) = 0. Thus point B3 describes a de
Sitter universe.

Furthermore, point B4 provides Ωm(B4) = −12γλ, we f f (B4) = −1. The point is phys-
ically acceptable when − 1

24 ≤ λ < 0, or λ < − 1
24 with γ ≤ − 1

12λ or γ = 0. The stationary
point describes the de Sitter universe in which all the fluid components contribute in the
cosmological solution.

We linearize the dynamical system (22), (23) around the stationary points and we derive
the eigenvalues. For points B±1 the eigenvalues are e1

(
B±1
)
= 2− γ∓ 1√

6λ
, e2
(

B±1
)
= 2 from

which we infer that B−1 is always a source, while B+
1 is a saddle point when λ < 1

6(γ−2)2 .

Otherwise it is a source.
For point B2 the two eigenvalues are e1(B2) = −1 + γ

2 + 1
12λ(2−γ)

, e2(B2) = γ +
1

6λ(2−γ)
. Thus, point is always a saddle point when it is physically acceptable because

e1(B2) is always negative while e2(B2) is always positive.
The eigenvalues of the linearized system around the de Sitter point B3 are calculated to

be e1(B3) = −1 and e2(B3) = −γ, from which we infer that the point is always an attractor.
Finally, for point B4 we find the eigenvalues e±(B4) = − 1

2 ±
√

1 + 4γ(1 + 6(2− γ)λ).
Consequently, point B4 is always a saddle point.



Universe 2021, 7, 468 6 of 11

3.3. Chaplygin Gas with Λ = 0

Consider now that the matter source satisfies the equation of the state parameter of a
Chaplygin gas, pm = A0

ρα
m

, for which α ≥ 1, A0 = (−1)α3−(1+α)A and ρm 6= 0. The field
equations are written as follows

Ωm = 1− λx2 , (26)

x′ =
1

12


(√

6 + 6λx
)(

λx2 − 1
)

λ
+ 6x

(
λx2 − 1

)−α
Y

 (27)

and

Y′ =
1 + α

6
Y
(

6−
√

6x + 6λx2 + 6
(

λx2 − 1
)−α

Y
)

, (28)

where the new variable Y is defined as Y = Ae−
1
2 (1+α)φθ−(2+α).

The stationary points C = (x(C), Y(C) )of the dynamical system (27), (28), with Ωm >
0 are

C1 =

(
− 1√

6λ
, 0
)

, (29)

C2 =

√3
2
−
√

λ(1 + 3λ)√
2λ

,

(√
3λ(1 + 3λ) + 6λ

(
1 + 3λ−

√
3λ(1 + 3λ)

))(
− 1

2 − 3λ
√

3λ(1 + 3λ)
)α

6λ

 (30)

and

C3 =

√3
2
+

√
λ(1 + 3λ)√

2λ
,

(√
3λ(1 + 3λ) + 6λ

(
1 + 3λ +

√
3λ(1 + 3λ)

))(
− 1

2 + 3λ
√

3λ(1 + 3λ)
)α

6λ

 . (31)

For point C1 we derive Ω(C1) = 1 − 6
λ , we f f (C1) = 1

6λ . The point is physically
acceptable when λ ≥ 1

6 while it always describes a universe without acceleration. For
λ = 1

6 , the asymptotic solution is that of dust, while for λ = 1
2 the asymptotic solution is

that of radiation. The eigenvalues of the linearized system around the stationary point are
calculated e1(C1) =

(1+α)(1+3λ)
3λ , e2(C1) =

1−6λ
12λ , from which we can easily conclude that

the stationary point is always a saddle point.
Point C2 describes a universe for which Ωm(C2) = 1

2 − 3λ +
√

3λ(1 + 3λ) and

we f f (C2) = λ(x(C2))
2 +

(
λ(x(C2))

2 − 1
)−α

Y(C2). The point is well defined when λ > 0,
while for large values of λ it follows that we f f (C2; λ >> 1) ' −1, which means that point
C2 can describe a solution near to the de Sitter point. On the other hand, point C3 is
physical acceptable for 0 < λ ≤ 1

24 , while we derive Ωm = −3λ +
√

3λ(1 + 3λ) and

we f f (C3) = λ(x(C3))
2 +

(
λ(x(C3))

2 − 1
)−α

Y(C3) in which we f f

(
C3; λ = 1

24

)
= 1. Thus

point C3 does not describe any acceleration.
The eigenvalues of the linearized system near to the stationary points C2 and C3 are

determined. Numerically we find that e1(C2), e2(C2) have always negative real parts for
λ > 0 and α ≥ 1; on the other hand Re(e1(C3)) > 0, Re(e2(C3)) > 0 for α ≥ 1, 0 < λ ≤ 1

24 .
Hence, point C2 is always an attractor while point C3 is always a source.

3.4. Chaplygin Gas with Λ 6= 0

In the presence of a non-zero cosmological constant term, the field equations are
reduced to the following dynamical system

Ωm = 1− λx2 −ΩΛ , (32)

Ω′Λ = ΩΛ

(
1 + λx2 −ΩΛ + Y

(
λx2 + ΩΛ − 1

)−α
)

, (33)
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x′ =
1
12

(
x2
(√

6 + 6λ
)
+

√
6

λ
(ΩΛ − 1) + 6x

(
Y
(

λx2 + ΩΛ − 1
)−α
− 1−ΩΛ

))
, (34)

Y′ =
1 + α

6
Y
(

6
(

1 + λx2 + ΩΛ + Y
(

λx2 + ΩΛ − 1
)−α

)
−
√

6λx
)

. (35)

The physically acceptable stationary points D = (x(D), Y(D), ΩΛ(D)) are

D1 = (x(C1), Y(C1), 0) , D2 = (x(C2), Y(C2), 0) , (36)

D3 = (x(C3), Y(C3), 0) , D4 =
(√

6, 1 + 6λ, 0
)

, (37)

where D1, D2 and D3 have the same physical properties as points C1, C2 and C3, respec-
tively.

For the point D4 we find Ωm(D4) = −12λ and we f f (D4) = −1, which means that the
asymptotic solution is physically acceptable when − 1

12 ≤ λ < 0, while the asymptotic
solution is that of the de Sitter universe.

The eigenvalues of the linearized system near D1 are e1(D1) =
(1+α)(1+3λ)

3λ , e2(D1) =
1−6λ
12λ and e3(D1) = 1+6λ

6λ , which means that point D1 is always a saddle point. For the
points D2 and D3 we find numerically that D2 is always an attractor while D3 is always a
source. Finally, for the point D4 we calculate e1(D4) = −(1 + α), e±2 = 1

2

(
−1±

√
5 + 24λ

)
,

from which it follows that the stationary point is always a saddle point.

4. Minisuperspace Description and Conservation Laws

For an ideal gas pm = (γ− 1)ρm, from Equation (16) it follows ρm(t) = ρm0a−3γeφ in
which ρm0 is a constant of integration.

We substitute this into the rest of the field equations and we end with the following
dynamical system

θ2

3
− λ

2
φ̇2 −Λ− ρm0e

φ
2 a−3γ = 0, (38)

θ̇ +
1
3

θ2 +
(3γ− 2)

2
ρm0e

φ
2 a−3γ + λφ̇2 −Λ = 0, (39)

φ̈ + θφ̇ +
ρm0

2λ
e

φ
2 a−3γ = 0. (40)

For the second-order differential Equations (39) and (40) in the space of variables
{a, φ}, the inverse problem for the determination of a Lagrangian function, provides that
the function

L(a, ȧ, φ, φ̇) = −3aȧ2 +
λ

2
a3φ̇2 − a3Λ− ρm0e

φ
2 a3−3γ (41)

is an autonomous Lagrangian function for the field equations, while Equation (38) is
conservation law of “energy”, i.e., the HamiltonianH, constraintH = 0.

In general, the field equations for the cosmological model in WIG theory with an ideal
gas, for the metric

ds2 = −N2(t) + a2(t)
(

dx2 + dy2 + dz2
)

, (42)

follow from the singular point-like Lagrangian

L(a, ȧ, φ, φ̇) =
1
N

(
−3aȧ2 +

λ

2
a3φ̇2

)
− N

(
a3Λ + ρm0e

φ
2 a3−3γ

)
. (43)

Integrability Property and Analytic Solution

Since the field equations admit a point-like Lagrangian various techniques inspired by
analytic mechanics be applied for the study of the dynamical system. Indeed, variational
symmetries and conservation laws can be determined by using Noether’s theorems [37].
That approach has been widely used in various gravitational systems. New integrable
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cosmological models as also new analytic and exact solutions were found through the use
of variational symmetries, see for instance [38].

We investigate for variational symmetries which have point transformations as gener-
ators and provide conservation laws linear in the velocities. Hence, for the Lagrangian
function (41) and for ρm0 6= 0, we find that the variational symmetry X = 2

3 a∂a + 4(γ− 2)∂φ

exists for Λ = 0, and the corresponding conservation law is

F(a, ȧ, φ, φ̇) = 4a2 ȧ− 4(γ− 2)λa3φ̇− F0. (44)

Function F(a, ȧ, φ, φ̇), dF
dt = 0, is the second-conservation law for the dynamical system,

which means that the field equations form an integrable dynamical system.
In order to reduce the field equations and determine exact solutions, we apply the

Hamilton-Jacobi approach. We define the momentum pa = −6aȧ, and pφ = λa3φ̇., thus
the Hamiltonian functionH

(
a, φ, pa, pφ

)
= 0, reads

− p2
a

6a
+

p2
φ

λa3 + 2
(

a3Λ + ρm0e
φ
2 a3−3γ

)
= 0 (45)

while the Hamilton-Jacobi equation is written in the following form

− 1
6a

(
∂

∂a
S(a, φ)

)2
+

1
λa3

(
∂

∂φ
S(a, φ)

)2
+ 2ρm0e

φ
2 a3−3γ = 0, (46)

where now pa =
∂S
∂a and pφ = ∂S

∂φ .
Moreover, the conservation law (44) provides the constraint equation for the Action

S(a, φ)
2a
3

(
∂

∂a
S(a, φ)

)
+ 4(γ− 2)

∂

∂φ
(S(a, φ))− F0 = 0. (47)

We define the new variable φ = 6(γ− 2) ln a + Φ, such that the constraint equation be-
comes

2
3

a
∂

∂a
(S(a, Φ))− F0 = 0. (48)

This new set of variables {a, Φ} are the normal coordinates for the dynamical system.
Consequently, in the normal variables the analytic expression for the Action as pro-

vided by the Hamilton-Jacobi equation is

S(a, Φ) =
3
2

F0 ln a +
∫ √2λ

√
16ρm0e

Φ
2

(
6λ(γ− 2)2 − 1

)
+ 3F0 + 6λ(γ− 2)F0

4
(

6λ(γ− 2)2 − 1
) dΦ (49)

for
(

6λ(γ− 2)2 − 1
)
6= 0, or

S(a, Φ) =
3
2

F0 ln a +
3F2

0 Φ− 32ρ0e
Φ
2

24F0(γ− 2)
, (50)

when
(

6λ(γ− 2)2 − 1
)
= 0.

However, in the new coordinates the momentum are defined as

pa = −6a
((

6λ(γ− 2)2 − 1
)

ȧ + (γ− 2)λaΦ̇
)

, (51)

pΦ = −λa
(
6(γ− 2)ȧ + aΦ̇

)
, (52)
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which give the following expressions for the scale factor and the scalar field

6a2 ȧ = apa − 6(γ− 2)pΦ, (53)

λa3Φ̇ = −pΦ − λ(γ− 2)(ApA + 6(γ− 2)pΦ). (54)

Hence, by using the Action (49) and expressions (53), (54), the cosmological field
equations can be written into an equivalent system. We summarize the results in the
following proposition.

Proposition 1. The field equations in WIG for a FLRW background space with zero spatial
curvature and an ideal gas form a Liouville integrable system when there is no cosmological constant
term. The analytic solution for the Hamilton-Jacobi equation provides the Action (49), while the field
equations can be written into an equivalent set of two first-order ordinary differential Equations (53)
and (54).

Assume now the simple case for which γ = 1 and F0 = 0. Moreover, we define the

new variable T = T(t), such that dT =

√
(6λ−1)
A3 dt and λ 6= 1

6 .
Thus, the field equations are

ȧ
a
−
√

2λρm0e
Φ
4 = 0, (55)

Φ̇−
√

2
λ

ρm0(6λ + 1)e
Φ
4 = 0,

with exact solution

a(t) = a0t
4λ

1+6λ , Φ(t) = −2 ln
(
(6λ + 1)ρm0

8λ
t2
)

. (56)

For this exact solution the background space is

ds2 = − (6λ− 1)
a6

0
t−

24λ
1+6λ dT2 + a2

0t
8λ

1+6λ

(
dx2 + dy2 + dz2

)
. (57)

The later solution describes a universe dominated by a perfect fluid source with constant
equation of state parameter. This specific solution is described by the stationary points A2,
thus. the results are in agreement with the asymptotic analysis for the dynamics.

5. Conclusions

In this work we considered WIG to describe the cosmological evolution for the phys-
ical parameters in FLRW spacetime with zero spatial curvature. The gravitational field
equations in WIG are of second-order and Einstein’s theory, with the presence of the of
a scalar field, is recovered. Scalar field plays the role for conformal factor which relates
the connection of Weyl theory with the Levi-Civita connection of Riemannian geometry.
However, the field equations differ when matter is introduced in the gravitational model.
Indeed, in WIG the matter source interacts with the scalar field. The interaction term is
introduced naturally from the geometric character of the theory.

In our study we considered the matter source to be described by that of an ideal gas,
that is pm = (γ− 1)ρm, or by the Chaplygin gas pm = − A0

ρα
m

. We defined new dimensionless
variables based on the Hubble-normalization in order to write the field equations as a
system of first-order algebraic differential system. In each model, we determined the
stationary points for the latter system and we determined their dynamical properties as
also the physical properties of the asymptotic solutions. In our analysis we also considered
a non-zero cosmological constant.
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For the ideal gas, we found that there exists an attractor with an asymptotic solution
of an ideal gas, but with a different parameter for the equation of state. For instance, we
can consider the matter source to be that of radiation while the attractor to describe an
accelerated universe. In the presence of the cosmological constant, we find two asymptotic
solutions which can describe the past acceleration phase of the universe known as inflation,
as also the late time acceleration. The future attractor describes the de Sitter universe.
When the matter component is that of a Chaplygin gas the stationary points as also the
cosmological evolution are similar with the previous case.

Moreover, for the ideal gas case, we solved the inverse problem and determined a
Lagrangian function, and a minisuperspace description, which generates the cosmological
equations under a variation. We applied Noether’s theorems for point transformations
in order to construct a non-trivial conservation law when the cosmological constant term
is zero. Hence, the cosmological field equations form a Liouville integrable dynamical
system. The closed-form expression for the Hamilton-Jacobi equation derived. Finally, for
specific values for the free parameters, we were able to construct an exact solution which is
in agreement with the asymptotic analysis.

In a subsequent analysis we plan to investigate further the field equations as a Hamil-
ton system and understand how a non-zero cosmological constant affects the integrability
property of the field equations.
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