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Abstract: We first quantize an action proposed by Casalbuoni and Gomis in 2014 that describes two
massless relativistic scalar particles interacting via a conformally invariant potential. The spectrum is
a continuum of massive states that may be interpreted as unparticles. We then obtain in a similar
way the mass operator for a deformed action in which two terms are introduced that break the
conformal symmetry: a mass term and an extra position-dependent coupling constant. A simple
Ansatz for the latter leads to a mass operator with linear confinement in terms of an effective string
tension σ . The quantized model is confining when σ 6= 0 and its mass spectrum shows Regge
trajectories. We propose a tensionless limit in which highly excited confined states reduce to (gapped)
unparticles. Moreover, the low-lying confined bound states become massless in the latter limit as a
sign of conformal symmetry restoration and the ratio between their masses and

√
σ stays constant.

The originality of our approach is that it applies to both confining and conformal phases via an
effective interacting model.

Keywords: conformal symmetry; effective Lagrangian; conformal window; unparticles

1. Introduction

It is known that some asymptotically free gauge theories with N f light fermion
flavours and SU(N) gauge group have a conformal window, i.e., there exists an energy
range in which the beta function vanishes. This conformal window occurs at various
values of N f and N , depending on the fermion representation, see [1] for an extensive list
of examples obtained by inspection of the two-loop beta function. For example, SU(3)
gauge theory with 12 light quarks flavours in the fundamental representation is conformal,
as confirmed by five-loop and nonperturbative calculations [2,3]. SU(2) gauge theory
with 2 quark flavours in the adjoint representation can also be mentioned [4,5], or 2 quark
flavours in the two-index symmetric representation [6]. Note that conformal windows are
expected to be present for other gauge groups than SU(N), like Sp(2N) and SO(N) [7].
Many evidences showing the existence of a conformal window for specific gauge theories
have been found by resorting to lattice QCD methods, see e.g., the reviews [8–12]. General
algorithms actually exist for SU(N) theories with quarks in arbitrary representations [13].

To our knowledge, no effective model—we mean a simple enough action so as to
allow for analytical calculations—has been proposed to mimic confining gauge theories
when they approach the conformal window starting from a confining phase. Our starting
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point has been proposed in Ref. [14], where an action describing two scalar relativistic
particles with conformal invariant interaction has been presented. The latter action reads

SC = α
∫

dτ

(
ẋ2

1 ẋ2
2

r4

)1/4

, (1)

with α a dimensionless parameter, xµ
i = xµ

i (τ) the parametric equations for the two particles
in the (D + 1)-dimensional Minkowski spacetime with metric η = diag(− + · · ·+) in
inertial coordinates, τ an evolution parameter and rµ := xµ

2 − xµ
1 . For any vector with

components vµ , v2 := ηµνvµvν =: v · v is the squared norm in the Lorentzian sense. In
Section 2 we first review and quantize the action SC. In particular, while reproducing some
steps of the canonical analysis of [14], we also detail some issues that were not presented
therein for the sake of conciseness but that we need for the quantization of the model. We
link the spectrum obtained after quantization to unparticles, originally introduced as a
nontrivial scale-invariant sector in low-energy effective field theories [15], see also [16,17].

The model is generalized in two ways that break conformal invariance. In Section 3
we introduce a mass term for the interacting particles. The quantization leads to unparticle
spectrum with a mass gap. Then a confining interaction is introduced in Section 4 via
a change of the form α2 → α2U2(r2) . The quantization of our model is then performed
and the spectrum is analytically computed. The transition from the confining phase to the
conformal phase is finally studied and unparticles are shown to emerge from the confined
spectrum. The idea that unparticles may be “hidden” in a gauge theory’s conformal
window has been developed in [18]. We finally argue that the present model provides a
toy model to illustrate the latter proposal.

2. Conformal Phase
2.1. Classical Analysis

Let us review the conformally-invariant action presented by Casalbuoni and Gomis
in Refs. [14,19]. The aim of their presentation was to show the existence of higher-spin-
type conserved currents in their model while ours is rather to prepare the ground for the
quantization of our model.

In the case of two massless particles, the authors of [14] start from the action

S0[x
µ
1 , e1, xµ

2 , e2] =
∫

dτ
( ẋ2

1
2e1

+
ẋ2

2
2e2

)
, (2)

with ei (i = 1, 2) the einbeins, and add an interaction term that couples the two massless
particles in a conformally-invariant way:

S[xµ
1 , e1, xµ

2 , e2] =
∫

dτ
( ẋ2

1
2e1

+
ẋ2

2
2e2
− α2

4

√
e1e2

r2

)
, (3)

where we recall that r2 := rµrν ηµν =: r · r and where we have chosen the potential to be
repulsive. In the above action, the coupling constant α is dimensionless. Since the action
is manifestly Poincaré invariant it suffices to prove that it is invariant under dilations
and special conformal transformations. As for the dilations, it is easy to see that the
transformations xµ

i 7→ λxµ
i , ei 7→ λ2ei preserve the action. The invariance under special

conformal transformations is established by defining them as a succession of a Poincaré
translation followed by an inversion and another Poincaré translation, where the inversion
is the transformation

xµ
i 7→

xµ
i

x2
i

, ei 7→
ei

x4
i

, r2 7→ r2

x2
1x2

2
. (4)
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The interested reader may find additional information in the following lecture notes.
The conformal invariance of the action is then readily checked.

Note that one can eliminate the two auxiliary variables e1(τ) and e2(τ) by virtue of
their own field equations, which results [14] in the incarnation (1) of the action. We mention
for completeness Ref. [20] in which it is shown that action (3) may be modified in a simple
way so that it models two particles interacting conformally in Snyder space.

The action (3) does not depend on the derivatives ėi , hence there are two primary
constraints:

π1 ≈ 0 , π2 ≈ 0 , (5)

where πi is the conjugate variable to ei and where the symbol “≈” denotes a weak equality,
i.e., an equality which holds on the constraint surface. One then derives the canonical
Hamiltonian associated with the Lagrangian action (3):

Hc =
e1 p2

1
2

+
e2 p2

2
2

+
α2

4

√
e1e2

r2 + ė1π1 + ė2π2 ≈
e1 p2

1
2

+
e2 p2

2
2

+
α2

4

√
e1e2

r2 (6)

as well as the total Hamiltonian

HT(pi, xi, ei, πi, λ1, λ2) =
e1 p2

1
2

+
e2 p2

2
2

+
α2

4

√
e1e2

r2 + λ1π1 + λ2π2 . (7)

The invariance of the primary constraint under the dynamical evolution leads to two
secondary constraints:

{π1, HT} =
1
2

(
− p2

1 −
α2

4r2

√
e2

e1

)
=: φ1 ≈ 0 , {π2, HT} =

1
2

(
− p2

2 −
α2

4r2

√
e1

e2

)
=: φ2 ≈ 0 . (8)

Pursuing the consistency algorithm with these two constraints gives

{φ1, HT} = −
α2

16r2

(
− λ1

√
e2

e3
1
+

λ2√
e1e2

)
+

α2

4r4

(√
e1e2 p1 · r +

√
e3

2
e1

p2 · r
)
=: φ3 (9)

and {φ2, HT} = − e1
e2

φ3 . One can identically solve φ3 = 0 by fixing one of the Lagrange
multipliers, say λ1(τ) :

λ1 = λ̃2 e1 + C , λ̃2 :=
λ2

e2
, C := −4e1

r2 (e1 p1 · r + e2 p2 · r) , (10)

which gives rise to the following expression for the total Hamiltonian:

HT = Hc + λ2
e1

e2
π1 −

4e1

r2

[
e1 p1.r + e2 p2.r

]
π1 + λ2π2 = Hc + λ̃2(e1 π1 + e2 π2) + C π1 . (11)

At this stage it is worth saying that the same analysis can be performed even if α is
a function α(r): Although breaking conformal symmetry, this case is important for our
purpose and will be discussed in Section 4.

Coming back to the Hamiltonian (11), since λ̃2 is an arbitrary function, one may take
e1π1 + e2π2 as our new primary first-class constraint. Its Poisson brackets with π1 and
π2 is weakly zero while it is strongly zero with φ1 and φ2 . Furthermore, HT is first-class
since it does not explicitly depend on time. From the fact that the bracket of two first-class
functions is first-class and the computation

{e1π1 + e2π2, HT} = e1 φ1 + e2 φ2 − C π1 =: γ2 , (12)

https://www.damtp.cam.ac.uk/user/ho/CFTNotes.pdf
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one derives that γ2 is another first-class constraint. To summarise, there are two first-class
(FC) constraints (one is primary and the other is secondary) and two second-class (SC)
constraints (one is primary and the other is secondary):

FC : γ1 := e1π1 + e2π2 (primary) , γ2 := e1φ1 + e2φ2 − Cπ1 (secondary) , (13)

SC : χ1 := π1 (primary) , χ2 := φ1 (secondary) . (14)

One has

{γ1, γ2} = −γ2 , {γ2, HT} = λ̃2 γ2 , {γ1, HT} = γ2 . (15)

The number f of degrees of freedom is given by the number of phase-space vari-
ables minus twice the number of first-class constraints minus the number of second-class
constraints. The number of degrees of freedom for the conformally-invariant interacting
system (3) is therefore given by f = 4(D + 1) + 4− 4− 2 = 4D + 2 , which differs from the
counting obtained for the non-interacting system that produces f = 4D . If one considers
the free limit α → 0, the limiting value should therefore not be considered. This is also
clear from the form (1) of the action. In fact, one can show that the Dirac conjecture is
not satisfied by the constrained system at hand. It turns out that first-class constraints
are all gauge symmetry generators if four conditions established in Chapter 3 of [21] are
respected. One of these conditions is that the secondary second-class constraints should not
appear in the Poisson bracket of the first-class constraints with the primary second-class
constraint. With γa the first-class constraints and χα the second-class constraints, in general
one has that

{γa, χα} = Cb
aαγb + Cβ

aαχβ , (16)

and the condition mentioned above is that the matrix elements Cβ 6=β1
aα1 must be equal to

zero, where α1 and β1 refer to the primary constraints. In our case, this condition means
that the quantities Cφ1

σiπ1 should be null quantities. However,

{σ2, π1} = π1
4
r2 (2e1 p1.r + e2 p2.r) + φ1 , (17)

showing that Cφ1
σ2π1 6= 0 . Therefore, at least one condition imposed in [21] is not satisfied,

which implies that the Dirac conjecture is not true in our case. The first-class constraints
are not necessarily all generators of gauge transformations and one must use the chain
algorithm of [22] to determine these generators; see e.g., Appendix A for some details
about it.

The field equations are obtained by taking the Poisson bracket of the dynamical
variables with the total Hamiltonian (11). They explicitly read

ẋµ
1 = e1 pµ

1 +
4π1

r2 e2
1rµ ≈ e1 pµ

1 , ẋµ
2 = e2 pµ

2 +
4π1

r2 e1e2rµ ≈ e2 pµ
2 , (18)

ṗµ
1 = −α2

√
e1e2

2r4 rµ + π1
8e1

r4 rµ(e1 p1.r + e2 p2.r)− π1
4e1

r2 (e1 pµ
1 + e2 pµ

2 ) ≈ −α2
√

e1e2

2r4 rµ , (19)

ṗµ
2 = +α2

√
e1e2

2r4 rµ − π1
8e1

r4 rµ(e1 p1.r + e2 p2.r) + π1
4e1

r2 (e1 pµ
1 + e2 pµ

2 ) ≈ +α2
√

e1e2

2r4 rµ , (20)

ė1 = λ̃2 e1 −
4e1

r2 (e1 p1 · r + e2 p2 · r) ≡ λ̃2 e1 + C , ė2 = λ̃2 e2 , (21)

π̇1 = φ1 − λ̃2π1 + π1(
8e1

r2 p1.r +
4
r2 e2 p2.r) ≈ 0 , π̇2 = φ2 − λ̃2π2 + π1

4
r2 e1 p2.r ≈ 0 . (22)

The second class constraints can be dropped by adopting the Dirac bracket defined in
terms of the inverse of the matrix

Ωαβ := {χα, χβ} =
(

0 D
−D 0

)
, (23)
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where (χα)α=1,2 = (π1, φ1) denotes the two second class constraints and D := {π1, φ1} =
− α2

16r2

√ e2
e3

1
. One can then consider the reduced phase space where one strongly sets π1 and

φ1 to zero. The first-class constraint γ2 ≈ 0 therefore leads to the constraint φ2 ≈ 0 , since
the einbein e2 is required to be non vanishing. By using that φ1 is strongly set to zero, the
equation φ2 ≈ 0 yields a constraint where the einbeins e1 and e2 have been eliminated [14]:

p2
1 p2

2 ≈
α4

16r4 . (24)

This equation is one of the main results of [14], that terminates their canonical analysis.
We pursue their analysis in order to derive a more tractable constraint in view of the
quantization. We express (24) in the relative (−) and centre-of-mass (+) variables

pµ
± := pµ

1 ± pµ
2 , qµ

± :=
1
2
(xµ

1 ± xµ
2 ) (25)

that satisfy the canonical Poisson bracket relations

{qµ
+, qν

−} = 0 , {pµ
+, pν

−} = 0 , {qµ
±, pν

±} = ηµν . (26)

In the new coordinate system and once the second class constraints (χα)α=1,2 = (π1, φ1)
have been strongly set to zero, the resulting first-class constraint (24) reads

(p2
+ + p2

− − 2p+.p−)(p2
+ + p2

− + 2p+.p−)−
α4

16q4
−
≈ 0 . (27)

In these coordinates, the canonical equations of motion (18)–(22) read:

q̇µ
+ =

1
4
(pµ

+(e1 + e2) + pµ
−(e1 − e2)) , (28)

q̇µ
− =

1
4
(pµ

+(e1 − e2) + pµ
−(e1 + e2)) , (29)

ṗ+µ = 0 , ṗµ
− = +

α2

8q4
−

√
e1e2 qµ

− , (30)

ė1 = λ̃2 e1 + C , ė2 = λ̃2 e2 , π̇1 = 0 , π̇2 = 0 . (31)

Obviously, the total momentum pµ
+ is preserved by the dynamics, which simply reflects

the invariance of the system under constant spacetime translations. Since Equation (27) is not
totally tractable yet, we will completely fix the gauge by finding two gauge-fixing conditions
Ca = 0 such that the bracket matrix with entries Mab := {Ca, γb} is non-degenerate, effec-
tively resulting in a second-class system. We propose the following gauge-fixing conditions

C1 := p+ · p− = 0 , C2 := e1e2 − 1 = 0 , (32)

and readily check that the bracket matrix

M =

(
{C1, γ1} {C2, γ1}
{C1, γ2} {C2, γ2}

)
≈
(

0 2e1e2

−α2
√

e1e2
8q4
−

p+.p− − e1e2
q2
−

q−.(p+(e1 + e2) + p−(e1 − e2))

)
(33)

is invertible, as we wished. In the gauge C1 = 0 and in the Lorentz frame where the
(preserved) total momentum is pµ

+ = (M, 0, 0, 0) , we have pµ
− = (0,~p−) and p2

1 = p2
2 :

there is a balanced energy distribution among the two particles. Although this case will
not be investigated here, it has been shown in [23] that massless bound states can also be
considered by using similar methods.



Universe 2021, 7, 471 6 of 13

The first two field equations of (31) indicate that one can further impose the condition

e1 − e2 = 0 , (34)

which leads to q̇i
+ = 0 and q̇0

− = 0 . Indeed, let us assume e1 = e2 and therefore e1 = 1 = e2
on account of C2 = 0 . The two conditions e1 = 1 = e2 can obviously be reached by virtue
of the primary constraints (5). We call this gauge the unit einbein gauge. Equation (29)
shows that q−.p+ is a constant that one considers to be zero in order to have q0

− = 0 in
the Lorentz frame adopted. From the first two equations of (31), the constraint e1 = e2 is
consistent provided C = e1

q2
−

q−.[p+(e1 + e2) + p−(e1 − e2)] is zero when e1 − e2 = 0 . It

is straightforward to check that it is indeed the case from the fact that q−.p+ is zero, as
we have just shown. We therefore set q− = (0,~q−) . The three-vector ~q+ is set to zero, in
accordance with translation invariance of the system. From the equations of motion and in
the gauge chosen, it is clear that the only dynamical variables are~q− and ~p− .

In the gauges and Lorentz frame we have chosen, Equation (27) becomes

(p2
+ + p2

−)
2 ≈ α4

16q4
−

. (35)

Instead of extracting the square root of the above equation, with the ambiguity in
which branch to pick, we recall that the remaining first-class constraint γ2 ≈ 0 now reads
φ2 ≈ 0 that leads, in the gauges we have chosen:

p2
+ + p2

− = − α2

4q2
−

. (36)

Finally one is led to the following dispersion relation

M2 = ~p 2
− +

α2

4~q 2
−

. (37)

2.2. Quantization

In a Schrödinger quantization scheme, Equation (37) defines the eigenequation

(
−4− +

α2

4~q 2
−

)
Ψ(~q−) = M2 Ψ(~q−) . (38)

The spherical symmetry of this operator allows to work with hyperspherical coordi-
nates~q− = (q−, Ω̂D) and to set

Ψ(~q−) = R(q−)Y`,ma(Ω̂D) , (39)

with Y`,ma(Ω̂D) the spherical harmonics in D dimensions, ` ∈ N, ma ∈ Z and a =
1, . . . , (D− 1). Explicit forms can be found for example in [24]. More precisely, the squared
mass operator is a Schrödinger Hamiltonian with repulsive inverse-squared potential:

− R′′(q−)−
D− 1

q−
R′(q−) +

`(`+ D− 2)
q2
−

R(q−) +
α2

4q 2
−

R(q−) = M2 R(q−) . (40)

Hence the mass spectrum is continuous and the eigenstates are scattering states:

M2 = µ2 ,

R(q−) ∼ (q−)1− D
2 Jλ+ D

2 −1(µ q−) , (41)
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where µ ∈ R+ and where Jλ+ D
2

is a Bessel function of the first kind. The generalized
angular-momentum index λ is defined by

λ(λ + D− 2) = `(`+ D− 2) +
α2

4
(42)

where λ > 0 guarantees a solution that is regular at the origin. Because α2 > 0 , the radial
function actually never vanishes at the origin. The interested reader may find in [25] a
detailed discussion of the inverse-squared potential in quantum mechanics.

Our model in the conformal phase contains a continuum of bosonic states with
arbitrary mass M ≥ 0. We identify this continuous spectrum with unparticles, originally
introduced as a nontrivial scale-invariant sector in low-energy effective field theories [16].
As discussed in [26–29], such an unparticle sector arises from a continuum of scalar fields
with arbitrary mass; an effective Lagrangian of the form L ∼ ∂µφ�−δ∂µφ with δ > 0 is
then found for a scalar unparticle [26,27]. An originality of the present work is to provide
a realization of unparticles as binary states of two interacting massless particles through
action (3).

3. Massive Particles and Gapped Unparticles

We first recall the action for a massive relativistic particle in Minkowski spacetime:

S(m)[xµ, e] =
∫

dτ
( ẋ2

2e
− e

2
m2) , (43)

where the variable e is required to be nonvanishing. The above action has a smooth massless
limit m→ 0 .

The whole constraint analysis that we have reviewed from [14] and presented above
can be repeated in the case one adds a mass term to the original action. By considering
the action

S(m)
0 [xµ

1 , e1, xµ
2 , e2] =

∫
dτ
( ẋ2

1
2e1

+
ẋ2

2
2e2
−m2(

e1

2
+

e2

2
)− α2

4

√
e1e2

r2

)
(44)

that clearly breaks conformal invariance through the presence of the mass terms, it is
straightforward to see that both the number and nature of the constraints remain unchanged
compared to the massless case reviewed in great details above. There remains two first-
class constaints {γ(m)

a } , a = 1, 2 (one primary and one secondary) and two second-class
constraints {χ(m)

α } , α = 1, 2 (one primary and one secondary). We adopt the same gauge-
fixing conditions as in the massless case. The set of conditions {C1 = 0 , C2 = 0 , γ

(m)
1 ≈

0 , γ
(m)
2 ≈ 0 } defines a set of second-class constraints so that the corresponding operators

each become the zero operator upon quantization.
In the massless case one had the constraint (35). In presence of the mass terms in (44),

following the same procedure, one is led to the dispersion relation

M2 = ~p 2
− +

α2

4~q 2
−
+ 4m2 , (45)

and, after quantization, to the spectrum (41) with M2 = µ2 + 4m2 . The continuous
spectrum is bounded from below by M = 2m .

It has previously been noticed that coupling an unparticle to an electroweak sector
leads to an unparticle spectrum with mass gap via a kind of Brout-Englert-Higgs mecha-
nism [30]. Note also that unparticle models with a mass gap are nothing but hidden-valley
models [31]. We can finally mention Ref. [32], in which gapped unparticles emerge as
continuous Kaluza-Klein modes of a five-dimensional model with a brane. The action (44)
may be seen as a first proposal to generate gapped unparticles from two massive interacting
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particles. It is worth mentioning that such an action might be used in the modelling of near-
threshold neutral charm meson molecules, since it has been argued in [33] that such states
(like the X(3872) which is very close to the D∗0 D̄0 threshold) may be seen as unparticles.

4. From the Confining to the Conformal Phase

As starting point we propose the action

S =
∫

dτ
[ ẋ1

2

2e1
+

ẋ2
2

2e2
−m2

( e1

2
+

e2

2

)
− α2U2(r2)

4

√
e1e2

r2

]
. (46)

Both the mass term and the extra interaction term with the function U(r2) break
conformal invariance. One obviously recovers action (3) in the limit m→ 0 and by setting
U = 1 .

The replacement of α2 by the position dependent coupling α2 U2(r2) breaks conformal
invariance but do not lead to drastic changes in the canonical constraint analysis. Although
there appear terms proportional to U′(r2) from the Poisson bracket of the total Hamiltonian
with the secondary constraints, one is still able to ensure that the latter constraints are
preserved during dynamical evolution by identically solving the equation φ3 = 0 for the
function λ1 . The latter function takes a more complicated form than the one given in the
massless case reviewed in Section 2. Here we obtain

λ1 =
e1

e2
λ2 + C + 8 e1 ln′U(r2) r · (p2 e2 + p1 e1) , (47)

where the function C is given in (10). The additional terms proportional to the derivative
of the function U(r2) make no difference for the rest of the canonical analysis. Proceeding
as in the previous sections, it is straightforward to find the following dispersion relation:

M2 = ~p 2
− +

α2 U2(q2
−)

4q 2
−

+ 4m2 . (48)

We now use the Ansatz

U2(q2
−) = 1 +

4
α2 σ2 q4

− , (49)

where the term in q4
− can be seen as the first nontrivial term in the power expansion

of any function U2(q2
−): a term in q2

− would only redefine m. As we will show in the
following, Equation (49) mimics a linear confinement, typical of (3 + 1)−dimensional
Yang-Mills theories in their confining phase. We therefore assume that the action (46)
with potential (49) is a relevant effective model to describe binary states in gauge theories
around their conformal window, just as a Nambu-Goto Lagrangian is a relevant effective
model for light mesons (ρ, f0,. . . ) in the confined phase, see e.g., [34,35].

As in Section 2, we may set q0
− = 0 , so that q2

− = q 2
− . With the Ansatz (49), the

mass operator (48) is now a D−dimensional harmonic oscillator with arbitrary angular
momentum: M2 = ~p 2

− + α2

4q 2
−
+ σ2q 2

− + 4m2 . Its spectrum reads [24]

M2 = 2σ

(
2n + λ +

D
2

)
+ 4m2, (50)

R(q−) =

[
2Γ(n + 1)σλ+ D

2

Γ(n + λ + D
2 )

] 1
2

qλ
− e−

σq2
−

2 Lλ+ D
2 −1

n (σq2
−) , (51)

with Lα
n the generalized Laguerre polynomials and λ given by Equation (42). The spectrum

contains massive states showing Regge trajectories, i.e., M2 ∼ ` or n at large ` or n. Such a
behaviour is observed experimentally in light meson spectroscopy, see e.g., Ref. [36] and
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references therein. For this reason the massive states we observe in the confined phase will
be referred to as “mesons”.

An more general ansatz of the form U2(q2
−) = 1 − 4

α2 δ2q2
− + 4

α2 σ2 q4
− leads to the

mass spectrum

M2 = 2σ

(
2n + λ +

D
2

)
+ 4m2 − δ2 . (52)

The mass scale δ could be used to fine-tune the ground-state mass (n = ` = 0). For
example, the value δ2 = 2σ(1 +

√
(D− 2)2 + α2) + 4m2 leads to a massless ground state.

However, such a value causes U2(q2
−) to be negative for some values of q2

− since δ2 > ασ.
In our model, the existence of a massless ground state demands to drop the positivity of
the potential.

Let us now focus on the low-lying confined spectrum (n and ` finite) when approach-
ing the conformal window, that is in the limit σ → 0 and m → 0. According to (50), the
mass of low-lying states will go to zero as already suggested in [37–39]: Light mesons are
expected to become massless as a signal of conformal symmetry restoration. Their masses
scale as

√
σ, which is a behaviour observed in lattice QCD in the case of SU(2) QCD with

one adjoint Dirac quark flavour: The ratios M/
√

σ are found to be constant for the lightest
(pseudo)scalar states (mesons and glueball) as the fermion mass goes to zero in order to
restore conformal invariance [40]. Moreover, it is observed that the mass ratios of two
meson masses are constant near the conformal window as suggested by Equation (50). This
feature has been observed in SU(2) gauge theory with two adjoint quarks [41].

It has to be noticed that the methodoloy used in most of the lattice QCD studies of
theories with conformal window is to choose N , N f and the quark representation such
that the conformal window is a priori reached. The quark mass m starts from a nonzero
value and the conformal window is reached by taking the limit m → 0; the masses of

bound states scale as m
1

1+γ with γ the anomalous mass dimension. That parameter is then
fitted on the lattice data to characterise the theory under study. The interested reader may
find a review of computed values of γ in Ref. [38]. This parameter can hardly be guessed
from our effective approach: The behaviours of σ(m) and α(m) are not constrained by
our model.

Other states of the spectrum are worth of interest: radially excited states such that

n→ ∞ as σ→ 0 with σ n =
µ2

4
fixed , (53)

µ being an arbitrary (but finite) energy scale parameter. In this tensionless limit, the
mass (50) remains finite. At large n one can use a Mehler-Heine-type formula for Laguerre
polynomials, see Theorem 4.1 of [42]

Lλ+ D
2 −1

n

(
(µ q−)2

4n

)
∼ nλ+ D

2 −1q−λ− D
2 +1

− e
(µ q−)2

8n Jλ+ D
2 −1(µ q−) , (54)

and [43]
Γ(n + 1)

Γ(n + λ + D
2 )
∼ n1−λ− D

2 . (55)

The spectrum (50) approaches to our unparticle sector (41) as n → +∞ up to the
rescaling R →

√
n R. The harmonic oscillator functions are indeed normalized to unity,

which leads to the vanishing of R as σ→ 0 since scattering states can only be normalized
to δ(µ− µ′) in principle.

Our limit (53) is actually consistent with the results of [44] showing that, in field theory,
an unparticle sector can be generated by a tower of massive states with mass M2

n = ∆ n
when the mass spacing parameter ∆ goes to zero.
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5. Concluding Comments

The action (46) appears to be an interesting toy model to describe the transition from
confining to conformal phases of a Banks-Zaks-type gauge theory [15] in terms of binary
states. It predicts that the low-lying bound states in the confining phase become massless
when approaching the conformal window with a universal behaviour, the ratios of masses
and
√

σ being a constant. Highly excited radial states give rise to a unparticle sector in the
conformal phase. The unparticle spectrum has a mass gap or not depending on whether
the conformal symmetry is broken or not by a mass term. A schematic drawing of this
picture is given is Figure 1.

Figure 1. Schematic representation of the mass spectrum generated by the model defined by Equa-
tions (46) and (49). The behaviours of states with fixed n (purple lines) and with fixed σn (dotted
orange lines) are represented in the m = 0 plane. The spectrum of gapped unparticles is represented
in the σ = 0 plane (solid orange lines).

Notice that the radial wave equation we derived in the present paper also appears from
a bottom-up AdS/CFT perspective, see e.g., [45]. Interestingly, in the paper [46] where they
consider a U(1)-invariant gauge theory in AdS4 propagating a vector field and a complex
scalar field, a nontrivial profile for the scalar field near the conformal infinity of AdS4
introduces two dimensionful constants m and v that break conformal symmetry of the dual
theory. Various limits where m→ 0 and v→ 0 relate a discrete spectrum with a massless
Goldstone boson to a continuous Banks-Zaks-type spectrum for the scalar conformal
operator in the dual CFT3 . The approach of [46] enables a simultaneous discussion of
spontaneous and dynamical symmetry breaking in a CFT at strong coupling. Some bridges
may presumably be drawn between our model and the AdS/QCD framework, although
it is out of the scope of the present paper. The interested reader may find a detailed
discussions of mesons in AdS/QCD in the review [47].

One may finally wonder to what kind of gauge theory our toy model best applies.
Similarities with SU(2) QCD with one adjoint quark [40] have been commented in the text.
However, our model is a priori better suited to model gauge theories with scalar matter
than with fermionic matter, the variables xi(τ) being then identified with two “particles”
of scalar matter. The existence of a conformal window is not limited to gauge theories with
fermionic matter, as discussed in Appendix B. For example, a lattice study of N f = 5 scalar
SU(2) Yang-Mills theory is affordable with current computers and could be performed to
check the present model. We hope that such results will become available in the future.

Although we did not explicitly mention it, the present work and quoted references
focus on zero-temperature gauge theories. The interplay between conformal window cross-
ing and confinement/deconfinement transition may lead to new interesting phenomena,
as discussed in [48]. For example, a correspondence has been found between conformal
QCD with N f = 7 and QCD with N f = 2 at T ≈ 2 Tc (Tc is the deconfinement temperature).
To what extent the action (46) can be generalized at finite-temperature and bring relevant
information is a problem that we leave for future works.
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Appendix A. The Chain Algorithm for Gauge Generators

We start from the constraint system (13) and (14) and seek for the generators of gauge
transformations. According to the chain algorithm [22] for the determination of the gauge
generators, there is just one of them because we have only one primary first-class constraint.
Also, the consistency algorithm stops after the secondary constraints: the desired generator
consists in the sum of up to two terms. The constraint γ1 itself cannot be a generator since
{γ1, HT} is secondary. The generator is built with the first class constraints:

G = ε̇(τ)γ1 + ε(τ)(aγ1 + bγ2) , (A1)

where a and b are arbitrary functions at this stage. Our goal is to fix these functions in order
to give G the properties of a generator of gauge transformation. Since the rules of the chain
algorithm have to be respected, one imposes:

aγ1 + bγ2 + {γ1, HT} = primary , (A2)

{aγ1 + bγ2, HT} = primary . (A3)

The bracket {γ1, HT} = γ2 implies that b must be equal to −1 . Then, one knows that
{γ2, HT} = λ̃2γ2 , thus one concludes that the other condition implies that a must be equal
to λ̃2.

It can be then useful to notice the following relation:

ė1 = {e1, HT} = λ̃2e1 + C (A4)

ė2 = {e2, HT} = λ̃2e2 (A5)

⇒ ė1 π1 + ė2 π2 = C π1 + λ̃2 γ1 . (A6)

Thanks to this relation and recalling that γ1 := e1π1 + e2π2 , one can rewrite
G = ε̇γ1 + ε(λ̃2γ1 − γ2) as follows:

G =
d

dτ
(εe1)π1 +

d
dτ

(εe2)π2 − (εe1)φ1 − (εe2)φ2 . (A7)

From this expression of the generator of gauge transformations, one reads off the
transformations of the variables:

δei =
d

dτ
(εei) , δxµ

i = εẋµ
i . (A8)

These corresponds to the transformation formulae for reparametrization of the evolution
parameter. It is direct to check that the action (3) is invariant under these transformations.
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Appendix B. Conformal Window in Gauge Theories with Scalar Matter

The appearance of a conformal window in gauge theories with fermionic matter fields
has been extensively discussed in Refs. [1,7] for the gauge groups SU(N), SO(2N) and
Sp(N). A similar but simpler analysis can be made for a Yang-Mills theory with scalar
matter in the representation R of the gauge algebra. The β−function of such a theory is

given by β(g) = g3

(4π)2 β0 +
g5

(4π)4 β1, with β0 = − 11
3 C2(adj) +

N f
6 T(R), β1 = − 34

3 C2(adj)2 +
N f
3 (C2(adj)T(R) + 6C2(R)T(R)), where C2(adj) and C2(R) are the quadratic Casimir op-

erators in the adjoint and R representations respectively, and where the index T(R) is such
that C2(R)dim(R) = T(R)dim(adj) [49].

Applying the methodology of [1] but neglecting chiral symmetry issues, one may
search for a conformal window in theories such that β0 < 0 and β1 > 0, i.e., with a number
of flavours such that

34C2(adj)2

T(R)(C2(adj) + 6C2(R))
< N f <

22C2(adj)
T(R)

, (A9)

the coupling constant g∗ at which it is observed being equal to g∗2 = − 16π2β0
β1

. The
Equation (A9) admits nontrivial solutions. A simple example is the case of matter in adjoint
representation, for which a conformal phase appears if 5 < N f < 22.
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