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Abstract: We describe holographic properties of near-AdS; spacetimes that arise within spherically
symmetric configurations of N’ = 2 4D U(1)* supergravity for both gauged and ungauged theories.
These theories pose a rich space of AdS; x S? backgrounds, and their responses in the near-AdS,
region are not universal. In particular, we show that the spectrum of operators is dual to the matter
fields, and their cubic interactions are sensitive to properties of the background and the theory it
is embedded in. The properties that have the most striking effect are whether the background is
supersymmetric or not and if the theory is gauged or ungauged. Interesting effects are due to the
appearance of operators with A < 2, which depending on the background, can lead to, for instance,
instabilities or extremal correlators. The resulting differences will have an imprint on the quantum
nature of the microstates of near-extremal black holes, reflecting that not all extremal black holes
respond equally when kicked away from extremality.

Keywords: black holes; supergravity; AdS/CFT correspondence

1. Introduction

Recent years have seen great progress in understanding the quantum properties of
black holes in the context of the AdS/CFT correspondence. While the universal nature
of the Bekenstein—-Hawking area-law reflects that there should be a commonality in the
statistical origin of their entropy, this might not be the case for a refined description. Our
goal here is to underscore aspects of black holes that are not universal, despite their shared
semi-classical features. In particular, we will bring to light concise holographic data that
are sensitive to the surrounding theory that fosters the black hole and to the interplay of
the theory content with properties of the background.

Our analysis is embedded in the developments coined as the near-AdS, /near-CFT;
correspondence [1,2]. This instance of holography describes deformations away from an
idealised AdS; geometry, which are relevant to construct a holographic description of the
near-horizon region of near-extremal black holes. One of the most prominent results of near-
AdS, /near-CFT; was to show that the leading gravitational backreaction, which defines
near-AdS,, is universally encoded in two-dimensional Jackiw-Teitelboim (JT) gravity [3,4].
This is the commonality that is nowadays used to decode quantum properties of black
holes. Building on these developments, here we wish to further decode what other degrees
of freedom appear as one backreacts the geometry and how these degrees of freedom
interact with the JT sector. In particular, we will report on the spectrum of fluctuations in
the near-horizon region, which we translate to the spectrum of operators in the CFT;, and
cubic interactions among these fluctuations.

We will focus on some of the simplest scenarios of near-AdS, that one might expect
to lead to a UV-complete description in string theory: backgrounds that arise as solutions
to a four-dimensional supergravity theory and connect to suitable near-extremal black
holes therein. With regard to these theories, we will study solutions of four-dimensional
N = 2 supergravity, covering both gauged and ungauged cases, which we describe in
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more detail below. The overarching feature of these theories is that they contain four U(1)
gauge fields and six real scalar fields (with three of them being axions). We will consider
configurations in four dimensions that respect spherical symmetry, where the extremal
near-horizon region is precisely AdS, x S%. This makes it possible to build an effective
two-dimensional description by integrating out the 2-sphere and to tie our results to the
features of JT gravity in a simple manner.

The strategy presented here is as follows. We will start with an AdS, x S? background
that solves the equations of four-dimensional N = 2 supergravity. We will first proceed to
study linearised perturbations around this background that preserve spherical symmetry.
From here, we will single out the JT sector, which encodes the features of near-AdS,; we
will also organize the remaining perturbations according to their scaling dimension and
interpret them as dual operators. The second step is to characterise the cubic interactions
among these operators and the JT sector and quantify the leading correction of their two-
point functions due to these interactions. This closely follows the analysis in [5] and is also
mentioned in [2,6].

There are two important features that have the biggest imprint on our analysis. The
first one is the “background”: our starting point is an AdS; solution, characterised by
a set of electric and magnetic charges, and the six scalar fields are controlled by the
attractor mechanism [7-14]. As we consider different AdS, backgrounds in the gauged
and ungauged theory, the most important feature of each background is if the solution
preserves supersymmetry, i.e., if the extremal black hole is BPS' or non-BPS. The spectrum
of operators is highly sensitive to this feature. In the ungauged theory, the non-BPS black
holes will contain marginal operators, which is a direct consequence of having a flat
direction in the attractor mechanism [15]; these operators will lead to extremal three-point
correlators that are pathological. On the other hand, the operators in the BPS branch in the
ungauged theory all have conformal dimension A = 2, placing them on a similar footing to
the JT sector, in agreement with the nAttractor proposed in [16]. For the gauged theory,
non-BPS AdS; backgrounds have modes that violate the Breitenlohner—Freedman (BF)
stability bound in AdS; [17], which signals an instability along the lines of [18]. BPS black
holes, in contrast, do not exhibit these instabilities, nor do they contain marginal operators.

The second crucial feature comes from the “surrounding”: the theory within which
the solution is embedded. Here it is important to account for all scalar fields present in
the truncation, and if the theory is gauged or ungauged. The presence of the cosmological
constant in the gauged theory, in comparison to the ungauged theory, tends to lower the
conformal dimensions of the operators. For non-BPS backgrounds, this leads to the BF insta-
bilities aforementioned, which are unique to the gauged theory. For BPS backgrounds, the
gauged theory will contain relevant operators and irrelevant ones that have 1 < A < 3/2;
the presence of this matter content indicates that the Schwarzian mode of JT gravity is not
supposed to be the dominant effect (see [2]). The behaviour of the interactions is also rather
different: for the backgrounds in the gauged theory, the cubic couplings allow for both
positive and negative signs, depending on the conformal dimensions of the fields, while in
the ungauged theory they have definite signs.

Although we are restricting the discussion here to AdS, x S? near-horizon back-
grounds, relevant for static dyonic black holes, we will only discuss certain solutions. Their
properties and relation to extremal black holes are the following.

e  BPS branch, ungauged theory: our analysis covers the most general dyonic solution
with four magnetic and four electric charges. We will follow conventions of [19],
where the corresponding black hole solution is described in detail. A more recent
discussion on extremal dyonic black holes can be found in [20].

*  Non-BPS branch, ungauged theory: we will cover a large class of non-BPS solutions,
but with certain limitations, since the attractor equations generically admit non-linear
solutions. The corresponding black hole solution will again follow [19], and prior
works of interest here include [11,21,22] and references therein.
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e  Magnetic, BPS, gauged theory: these are backgrounds that carry four magnetic
charges and preserve supersymmetry. The corresponding black holes were first con-
structed in [23], and accounting for the Bekenstein—-Hawking entropy in AdS,/CFT3
was first performed in [24].

e  Magnetic, non-BPS, gauged theory: we focus on magnetic solutions that smoothly
interpolate from the gauged to the ungauged theory and hence are not supersymmetric
within AdS,. These black holes date back to [25], and our conventions follow [26].

¢  Dyonic, non-BPS, gauged theory: to illustrate the effects of dyonic backgrounds in
the gauged theory, we consider a simple case with only one electric and one magnetic
charge. The corresponding black hole is in [26].

As reflected by this list, static black holes embedded in AdS, are notoriously more diffi-
cult to construct and analyse, which is the reason that our examples in the gauged theory are
more limited. Other solutions that we are not considering here, but are worth investigating,
are the most general dyonic static BPS black holes in AdS, gauged supergravity [27,28]—
with their statistical interpretation via the dual CFT performed in [29]. There are also many
other non-BPS solutions in the gauged theory, see e.g. [26,30], and one could also consider
near-horizon geometries of the form AdS; x X, with ¥ a two-dimensional Riemann
surface of genus g, which we will not do here.

In the context of near-AdS, /near-CFT; and its ties to near-extremal black holes, the
Reissner-Nordstrom solution was an important lamppost in these developments. Some
of the original references are [31,32], which also include dyonic cases. An important
generalisation here is to embed these solutions carefully within a supergravity theory
and quantify the effects that the background and surrounding have on the dictionary
that dictates properties of the near-CFT;.> These properties, the spectrum of operators
and interactions, show to us how building a statistical interpretation of the different
cases explored here is already highly non-trivial, and it will require a more intricate dual
description—in comparison to the SYK-like models studied in, for instance [35-39].

This paper is organised as follows. We start in Section 2 by introducing the four-
dimensional N/ = 2 supergravity theory and its field content, and the dimensional reduc-
tion to AdS, x S2. In Section 3, we describe general aspects of the near-AdS; analysis. We
discuss the AdS; background and the attractor mechanism and study linearised pertur-
bations of the dilaton, scalar fields, and the metric around this background. We single
out the JT sector and discuss the cubic interactions of the matter fields with this sector.
We quantify the correction of these interactions on the two-point functions of the matter
fields. In Section 4, we evaluate these expressions explicitly for the ungauged theory.
We classify the solutions according to them being BPS or non-BPS and contrast the re-
sponses of the near-AdS; region and the corrections to the two-point functions in both
branches. As mentioned above, we find that fluctuations around BPS backgrounds comply
with the nAttractor mechanism, but for non-BPS solutions, we find a marginal operator
corresponding to a flat direction in the attractor mechanism. For non-BPS backgrounds,
we find non-vanishing cubic couplings for certain extremal correlators and discuss the
repercussions of this pathology. In Section 5, we consider some special cases in the gauged
theory: purely magnetic solutions, both BPS and non-BPS, and a dyonic non-BPS solution
with a single charge. We classify the non-universal features at the level of the spectrum
of operators and the interactions. We end in Section 6 with a careful discussion of our
results and discuss future directions. We also included four appendices: in Appendix A, we
gather some basic conventions and notation; in Appendix B, we collect explicit formulas
necessary to integrate out the field strengths for our U(1)* supergravity theory and the
attractor solutions for this theory (for general charges and purely magnetic solutions). In
Appendix C, we give explicit expressions for the linearised equations and interactions for
purely magnetic (BPS and non-BPS) backgrounds. Finally, in Appendix D, we explain how
to set up the extremal limit for both BPS and non-BPS black hole solutions and give a
numerical example illustrating the appearance of a flat direction in the linear response.
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2. Two-Dimensional Effective Field Theory Description
2.1. N =2 U(1)* Gauged Supergravity

Our analysis is centred around bosonic solutions to A" = 2 U(1)* gauged supergravity
in four dimensions. This theory can be viewed as an Abelian truncation to the Cartan
subgroup U(1)* of N = 8 SO(8) gauged supergravity [25]. Our conventions follow those
in [26], which we quickly summarise here. Note that these conventions differ in very minor
ways relative to e.g., [25,40], where the definitions of the scalar fields are slightly different
relative to the description here.

The basic ingredients of this supergravity theory are the following. The bosonic fields
are the metric gﬁ), six real scalar fields, and four gauge fields. The scalar fields are split
into three dilatons, ¢; and three axions, x; with i = 1,2, 3; the gauge fields are labelled as
Al with T = 1,2,3,4. Because we are in four dimensions, there are several formulations of
the action since the gauge fields can be dualised; the dual gauge field will be denoted as
A}, and the corresponding field strengths are

Fl=dAl, F =dA;. (1)

To describe the dynamical aspects of the theory, we will use here the dual formulation as
described in [26], where the action is given by

1 4./
= —o@®r
Isp 167G, /d X 8 4D , )

and
1 3 3
Lyp =RW — 5L ((3%)2 + e (3Xz‘)2> +8 ). (2 cosh ¢; + X%e(’pi)
i=1 i=1

_ 316—471 (efpz+<p3 (FUY2 4 P27 03(F)2 4 o= 92493 (Fy)2 4 e—<P2—<P3(]:4)2) ®)
1 L
- ZXl E'Mmﬁ (F;ltvp;lﬁ + FZ]JI/F:’)lXﬂ) .

Here g is a real gauge-coupling constant, which effectively acts as a negative cosmological
constant; setting ¢ = 0 gives rise to the STU model in ungauged supergravity. The
calligraphic field strengths are related to those in (1) via

F'=F' + x3b + x2F5 — xaxsF*,
Fy=F — xoF*,

F3=F— xsF*,

.7'4 :F4

4)

where two of our gauge fields (F,, F;) are treated in terms of their duals. It will be useful to
rewrite the terms involving field strengths in (3) as
y 1¢ 2 20 2 2’y 2_0;
Lip = RW — 3 Z((a(pi) + e“?i(dx;) ) +g Z(Zcosh P —1—9(1-6(’”)
i=1 i=1 5)
1 1
- Zk]]FIHVFWV + ihUG‘uva‘BFvaFiﬂ .
We have introduced some notation to reflect that we are in a mixed situation where some
fields are dualised: in our case of interest, we have

F' = (F\,F, B, FY) . (6)

Expressions for the matrices k;; and hyj in terms of ¢; and x; are written in Appendix B.
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2.2. Dimensional Reduction

In the following, we will perform the dimensional reduction of bosonic solutions to
N = 2 U(1)* gauged supergravity that preserves spherical symmetry. The outcome of
this subsection is an effective two-dimensional action that fully captures the dynamics of
four-dimensional spherically symmetric backgrounds. There are several references that
perform a very similar analysis to ours. We will mostly follow [16] for the treatment of the
gauge fields, and the metric will be treated as in e.g., [32].

We will write backgrounds that preserve spherical symmetry as

1
ds* = 6] gapdx®da? + d2(x) (d92 1 sin? 9d¢2) : @)
Here x* are two-dimensional coordinates, with a,b = 0, 1, and g, is the two-dimensional
metric.” The scalar ®(x) is the radius of the 2-sphere, and it is also introduced as a conformal
factor for g,;. The relative powers of ® in (7) are selected such that the four-dimensional
Ricci scalar is related to its two-dimensional counterpart as

R® = ®rR® 4 é - %g“bva(QDVbd)) . (8)
The last term here will correspond to a total derivative when replaced back in (2), and hence
there will be no explicit kinetic terms for ®(x) in our final answer; ®(x) will be referred
to as the dilaton. In the following, we will discuss the remaining matter fields—four field
strengths and six scalars—and write the resulting two-dimensional theory obtained by
placing (2) on the background (7). We are also only focusing on the so-called s-wave sector
of the theory, which implies that the matter fields will respect the isometries of the 2-sphere
made manifest in (7). For the six scalars (¢;, x;), this means that we will assume they only
depend on x*.

Next, we focus on the field strengths supported by the background (7). Because of
the spherical symmetry, and since the spacetime is a direct product, one can solve in full
generality for the field strengths that respect this structure, i.e., one can integrate them out.
To be concrete, the general two-form that conforms with the symmetries of (7) will be of
the form

Fl' = (- )empdx® Adx? — PTsin0do Adg, )

and

Fr= (- )enpdx® Adx? + Qrsinfdf Adg . (10)

Here ¢, is the epsilon tensor for g,;. Note that sin 8d0 A d¢ is the volume form in S?, so
this just reflects that F! and F; are linear combinations of the volume (top) forms on g,
and S2. P! and Qy are constants that correspond to magnetic and electric charges: notice
that F! carries the magnetic charge in the angular components, while F; carries the electric
charge in the angular components.* The (- - - ) will be polynomials of the scalars ®, ¢; and
Xi to be determined by imposing the equations of motion for the field strengths. This is
what we want to write explicitly in the following.
The equation of motion from varying with respect to F! is given by

V;l (kUF”W - hUEVWXﬁF]a‘B) =0, (11)

where we are adopting the notation in (5). Since we are assuming that ¢; = ¢;(x)
and x; = x;(x), the angular components of this equation are automatically satisfied by
(9) and (10). The components along x* have a simple solution given by

Ok F, — 21 Pley, = Qregy (12)
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where we have made use of (7) and cast the solution in terms of the two-dimensional metric
Sap- It is straightforward to invert this equation since both k;; and & have an inverse, and
the explicit solution is given in (A14). We also introduced the bold notation for the charges

Q= (Q1 PP Q), P'=(P,-0Q2-0Q3P". (13)
With this notation, we can simply rewrite (9) and (10) as

F! %Flbdx Adx? —P'sinfdo Adg, (14)

with ng determined by (12).

Given that it is very simple to solve for F/, in the process of constructing our effective
two-dimensional theory, we will integrate them out; i.e., we want to trade F! for (PI ,Qr).
For the components of F! along the 2-sphere, this is a simple replacement of (14) in the
action. For Fl , this requires performing a Legendre transform to consistently trade it for
Q) in the action and comply with the equations of motion; for a more detailed discussion,
see, for example, ref. [16]. The steps are the following: start with the contribution to the
action from the second line of (5), and replace (7) and (14), which gives

1 4./ Lo 1 I )
167Cs /d xy/—g¥ (kUF WFI’” + Ehnew"‘ﬂF e

2 hi
25 2) 3 b I J Labgl
464/01 —¢@ <—k1,( W+ PPy — ¢ FabP7>.

(15)

The second step is the Legendre transform, which amounts to adding to the action the term

d2 eQF!, 16
-5 [ Pr/s@ et (16)
After adding this term to (15) it is consistent to replace F’ . With (P, Q) via (12).

Finally, incorporating all of our ingredients, we can write the effective two-dimensional
theory. Using (7), (8), (15), and (16), our two-dimensional action and Lagrangian are

1
Lp = G, /dzx\/ -8 Lop, 17)

and

2 3
—P2R(2) L 24,2 4 2,9
Lop =R+ —+ ¢ <I>'§ (2cosh(pl+Xze )

. = 1 (18)
2¢; , 3) — —
- 7;( a9i) (") + e (aaXz)(aaX1)) 23 V(P,Q).
Here, V (P, Q) is a scalar potential encoding the magnetic and electric charges®
kir + 4h (kil)KLhL —ZhH((kil)K] P/
V(P,Q) = (P K J : 19
( Q) ( QI)( —Z(k_l)IKhK] (k—l)I] Q] 19)

This Lagrangian is a consistent truncation for the s-wave sector of U(1)* gauged supergrav-
ity when compactified on S?, and it will be the main object that we will use in the coming
section.

Lastly, it will be useful to record the equations of motion associated to (18). Varying
with respect to the dilaton gives



Universe 2021, 7, 475

7 of 42

P 2 0 1 29; 2
— + 7®2<2C05hfpi +Xi€q]1> - EV 4 2((8?1) +e (Pl(aXl) ) gab =0.

1 23 3
2) _ & Z i —V
(DR( == 5 = <2COSh Qi T Xi Egp) — Iy

3
Y (2490 (@ 1) + ¢ (8°x) (Bucs) ) -
i=1

S

(20)

L@
2

The equations of motion from varying the scalars ¢; and x; are, respectively,

, . , 1
Va (CIDZV”goi) — @221 g™y, xidpx; + 2P (2sinh @; + xZe?i) — @B%V =0, o

1
Vo (92 V) +28°® xie? — 5250,V = 0.

Finally, the equation obtained by variation with respect to the two-dimensional metric g,
is

(VaVs— gu)®* + = z( 0@1)(391) + €7 (307) (3061 )

. o 3 (22)

i=1 i=1

In the next section, we will use these equations of motion to study linear perturbations.

3. General Aspects of the Near-AdS; Analysis

In this section, we describe general aspects of the holographic dictionary for near-AdS,
solutions. The aim is to study corners of this dictionary that are sensitive to the surrounding
matter content. We will start by constructing the AdS; backgrounds, which describe the
near-horizon geometry of extremal black holes in supergravity. Second, we will discuss
the linearised perturbations around the AdS, solution. This will allow us to identify the
JT sector—which encodes the deviations away from extremality that are characteristic of
near-AdS,—and the matter degrees of freedom due to the embedding in supergravity.
Third, we will describe the interactions of the matter fields with the JT sector.

3.1. Ads; Background: IR Fixed Point

The AdS, backgrounds are characterised by having all of the scalars in play equal
to a constant: this is the characteristic feature of an attractor mechanism. We will refer to
these AdS, solutions interchangeably as either the attractor solution or the IR fixed point.
Starting with the scalars of our theory in (18), we will write

$i=¢i, Xi=Xi, ©=o, (23)
where the right-hand sides are constant values. Inserting this into the dilaton equation (20) gives
29,R?) — 24 ¢ Y (2cosh ¢; + x2e?) + S y_o, (24)

@3 ; ! 20}

where V indicates that we should evaluate the matrix entries at the fixed point, i.e.,
V = V(P,Q)|¢;=¢:xi=1:- This equation makes it very clear that at the IR fixed point, the
two-dimensional metric is locally AdS;. To compensate for the odd factors in (7), we
will set

8ab = Po &ab (25)

where g, is a locally AdS; spacetime with radius ¢,. Combining (24) with the Einstein
Equation (22), we obtain
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1 1 1 _

— 4+ — = 7‘/ P
B o5 29¢
1 1 5 2 & (26)
g - 5% =g ;(ZCOShqoi + xieti) .
Using (23), the equations for the scalars in (21) are
2(2sinh @; + 'zeq"‘)—ia—V:O (27)
8 Qi TXi o2 @i ’
and i 1
2¢°xie% — —-9;,V =0. (28)
29}
where the derivatives of the potential are simply
__dV
dp,V = — (29)

09; lgi=gixi=xi '
and similar for dg, V and multiple derivatives of the potential.

In Appendix B.1 we write explicitly how the attractor Equations (27)—(28) depend on
(P!, Qy), which illustrates more clearly how @; and j¥; depend on the charges. In Section 4,
we discuss the solutions of the ungauged case, and in Section 5, we solve these equations
explicitly for special cases in the gauged theory.

It is important to stress that until this point, we have not imposed supersymmetry on
the background AdS; solution: we are only demanding that we have an extremal solution.
As we explore explicit cases in gauged (¢> > 0) and ungauged supergravity (g = 0), we
will describe how imposing BPS conditions on the background affects our subsequent
analysis of the near-AdS; dynamics.

3.2. Linear Analysis: Spectrum of Operators and T Sector

The first entry in the holographic analysis we will decode are the linear fluctuations
around the AdS; background, and we will identify the degrees of freedom. Following
similar steps as in [5,41], we define

D=9+ ),
=0 +@;,
P i e (30)
Xi:Xi+Xir

Sab = Po Zap + Hap

where (Do, ¢;, Xi, $ap) define the zeroth-order AdS, background of Section 3.1, and (Y, @;, i, hap)
are the corresponding fluctuations.

At the linear level in the fluctuations, using (30) in the equations of motion gives the
following results. Upon using the zeroth-order equations for the background, at leading
order, the Einstein Equation (22) gives

I - 1
(VaVo = ZaB)Y + 58aY =0. (31)
2

As expected, this defines V to comply with the equation of motion characteristic of JT
gravity. The trace of this equation implies that

- 2
Uy = ﬁy , (32)
2

which identifies ) as an operator of conformal dimension Ay = 2. Next, the linearised
equations derived from (21) are given by
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- o 11 497 >
0=0Uep; + <g2(2cosh ¢; + xre?) — — — )4’1‘ + 28 <Zsinh Pi +x$e4’f)y

2 o2 @,
— o2 (99,95, Ve; + 95,05, VX; ) ,
29¢ ] 7éi( i i )
and
0 = e2%i[] 2pPi L 2y 8¢” i
Zd)o 0
1 (34)
pEyy Z(anaXiVXj + 9,95, Vij) -
0 j#i

It is worth noting the different behaviour of the fluctuations for the gauged versus un-
gauged theory. For ¢ = 0, the fluctuations of (h,;, ) are decoupled from the matter sector
(@i, xi)- For ¢ # 0, we have to decouple further the fluctuations. We will do so by splitting
the solutions of (33) and (34) into a homogeneous and inhomogeneous part

h Ag,i
Pi=@ "+ goy ,

_ @i hom ;i >
Xi=e "x;  te ’qu :
0
The homogeneous terms in (35) satisfy at linear order
= hom 1 1 2 D r2e? om.
Clphom = 7 + o — g7 (2cosh ¢; + x7e?) | ;
z i 36
1 ) 7 ) (36)
BN 5 17.,hom “9i9- - 1/4hom
+ 204 j;(aq’/aq)fv‘i’j +e Y0y09,VX; ) ’
and
=, hom 1 1 2 p Ak pom
Oxtm = 5+ -—>—¢ (2cosh ¢; + x7e?) | x;
27 (37)

1 G~ - _h — 4 5 h
+ E Z(e ¢ (”IanBX,.ij om +e (P’E)q—,].axl.V(pjom) .
0 j#i
It will be convenient to introduce some further notation to encode the information of these
linear equations. We will write (36) and (37) as

Oy, = My, , (38)

where ¢, = (phom, X?Om), and 9?2 is a 6 X 6 mass matrix that can be read off from the
above equations. The coefficients a,,; and a, ;, which parametrise the inhomogeneous
solution, are determined such that terms proportional to Y in (33) and (34) are removed
from the equations. The condition is

- - inh @; + v2e®i
<§m2 _ 522]1“6)5: —4g2b, [ = ((ZSmhq;;;X,e )) ’ (39)
2 1

with @ = (a,;,a,,;). We will solve for @ explicitly for the cases in Section 5. Notice that for
g = 0, the solution to (39) is @ = 0, reflecting that there is no inhomogeneous solution in
that case.

Finally, from (20), we obtain the linearised equation for the metric fluctuation, h,,
which reads
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- - - 4
— Rabhab + vﬂvbhub _ Dhua _ (; + q>2> y
2 0 (40)
2 3 . _ _\2 & D —
+ 23°® Z((Z sinh @; + (X;) eq")(pi + 26%?(1’7(1’) =0.
i=1
This equation reflects how the metric mixes with the JT field )V, which is a standard feature
of sphere reductions, and for ¢ # 0, how the matter fields get intertwined as well. To
disentangle this equation and identify the inhomogeneous piece H™", we start by writing

. 1 . o
hay = Hp + Egahh + Pg g HM, (41)

where fzaSbT is a symmetric traceless tensor, and i, together with H"h describe the trace of
the perturbation. It is simple to check that the inhomogeneous solution to (40) is

H™ = 2 g, @)
with @ given by (39), and
-2 2 A
Oh=—h. 43
z (43)

However, notice that /1 is not a new degree of freedom: this equation reflects the residual
diffeomorphism that we can still do on the background metric [42]. Finally, from (40), the
term husg obeys

e 8 4 -
VIveRST — (zg + w0 2¢%b - a) y=0, (44)
which couples the metric to YV, and we will discuss the solutions when addressing the
JT sector.

To summarise, the independent fluctuations around the AdS, backgrounds correspond
to the JT field )V and the matter sector containing (go?om, X?Om). For each matter degree
of freedom, we will have a corresponding dual operator, and the six eigenvalues of the
mass matrix in (38) will be related to the conformal dimensions of these operators in the

standard way
1
A; = 2(1+ \/1+4m%€§), (45)

with m? an eigenvalue of 92, This, plus Ay = 2, corresponds to the spectrum of operators
in our system.

JT sector.  The JT sector is the portion of the fluctuations that is controlled by ), and the
homogeneous solutions are trivial. More explicitly, in (30), we set

B Y.
.,e% ) — 7‘1,

;ST
hub = hab s

with 4 the solution to (39), flng satisfies (44), and Y is governed by (31). The dynamical
aspects of )V, defined by its distinctive equation of motion (31), are well described by JT
gravity. Provided some assumptions on the operator content of the theory, this sector
controls the deviations away from extremality, where it can be seen that a non-trivial profile
of Y accounts for the response of the black hole as the temperature is increased [1,43]. This
has been well reported for spherically symmetric cases in four dimensions in [31,32] when
the theory was only Einstein-Maxwell theory.
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To complete the discussion of the JT sector, we will construct the solutions to (44). We
will write the traceless part as

~ - - 1 _
gy = VaVsl(x) — 5800U(x), 47)
with U(x) a scalar function. Then (44) reduces to
- 2 (4 2 27
(D—E)U(x)_ <£§+¢% ¢%b a))/. (48)

Although we are describing the solution to fzgg in the context of the linearised equations,
it is important to note that this backreaction of the geometry is a higher-order effect in
powers of V. The reason is simply that (44) is obtained by varying the action with respect
to ), and this requires terms that are schematically of the form hY + V2. We will only
focus on linear order effects in )/, and hence (47) will not play a role in Section 3.3.

To close the analysis of this subsection, it is instructive to compare with prior results.
In particular, refs. [42,44,45] contain a detailed study of the linearised spectrum of AdS; x
S? in the ungauged theory, which includes all possible harmonics on S2. Our analysis
corresponds to the lowest | = 0 sector in their notation. One important difference is
that [42,44] makes a choice of Lorentz, or de Donder, gauge in four dimensions; here, we
have not fixed a gauge. This choice of gauge forces Y = 0, and the JT dynamics appear as
boundary modes. Otherwise, our analysis is in agreement with theirs.

3.3. Interactions in Near-AdS,

Finally, we will focus on the interactions between )’ and the matter fields in our model.
We will be treating ) as a background field—with its non-trivial profile driving the system
away from the ideal AdS, background by explicitly breaking conformal invariance—and
we will quantify its imprint on the matter sector. In such a scenario, cubic interactions that
involve one power of Y capture the leading correction to the two-point functions, which
we aim to evaluate.

In this subsection, we will only describe the general aspects of these interactions and
how they enter in the two-point function of the matter sector; in the subsequent sections, we
will evaluate these corrections explicitly for specific cases. The general strategy presented
here follows the discussion in [5], which we summarise and apply to our situation.

To quantify these interactions, and their impact on two-point functions of the matter
fields, we start by writing the bosonic supergravity fields as

® = ¢0 + y 7
o o Y% .
(pire?xi) = (@i, e x:) g, T (@i e?xi) (49)
Dy . -
Sab =<D0§ab+70§abﬂ'1l)-

Here ($.5, o, i, Xi) specifies the AdS, background, which complies with the equations
of motion in Section 3.1; the vector 4 is defined in (39). We also have li; = (@i, xi), which
describes the matter degrees of freedom beyond the linearised level discussed in Section 3.2.

Starting from (18) and (19), we will build the effective action that captures the dy-
namics of ¢, including interactions with the JT sector to leading order in ). This effective
Euclidean action will be of the form

d2
Ieff = ﬁ /dzx\/§(£free + Eint) ’ (50)
4
where the free portion describes the quadratic action for ¢

1. - - 1. -
'Cfree = Eaﬂ/’ . aalp + itlJT mZ l/) , (51)
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with the mass matrix as given by (38). In obtaining L. it was important to introduce
terms proportional to 7 in (49), since otherwise, the matter degrees of freedom in ¢ would
not decouple from the gravitational degrees of freedom (Y, h,;). As expected, the free

terms capture the homogeneous solutions of the linearised spectrum in Section 3.2. The

leading cubic interaction terms are®

1
5 2 (05,1992 Y9"Xi + 244, Y9 Xi% i) (52)

Il
—_

6
+ 2 A‘I’ilp]'y i V.
ij=1

The expression of /\llfillij' in terms of the background AdS, solution and 4, is rather
lengthy for (18), and hence we are not writing it explicitly. However, it is straightforward
to evaluate.

It will also be useful to bring (50) to a diagonal basis, where it is simple to read off the
eigenvalues of 92, For this reason, we define 3, which contains the orthogonal eigenstates
of M2, In this basis, (50) becomes

1 = = 1 = =
fos = [ x5 (32393 + 330473
63

+ 3 (A3,3,9 33V + A 03,0 3i19a39"Y + )‘y(asi)(BB;)yaﬂ3iaa3j)) :
L]

Here M? = diag(m%, ey m%) contains, in its diagonal, the eigenvalues of M2, and the cubic
couplings appearing above will follow. Furthermore, note that 3 has been appropriately

normalised to remove the overall factor of % in (50).

Next, let us focus on the evaluation of the two-point function of one of the eigenstates
in (53), which for the sake of simplicity (and abusing notation) we will call 3(x), and whose
mass eigenvalue within M?is m%) To start, in the vacuum (pure AdS in the bulk), we can
use coordinates such that

02
dshgs, = Z% (d? +dz?). (54)
In these coordinates, the near-boundary expansion of 3 is

3(t,z) =223 +---, asz—0, (55)

and 3(t) is interpreted as the source of its dual operator O3 (t) with dimension

AEAS:%(H,/H%%@%). (56)

Next, we can perform a diffeomorphism in the bulk to go to a thermal state, with inverse
temperature 8. Near the boundary, the appropriate thermal transformation is

tu) = tan(gu) , u~u+p, (57)

with u being the boundary time. As we do this transformation, we also want to keep track
of the UV cut-off and make sure the proper length of the boundary is fixed, i.e.,

_ 5
8londy = 5 - (58)

The above condition implies that
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z(u) = e/ ()2 + (2/)2 = et(u) + O(e%), (59)

fixing the asymptotic part of the radial part of the diffeomorphism. Then, under this
transformation, the asymptotic form of the field 3 becomes

3(t,z) = el=a [t'(u)]lfAf’)(t(u)) 4+, ase =0, (60)

and now [t'(u)]*=23(t(u)) = 3(u) is interpreted as a source.
Turning next to the behavior of ), this term will be treated as a background field
whose source is non-trivial. More explicitly, we will take the on-shell value’

O V(tz) =2 V() + - (61)

and set the source on the thermal state fixed, i.e., J(u) = a with a a constant. This defines a
near-AdS; background. Then, evaluating the two-point functions of the operator dual to 3
in the presence of a background value for ) can be done by treating ) as an operator with
A = —1, and integrating over its boundary time [2]. More explicitly, the thermal two-point
function we are after is, to leading order in )/,

(O3 (1) 03 (u2))p = (O3 (1) O3 (u2))§*° + (O3 (1) O3 (12) ), (62)

where the correction due to Y is

(03()03 ) = [ dus (03()03 (1) 0115 )

We can now easily evaluate the appropriate two-point function. As standard in
AdS/CFT, the boundary effective action on the vacuum (54) is

Ieff = Ifree + Iinteractions . (64)
The free part yields
3( )3(tz) (2A —1)I'[A]
Tiree = / dtydt, 21920 [ R el ol (65)
e t[245 VAT [A = 3]

The thermal two-point function is
(O3(m)0s(aa)) = p[ L) 1T
) P |t(u1) — t(uz)[?
where 11, = u; — up. For the cubic interactions we will have

/dtldtzdtg,:'j t1)3(t2) V(t3)
mt 2

|12 28+ 3| =1 [£31] 1

2A
7T

/ Ayt Ayt —-15 3 Y (67)
:7/duldu2du3 t (ug) 2t (up) ' (u3) 3 (u1)3(u2) Y (u3)
2 t(u1) — t(un) P24t (uq) — t(uz) |7t () — t(uz)| 1
where
D = Ay33Ky33 +A3003)00)K3(03)0) + A9(03)03) Ky (03)03) - (68)

and the coefficients appearing here are [46]
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P CT[5PTA+5IrA 1] 3(A—3)T[A—1]
39 2nT[A — 32T (=3 2/ATA -1
1 K
K3@3)00) = [A+ 52 2A)(1)}Ky335§ == 32%7’3 , (69)

~ 1 K K
Ky @3)03) = [Az +5(2-28)(28 + 1)} 3%33 (AT A—1)R233

Then, the three-point function we need is

(O3(12) O3 (12) O (u3))p = D (70)

o sin( )| sin ()|
|

B sin ( L | sin ( m/élz ) | I

which contributes to the correlator as
. B
(03(1)03 ()t = a [ dus (O3(11)03 (12) O_1(3))
, 2A
b a T 1—2u/
- 252 | 2T ”iffﬁ : (71)
pen( 7)) ()

See [5] for details about evaluating this integral. Adding the free and interaction pieces
of the correlator, we find

2A
(03 (1) 03 (u2) ) = [”
B sm( B )

2 _
D+ Diﬁ 24+ n% ] (72)
27 tan(n;u)

The constants D and D are given in (65) and (68), respectively.

As we investigate examples in the subsequent sections, one of our main aims will be
to report on the value of D compared to D. For this purpose, it is convenient to define their
ratio as

(73)

-D D *4(A—1))‘eff’
where Aeg = Aof(A) is the effective cubic coupling constant, which depends on the
conformal dimension of 3 via (69). We will see that the value of D behaves differently
depending on the background and surrounding: BPS versus non-BPS backgrounds, gauged
versus ungauged theories. Understanding what the possible behaviours are is valuable
information to understand how specific properties of the dual system accommodate for the
properties of the gravitational background.

4. Ungauged Supergravity

It is instructive to specialise to the case ¢ = 0 and inspect more closely the responses
and fluctuations of extremal black holes. The main goal here is two-fold: first, to recover
the aspects of the nAttractor mechanism, and second, to contrast the response of near-
AdS; of BPS versus non-BPS black holes. We will start this section by describing the BPS
and non-BPS branches; subsequently, we will describe the IR fixed point and the linear
analysis, classifying the solutions according to them being BPS or non-BPS. Finally, we
study the interactions between the scalars and axions and the dilaton field ), highlighting
the differences between both branches.
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e~ 2(P1+P2+3)

There are multiple references to characterise the N' = 2 ungauged supergravity
theories at hand and several different conventions used in those references, which we
will not summarise here. By setting ¢ = 0 for the theory presented in Section 2.1, one
obtains STU supergravity described according to the conventions in [19], and those are the
conventions used here.

4.1. BPS Versus Non-BPS Branch

For ungauged black holes, it is interesting to distinguish, among extremal black holes,
which ones preserve supersymmetry (BPS branch) and which do not (non-BPS branch).
For regular and static black holes, this distinction is elegantly dictated by the Cayley
hyperdeterminant. This quantity is the quartic invariant of STU supergravity, and it is
defined as [47,48]

A 11? <4Q1Q2Q3Q4 +4P'P2PPY 42 ) Q;QkPI PN - Z(Q1P1)2> )
J<K I

One of the prominent roles played by this hyperdeterminant is that it controls the area of
the extremal black hole and hence the Bekenstein-Hawking entropy of it

T 27T [ =
mm:aﬁzalM. (75)

Another utility of this invariant is that we can identify two branches of solutions: an
extremal black hole in STU supergravity can then be labelled as

non — BPS : A<o,

R (76)
BPS: A>0.

The case A = 0 is singular for black holes in a two-derivative supergravity theory since the
horizon area vanishes; these configurations are usually referred to as a small black hole.

4.2. Adsy Background: IR Fixed Point

When ¢ = 0, the system becomes much more manageable: it is simpler to quantify
the background and the fluctuations around it. For the AdS, background, the main
simplification comes from the second equation in (26), which gives

2 =2, (77)

implying that the AdS; and S? radii are equal to each other. Then, the conditions on the
constant scalars supporting the AdS; gives

I5,V =04,V =0, (78)
which are the renowned conditions from the attractor mechanism of extremal black
holes; see, for example, refs. [11,13] for a general analysis. Explicitly, they are given
by (A18) and (A19) with g = 0 for the ungauged theory considered here.

For what follows, it will be useful to rewrite the expression for the Cayley hyperde-
terminant in terms of the charges dressed by the moduli: (P!, Q;) defined in (A15)~(A17).
The expression (74) becomes

(40102050, +4P'P2PP! +2 T 0, QPIPE — Y (QP')) . 79)

16 J<K i

It is also simpler to discuss the solutions to the attractor equations (78) in terms of
(P!, Qy). In this notation, the BPS branch (A > 0) of solutions is very simple and dictated
by the linear conditions as follows. First, a solution to (78) can be obtained by demanding®

[P =P =P’ =|PY, and [Qi|=[Q|=Qs|=1Ql. (80)
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Second, to make this a BPS solution, one has to select an even number of minus signs,
and the signs of the P! and Q| are matched. For example, one possible BPS solution is of
the form

Pl=p’=-P =P, Q=0=-0=-0. (81)

Without a loss of generality, we will use this choice of signs as a representative of the BPS
branch in what follows.

In the non-BPS branch (A < 0), solutions of the form (80) also exist, but with an odd
number of relative minus signs for both Q; and P/; contrary to the BPS branch, the signs
do not have to be matched. One example of this class of solutions is

Pl=—P =P =-P", Q=0=-LB=09. (82)

However, there exist non-BPS solutions to (78) that do not comply (or only partially comply)
with the conditions (80). In Appendix D, we will comment on this other class of non-BPS
attractor solutions and how both BPS and non-BPS configurations can be obtained as the
extremal limit of the black hole solutions discussed in [19].

Lastly, the AdS, radius (26), or (A20), in terms of (PL, Q) is given by

1 .

B=1e " P (R4 QB+ Qi+ QG+ (P + (PP (P24 (PI?). (89)
Furthermore, also note that ¢3 = 1/|A|. For both BPS and non-BPS solutions of the type
(80), we can simplify this expression further, which reads

B = P00 (P24 (Q1)?). (84)

4.3. Linear Analysis

In this section, we revisit the linear analysis performed in Section 3.2. As noted
there, several simplifications occur on the spectrum of fluctuations when g = 0; the most
prominent one being that we do not have inhomogeneous terms that mix the JT field with
the matter content. In the following, we will gather those expressions and solve them for
the BPS and non-BPS backgrounds discussed in Section 4.2.

We will cast the perturbations as

D=9+,

hom

Qi = (Pi +§01 ’
Xi=Xi+e Py,
Sab = Do Zap + Frap

reflecting that we do not have inhomogeneous terms present in (35) and (41). In the
following we will just replace @™ — @; and x'™ — y;, since the label is redundant here.
As usual, Y is the JT field, obeying (31). For the metric fluctuations in (44), we have

(85)

2, 12
2" 3

and the linear equations for the scalar fields (33) and (34) simplify to

VOV Iy — O, + Sk — 2V =0, (86)

-2 1 % %
O0=\U-2|?i—5na Z(E)@ja@w}j +aXfa¢fVXj> '
4 263 j#i
. (87)
_ 2 e @i - ¥,
=0-5 |xi— =1 Z(anaXiVXf +3(P13Xiv‘”f) ‘
Ez 262 j#i
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Our main aim is to determine the mass eigenvalues and eigenvectors of (87); with this, we
will quantify the dual operators that should be part of the holographic description of the
near-extremal black hole. Focusing first on the attractor solutions characterised by (80),
then we have

O¢ —m*p =0, (88)

where ¢ = (¢;, x;), and the mass matrix 92 is given by

1 0 0 0 mis Mie
0 1 0 Moy 0 Mmae
21 0 0 1 m m 0
o2 — = 34 M35 ) 89
Gl 0 my my 1 mys My 59)
mis 0 mzs mys 1 msg
my mys 0 myg mse 1
with
mis = a(P*Qy — P'Q3), mzs = a(P*Qy — P3Qy),
mig = (P'Qs = P1Q), Mys = g(P47D3 — 019, - PP+ Q3Q)),
may = a(P*Q1 — P2Q3), w (90)
( s ) ) My = 5(774772 -~ QB -PP+0Q)),
mys = a(P Q3 —P~Qq), :
sy = a(P*Q; — P3Q,), Mse = 5(73473l — 9,03 —P*P3+ Q194),
where 1
== . 91
(P + (212 oy
We can now diagonalise the mass matrix such that
03 - M23=o0, (92)

where M2 is the matrix with the mass eigenvalues of M2, and 3 are its eigenvectors. From
the definition of the BPS branch, it is clear that all non-diagonal matrix elements (90) vanish,
and the mass matrix is automatically diagonal. In the non-BPS branch, M? also simplifies
further: depending on the precise distribution of minus signs, #115 to m35 evaluate to

+2aP'Q; or 0, (93)
and mys, mye, and msg evaluate to
ioc((Pl)z— (Ql)z) or 0. (94)
Hence, depending on the assignment of minus signs in (80), the eigenvalues of 9 are
. 2 2
BPS: M?= dlag(gz, . £2> , (95)
2 2
2 2 2 6
. 2 _ 3;
non — BPS : M* = diag (O'O'E%'{Z%'E%'E%> . (96)

Although the mass matrix is more complicated for the non-BPS solutions that do not
obey (80) but instead have, for example, a solution to (78) with all Pl and Q; different,
we confirmed numerically that the eigenvalues are still given by (96), and also for other
non-BPS solutions. See Appendix D for details. For this reason, we expect that (96) captures
the spectrum of fluctuations for any non-BPS configuration in STU models.
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In the BPS branch, the eigenvectors are simply the scalar fields themselves. In the
non-BPS branch, the eigenvectors are linear combinations of the fields (¢;, x;). As an
illustrative example, for the case (82), the six eigenstates 3 = (31,...,3¢) are

31=x1tXx3,
3,— 2P, (P1)? — (1)

m2;=0(A=1) : N
(P (@ T (P (2™

33 =@1,
mi3=2(A=2): 3a=¢3,
35 = ((731)2 - (Q1)2)(P2 +2P1Q; x2,

(97)

2P1Q, (P1)?— (21)?

m265:6(A:3) : 36:—W¢Z—X1+W7€2+X3-

To avoid clutter, here we wrote eigenstates 3; that are not orthogonal, and we have not
included the appropriate normalisation to comply with (53). When discussing interactions
in Section 4.5, we will be referring to a basis that is orthogonal and normalised correctly.
We also note that this spectrum is in perfect agreement with the non-BPS branch spectrum
analysed in [45].

It is interesting to connect the spectrum of the non-BPS branch to the five-dimensional
analysis in [41]. When reducing the ungauged five-dimensional theory along a circle, the
Myers—Perry black hole can be viewed as an electrically charged solution; its D-brane
construction corresponds to the D0+D6 system, as first noted in [49]. In the context of the
spectrum, we note that the state with A = 3 here is precisely the squashing mode x in [41].

4.4. nAttractor Revisited

It is interesting to place our linear analysis in the context of the nAttractor mechanism
proposed in [16]. The observation of the nAttractor is that generic scalar moduli, in our
case (¢, x;), should respond in the near-AdS, region as

7"

¢i = @i+ teey
z as z—0, (98)
Y

1
z

Xi=Rit "t

where (;, X;) are the attractor values of the scalars, and ((pi(l), )(1(1)) are constants. The
power in the AdS, radial direction z was used as evidence to argue that each of the scalar
moduli is dual to an irrelevant operator of conformal dimension A = 2.

For the fluctuations around BPS backgrounds, this is indeed true: we showed ex-
plicitly that the dilaton and axion perturbations, ¢; and yx;, are eigenstates with masses

2

m = Z% and corresponding conformal dimensions A = 2.” Therefore, they have a response
2

as in (98) as one moves away from the AdS; background, in perfect agreement with the
nAttractor. Despite sharing the same conformal dimension as ), it should be noted that
these modes stand on a different footing: only ) obeys the constrained JT equation (31),
which ties its response to thermal AdS; and the Schwarzian action.

For the non-BPS solutions, the relation to the nAttractor is not as simple. In this case
we found that the spectrum of fluctuations contains mass eigenstates with m?=0,m?= f%,

2

and m? = [%, corresponding to a conformal dimension A =1, A = 2 or A = 3, respectively.

This implies that the eigenstates that are unique to the non-BPS branch behave as

mG=00A=1): 3=3"+0z2
3"

72

(99)
mi=6(A=3): 3=

4+
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Hence the marginal operator (A = 0) could modify the attractor value, and the irrelevant
operator with A = 6 has a different imprint relative to V.
Two comments are in order regarding the non-BPS branch:

*  The behaviour (98) persists for non-BPS black holes, as can be seen explicitly from
the solutions in [19]. However, this is not enough to establish that the eigenstates are
(1) (1)

dual to operators with A = 2. The reason is that ¢, * and x;’ are not independent
parameters and cancellations occur. In Appendix D, we set up the extremal and near-

horizon limit for the solutions in [19]: we show how combinations of gofl) and )(51)
cancel for non-BPS black holes and lead to the behaviour in (99).

¢ Having a marginal deformation means that there are flat directions in the attractor
mechanism for non-BPS black holes. Concretely, the linear combinations of the at-
tractor values of the scalars corresponding to the eigenstates with m? = 0 will not be
fixed, but can instead take on different (constant) values. The eigenstates with m? #0
will dictate which linear combinations cannot change in value. In the context of
non-supersymmetric attractors, the occurrence of flat directions was reported initially

in [15], and it could lead to potential instabilities of the system [53].

Finally, it is appropriate to add a comment about the gauged solutions and their
behaviour in the context of the nAttractor. In that case, we can already see in a simple
manner that (98) applies to the moduli, but for slightly different reasons. In the analysis of
linear fluctuations in Section 3.2, we have an inhomogeneous solution for the scalar moduli
in (35), which implies that the moduli behave in the near-AdS, region as

- R LYy 5.
(@i, e%xi) = (@i e"%i) + TP + (@i e?xi), (100)

with the second term complying with (98). This is also evident if one inspects non-extremal
black holes in gauged supergravity.'’ However, in this case, it is also clear that the moduli
do not have A = 2: there is just a mixing of the JT field with the matter sector that needs
to be diagonalised. The operator interpretation of the moduli comes from (¢;, x;), which
contain the independent degrees of freedom.

4.5. Interactions

The classification of the interactions is relatively simple in the ungauged case, since
the JT sector does not mix with the matter fields at the linear level. The effective Euclidean
action for the matter fields around the near-AdS, background is of the form

Ieff = /de \/ _g(z) ('Ckin + ['intfy) ’ (101)

The quadratic terms for the scalar fields, which contain the kinetic and mass terms, are
]. = e 1 3T 23
Liin = 59393+ 53 M3 (102)

Here 3 contains the degrees of freedom for the supergravity fields (¢;, x;) and are orthogo-
nal at leading order in the near-AdS, region; M? is the matrix with the mass eigenvalues as
defined in (92). We are interested in finding the corrections to the two-point functions of the
fields 3 due to the interactions with ) discussed in (53). The terms in the effective action
that involve cubic interactions with one power of ) are very simple for the ungauged
theory, and read

a3 ez 3 yaT)pes
Lint = %Jﬁaas "3 2%373 M?3. (103)

As we discussed in Section 3.3, we want to report on how these interactions affect the
two-point functions of 3. The final answer is of the form
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24 .
D 1-2
,Bsm(T) tan(T)
Following from (68), the parameter D for this case is
D = Ay33.Ky3,3; + Ay03)03)K@3)03) - (105)

where the couplings Ay3,3, and Ay 33,)@3,) can be read off from the interaction term in
the cubic action, and Ky3,3, and Ky (33,)(33,) appear in the three-point functions of the
operators dual to the fields Fand Y ; they are functions of the conformal dimensions of
these operators. From (103), we have

Ay33; = _gmizf Ay@3003) =1/ (106)
Ky3,3, is given by (69) and
Ky@spes) = —Az_g_lea,su (107)
such that
D; = é(iA(Al) 1)Ky3i3i . (108)

We will now report on the correction to the two-point functions due to the interaction with
Y for both the BPS and the non-BPS branch.

BPS branch.  In the BPS branch, 3 = (¢;, x;) are eigenstates of the mass matrix, and

all eigenvalues of M? are m? = g% For these fields, Az = 2, such that (65) and (108) give,
2

respectively,

18

Dzé, DZ*Z’
T mtls

(109)

where we used Ky3 3. = —9/27.

Non-BPS branch.  The structure of the corrected two-point function in the non-BPS
branch is similar to the one in the BPS branch, but there are important differences. The
main differences come from the spectrum of conformal dimensions we have in this branch,
listed in (95). We have three eigenstates with mass m? = é and A = 2; for these fields, the

values of D and D are equivalent to those in the BPS branch in (109). For the eigenstate
with mass m? = Z% and A = 3, one obtains
2

70

D_ 40 72/
mtls

=317 D = (110)
with Ky3i3l. = -5/m.

However, the two eigenstates with mass m> = 0, and corresponding conformal
dimension A = 1, are more delicate. As is clear from (69), at A3 = 1, the coefficient Ky 33
diverges. This divergence originates from the fact that the conformal dimensions of the
operators considered sum to Ay + 2A3 = d, with Ayy = —1, and d = 1. This is a known
divergence that is related to extremal correlators [54]."" Since the cubic coupling in (103) is
clearly not zero, we find that the corresponding D is divergent.

The appearance of an extremal correlator with a non-zero cubic coupling is unusual
and problematic. Unusual, because in higher-dimensional theories of AdS;,—arising
from a consistent truncation of a ten-dimensional compactification—the extremal cubic
couplings are zero; for theories with an AdSs factor, see [54-56], and [57-59] for cases in
AdS;3. Problematic, because the divergence forces the conclusion that the non-BPS branch
does not lead to a near-AdS; background with well-defined correlators.
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There are two additional comments in this regard:

¢ Let us first consider the possibility that (103) is missing terms, and if included ap-
propriately they should lead to a vanishing cubic coupling of the marginal operator
and Y. In particular, we will include h,, (assuming it is has a background value
controlled by V). The presence of h,;, adds the following modification to (103) (up to
overall normalisations)

- - 1.z =
hSTe89,3 9,3 — EhaTMZs . (111)
The trace mode, /1, does not contribute for a marginal (massless) mode, and moreover,

it is also decoupled from ) as reflected in (43). For the symmetric traceless piece, we
note that

o o O | o o
BSTe9,3 . 9,3 = VVPU(x) (aas 053 — Egabi)c:") : acs)

= —VU(x)(03) - 9,3 + (total derivative)

(112)

which is again zero for the massless mode. This shows that the states with A = 1 do
not couple to h,, and hence would not affect the cubic coupling with ) even if we
make h,;, depend on the JT field.

*  In the non-BPS sector, there are other extremal correlators: cubic couplings between
the moduli such that A; = Aj + Ay, which is a common occurrence since we have
operators with A = 1,2, 3. A simple computation for our theory shows that all of these
couplings A;j are zero. This confirms that within a consistent supergravity truncation,
the couplings vanish as in the higher-dimensional AdS cases.

Based on this, the conclusion we reach is that for the non-BPS branch, we have not
identified correctly the near-AdS, background that describes the backreaction as we turn
on the irrelevant deformation ). Unfortunately, it is not clear to us how to modify our
definitions and setup to fix this problem while keeping the marginal operator as part of the
spectrum.

5. Examples in Gauged Supergravity

In this section, we will consider some special cases in the gauged theory. In Sections
5.1 and 5.2, we are restricted to purely magnetic solutions, i.e., Q; = 0 and Pl 40, and
consider two subsets of solutions to the attractor equations: non-BPS solutions following
the conventions of [26], and BPS solutions described in [23,24]. We collect the attractor
equations for both cases in Appendix B.1, and below discuss the non-universal properties
that these backgrounds dictate at the level of the spectrum of operators and the interactions.
Finally, in Section 5.3, we briefly consider a simple dyonic non-BPS example.

5.1. Magnetic Non-BPS Background

Here we will analyse a non-BPS background in the gauged theory that is supported by
magnetic charges. It is a specific background that has a well-defined limit as we take g — 0,
and hence connects with the ungauged backgrounds. Since it is cumbersome to keep
four independent charges P!, we will further specialise to the case where P! = P2 = P3,
and P* is independent; Appendices B.1 and C contain expressions when all four charges
are independent.

Although we will have only two independent charges, we will see below that this
example already captures interesting non-universal features. Some of these features depend
on the relative sign of P! and P*; to simplify our discussion and make the analysis more
transparent, we will sometimes set P* = +P! which corresponds to the near-AdS; region
of the magnetic RN black hole in AdS,.

AdS; background. For the attractor values of the scalars, the above simplification means



Universe 2021, 7, 475

22 of 42

P1= ¢2 = @3,

(113)

and the remaining background equations fully determine the remaining fields ¢;, &g and

the AdS, radius ¢; via

4¢*®3 sinh g1 = e?1(P1)2 — e73%1(P*)2,
: 1 a5 4]
4820 cosh gy = e (P2 + e~ (P42 - 20,
1 1 2 _
E = 3% -+ 6g° cosh ¢ .
If P* = + P!, the attractor equations simplify: this sets ¢; = 0, and (114) reduces to

1 1
= =6¢%,
CEE
11y
6o @t

Spectrum of operators.  Diagonalizing the mass matrix for both sectors as

03-M*3=0,
we find its eigenvalues m? and corresponding orthogonal eigenstates 3 = (3y,..
to be
1 _ plpt 3, = —yhom  ,hom
2 - 2 1 X X3
ms=—+e 1 + . 1 3
1 % (g CD% ) 32 — _Xlimm + zxgom o Xé\om ,
) _
2 2 ,— .
=gt 3= 4 g 4 gl
0

2 _ _
m% = = +g2(36¢1 +e_4)1) .

3, = _(P}llom _|_(P}3:om ,
D 91

35 — hom + zgol%om _ ga];om ,
2 e 301 (P4 — 3¢201p1)2
303 30}

2
my = 3¢ = Xllwm + Xlzlom + X1310m .

If P* = P!, there is only one degenerate mass

2 o
m* = 4g* + o2 3= (9ixi)
0
If P* = — P!, we have
_ hom hom
2 _ 2 . 31 = —x1"" + a3,
m; = —2¢° :
1 8 32 — _leom 4 zxglom _ Xlé}om i
2 2 2 2 .
My =My =48+ 55 div2 = @i,
0
2( 4 5
2 _ . hom hom hom
my =z 2+2>' J6 = X717 + x27" + X377
3 (fz D5

(114)

(115)

(116)
-, 36)

(117)

(118)

(119)

It is instructive to inspect the conformal dimensions associated to the states (117) in

more detail. Starting with the second one listed in (117), we have
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1 /1
(120)

1 9 _ _

=5 \/4 —2g203e=P1 — 6g2(%e1 .

It is interesting to note that the effect of the AdS, surrounding (g # 0) is that it lowers
the conformal dimension relative to the ungauged case (g = 0) where the corresponding
state has A, = 2. From (114), the lower bound of A; is attained when $; = 0 (i.e.,, when
P! = £P*) and 6g%¢2 < 1. This implies that the range of A; is

146 < Ay <2, (121)

hence making it an irrelevant operator below the JT field ). A similar analysis will show
the same range of values applies for As. For the case P* = P!, all conformal dimensions
have the range (121), and for P* = —P1, it applies to the three eigenstates with A,

For m% and m3, the analysis is more delicate: their final values depend on the choice
of signs of P! and P* and cannot solely be determined from (114). If P! and P* have the
same sign, a similar analysis will show that the ranges of A; and A4 are the same as (121).
In particular, this clearly holds for the case P* = P! given in (118). However, if P! and P*
have opposite signs, we find that both bounds on A4 are increased:

221 < Ay <3, (122)

such that now Ay > Ajy,. For this choice of sign, the mass m% in (117) can become negative;
hence, it can violate the Breitenlohner—Freedman bond. In particular, for Pt =_Plitis
clear from (119) that the mass m% < 0, and A; reduces to

1 1
—— - _ 202
Ar= 5+ 5\/1-88%5. (123)

Thus, when P! = — P4, the eigenstate with mass-squared m? violates the BF bound if

8¢%03 < 1. (124)

This is a stricter requirement than the one implied by (115), i.e., 6g2¢3 < 1. In Section 5.3,
we discuss a dyonic example, P! = +Q; and the remaining charges equal to zero, for
which we find the same bound (124).

Finally, notice that we can smoothly take the g — 0 limit in (114) and (117). The
remaining attractor equations (114) then determine the charges up to a relative sign between
P* and P!. The three eigenvalues in (117) corresponding to 33 4 5 collapse in either case to
m2(% = 2; for the remaining three, this depends on this relative sign. If P! and P* have the
same sign, the six eigenvalues are as in the ungauged BPS case (95); if there is a relative
sign, we instead land in the non-BPS case (96).

Interactions.  We are now ready to discuss the interactions in the magnetic non-BPS case
introduced above. The general expressions are presented in Appendix C. For clarity here
we present the values for the limiting case where all magnetic charges are equal in size (i.e.,
we further set P! = +P%).

As in Section 4.5, we will classify the corrections to the two-point functions in terms
of the parameter D defined in (73). It Pl = P4 all f)i are equal, their value is

N_ 3 [ 4 2
D; = 4(Ai_1)< £%+16g>. (125)

Furthermore, all conformal dimensions are equal to (120) with ¢; = 0. Using this in (69) to

compute Ky3, 3, then determines the range of Djias0< g% < é,

219 < 3D; < 3. (126)
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Thus, D; is always positive and setting ¢ = 0 here agrees precisely with the BPS case (109),
as expected.

If instead P! = —P*, there are different behaviours since the eigenvalues do not all
become degenerate. We obtain

. 3 1,
D=—— (5 ,
L= A S (zg +g>
N o3 [_4 2
D, = 4(%_1)( €%+16g>, (127)

N 3 14
Dy=—— > [~ 1 a6g?) .
! 4(A4—1)< K%Jr g)

The range of ﬁq, is as in (126), and for D4 we find

~ 21
3.93 < 13D, < T (128)

i.e., Dy is always positive as well. Setting ¢ = 0 matches perfectly with the non-BPS case:

Dq, matches with (109) and D, with (110). The case of D; is more subtle: for g =0, we
1

et A; = 1, and the correlator is extremal, and it also violates the BF bound for ¢% > L.
g 8 802
2

1

, 87%) D; is positive.

However, within the range g € (0

5.2. Magnetic BPS Background

The solution in Section 5.1 is related to the BPS solution of [24], see also [23,60]. In
Appendix B.1, we relate the attractor solution of [24] to the notation used in the previous
section. An important point is that the BPS solution (A30) is at a very different footing as
compared to the non-BPS solution (A24): all charges are proportional to g, so they are not
smoothly connected to solutions in the ungauged theory.

For ease of comparison with the literature, we will adopt the conventions of [24,60] to
describe the magnetic charges. Hence we will use

ng =gP*, ny=gP*, n3=gP®, ng=gP', (129)

where nj are integral charges.

AdS; background. = We will again consider a subset of solutions for which three charges
are equal and negative, and the remaining charge is positive. To comply with the conditions
on the charges n; given in (A27), we choose n; = n3 = ng < 0 and n; > 0 such that

n+3ng =2. (130)

Thus, contrary to the non-BPS case, there is only one independent charge. This sets

P1=¢2= @3 (131)
From (A30), the charges can be solved for as
2@2 - ~
nm = gzi(] (63(’)1 — 36471) ; W34 = —ngD% cosh q_)1 , (132)

and (A31) and (A32) give

1 gz i ) 1 zgzeﬂﬁl
— =S P1(3 4 ¢%P1)2 —_ = 133
6% 4 e ( +e ) q)% ng + 6724)1111 ( )

In terms of ¢; and Py, the constraint on the charges gives
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1 g2 o {45 _
=9 PN 1 _ 91
o4 e (e 3(2e% + 1)) . (134)

Spectrum of operators. At the linearised level, the inhomogeneous solution for ¢; is
the same as in (A34); explicitly, for the special case we consider, we have

21— e
P~ oyt T ¢, (135)

and the inhomogeneous parts of x; can consistently be set to vanish. Diagonalizing the

mass matrix for both sectors ((p}i‘om, )(hom) as

1
03 -M?3=0, (136)
we find the mass eigenvalues and corresponding (orthogonal) eigenstates to be

_ _ ~hom hom
m3 = —2¢°sinh ¢; : 3= AT

3 = X1 228" - x5,
m3 = qf(Z) +4g%e P 3= ¢1f0m + ghom +q’1§0m ,
- . o (137)
m3 = qiz) + 4¢%e?1 cosh? ¢y : 36 = XJO™ 4 xhom + xhom,

We can write the eigenvalues fully in terms of the charge ny and the gauge coupling ¢ using
(134) and

g
B3ng—1—/(2ng —1)(6ng — 1)

Then it is clear that the eigenvalues are all proportional to g2, as expected.
Again, it is instructive to inspect the conformal dimensions associated to these eigen-
states. Starting with the second listed eigenvalue, in terms of only ns we have

e 2 = (138)

(139)

From the conditions on the charges, it is clear that ngy € (—o0, —1). This determines the
range of A; as

2 3
— <Ay <24/ 140
7 <hy <24/ (140)
Similarly, we find for A3
1—2ny 1 \/§
Ay =1 1+ —=<A 1 = 141
3 + 1—6n, + Ve <Az <1+ 7 (141)
and for A4
1—2ny 2 \/§
Ap=1+2 1+ —=<A 14+24/=. 142
4 + 1_— 6'(14 s + \/g < By < + 7 ( )

Thus, comparing to the irrelevant deformation )V we have 1 < Ay < Az < Ay < A4 < 2.5,50
33,45 are less, and 3¢ is more irrelevant than the JT field ). Finally, A; is given by
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1 1 1—2n
+_ - 1t 4
Al_ :|:< 2—}-1}1 64)’ (143)

1 N \F \F _ 1
%<A1< 5, 1-ym<ar<i ek (144)

From (143), it is clear that the fourth mass mi takes on negative values. However, the BF
bound is never violated, as both Af are real for any value of the charge ny. The difference
between A 34 and A; can also be seen directly from (137). The last three eigenvalues are
manifestly positive, but for the first eigenvalue, we can consider the BF bound, m2+ -1 >0.

)
With the AdS, radius as in (133), we find that it is never violated

where

2

1 S5 _o /20
14 =S (P —5)2>0. 145
Interactions. Finally, we discuss the corrections to the two-point functions of the

eigenstates 3; due to cubic interactions with ). The corrections are of the form (72); the
general expressions are not very insightful, so we give one explicit example:

A 20— 1
D= §¢
4(Ay — 1) 2(1 + 3¢291)2

(—9e8¢1 1866591 + 446401 1180291 — 3) . (146)

where A; is given in (139), and we can use (138) to write this in terms of the charge n4 only.
Then ng € (—oco, —1) determines

—19.7¢%> < Dy < —4.49¢%. (147)

A similar calculation gives

253¢% <D3 < 34.1¢7,

. (148)
354¢% <Dy < 48.7¢%,

and

103¢% < Dy <124g*, 141g¢%> < Df <235¢°. (149)

Thus, only D, is negative, and all other D; are positive. The sign of D is an interplay of the
sign of the effective cubic coupling constant Ao of ) and the field 3;, and of the conformal
dimension A;: the prefactor in (73) is positive for A < 1, and negative otherwise. This is
the only background for which we find a different sign for the corrections; it would be
interesting to reproduce this from a near-CFT; description or account for it from the dual
CFT3 in the UV.

5.3. Dyonic, Non-BPS

In this section, we consider an additional example to complement the discussion in
Sections 5.1 and 5.2. It is a very simple configuration: all but one field strength vanishes,
and the magnetic and electric charges are matched. More concretely, here we will take
P! = £Q; and all remaining charges equal to zero. This example is non-BPS, and hence
we will find similar results as those described in Section 5.1. The corresponding black hole
solution can be found in e.g., [26].

AdS; background.  The attractor solution for this example is very simple. The scalars
simplify to
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Xi=0, ¢i=0. (150)
Solving the attractor equations for this background gives
1 1 _ (@) 11 2
a o 2 a7
Note that these equations imply that ®f > (3 and 6¢2(3 < 1. The solution for the size of
the 52 is
68°P%F = —1+ /1 +6g2(Q1)2. (152)
Spectrum of operators. The linearised equations (33) and (34) are also very simple.
They become
- s 2
Dxi — (487 + )i =0, (153)
0
and ) )
Opr — (48" + o5 )(pl +(68° + )(Pz +(68% + o )3 =0,
- 2
Dy — (487 + ﬁ)fpz — (6> + ﬁ)¢3 +(68% + w27 =0 (154)
0 0
2
Oz — (48" + — )3 — (68" + — 6 =0.
3 — (457 ®0><p3 (68? ¢O)¢2+(g +q>2)¢

Note that in this case, there are no terms proportional to ), and hence there are no
inhomogeneous solutions (@ = 0).

The spectrum of conformal dimensions is the following. The masses for yx; are
easy to read off from (153), and hence we have three eigenstates 3;,i = 3,4, 512 with

conformal dimension
_ 1 EZ 2
Ay =+ 1 + Lymy
1 /9

For 0 < 6g2€% < 1, we have 1.46 < Ay, < 2 and hence the x; are less irrelevant than }:
the effect of the AdS, (g # 0) surrounding is to lower the conformal dimension relative to
the ungauged case. Next, diagonalizing (154), the three eigenvalues and eigenstates are

1.1 31=¢1+

2 _ 2 _ 202 . 1=¢1+@3,

— 202, Ay == ~ 20202 .

" 8 1= 5T\ %85 3 =@1+20, — @3,

1 25
5t Z*2Og2€2 : 36 = —@1+ @2+ @3-

N =

(155)

(156)

6
m3 = 16> +

o Ay =

Again, conformal dimensions are lowered due to the presence of g. However, more
importantly, in this sector, we have two negative mass-squared states, which could trigger
an instability. Demanding that m? complies with the Breitenlohner-Freedman bound in
AdS; requires that

8¢%(3 <1, orequivalently, 2¢°®3 < 1. (157)

In terms of the electric charge, this means
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5
$FRI<s. (158)

Hence only black holes with very small charges (relative to the AdS, radius) are stable.

Interactions.  Finally, we report on the corrections to the two-point functions due to a
non-trivial background value of ). The corrections are of the form (72). We find

D=3 [ 62
Ay : Dy = 4(Ax_1)< £%+16g>,
. 3 1
A1:D1:—74(A )<€2+g> (159)

A 3 14

where D is defined in (73). Computing them explicitly using the conformal dimensions in
(155) and (156), we find that both D)c and D, are positive for 0 < g% < g EZ

2.19 < 63D, < 3,

~ 21 (160)
3.93 < 3D, < T

Again the effect of g is to lower the values relative to the ungauged theory. Setting ¢ = 0
matches DX with (109) and D, with (110). The case D is similar to D; in the magnetic
non-BPS case with Pl = —P4 ie, (127): for g = 0, the correlator is extremal and Ky 3,3,

diverges; for g2 > the BF bound is violated. In the range ¢? € (0, #), Dy is positive.
2

862 ’

6. Conclusions and Discussion

We explored aspects of near-AdS, backgrounds that appear in N’ = 2, D = 4 su-
pergravity. We focused on quantifying the spectrum of operators and their interactions
with the JT sector. In Table 1, we collected the most prominent examples studied here and
summarised their main features. From this table there are a few important lessons:

*  Supersymmetry is key. In every single non-BPS example we considered, there is
something undesirable: either we have unstable modes in the gauged theory, or we
have problems with the extremal three-point correlators in the ungauged case. BPS
backgrounds have a well-defined EFT description in all cases.

e Gauged versus ungauged. Not surprisingly, the effect of AdSy, relative to Minkowskiy,

on the spectrum of AdS; operators is to lower the conformal dimensions.'® This allows
for the presence of operators that are relevant, or even unstable, for the gauged theory.
It is one reflection of how the surrounding (UV embedding) has an imprint on the
IR physics.

*  Who is relevant, marginal, and irrelevant. It is interesting to see how the spectrum for
a black hole can be plain and simple (BPS ungauged theory), or have all flavours of
operators available (BPS gauged theory). This is an indication that the ingredients
that go into building a statistical description of the black hole will not be universal.

e Expected and unexpected pathologies. One expected pathology we encountered in our
analysis is the presence of modes that violate the BF bound for backgrounds in
the gauged theory. This is a common occurrence in AdS, x R? in the context of
AdS/CMT [61-63], although less discussed for AdS, x 52 [18,64]. The unexpected
pathology is the non-vanishing extremal cubic coupling among the marginal operator
and Y for non-BPS backgrounds in the ungauged theory, as discussed in Section 4.5.
Although it is well known that non-BPS black holes have a flat direction in the attractor
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mechanism, it is disappointing that this spoils the construction of an effective field
theory around near-AdS,.

Table 1. A summary of our results for the different cases we considered: ungauged/gauged, BPS/non-BPS, and charge
configurations. We report (the range of) the conformal dimensions, the eigenstates, and the corrections to the two-point
functions as defined in (72) with D given in (73). The ranges are for 0 < 6g2€% < 1. The symbol A* indicates that the
corresponding states can violate the BF bound if 8¢2¢3 < 1, and that A = 1 for ¢ = 0; in those cases, we only give the sign of
D. Note that the c; in the ungauged, non-BPS eigenstates can be read off from (97). We dropped the superscript (hom) for
the magnetic gauged cases and presented the orthogonal (but not orthonormal) eigenstates for clarity and brevity.

Spectrum Interactions
(Qr, P A Eigenstates (33) = (33) free (1 + D(...))
%) QI 7é 0/ _ 3 _ i X A _ 3
= P, #0 Az =2 3= (@i xi) DS*z%
=x+ .
T . A =1 =xtre Dy undetermined
% (82), 7 in- 3y = c190 + x1 +C
go o dependent 2 192 T X1 2X2
g % parameters 33 =¢1
(=1 ~
g Az =2 34 =3 D2 = ;2
35 = c3@2 + Cax2
A3 =3 36 =192 — X1+ C2x2 + X3 153:%
0.35 < A <042, 31 =-x1+x3 103¢2 < Dy < 12442,
2 D 2
Magnetic, 0.58 < Al < 0.65 35 = —x14+2x2 — X3 141¢%> <D/ <235¢
% np =2-—3ny 1.15 < Ay < 1.31 B3 =¢1+¢r+@3 ~19.7¢%> < Dy < —4.49¢>
m Ny =mng =1y 30 = —1 +
157 < Ay < 1.65 4T T 2532 < Dy < 34.1 ¢
35 = —¢1+2¢2 — @3
215 < Ay <231 36=x1+tx2+x3 35.4¢% < Dy < 48.7¢%
Magnetic,
< p'=p2=p3 146 < A3 <2 3= (pi,xi) 219 < 3D5 <3
A p* = p!
5
80 31=-Xx1+x3 .
Magnetic, AT <1 B D1 >0
pl — p2 —_ p3 32 =—x1+2x2— X3
% pt— _pl 146 < Ay <2 3ivo =@, i=1,23 219 < 3D, <3
g 22<A <3 36=x1+x2+ 3 3.93 < 2D, < 2L
Dyonic, A <1 i =p1tes Dy >0
Pl =+0Q; 35 = @1+ 292 — @3
pl#l — ) 275
o 0 146 < Ay <2 3i=xi,i=123 219 < 63D, <3
I#1 = .
22< Ay <3 36 = —@1 + @2+ @3 393 < BD, <2

Of course, here we focused on specific holographic aspects of the near-AdS; back-
grounds: the spectrum, a specific type of interaction, and the imprint on one specific
correlation function. Other interactions, other entries in the holographic dictionary and
how they affect other observables would be interesting to study. A few possible future
directions are the following.
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6.1. From UV to IR

One of the most interesting and challenging directions to pursue is to reproduce the
results of Table 1 from a dual description. This might be a feasible task for supersymmetric
black holes, where we have some control already on their extremal entropy, such as the
BPS black holes in the gauged and ungauged theory. For the gauged cases, it would be
very interesting if one could reproduce the values of A from the dual CFT3 in the UV.

In addition to the spectrum, we also reported on the cubic interactions appearing in
the near-AdS; region and their imprint on the two-point functions. This is a non-universal
entry in the holographic dictionary, and hence contains valuable information about the near-
CFT;. One direction to pursue is to connect D to an observable outside the near-horizon
region and hence tie its value and properties to a correction that can be computed in the
UV description of the black hole. This should be conceptually clear, although technically
cumbersome to evaluate; if feasible, it would provide a non-trivial check of our analysis.

6.2. Imprint on Quantum and Higher Derivative Corrections

A natural question is how the operator content we quantified affects the quantum
entropy of black holes. In particular, we found in the gauged theory that there are matter
fields with A < 3/2, which according to [43] are the dominant effect over the Schwarzian
sector. It would be interesting to understand the connection to [65,66] and have a more
refined understanding of the statistical system.

It is also important to contrast thermodynamic properties of BPS versus non-BPS
black holes beyond the area law. Several issues already arose in our analysis, and it will be
useful to place those in the context of quantum corrections to the black hole entropy. For
example, for non-extremal black holes, the logarithmic corrections behave very differently,
as illustrated in [67] versus [68]. Furthermore, the results of [65,66] show important
differences between BPS and non-BPS states, which quantifies the role of the mass gap in
both cases.

Finally, it would be interesting to quantify the role of higher derivative corrections
in A/ = 2 supergravity in our analysis. This was recently revisited for AdS, backgrounds
for the ungauged theory in [33], and there are also some new developments in the gauged
theory found by [69,70].

6.3. Black Hole Zoo

As stressed from the beginning, we only focused on backgrounds that are a direct
product of AdS, and S?; and within the gauged theory, we considered a small subset of
all solutions. It would clearly be interesting to expand this analysis and establish if the
patterns found here are robust for all dyonic solutions in AdS.

Of course, there is also a much richer space of solutions that deserve attention. For
instance, the inclusion of different horizon topologies, which is quite intricate in the gauged
theory; several AdS, backgrounds of this form have been recently discussed in [71,72],
including an overview of possible solutions in the 4D gauged theory. Rotation is also a
very interesting aspect to explore, and our current work was inspired by the new features
found in five-dimensional rotating black holes [5,41]. In contrast to the results in [5], we
did not see a change of sign for D for a fixed operator, which might be attributed to the
lack of rotation here. Understanding and decoding the patterns in D clearly deserves more
attention. In four dimensions, rotation is a much more difficult parameter to introduce
in near-AdS;, as reflected by the analysis of near-extremal Kerr in [73]. Still, it would be
interesting to understand how the interplay between rotation and supersymmetry enters
in our discussion, and, in particular, to connect it with the developments in [74-76].

6.4. Integrability Conditions on Non-Extremal Black Holes

As shown in [26], which builds upon observations in [77], a generic non-extremal
dyonic black hole background is not physically reasonable for ¢ # 0 and arbitrary values
of (Qy, P!). In a nutshell, non-extremal AdS, black holes cannot carry both magnetic and
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electric charge without imposing a constraint. One way to discover this inconsistency
comes from demanding the integrability of the mass of the black hole. Integrable conserved
charges are paramount for a well-defined phase space and the validity of the first law of
thermodynamics. It would be interesting to understand how this integrability condition
is present in the context of near-AdS,. The AdS; background will exist for any values of
(Qr, pI ), but there should be a restriction on how to deform away from it such that this
deformation leads to an integrable non-extremal solution.
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Appendix A. Conventions

Here we gather some basic conventions used in Section 2.1 for easy comparison with
other references. For a p-form w with components defined by
1

p:

dxft A Adxtr, (A1)

1 Hp

the dual *w is

* W = (K0 )y XA AT (A2)

where
o 1 }41...],{}, A3
(*w)vl"'vﬂ—p = aeVl“'Vn—pﬂl"'l’lpw . ( )

Here n is the number of spacetime dimensions.
The four-dimensional Levi-Civita tensor is given by

€uvap = *8(4)5%;11/&/3 ’ (A4)

where € is the Levi-Civita symbol &yjp3 = 1. Furthermore, it is useful to recall that in
four-dimensions, in Lorentzian signature, the top form is
dx® AdxP Adxt Adx? = —e*Pry [ —g@dx! Adx® Ada® Adat
= P, [ oWty . (A5)
The two-dimensional Levi-Civita tensor is given by

€ap = V _g(z)éab ’ (A6)

where € is the Levi-Civita symbol &y; = 1.
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Appendix B. Aspects of U(1)* Supergravity

In this appendix, we collect various formulas that are used that are specific to U(1)*
supergravity. In particular, we present explicit formulas related to integrating out the fields
strengths in our setup. We also present the explicit attractor solutions for this theory.

We start by writing out explicitly the matrices introduced in (5). Writing /;; and kjj in
matrix notation, we have

0 0 0 1
_ xuloo 1o
- 2101 0 01" (A7)
1 0 0 0
and
kin ki kiz ks
k1o kop ko3 kog
K= , A8
kiz ks k33 kaa (A8)
kia kos kzs kus
with
kg = e 192193
kip = e*‘P1+<P2+({)3X3 i
kiz = e 91T92 03,

ks = *e_¢1+¢2+¢3)(2?(3 ,

kyy = e 129302 4 e 1t P23
k23 = €7¢1+¢2+¢3X2X3 , (A9)
k24 = —67¢1+¢2+¢3X2Xg — 37(P1+(P27(P3X2 ,
kaz = e~ P1HP2T9392 4 o= P1m92F s
kg = —e PPN Txg — TNy
kg = e 10930202 4 o N1T 0279352 4 0129352 4 o= P1m27 05
A few identities that these matrices satisfy are
X2
H? = Zlﬂ4x4 , (A10)
i.e., H is proportional to its own inverse, and
e MHK ! = ¢ KH. (A11)
Using these identities, we can write the potential introduced in (19) as
J J
_ ol oy (3R 20 k), (P
V(P,Q) = (P Q) ( 26201 (1K), (k1)1 Q)" (A12)

When manipulating the linearised equations of motion for the scalars, it will be also useful
to note that for the U(1)* theory, the potential also obeys

0V =V, 0p0,V =0V, 0,V =2""PkyP . (A13)

When solving for the equations of motion (11), the x* components of the modified field
strengths explicitly are
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Flp =D 3(Qq + x1PH)e? 927 Py,
Foap = P?— x1Q3 — x3Q1 — X3X1P4)€‘P1*4’2+4’36ab
PP — x1Q2 — x2Q1 — X2X1P4)8(P1+¢27(P3€ab (Al4)

Fip = 27%(Qa — x102Q3 — x1203Q2 — 12x3Q1
— X1X2X3P* + x3P® + xoP* + 1 P ) et ey

cp*3(
ﬁBub = @73(

and we can transform them to the usual field strengths F! = dA! and F; = dA| via (4). The
components along the 2-sphere are given explicitly in (14).

Appendix B.1. AdSy Backgrounds

In this section, we write more explicitly the equations that determine the AdS; back-
grounds of Section 3.1. To start, it is useful to introduce some more notation. We will define
for the magnetic charges

Pl =ehth (P1 —X2Q3 — X3Q2 — X2X3P4) /
P2 =eP1+% (P2 — %103 — x3Q1 — 31 P,
( X193 — X3Q1 — X3X1 ) (A15)
PP =l <P3 —X1Q2 = 12Q1 — X2X1P4) ,
7)4 = P4 .
For the electric charges Q123 we have
Qi =e? (Qi +XiP4) ' (Al6)
while for the fourth charge
Qu = PP (Q — 1170 — X1 Q2 — 1oX3Q1 — K RaPt + KPP + KPP . (A17)

These are shifts that are completing the squares in V (P, Q), i.e., making the matrix in (A12)
diagonal, and they also follow from the definitions of 7' and 7 in (A14).
Using Qr and P!, the equations for @; in (27) reduces to

(PAY2— (PO — (P22 + (P)? — Q3 + QF + QF — QF + 2602+ 01204 (2sinh gy + FeP) = 0,
(P42 = (P32 + (P22 — (P)? + Q3 — Q3 + Q3 — QF 4271+ 92193 2d4 (2 sinh ¢ + 3¢72) = 0, (A18)
(P2 +(P?)? = (P?)? = (P')? + Qf + Q3 — QF — Q} + 27 92 32D (2 5inh @3 + f3¢) = 0.

The equations for the axions (28) reduce to the following

—P*Q) + P2Qy + P?Qs — P1Qy + 267 PP 2R, =0,
—P*Qr+ P3Q1 + P1 Q3 — P2Qy + 20N P21 P 2%, = 0, (A19)
~P*Q3 + P?Q1 + P1Qy — PPQy + 267 PP 2 Dgs = 0,

The equations in (26) read in this notation

1 s

5= g PP (G B+ G G (PY + (PO (P4 (P

B 40} (A20)
2 —

+ % Y (2cosh @; + x7e?),

1

and
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1 1 5 66
2 =g PP (G B+ G Gh (PH? + (PO 4 (P24 (P
0 0
2 - (A21)
-5 ;(2cosh @i + xre) .
A useful linear combination is
1 1 5
— — = =&Y (2cosh ¢; + x7e?) . (A22)
SRR i

Magpnetic solution, non-BPS.  In the purely magnetic case, i.e., Q; = 0 and P! # 0, the
attractor solution is very simple to write explicitly. All of the axions vanish at the horizon

xi=0, (A23)
and we can solve (A18) and (A21) for the charges

1 _ _ _ o
(7?1)2 = cb% <c1>2 _|_g2(e*fi’1 +eP2 + e?’a)) eP1tPates
0

1 _ i _ o
(P?)? = @} <q>2 +g%(e? e 4 e%)) PPt Ps
0

) (A24)
(733)2 _ CD% <q>2 —|—g2(e"_’1 +eP2 4 e—¢3)> eP1tP2t9s
0
1 _ _ _ o
('P4)2 _ @3 <q>2 +g2(e_(P1 +e P2 4 e—4’3)>e¢1+¢2+¢3 ,
0
The attractor value of the dilaton ® is given by
1 1 2 _
292 +2g Zcosh Qi . (A25)
2 0 i

Magnetic solution, BPS.  In Section 5.2, we discussed the BPS solution of [24], see
also [23,60]. The BPS equations in the notation of [24] are!*

1 1 n ny n3
0=¢(Li+L+L3+— |+ ——+—=+=2 LiL,L
g(1+ 2 + 3+L1L2L3)+®%(L1+L2+L3+n4123)

0—32<L1+L2—L3—L1L12L3) —(;%(EJFE—EZ—ML@@)
0:g2<L1—L2+L3—L1L12L3> _%<Z_K+L3_ML1L2L3) (A26)
0 =g2(L1 —Ly— L3+ L1L12L3) - %(E - 2—2 - %i, +n4L1LzL3)
g:g2<Ll+L2+L3+L1leL3) —%(E—FE%—ZZ-FMMLZLS))
with the additional condition that
Y on=2 (A27)
i

and three of the n; are negative. Translating to our notation, which is performed by
comparing (A.2) there with (3) here, we have
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n = gP4 , Ny = gP2 , ng = gP3 , Ny = gP1 , (A28)

and
L= o3 (P1+92+3) , L= o3 (91T P2—¢3) , Ly= o3 (—91—p2tg3) (A29)

Notice that (A26) are linear in the charges, while the equations of motion (A18) and (A19)
are quadratic. This is expected since the BPS equations are linear conditions, while an
equation of motion is non-linear. This also reflects that BPS solutions are only a subset of
the attractor solutions.

It is rather easy to solve (A26) in a similar fashion as (A24): this gives

282
_ &P 1 2 _
n = > ( L2L3 + Ll L1L2 L1L3
282
8§ Pg 1
———+ L5 —LyL3— L)L
n 5 ( LiLs + Ly — Lol — Loly
= ng)% L +L L3L L3L 0
N3 = L, T heta—lsh
. PO 1 1 1 1
*7 2 \I21212  LLs LiLy LiLs
and
2
1 @21+ Lflols + L5+ Ls + L1 LoL3 (A31)
K% 4 L1LyL3 ’
A clever linear combination of (A30) also gives & as
2 1 27272
REr: (n4L1L2L3 —wLyLs — Ly Ls — n3L1L2> . (A32)

The solutions (A30) solve (A18), and (A31) is just (A20). To satisfy (A21), one must further
impose (A27). The condition on the negativity of three of the n; is an extra constraint
that follows from supersymmetry, i.e., the existence of a Killing spinor. From (A30), it is
clear that the BPS solution given here is at a very different footing as compared to (A24):
all charges are proportional to g, so they are not smoothly connected to solutions in the
ungauged theory.

Appendix C. Near-AdS; Properties of Magnetic Backgrounds

In this appendix, we collect results regarding the magnetic backgrounds studied in
Section 5. The results in this section apply for both non-BPS (Section 5.1) and BPS (Section 5.2)
cases. Here, we collect aspects of the linearised equations and interactions; the attractor
solutions are described in Appendix B.1. The expressions are given in the non-BPS notation;
it is straightforward to translate them to the BPS language using the appropriate changes,
notably (A28).

For the purely magnetic case Q; = 0 and P! # 0, the linearised equations in (33) become

- 1
Ogpi —2(g” cosh ¢ + g* cosh oy + )

0 8o (A33)
+ 2¢% sinh @ Qi+ 2¢”% sinh P+ g sinh ;) =0,
0

where i # j # k. We can split the solutions into homogeneous and inhomogeneous parts
as in (35); the inhomogeneous parts of x; can consistently be set to vanish. Solving for
Ay glves
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21— ePitPi _ oPit P 1 oPit Pk

Pi= By 1+ eP17% 4 ¢P177 1 o027 %5

The homogeneous solutions (¢h°™, xhom) satisfy

O™ —2(g? cosh g + g% cosh g + 5 )fp}z“’m

+ 2¢?% sinh ¢ ?;

hom

+2¢% sinh @; q)hom =0,

and
hom _ 1 hom
Ox; (g cosh ¢; +g cosh @y + @2 )X
— Mk X?O - m”x}kmm =0,
again with i # j # k, and
1 1p2 34\ ,—P1—Pr—@
My = My = — | P P= — PP e 17 927%3
cpg ( )
Mg = msy = i4 <P1P3 — P2P4)e*‘7’1*9’_’2*4_’3 ,
CI)O
1 o
My =mz = — <P2P3 — 731734) e 9172703

0

(A34)

(A35)

(A36)

(A37)

In Sections 5.1 and 5.2, we considered a simplification in which we further set three of
the charges equal, leaving only two independent charges. Explicitly, in the notation we
used for the non-BPS case, we set P2 = P2 = P!, and P* is independent. After making this

simplification, the cubic interactions are described by the effective action

Lint = Y943 - 33 + a1Y(9231031 + 92329732 + 94369 36)

32

"1

6
a3 3303300 — Y_vi YV 3i3i,
i—1

(A38)

where the eigenstates in 3 are orthogonal and appropriately normalised. We also have

=1(0,0,1,1,1,0), a;=

1— e
1+ 3201’

(A39)

which parametrises the inhomogeneous terms in (A34), and the cubic coefficients are
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)\eff

/\eff

AEff

5 5 5 P
A = 166~ 71g2 + 15¢71¢2 4 5e~ 91

(PY)? 3g, P'P* 5 o g
Vi =1V =4 e 1_ ¢ 4)1+ e 91
e 1<2q>3 20} g

42 1p4
§Qe—3¢1+§1)§
2 2 o}

P4 2 A o P4 2 A ) B
vy = —3a2 (“()4)93 31— g% q”) + 2aq (“{)Ze 301 4 6g> smh((p1)>

e —¢1 _|_g26_471

0

(P2 o1 _ 2 inh(o (P1)?
vy =5 = —ay | ——e? — g sinh(¢y) | +3—1 o e?1 + g cosh(¢1) ,
0

9(P)* 5  (P*)? 39 P'P* 2,-
v6=a1<2 ol e + 2®4 4 o —e M4 g
9 (P1)2 3 (P42 5, plp*

+5 e+ e 3N —3— e P14 g% P
2 @) 2 of o

The ungauged theory magnetic case is recovered by setting a; = 0 (i.e., by removing the
inhomogeneous solution) and g = 0. We stress again that these expressions apply to both
BPS and non-BPS backgrounds.

In Section 5, we classify the corrections to the two-point functions of the fields 3; in
terms of the parameter D defined in (73). For the cubic interactions given in (A38), the
effective coupling constants are given by

15 - _plpt 3
A= e P12 _ 51 -2
e g + 5 —erly e 2@3 22
9 plpt 1
e (Pl eq)l e (Pl _ ,
e < £pelet 20} 26%)

_ 2 i _
3e~P1g% 4 13eP1g% — gz +a (6(2_"’1g2 - £2> -3 <3e_¢1g2 +9eP1g? — 2322> ,
2 2 2 (A41)

21

_ 4 _ 1
At = o1 g? + q’lg ——a1<3coshg01g2—£§> ,

ips 9

T2
®% 6

- - _plpt 1
—ay 20791 g% —3eP1 g2 P - ) :
< LI

Appendix D. Near-Horizon Behaviour of Black Holes in Ungauged Theory

In Section 4.3, we discussed the eigenvectors of the linearised equations and their
conformal dimensions. We showed that in the non-BPS case, the eigenvectors are linear
combinations of the six scalar fields; some of them have conformal dimension A # 2, and
hence a different scaling near the horizon than the expected growth discussed in Section 4.4.
In this appendix, we will give some details on how to take the extremal and near-horizon
limits for the eigenstates in both the BPS and non-BPS branches, such that one finds the
correct near-horizon response.

To define the (ungauged, static) extremal limits, we will start from the black hole
solution in [19]. This solution is parametrised in terms of one mass parameter 1y and eight
charge parameters (0;,7!). The metric is
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R(r) 4, W)

=W R

dr? + W(r)(d6? + sin® d¢?) , (A42)

where R(r) is a quadratic and W?(r) a quartic polynomial in 7; these functions further-
more depend on the mass parameter 1y and charge parameters (J7,y1). If we perform
a dimensional reduction of this metric, it is clear from (7) that the dilaton is given by
®(r) = /W(r). The precise definitions of W(r) and R(r), as well as those of the dilatons
@;, axions )x;, and the electric and magnetic charges (PI ,Qr), can be found in [19]. Relevant
to the discussion here is that at extremality and in the strict near-horizon limit » — 0

R(r) = %, W(r) = ® =13, (A43)
r—0 r—0

such that we recover AdS; as the background metric; relative to the parametrisation in (54),
we have z = E% /7. For both the BPS and the non-BPS branch, the extremal limit consists of
scaling

moy ~ My 62 ’ 5[ ~ (5160 ’ (A44)

with € — 0. This also implies that the horizon radius r;, ~ mge? — 0. The scaling of the -y}
determines in which branch we land. We summarise the different possibilities in Table Al.

Table Al. Different possible extremal limits, up to permutations. The second column contains its relation to solutions of

the attractor equations in Appendix B.1 for g = 0. In the non-BPS case, the solutions are more complex and depend on the

detailed configuration.

Extremal Limit Attractor Solution
el ~ eVe ™ ore” ~ eTle BPS: Pl=P2=P3=P%, Q1 =Qy=Q3=0,
eN2 ~ eM2e™l & eM34 ~ M34e BPS: Pl=P?=-P3=-P%, Q1 =Q=-Q3=-0Q4
eN ~ eMe™l & eV ~ eTitle non-BPS
€N ~ eMNel & eVi#1 ~ eTit1l non-BPS

For the BPS branch, the choice of an extremal limit also determines the number of
relative minus signs. For both extremal limits that give the non-BPS branch, it is possible to
tune the §; in such a way that one gets all or some of the P! and Q; charges equal (up to
minus signs). An easy example for the second non-BPS extremal limit in Table Al is

O=0=06 = Pl=-P=_P=_P Q=0 =03=-Q;, (A45)

where J; # 0. These conditions on §; do not impose that any of the physical charges P! and
Qr are equal. Note, however, that from this example, it is clear that this non-BPS limit does
not include the purely magnetic case (for which all 5; = 0). In general, both non-BPS limits
assume that the charge parameters (d;, ;) are finite; for special cases where (some of) the
charges vanish, one should first impose that before taking an extremal limit." Finally, by
choosing different numerical values for the J; and 7y, one will end up in a non-BPS solution
that does not comply with (80); it can be checked numerically that the eigenvalues are still
as in (96).

In Section 4.4, we discussed the linear response of the dilaton and axion fields away
from their attractor values. At extremality (¢ = 0), the horizon radius is at r;, = 0, and we
can expand the scalar fields around it to find in the BPS branch (for any extremal limit)

(Pi=¢i+gol(1)r+--- /

_ 1
Xi:Xi‘f'X,( )7+”',

(A46)
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m203 =0 :
m23 =2 :
m203 =6 :

as predicted by the nAttractor mechanism [16]. For a general non-BPS solution, this will
still be true. However, for the non-BPS case, the single scalar fields are generally not
eigenstates of the linearised equations of motion. Considering the near-horizon expansion

of the eigenstates instead, we find again a linear response for the eigenvectors with m? = f%,
2

but for the eigenvectors with m? = 0orm> = [% we find that the linear term cancels exactly.
2

For some special cases that comply with (80), this will already happen at the level of the
dilatons and axions: for example, for the case discussed around (97), the linear terms of x;
and x3 vanish (as could have been expected from the eigenvector 31).

To illustrate this cancellation, let us consider the following numerical example for the
first non-BPS limit in Table A1

5 1

1
e :§,e52:3,e53:5,e54:7,e% :116*1,e72:13,e73=ﬁ,e74:19. (A47)

The eigenstates of the mass matrix are

220 31 = —0.1826 1 + 0.928779 @3 + 1.35251 x1 + X3,
277 3, =-0.133794 ¢ + 1.26839 - 1075 @, + 0.991009 x1 + X2,
33 = 740696 @1 + X1,
mZgg =2 34 = —7.88398 - 10* @5 + X2, (A48)
35 = —1.07668 3 + X3,

22— 6 36 = 0.1826 1 + 1.73108 - 1072 @5 + 0.928779 3

270 —1.35251 x1 + 1.36478 x> + X3,
This is what our analysis predicts for the eigenstates. On the other hand, if we take the
corresponding on-shell solution in [19] with these same charges, and upon taking the
near-horizon limit ¥ — 0, the moduli all have linear responses

X1 = X10 — 01226297 + O(r?) @1 = Pro —2.304647 4+ O(r?)
X2 =X20—31277-1077r+0(*) , @2= oo +559775r+0(r*) ,  (A49)
X3 = R30 + 849969 + O(r?) @3 = P39 — 1.70457r + O(r?)

but if we consider the near-horizon linear combinations dictated by the eigenvectors (A48)

we find
3; = —2.231524+0(r?), 3, =6332.26+0(r%),

33 = 6.18617 — 1738157 + O(r?) , 34 = —784443 — 4413267 + O(r?),
35 = 2.26974 + 3.42844 1 + O(1?) ,
36 = 8643.32 + O(r?),

(A50)

Thus, indeed, the eigenvectors with m?¢3 = 2 still have a linear response, as pre-

dicted, but for the eigenvectors with m?¢3 = {0,6} this linear term vanishes in accordance
with (99).

It is also worth mentioning that the non-BPS eigenstates with m%¢3 = {0, 6} are easily
overlooked in simple cases. For example, in the purely magnetic or purely electric non-BPS
case, the eigenvectors are

mB=0: 31=x1+x2, n=x1+xs,
mi=2: 33=¢1, 34=¢2, 35=¢3, (A51)
m3=6: 36=—x1+x2+Xx3,

but for these cases, the axions actually vanish for the corresponding black hole, such that
we are left only with the eigenvectors ¢;, which have the usual linear response.
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Notes

1

BPS stands for saturation of the Bogomolnyi-Prasad-Sommerfield bound, which here we use to denote that the solution preserves
a fraction of supersymmetry. Non-BPS denotes that the solution preserves no supersymmetry.

At extremality, a recent analysis of AdS, x S? solutions of N = 2 ungauged supergravity viewed from the perspective of the
2D gravity can be found in [33], which includes higher derivative corrections. An excellent review, using the technology of the
quantum entropy function, is presented in [34].

In the following, x will be a shorthand referring to the two-dimensional coordinates x?, and not the four-dimensional coordinates
x#. For example, ®(x) = O(x7).

4 Our definition of P! and Q is exactly the same as in [26], and they are presented in geometrical units. Other suitable ways to
normalise the charges are pl = % and Q) = %, or to introduce quantised charges as pI = \/% and g7 = \/%.

5 V (P, Q) has several simplifications and identities that apply for the U(l)4 theory. These are listed in Appendix B.

©  About notation: ¢; are the components of 9, and explicitly we have (g1, P2, %3, P4, ¥s, Ps) = (@1, 92,93, X1, X2, X3)-

7 The addition of & Lin (61) is to make the field ) dimensionless.

8 Despite appearances, (80) does not imply that the physical charges (Qj, Pl) are set equal: on the BPS branch, these conditions
allow for 4 electric and 4 magnetic independent charges. For solutions on the non-BPS branch that comply with (80), there will be
at least one constraint among (Qj, p! ), and hence this type of solution is not the most general non-BPS configuration.

? This also agrees with the lowest modes in the spectrum of fluctuations of the scalar moduli in [50-52].

10 A straightforward check can be done with, for example, the solutions in [23,24,26].

1 In an extremal three-point function, the conformal dimension of one of the operators is equal to the sum of the remaining ones, e.g.,
Ay = Ay + As. For the evaluation of (70), the irrelevant deformation ) is in the A_ branch, such that we haved = A_ 4+ Ay + A3
which is the same statement.

12 The labelling of eigenstates is such that the conformal dimensions increase as we go from 3; to 3.

13 This also happens in AdSs; see [41].

14 In these equations, we restored the gauge coupling gz. Note that the coupling in [24] differs from the one used here by a factor V2.

15 In doing so, one will find that neither non-BPS limit in Table A1 accommodates the purely electric case y; = 0. To get this, one
has to switch the scalings of §; and 7 of the first non-BPS limit: take all ¢ ~ €% and impose the suitable scalings on 6;.
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