
universe

Article

Charged Particle Motions near Non-Schwarzschild Black Holes
with External Magnetic Fields in Modified Theories of Gravity

Hongxing Zhang 1,2, Naying Zhou 1,2, Wenfang Liu 1 and Xin Wu 1,2,3,*

����������
�������

Citation: Zhang, H.; Zhou, N.;

Liu, W.; Wu, X. Charged Particle

Motions near Non-Schwarzschild

Black Holes with External Magnetic

Fields in Modified Theories of

Gravity. Universe 2021, 7, 488.

https://doi.org/10.3390/

universe7120488

Academic Editors: Panayiotis

Stavrinos and Emmanuel N. Saridakis

Received: 8 November 2021

Accepted: 7 December 2021

Published: 10 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620,
China; M130120111@sues.edu.cn (H.Z.); M130120101@sues.edu.cn (N.Z.); 21200007@sues.edu.cn (W.L.)

2 Center of Application and Research of Computational Physics, Shanghai University of Engineering Science,
Shanghai 201620, China

3 Guangxi Key Laboratory for Relativistic Astrophysics, Guangxi University, Nanning 530004, China
* Correspondence: wuxin_1134@sina.com or xinwu@gxu.edu.cn

Abstract: A small deformation to the Schwarzschild metric controlled by four free parameters could
be referred to as a nonspinning black hole solution in alternative theories of gravity. Since such a
non-Schwarzschild metric can be changed into a Kerr-like black hole metric via a complex coordinate
transformation, the recently proposed time-transformed, explicit symplectic integrators for the Kerr-
type spacetimes are suitable for a Hamiltonian system describing the motion of charged particles
around the non-Schwarzschild black hole surrounded with an external magnetic field. The obtained
explicit symplectic methods are based on a time-transformed Hamiltonian split into seven parts,
whose analytical solutions are explicit functions of new coordinate time. Numerical tests show
that such explicit symplectic integrators for intermediate time steps perform well long-term when
stabilizing Hamiltonian errors, regardless of regular or chaotic orbits. One of the explicit symplectic
integrators with the techniques of Poincaré sections and fast Lyapunov indicators is applied to
investigate the effects of the parameters, including the four free deformation parameters, on the
orbital dynamical behavior. From the global phase-space structure, chaotic properties are typically
strengthened under some circumstances, as the magnitude of the magnetic parameter or any one
of the negative deformation parameters increases. However, they are weakened when the angular
momentum or any one of the positive deformation parameters increases.

Keywords: modified gravity; black hole; magnetic field; chaos; symplectic integrator

1. Introduction

A Schwarzschild solution describing a nonrotating black hole and a Kerr solution
describing a rotating black hole are two exact solutions of Einstein’s field equations of
general relativity in a vacuum. According to the no-hair theorem, astrophysical (Kerr)
black holes have their masses and spins as their unique characteristics. The theoretical
prediction of the existence of black holes has been confirmed frequently by a wealth of
observational evidence, such as X-ray binaries [1,2], detections of gravitational waves [3,4]
and event-horizon-scale images of M87 [5,6].

Observational tests of strong-field gravity features cannot be based on an a priori
hypothesis about the correctness of general relativity. Instead, such tests must allow ansatz
metric solutions to deviate from the general relativistic black hole scenarios predicted by
the no-hair theorem. These metric solutions often come from perturbations of the usual
Schwarzschild (or Kerr) black hole or exact solutions in alternative (or modified) theories
of gravity. A small deformation to the Schwarzschild metric describing a nonspinning
black hole (i.e., a modified Schwarzschild metric) [7] could be required to satisfy the
modified field equations in dynamical Chern–Simons modified gravity [8,9]. By applying
the Newman–Janis algorithm and a complex coordinate transformation, Johannsen and
Psaltis [10] transformed such a Schwarzschild-like metric with several free deformation
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parameters into a Kerr-like metric, including a set of free deformation parameters and mass
and spin. This Kerr-like metric, which is a parametric deformation of the Kerr solution and
is not a vacuum solution, is regular everywhere outside of the event horizon. These metric
deformations away from the Schwarzschild or Kerr metric by one or more parameters
contain modified multipole structures. Although the γ metric (or Zipoy–Voorhees metric)
describing a static and axially symmetric field [11,12] is also a parameterizing deviation
from the Schwarzschild solution for γ 6= 1, it is an exact solution of Einstein’s equations
in a vacuum.

In addition to the above-mentioned simply modified theories of gravity, such as
scalar-tensor gravity, many other forms of modified theories of gravity can be found in the
literature. Some examples are scalar-tensor theories, such as the Brans–Dicke theory [13,14],
general scalar-tensor theories [15–19], Einstein-ther theories [20], Bimetric theories [21,22],
tensor-vector-scalar theories [23,24], Einstein–Cartan–Sciama–Kibble theory [25,26], scalar-
tensor-vector theory [27], f (R) theories [28–30], f (G) theory [31,32], Hořava-Lifschitz
gravity [33–35] and higher dimensional theories of gravity [36–38]. Researchers and stu-
dents in cosmology and gravitational physics should also see review articles [29,30,39–41]
for more information on these modified gravity theories. Black-hole solutions in modi-
fied theories of gravity are generally unlike those in general relativity, and include many
additional free parameters and the parameters predicted by the no-hair theorem in gen-
eral relativity. Although a solution in a modified gravity model can be mathematically
equivalent to a scalar field model, this mathematical correspondence does not always
mean physical equivalence. The two corresponding solutions may have different physical
behaviors. Corrections to the classical Einsteinian black hole entropy are necessary so as to
constrain the viability of modified gravity theories in the study of Schwarzschild–de Sitter
black holes by the use of the Noether charge method [42]. However, not all black-hole
solutions in modified theories of gravity must necessarily dissatisfy the Einstein field
equations. For example, a stationary black-hole solution of the Brans–Dicke field equations
must be that of the Einstein field equations [43]; this result is still present if no symmetries
apart from stationarity are assumed [44]. The Kerr metric also remains a solution of certain
f (R) theories [45].

A deep understanding of the relevant properties of the standard general relativistic
black hole solutions and particle motions in the vicinity of the black holes is important to
study accretion disk structure, gravitational lensing, cosmology and gravitational wave
theory. Observational data from the vicinity of the circular photon orbits or the innermost
stable circular orbits could be used as tests of the no-hair theorem. The properties of the
innermost stable circular orbits are useful for understanding the energetic processes of
a black hole. For this reason, radial effective potentials and (innermost) stable circular
orbits of charged particles in electromagnetic fields surrounding a black hole have been
extensively investigated in a large variety of papers (see, e.g., [46–51]). The motions of
charged particles in the equatorial plane sound simple, but off-equatorial motions of
charged particles in the magnetic fields become very complicated. In a stationary and
axisymmetric black hole solution, there are three conserved quantities, including the
energy, angular momentum and rest mass of a charged particle. The fourth invariable
quantity related to the azimuthal motion of the particle is destroyed in general when an
electromagnetic field is included around the black hole. Thus, the particle motion in the
spacetime background is not an integrable system. Chaos describing a dynamical system
with sensitive dependence on initial conditions can occur in some circumstances. Various
aspects of chaotic motions of charged particles around the standard general relativistic
black holes perturbed by weak external sources, such as magnetic fields, are discussed in
many references (see, e.g., [52–59]).

Thanks to the importance of the deformed (or modified) black hole solutions in tests
of strong-field gravity features of general relativity, the motions of charged particles in the
modified solutions with or without perturbations of weak external sources are naturally
taken into account by some authors. The authors of [10] focused on the question of how the
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radii of the innermost stable circular orbits and circular photon orbits vary with increasing
values of the spin and deviation parameters in a Kerr-like metric of a rapidly rotating
black hole. They demonstrated that their Kerr-like metric is suitable for strong-field tests of
the no-hair theorem in the electromagnetic spectrum. Charged particle motions around
non-Schwarzschild or non-Kerr black hole immersed in an external uniform magnetic
field were considered in [60–62]. The influence of a magnetic field on the radial motion
of a charged test particle around a black hole surrounded with an external magnetic field
in Hořava–Lifshitz gravity was investigated in [63–65]. The radial motions of charged
particles in the γ spacetime in the presence of an external magnetic field were studied
in [66]. In fact, the γ spacetime is nonintegrable and can allow for the onset of chaos if the
external magnetic field is not included [67]. The authors of [68] gave some insights into the
effect of one deformation parameter on the chaos of charged particles in the vicinity of a
non-Schwarzschild black hole with an external magnetic field.

Numerical integration methods are vital to detecting the chaotic behavior of charged
particles in the vicinity of the standard general-relativistic or modified black hole solutions
with or without perturbations from weak external sources. They should have good stability
and high precision so as to provide reliable results when detecting the chaotic behavior.
The most appropriate long-term integration solvers for Hamiltonian systems constitute
a class of symplectic integrators which respect the symplectic structures of Hamiltonian
dynamics [69,70]. The motions of charged particles near the black holes with or with-
out weak external sources can be described by Hamiltonian systems, and thus allow for
the applicability of symplectic methods. If the Hamiltonian systems are split into two
parts, explicit symplectic integration algorithms are not available in general. However,
implicit symplectic integrators, such as the implicit midpoint rule [71,72] and implicit
Gauss–Legendre Runge–Kutta symplectic schemes [54,73,74], are always suitable for their
applications to these Hamiltonian systems that do not need any separable forms. When the
Hamiltonians are separated into one group with explicit analytical solutions and another
group with implicit solutions, explicit and implicit combined symplectic methods can be
constructed [75–79]. The implicit algorithms are more computationally demanding than the
explicit ones in general; therefore, the explicit symplectic integrations should be developed
as much as possible. Recently, the authors of [80–82] successfully constructed the explicit
symplectic integrators for the Schwarzschild-type black holes with or without external
magnetic fields by splitting the corresponding Hamiltonians into several parts having ana-
lytical solutions as explicit functions of proper time. More recently, the time-transformed
explicit symplectic integrators were designed for the Kerr family spacetimes [83–85].

The idea for constructing the time-transformed explicit symplectic integrators and the
explicit symplectic integrators introduced in [80–83] allows for the applicability of many
standard general-relativistic or modified black hole solutions with or without perturbations
of weak external sources. In spite of this, there is no universal rule on how to construct
explicit symplectic integrators for Hamiltonians corresponding to the spacetimes. Specific
Hamiltonian problems have different separations, or different choices of time-transformed
Hamiltonians and their splitting forms. As is claimed above, the non-Schwarzschild metric
with four free deformation parameters could produce a Kerr-like metric through a complex
coordinate transformation [10]. Now, there is the question of whether the time-transformed
explicit symplectic integrators for the Kerr-type spacetimes [83] are applicable to such
a deformed non-Schwarzschild black hole immersed in an external magnetic field. We
address that question in this paper. In addition, we mainly pay attention to the effects of
the four free deformation parameters on the chaotic behavior. The present work is unlike
the study in [68], in which one deformation parameter is added to the non-Schwarzschild
metric and no explicit symplectic integrators are considered.

The remainder of this paper is organized as follows. A metric deformation to the
Schwarzschild spacetime is introduced in Section 2. Time-transformed explicit symplectic
integrators are described in Section 3. Orbital dynamical properties are discussed in
Section 4. Finally, the main results are presented in Section 5.
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2. Deformed Schwarzschild Metric

In Schwarzschild coordinates (t, r, θ, ϕ), a Schwarzschild-like metric ds2 = gαβdxαdxβ

is written in [7,10] as

ds2 = − f (1 + h)dt2 + f−1(1 + h)dr2 + r2dθ2 + r2 sin2 θdϕ2, (1)

f = 1− 2M
r

,

h = k0 +
k1M

r
+

k2M2

r2 +
k3M3

r3 . (2)

M denotes a mass of the black hole. The speed of light c and the gravitational constant
G are taken as geometric units; c = G = 1. Deformation function h is a perturbation to
the Schwarzschild metric, where k0, k1, k2 and k3 are deformation parameters. It comes
from modified multipole structures related to spherical deformations of the star. When the
action through algebraic, quadratic curvature invariants coupled to scalar fields is modified,
such small deformations in the Schwarzschild metric are obtained from the modified field
equations and the scalar field’s equation in dynamical theory. Clearly, Equation (1) with
h = 0 corresponds to the Schwarzschild metric. When h 6= 0, Equation (1) looks like the
Schwarzschild metric but can be transformed into a Kerr-like black-hole metric by the
Newman–Janis algorithm [86] and a complex coordinate transformation [10].

Suppose the black hole is immersed in an external electromagnetic field with a four-
vector potential:

Aµ =
1
2

δ
ϕ
µ Br2 sin2 θ, (3)

where B is a constant strength of the uniform magnetic field. The motion of a test particle
with mass m and charge q is described in the following Hamiltonian.

H =
1

2m
gµν(pµ − qAµ)(pv − qAν). (4)

where pµ is a generalized momentum, which is determined by

ẋµ =
∂H
∂pµ

=
1
m

gµν(pν − qAν), (5)

equivalently,

pµ = mẋνgµν + qAµ. (6)

The 4-velocity ẋµ is a derivative of the coordinate xµ with respect to proper time τ. As
the Hamiltonian equations satisfy Equation (5) and

ṗµ = − ∂H
∂xµ ; (7)

pt and pϕ are two constants of motion:

pt = mṫgtt = −mṫ f (1 + h) = −E, (8)

pϕ = mϕ̇gϕϕ + qAϕ = mr2 ϕ̇ sin2 θ +
1
2

qBr2 sin2 θ = L. (9)

E is an energy of the particle, and L is an angular momentum of the particle.
For simplicity, dimensionless operations are given to the related quantities as follows:

t → tM, τ → τM, r → rM, B → B/M, E → mE, pr → mpr, L → mML, pθ → mMpθ ,
q → mq and H → mH. In this way, M and m in Equations (1)–(9) are taken as geometric
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units; m = M = 1. The Hamiltonian (4) has two degrees of freedom (r, θ) in a four-
dimensional phase space (r, θ, pr, pθ), and can be rewritten as a dimensionless form:

H = − E2

2 f (1 + h)
+

1
2r2 sin2 θ

(L− 1
2

Qr2 sin2 θ)2 +
f p2

r
2(1 + h)

+
p2

θ

2r2 , (10)

where Q = Bq.
Besides the two constants (8) and (9), the conserved Hamiltonian quantity

H = −1
2

(11)

is a third constant of the system (10). The third constant of motion exists due to the
invariance of the 4-velocity or the rest mass of the particle in the time-like spacetime (1).
Given Q = 0, the system (10) holds a fourth constant of motion and therefore is integrable
and nonchaotic. When Q 6= 0, the system (10) has no fourth constant and then becomes
nonintegrable. In this case, analytical solutions cannot be given to the system (10), but
numerical solutions can.

3. Explicit Symplectic Integrations

First, time-transformed explicit symplectic methods for the system (10) is introduced.
Then, their performance is numerically evaluated.

3.1. Design of Algorithms

As is claimed above, the metric (1) seems to be the Schwarzschild metric, but the
system (10) is not suitable for the application of the explicit symplectic methods suggested
in [80–82] because the Hamiltonian (10) is unlike the Hamiltonians of the Schwarzschild-
type spacetimes (including the Reissner-Nordström metric, the Reissner-Nordström-(anti)–
de Sitter solution and these spacetimes perturbed by external magnetic fields), which can
be separated into several parts having analytical solutions as explicit functions of proper
time τ. Since the Schwarzschild-like metric (1) can correspond to a Kerr-like metric via
some coordinate transformation [12], the time-transformed explicit symplectic methods for
the Kerr-type spacetimes proposed in [73] are guessed to be applicable to the system (10).
The implementations of the algorithms are detailed below.

By extending the phase-space variables (pr, pθ ; r, θ) of the Hamiltonian (10) to (pr, pθ , p0;
r, θ, q0), where τ is viewed as a new coordinate q0 = τ and its corresponding momentum is
p0 with p0 = −H = 1/2 6= pt, we have an extended phase-space Hamiltonian:

J = H + p0. (12)

It is clear that J is always identical to zero, J = 0. By taking a time transformation

dτ = g(r)dw, (13)

g(r) = 1 + h, (14)

we get a new time transformation Hamiltonian:

H = g(r)J = −E2

2 f
+

(1 + h)(L− 1
2 Qr2 sin2 θ)2

2r2 sin2 θ
+

p2
r

2
− p2

r
r

+
(1 + k0)p2

θ

2r2 +
k1 p2

θ

2r3 +
k2 p2

θ

2r4 +
k3 p2

θ

2r5 + p0g(r). (15)

The HamiltonianH has new coordinate time variable w and the phase-space variables
(pr, pθ , p0; r, θ, q0). As J = 0,H = 0.
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Similarly to the Hamiltonians of the Schwarzschild-type spacetimes in
references [80–82], the time-transformed Hamiltonian H can be split in the following
way:

H = H1 +H2 +H3 +H4 +H5 +H6 +H7, (16)

where sub-Hamiltonians read

H1 = −E2

2 f
+

(1 + h)(L− 1
2 Qr2 sin2 θ)2

2r2 sin2 θ
+ p0(1 + h), (17)

H2 =
p2

r
2

, (18)

H3 = − p2
r

r
, (19)

H4 =
(1 + k0)p2

θ

2r2 , (20)

H5 =
k1 p2

θ

2r3 , (21)

H6 =
k2 p2

θ

2r4 , (22)

H7 =
k3 p2

θ

2r5 . (23)

Each of the seven sub-Hamiltonians is analytically solvable, and its solutions are
explicit functions of the new coordinate time w. A, B, C, D, E , F and G are differential
operators, which correspond to H1, H2, H3, H4, H5, H6 and H7, respectively. These
operators are written as

A = −∂H1

∂r
∂

∂pr
− ∂H1

∂θ

∂

∂pθ
+

∂H1

∂p0

∂

∂q0

= f1
∂

∂pr
+ f2

∂

∂pθ
+ (1 + h)

∂

∂q0
, (24)

f1 =
k1

2r2 +
k2

r3 +
3k3

2r4 −
E2

r2( 2
r − 1)2

+
(L− Qr2 sin2 θ

2 )2( k1
r2 + 2k2

r3 + 3k3
r4 )

2r2 sin2 θ

+(L− Qr2 sin2 θ

2
)[Q +

(L− Qr2 sin2 θ
2 )

r2 sin2 θ
]

·( k0 + 1
r

+
k1

r2 +
k2

r3 +
k3

r4 )− p0
∂h
∂r

,

f2 = (L− Qr2 sin2 θ

2
)[Q +

(L− Qr2 sin2 θ
2 )

r2 sin2 θ
]

·(k0 + 1 +
k1

r
+

k2

r2 +
k3

r3 ) cot θ,

B = pr
∂

∂pr
, (25)

C = −2
r

pr
∂

∂r
− p2

r
r2

∂

∂pr
, (26)
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D =
(1 + k0)pθ

r2
∂

∂θ
−

(1 + k0)p2
θ

r3
∂

∂pr
, (27)

E =
k1 pθ

r3
∂

∂θ
− 3

2
k1 p2

θ

r4
∂

∂pr
, (28)

F =
k2 pθ

r4
∂

∂θ
− 2

k1 p2
θ

r5
∂

∂pr
, (29)

G =
k3 pθ

r5
∂

∂θ
− 5

2
k3 p2

θ

r6
∂

∂pr
. (30)

The solutions z = (r, θ, q0, pr, pθ)
T for the time-transformed HamiltonianH advancing

a new coordinate time step ∆w = σ from the initial solutions z(0) = (r0, θ0, q00, pr0, pθ0)
T

can be given by

z = SH2 (σ)z(0), (31)

where SH2 represents symmetric products of exponents of the seven operators and has the
expressional form

SH2 (σ) = e
σ
2 G × e

σ
2F × e

σ
2 E × e

σ
2D × e

σ
2 C × e

σ
2 B × eσA × e

σ
2 B

×e
σ
2 C × e

σ
2D × e

σ
2 E × e

σ
2F × e

σ
2 G . (32)

Such symmetric products are a component of symplectic operators of second or-
der. The symplectic method S2 is an extension to the works of [83–85] regarding the
time-transformed explicit symplectic methods for the Kerr spacetimes. Of course, such
symmetric products of order 2 easily yield a fourth-order construction of Yoshida [87]:

SH4 = SH2 (γσ)× SH2 (δσ)× SH2 (γσ), (33)

where γ = 1/(1− 3
√

2) and δ = 1− 2γ.

3.2. Numerical Evaluations

Let us choose parameters E = 0.9965, L = 4, Q = 6× 10−4, k0 = 10−3, k1 = 10−2,
k2 = 10−1 and k3 = 1. The initial conditions are pr = 0 and θ = π/2. The initial value
r = 15 for Orbit 1, and r = 50 for Orbit 2. The initial values pθ > 0 for the two orbits are
determined by Equation (11).

Given the time step σ = 1, the errors of the Hamiltonian J for the second-order method
S2 and the fourth-order method S4 solving Orbit 1 have no secular drifts. The errors are
three orders of magnitude smaller for S4 than for S2 before the integration time w = 107,
as shown in Figure 1a. With the integration spanning this time and tending to w = 108,
the errors still remain bounded for S2, but exhibit long-term growths for S4. The secular
drifts of the Hamiltonian errors for S4 are due to roundoff errors. When the number of
integration steps is small, the truncation errors are more important than the roundoff errors.
As the integration is long enough, the roundoff errors are dominant errors and cause the
Hamiltonian errors to grow with time. However, such error drifts for S4 lose when a larger
time step σ = 4 is adopted. If Orbit 1 is replaced with Orbit 2, the Hamiltonian errors for
each of the two methods are not explicitly altered.
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Figure 1. (a) Errors of the Hamiltonian J in Equation (12). S2 (σ = 1) represents the second-order method S2 with time step
σ = 1; S4 (σ = 1) means the fourth-order method S4 with new coordinate time step σ = 1, and S4 (σ = 4) stands for the
fourth-order method S4 with time step σ = 4. Orbit 1 with the initial separation r = 15 is tested. Orbit 1 has the other
initial conditions pr = 0, θ = π/2 and pθ > 0 determined by J = 0. The parameters are E = 0.9965, L = 4, Q = 6× 10−4,
k0 = 10−3, k1 = 10−2, k2 = 10−1 and k3 = 1. The error for S4 (σ = 1) is three orders of magnitude smaller than for S2
(σ = 1). The error remains bounded for S2 (σ = 1), but it has a secular drift for S4 (σ = 1) due to roundoff errors. The
secular drift in the error loses for S4 (σ = 4). (b) Relation between proper time τ and new coordinate time w. This shows
that τ and w are almost the same. (c) Poincaré sections at the plane θ = π/2 with pθ > 0. Orbit 1 is ordered, whereas Orbit
2 with the initial separation r = 50 is chaotic. Panels (b,c) come from the results provided by the algorithm S4 (σ = 4).

In what follows, S4 with the time step σ = 4 is used. Figure 1b describes the re-
lationship between the proper time τ and the new coordinate time w when Orbit 1 is
tested. Clearly, w is almost equal to τ. This result coincides with the theoretical result
g ≈ 1 + k0 ≈ 1 when r � 2 and k0 ≈ 0. Therefore, the time transformation function g in
Equation (14) mainly plays an important role in implementing the desired separable form
of the time-transformed HamiltonianH rather than adaptive control to time steps.

4. Regular and Chaotic Dynamics of Orbits

The regularity of Orbit 1 and the chaoticity of Orbit 2 are clearly shown through the
Poincaré section at the plane θ = π/2 with pθ > 0 in Figure 1c. The phase-space of Orbit
1 is a Kolmogorov–Arnold–Moser (KAM) torus, which belongs to the characteristic of a
regular quasi-periodic orbit. For Orbit 2, many discrete points are densely, randomly filled
with an area and are regarded as the characteristic of a chaotic orbit. The Hamiltonian
errors for S4 acting on Orbit 1 are approximately same as those for S4 acting on Orbit 2.
This fact indicates that the algorithmic performance for the Hamiltonian error behavior is
not related to the regularity or chaoticity of orbits.

Now, we continue to use the technique of Poincaré section to trace the orbital dy-
namical evolution. The parameters are the same as those in Figure 1; but Q = 8× 10−4,
k0 = 10−4 and different values E are given. When E = 0.991 in Figure 2a, the plotted seven
orbits are ordered. As the energy increases, e.g., E = 0.9925, three of the orbits are chaotic
in Figure 2b. For E = 0.9975 in Figure 2c, chaos is present almost elsewhere in the whole
phase space. These results indicate an increase in the energy enhances the strength of chaos
from the global phase-space structure. However, the chaotic properties are weakened as
the particle’s angular momentum L increasing, as shown in Figure 3.
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Figure 2. Poincaré sections. The parameters are the same as those in Figure 1c, but Q = 8× 10−4, k0 = 10−4 and the
energies E are different. The energies are (a) E = 0.991, (b) E = 0.9925 and (c) E = 0.9975. The three sub-figures show that
the chaoticity becomes strong as the energy increases.
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Figure 3. Poincaré sections. The parameters are E = 0.9925, Q = 8× 10−4, k0 = 10−4, k1 = 10−2, k2 = 10−1 and k3 = 1.
The angular momenta are (a) L = 3.85, (b) L = 4 and (c) L = 4.4. It is clearly shown that chaos is gradually weakened as the
angular momentum increases.

Besides the technique of Poincaré section, Lyapunov exponents for measuring an
exponential rate of the separation between two nearby orbits with time are often used to
distinguish chaos from order. The largest Lyapunov exponent is defined in [88] by

λ = lim
w→∞

1
w

ln
d(w)

d0
, (34)

where d0 is the starting separation between the two nearby orbits and d(w) is the distance
between the two nearby orbits at time w. However, it takes long enough time to obtain
stabilizing values of the Lyapunov exponents. Instead, a fast Lyapunov indicator (FLI), as a
quicker method to distinguish between the ordered and chaotic two cases, is often used. It
comes from a slightly modified version of the largest Lyapunov exponent, and is calculated
in [88] by

FLI = log10
d(w)

d0
. (35)

An exponential growth of FLI with time log10 w means that the bounded orbit is chaotic,
whereas a power law growth of FLI shows the bounded orbit is regular. When the integra-
tion time arrives at 106, the FLIs in Figure 4a can clearly identify the regular and chaotic
properties of three energies corresponding to the orbits with the initial separation r = 15
in Figure 2. The regular and chaotic properties of three angular momenta corresponding
to the orbits with the initial separation r = 70 in Figure 3 are also described the FLIs in
Figure 4b. Clearly, the angular momentum L = 4.4 corresponds to the regularity, whereas
the angular momenta L = 3.85 and L = 4 correspond to chaos. Chaos is stronger for
L = 3.85 than for L = 4. As far as the Poincaré sections and FLIs are concerned, they are
two popular methods to distinguish chaos from order. The technique of Poincaré sections
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can clearly, intuitively describe the global phase-space structure, but is mainly applicable
to conservative systems with two degrees of freedom or four-dimensional phase spaces.
The method of FLIs is suitable for any dimensions.
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 E=0.991

(a)
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log10 w

 L=4.4
 L=4
 L=3.85

(b)

Figure 4. Fast Lyapunov indicators (FLIs). (a) The initial separation is r = 15; the other initial
conditions and parameters are those of Figure 2. The FLIs for E = 0.991 and E = 0.9925 correspond to
the regular behavior, but the FLI for E = 0.9975 shows the chaotic behavior. (b) The initial separation
is r = 70; the other initial conditions and parameters are those of Figure 3. The FLI for L = 4.4
indicates the regularity. L = 3.85 corresponds to stronger chaos than L = 4.

Taking the parameters L = 4, k0 = 10−4, k1 = 10−2, k2 = 10−1 and k3 = 1, we employ
the technique of Poincaré sections to plot the global phase-space structures with E = 0.9915
for three positive values of the magnetic parameter Q in Figure 5a–c. When Q = 5× 10−4,
all orbits are regular KAM tori in Figure 5a. Given Q = 8× 10−4 in Figure 5b, many tori
are twisted and a few orbits can be chaotic. When Q = 10−3 in Figure 5c, the number of
chaotic orbits increases and the strength of chaos is enhanced. In other words, an increase
in the positive magnetic parameter is helpful to induce the occurrence of chaos. How does
a negative magnetic parameter affect the chaotic behavior as the magnitude of the negative
magnetic parameter increases? The key to this question can be found in Figure 5d–f with
E = 0.9975. No chaos exists for Q = −10−4 in Figure 5d. Three chaotic orbits are plotted
for Q = −8× 10−4 in Figure 5e. More orbits can be chaotic when Q = −10−3 in Figure 5f.
That is to say, the chaotic properties from the global phase-space structures are typically
strengthened as the absolute value of the negative magnetic parameter increases. In short,
chaos becomes stronger as the magnitude of the positive or negative magnetic parameter
(|Q|) varies from small to large. This result is also supported by the FLIs in Figure 6. Here,
the FLI for a given value of Q is obtained after the integration time w = 2× 106. All FLIs
that are not less than 6 correspond to the onset of chaos, and those that are less than this
value turn out to indicate the regularity of orbits. When Q > 8.5× 10−4 in Figure 6a or
Q < −7.5× 10−4 in Figure 6b, a dynamical transition from order to chaos occurs.
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(e) Q=-8×10-4

0 20 40 60 80 100 120 140
-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

p r

r

(f) Q=-10-3

Figure 5. Poincaré sections for different values of the magnetic parameter Q. The other parameters are L = 4, k0 = 10−4,
k1 = 10−2, k2 = 10−1 and k3 = 1. (a–c): E = 0.9915 and Q > 0; the strength of chaos is enhanced with increasing Q. (d–f):
E = 0.9975 and Q < 0; chaos is strong as |Q| increases.
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Figure 6. (a): Dependence of FLI on the positive magnetic parameter Q in Figure 5a–c. The initial
separation is r = 70. The FLI for each value of Q is obtained after the integration time w = 2× 106.
The FLIs ≥ 6 mean chaos, and the FLIs < 6 show the regularity. When Q > 8.5× 10−4, chaos begins
to occur. (b): Dependence of FLI on the negative magnetic parameter Q in Figure 5d–f. The initial
radius is r = 50. When Q < −7.5× 10−4, there is a dynamical transition from order to chaos.

Now, let us focus on the dependence of chaos on the deformation parameters. Chaos
becomes weaker when the deformation parameter k0 is positive and increases in Figure 7a–c.
However, it gets stronger when the deformation parameter k0 is negative and its magnitude
increases in Figure 7d–f. The effects of the deformation parameter k0 on chaos described
by the technique of Poincaré sections are consistent with those described by the method
of FLIs in Figure 8. The effects of the other deformation parameters on chaos are shown
through the methods of Poincaré sections and FLIs in Figures 9–14. They are similar to the
effect of the deformation parameter k0 on chaos. Precisely speaking, an increase in any one
of the positive deformation parameters k1, k2 and k3 weakens the chaotic properties, and
an increase in any of the magnitudes of the negative deformation parameters k1, k2 and k3
strengthens the chaotic properties. The result regarding the effects of the four deformation
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parameters on the chaotic properties is similar to the result of [68] for describing the effect
of deformation parameter k3 on the chaotic properties.
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Figure 7. Poincaré sections for different values of the deformation parameter k0. The parameters are L = 4.6, Q = 8× 10−4,
k1 = 10−2, k2 = 10−1 and k3 = 1. (a–c): E = 0.995 and k0 > 0. The strength of chaos is weakened with increasing k0. (d–f):
E = 0.994 and k0 < 0. Chaos is enhanced as |k0| increases.
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Figure 8. (a): Dependence of FLI on the positive deformation parameter k0 in Figure 7a–c. The initial
separation is r = 50. When k0 > 4.2× 10−4, chaos begins to lose. (b): Dependence of FLI on the
negative deformation parameter k0 in Figure 7d–f. The initial radius is r = 30. When k0 < 1.7× 10−3,
the chaotic properties are strengthened.

The above demonstrations clearly show how small changes of these parameters affect
the dynamical transitions from order to chaos. The main result is that chaos in the global
phase space is strengthened the energy E, magnetic parameter |Q| or an absolute value of
one of the negative deformation parameters (|k0|, |k1|, |k2| and |k3|) increases, but weakened
when the angular momentum L or any one of the positive deformation parameters k0, k1,
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k2 and k3 increases. Here, an interpretation is given to the result. Expanding 1/ f in the
Taylor series, we rewrite Equation (17) at the equatorial plane θ = π/2 as

H1 ≈ 1
2
[(1 + k0)(1− LQ)− E2 +

k2

4
Q2]− E2

r
+

Q2

8
(1 + k0)r2

+
L2

2r2 (1 + k0) +
L2k1

2r3 +
1− LQ

2
(

k1

r
+

k2

r2 +
k3

r3 ) +
k3

2r
Q2. (36)

The second term corresponds to the black hole gravity acting on the particles. The
third term yields an attractive force from a contribution of the magnetic field regardless
of whether Q > 0 or Q < 0. The fourth term provides an inertial centrifugal force
due to the particle’s angular momentum. The fifth, sixth and seventh terms come from
coupled interactions among the metric deformation perturbations, angular momentum and
magnetic field. For 1− LQ ≈ 1, they have repulsive force effects on the charged particles
when k1 > 0, k2 > 0 and k3 > 0, but attractive force effects when k1 < 0, k2 < 0 and
k3 < 0. A small increase in the energy E or the magnetic field |Q| means enhancing the
attractive force effects, and therefore the motions of particles can become more chaotic in
some circumstances. As the angular momentum L increases, the repulsive force effects are
strengthened and chaos is weakened. With a minor increase in relatively small positive
deformation parameter k0, the magnetic field attractive force and the centrifugal force will
increase, but the centrifugal force has a larger increase than the magnetic field force for the
parameters chosen in Figure 7. This leads to weakening the strength of chaos. However,
as the absolute value |k0| with k0 < 0 increases, the centrifugal force has a larger decrease
than the magnetic field force, and chaos becomes stronger. Increases of the other positive
deformation parameters k1, k2 and k3 cause the repulsive forces to increase, and chaos to
get weaker. However, the attractive force effects are enhanced and chaos gets stronger as
the magnitudes of negative deformation parameters k1, k2 and k3 increase.
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Figure 9. Same as Figure 7, but k0 in Figure 7 is replaced with k1. (a–c) : k0 = 5× 10−4. (d–f) : k0 = 10−4.
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Figure 10. Same as Figure 8, but k0 in Figure 8 is replaced with k1. (a): k0 = 5× 10−4 and the initial
radius is r = 10; chaos is ruled out as k1 > 0.042. (b): k0 = 10−4 and the initial radius is r = 50; chaos
is enhanced as k1 < −0.018.
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Figure 11. Poincaré sections for different values of the deformation parameter k2. The parameters are L = 4.6, Q = 8× 10−4,
k0 = 5× 10−4, k1 = 5× 10−3 and k3 = 1. (a–c): E = 0.995 and k2 > 0. The strength of chaos is weakened with increasing k2.
(d–f): E = 0.994 and k2 < 0. Chaos is enhanced as |k2| increases.
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Figure 12. (a): Dependence of FLI on the positive deformation parameter k2 in Figure 11a–c. The
initial separation is r = 10. When k2 > 0.46, chaos is absent. (b): Dependence of FLI on the negative
deformation parameter k2 in Figure 11d–f. The initial radius is r = 70. When k2 < −0.96, the chaotic
properties are strengthened.
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Figure 13. Similar to Figure 11, but k2 in Figure 11 is replaced with k3and energies E are different. Here, k2 = 0.5.
(a–c): E = 0.995 and k3 > 0. (d–f): E = 0.9945 and k3 < 0.
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Figure 14. Dependence of FLI on the positive deformation parameter k3. The other parameters are
the same as those in Figure 13. (a): E = 0.995, k3 > 0 and the initial separation r = 70; when k3 > 6,
chaos begins to disappear. (b): E = 0.9945, k3 < 0 and the initial separation r = 50; when k3 < −3.2,
the chaotic properties are strengthened.

5. Conclusions

When a nonrotating compact object has spherical deformations, it has suffered from metric
deformation perturbations. Such small deformation perturbations in the Schwarzschild met-
ric could be regarded as a nonrotating black hole solution departure from the standard
Schwarzschild spacetime in modified theories of gravity. The non-Schwarzschild spacetime
with four free deformation parameters is integrable. However, the dynamics of charged
particles moving around the Schwarzschild-like black hole is nonintegrable when the in-
clusion of an external asymptotically uniform magnetic field destroys the fourth invariable
quantity related to the azimuthal motion of the particles.

Although the deformation perturbation metric looks like the Schwarzschild metric,
it can be changed into a Kerr-like black hole metric via some appropriate coordinate
transformation. Therefore, the time-transformed explicit symplectic integrators for the
Kerr-type spacetimes introduced in [83] should be similarly applicable to the deformed
Schwarzschild black hole surrounded with an external magnetic field. In fact, we can
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design explicit symplectic methods for a time-transformed Hamiltonian, which is split into
seven parts with analytical solutions as explicit functions of new coordinate time. A main
role for the time transformation function is the implementation of such desired separable
form of the time-transformed Hamiltonian rather than that of adaptive time-step control. It
was shown numerically that the obtained time-transformed explicit symplectic integrators
perform well long-term in terms of stable error behavior regardless of regular or chaotic
orbits when intermediate time steps are chosen.

One of the obtained time-transformed explicit symplectic integrators combined with
the techniques of Poincaré sections and FLIs was used to show how small changes of
the parameters affect the dynamical transitions from order to chaos. Chaos in the global
phase space can be strengthened under some circumstances, if the energy or the absolute
value of the (positive or negative) magnetic parameter or any of the negative deformation
parameters increases. However, it is weakened as the angular momentum or any one of
the positive deformation parameters increases.
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Hořava-Lifshitz black hole. Astrophys. Space Sci. 2015, 360, 19. [CrossRef]

66. Benavides-Gallego, C.A.; Abdujabbarov, A.; Malafarina, D.; Ahmedov, B.; Bambi, C. Charged particle motion and electromagnetic
field in γ spacetime. Phys. Rev. D 2019, 99, 044012. [CrossRef]

67. Lukes-Gerakopoulos, G. Nonintegrability of the Zipoy-Voorhees metric. Phys. Rev. D 2012, 86, 044013. [CrossRef]
68. Yi, M.; Wu, X. Dynamics of charged particles around a magnetically deformed Schwarzschild black hole. Phys. Scr. 2020, 95,

085008. [CrossRef]
69. Hairer, E.; Lubich, C.; Wanner, G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations,

2nd ed.; Springer: Berlin, Germany, 2006.
70. Feng, K.; Qin, M. Symplectic Geometric Algorithms for Hamiltonian Systems; Zhejiang Science and Technology Publishing House:

Hangzhou, China; Springer: Berlin/Heidelberg, Germany, 2010.
71. Feng, K. Symplectic geometry and numerical methods in fluid dynamics. In Proceedings of the Tenth International Conference

on Numerical Methods in Fluid Dynamics, Beijing, China, 23–7 June 1986; Lecture Notes in Physics; Springer: Berlin/Heidelberg,
Germany, 1986; Volume 264, pp. 1–7.

72. Brown, J.D. Midpoint rule as a variational-symplectic integrator: Hamiltonian systems. Phys. Rev. D 2006, 73, 024001. [CrossRef]
73. Seyrich, J.; Lukes-Gerakopoulos, G. Symmetric integrator for nonintegrable Hamiltonian relativistic systems. Phys. Rev. D 2012,

86, 124013. [CrossRef]
74. Seyrich, J. Gauss collocation methods for efficient structure preserving integration of post-Newtonian equations of motion. Phys.

Rev. D 2013, 87, 084064. [CrossRef]
75. Preto, M.; Saha, P. On post-Newtonian orbits and the Galactic-center stars. Astrophys. J. 2009, 703, 1743. [CrossRef]
76. Lubich, C.; Walther, B.; Brügmann, B. Symplectic integration of post-Newtonian equations of motion with spin. Phys. Rev. D 2010,

81, 104025. [CrossRef]
77. Zhong, S.Y.; Wu, X.; Liu, S.Q.; Deng, X.F. Global symplectic structure-preserving integrators for spinning compact binaries. Phys.

Rev. D 2010, 82, 124040. [CrossRef]
78. Mei, L.; Ju, M.; Wu, X.; Liu, S. Dynamics of spin effects of compact binaries. Mon. Not. R. Astron. Soc. 2013, 435, 2246–2255.

[CrossRef]
79. Mei, L.; Wu, X.; Liu, F. On preference of Yoshida construction over Forest-Ruth fourth-order symplectic algorithm. Eur. Phys. J. C

2013, 73, 2413. [CrossRef]
80. Wang, Y.; Sun, W.; Liu, F.; Wu, X. Construction of Explicit Symplectic Integrators in General Relativity. I. Schwarzschild Black

Holes. Astrophys. J. 2021, 907, 66. [CrossRef]
81. Wang, Y.; Sun, W.; Liu, F.; Wu, X. Construction of Explicit Symplectic Integrators in General Relativity. II. Reissner-Nordström

Black Holes. Astrophys. J. 2021, 909, 22. [CrossRef]
82. Wang, Y.; Sun, W.; Liu, F.; Wu, X. Construction of Explicit Symplectic Integrators in General Relativity. III. Reissner-Nordström-

(anti)-de Sitter Black Holes. Astrophys. J. Suppl. Ser. 2021, 254, 8. [CrossRef]
83. Wu, X.; Wang, Y.; Sun, W.; Liu, F. Construction of Explicit Symplectic Integrators in General Relativity. IV. Kerr Black Holes.

Astrophys. J. 2021, 914, 63. [CrossRef]
84. Sun, W.; Wang, Y.; Liu, F.; Wu, X. Applying explicit symplectic integrator to study chaos of charged particles around magnetized

Kerr black hole. Eur. Phys. J. C 2021, 81, 785. [CrossRef]
85. Sun, X.; Wu, X.; Wang, Y.; Liu, B.; Liang, E. Dynamics of Charged Particles Moving around Kerr Black Hole with Inductive Charge

and External Magnetic Field. Universe 2021, 7, 410. [CrossRef]
86. Newman, E.T.; Janis, A.I. Note on the Kerr Spinning-Particle Metric. J. Math. Phys. 1965, 6, 915. [CrossRef]

http://dx.doi.org/10.1140/epjc/s10052-015-3862-2
http://dx.doi.org/10.3847/1538-4357/aaa45f
http://dx.doi.org/10.1140/epjc/s10052-019-6961-7
http://dx.doi.org/10.3390/universe6020026
http://dx.doi.org/10.1103/PhysRevD.87.064042
http://dx.doi.org/10.1007/s10509-016-2879-9
http://dx.doi.org/10.1103/PhysRevD.95.084037
http://dx.doi.org/10.1103/PhysRevD.83.044053
http://dx.doi.org/10.1103/PhysRevD.89.104048
http://dx.doi.org/10.1007/s10509-015-2533-y
http://dx.doi.org/10.1103/PhysRevD.99.044012
http://dx.doi.org/10.1103/PhysRevD.86.044013
http://dx.doi.org/10.1088/1402-4896/aba4c2
http://dx.doi.org/10.1103/PhysRevD.73.024001
http://dx.doi.org/10.1103/PhysRevD.86.124013
http://dx.doi.org/10.1103/PhysRevD.87.084064
http://dx.doi.org/10.1088/0004-637X/703/2/1743
http://dx.doi.org/10.1103/PhysRevD.81.104025
http://dx.doi.org/10.1103/PhysRevD.82.124040
http://dx.doi.org/10.1093/mnras/stt1441
http://dx.doi.org/10.1140/epjc/s10052-013-2413-y
http://dx.doi.org/10.3847/1538-4357/abcb8d
http://dx.doi.org/10.3847/1538-4357/abd701
http://dx.doi.org/10.3847/1538-4365/abf116
http://dx.doi.org/10.3847/1538-4357/abfc45
http://dx.doi.org/10.1140/epjc/s10052-021-09579-7
http://dx.doi.org/10.3390/universe7110410
http://dx.doi.org/10.1063/1.1704350


Universe 2021, 7, 488 19 of 19

87. Yoshida, H. Construction of higher order symplectic integrators. Phys. Lett. A 1990, 150, 262. [CrossRef]
88. Wu, X.; Huang, T.Y.; Zhang H. Lyapunov indices with two nearby trajectories in a curved spacetime. Phys. Rev. D 2006, 74,

083001. [CrossRef]

http://dx.doi.org/10.1016/0375-9601(90)90092-3
http://dx.doi.org/10.1103/PhysRevD.74.083001

	Introduction
	Deformed Schwarzschild Metric
	Explicit Symplectic Integrations
	Design of Algorithms
	Numerical Evaluations

	Regular and Chaotic Dynamics of Orbits
	Conclusions
	References

