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V Holešovičkách 2, 180 00 Praha, Czech Republic

2 Department of Physics “E.R. Caianiello”, University of Salerno, Via Giovanni Paolo II, 132,
84084 Fisciano, Italy

* Correspondence: smaldone@ipnp.mff.cuni.cz (L.S.); vitiello@sa.infn.it (G.V.)

Abstract: We review some of the main results of the quantum field theoretical approach to neutrino
mixing and oscillations. We show that the quantum field theoretical framework, where flavor vacuum
is defined, permits giving a precise definition of flavor states as eigenstates of (non-conserved) lepton
charges. We obtain the exact oscillation formula, which in the relativistic limit reproduces the
Pontecorvo oscillation formula and illustrates some of the contradictions arising in the quantum
mechanics approximation. We show that the gauge theory structure underlies the neutrino mixing
phenomenon and that there exists entanglement between mixed neutrinos. The flavor vacuum
is found to be an entangled generalized coherent state of SU(2). We also discuss flavor energy
uncertainty relations, which impose a lower bound on the precision of neutrino energy measurements,
and we show that the flavor vacuum inescapably emerges in certain classes of models with dynamical
symmetry breaking.

Keywords: neutrino oscillations; quantum field theory; flavor states; inequivalent representations

1. Introduction

The study of neutrino mixing and oscillations has attracted much attention in past
decades and the present day in the theoretical [1–20] and experimental [21–25] research ac-
tivity. Apart from the interest in the specific phenomenon, it is clear that the understanding
of the neutrino mixing and oscillations opens the doors to the physics beyond the standard
model (SM) [26]. For example, the simple fact that neutrinos are massive particles requires
some corrections to the Lagrangian of the SM where they enter as massless particles [26–28].
Moreover, neutrinos are described by quantum fields, and their proper treatment requires
the formalism of quantum field theory (QFT), and in particular of those features that make
QFT drastically different from quantum mechanics (QM). Quantum fields are indeed math-
ematically characterized by infinitely many degrees of freedom. This is a key feature of QFT,
allowing it to escape from the strict dictate of the Stone–von-Neumann theorem [29,30],
by which, for systems with a finite number of degrees of freedom, all the representations
of the canonical commutation (or anticommutation) relations (CCR, or CAR) are unitarily
equivalent, i.e., physically equivalent, as in fact it happens in QM. In QFT, the Stone–von-
Neumann theorem does not apply exactly because there exist infinitely many degrees of
freedom, and thus, infinitely many unitarily non-equivalent representations of the CCR (or
CAR) are allowed to exist in QFT. In other words, under proper boundary conditions, dif-
ferent dynamical regimes may exist, i.e., different phases of the system, each one described
by a different (unitary non-equivalent) representation.

The discovery of such a structural aspect of QFT, in the early 1950s of the past century,
after a first “disappointment”, was recognized to be the great richness of QFT [31–35].
It allows, e.g., the phenomenon of the spontaneous symmetry breaking (SSB) [36], which
constitutes the foundations where the very same SM rests and is of crucial importance
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in condensed matter physics (e.g., in superconductivity, ferromagnetism, etc.) and in the
study of phase transitions [34,36,37]. The new scenario was soon clarified, for example,
by the Haag theorem [38–40], showing that in QFT, eigenstates of the full Hamiltonian H
(including interaction terms) do not go to the eigenstates of the free Hamiltonian H0 in the
limit of the coupling constant g going to zero. We have nonperturbative physics.

A similar situation occurs in neutrino mixing physics. The mixing transformations
are discovered to lead to the flavor vacuum representation, which is in fact unitarily
inequivalent to the massive neutrino representation [5,6] (see also [41–46]).

Our review in this work is thus limited to the study of the neutrino mixing and oscil-
lations in their natural framework of QFT. We also explicitly show a few of the substantial
contradictions and fallacies emerging in the naive perturbative approach. Here, we men-
tion, as a first no-go obstacle to the QM mixing treatment, the Bargmann superselection
rule stating that coherent superposition of states with different masses is not allowed in
non-relativistic QM [47,48]. In Appendix A, it is shown how fields with different masses
and Bogoliubov transformations are related.

The unique possibility offered by QFT of defining the flavor vacuum permits to give a
precise definition of flavor states as eigenstates of (non-conserved) lepton charges, thus
showing its physical significance. This leads, in turn, to the exact oscillation formula, which
differs from the one obtained in the QM approximation [7]. These aspects are discussed in
Section 2 for the two-flavor neutrino case. The conclusions also apply to the three-flavor
neutrino case, whose formalism is shortly summarized in Appendix B. In Sections 3 and 4,
the contradictions intrinsic to the perturbative QM approach are presented. In Section 5, it
is shown that the time evolution of mixed (flavored) neutrinos exhibits the structure of a
gauge theory and its nonperturbative character is confirmed. In Section 6, the entanglement
between the flavor neutrinos is shortly described, also noticing that the flavor vacuum
itself is an entangled SU(2) generalized coherent state. The flavor-energy uncertainty
relations, implicit in the mixing phenomenon due to the flavor oscillations, which impose a
lower bound on neutrino energy-measurements precision, are reviewed in Section 7, and
in Section 8, the dynamical generation of neutrino mixing and flavor vacuum condensate
is discussed. Section 9 is devoted to concluding remarks. In Appendix C, by using the
first quantization methods applied to the Dirac equation, which however do not explicitly
exhibit the foliation into the QFT unitarily inequivalent representations, it is obtained that
the oscillation formula is consistent with the one derived in the QFT formalism.

2. Neutrino Mixing in QFT

In this section, the explicit construction of the neutrino flavor eigenstates is re-
viewed [5,6,41–46]. We will derive the exact oscillation formula (see Equations (47) and (48) [6,7]).
The derivation is based on the characteristic feature of QFT mentioned in the Introduc-
tion, namely, the existence of unitarily inequivalent representations of field algebra (in the
present case CAR) [32–37] (see also Appendix A).

2.1. Mixing Transformation and Flavor Vacuum

In the following, for simplicity, we consider only two neutrino flavors. Our conclusions
can be extended to the case of three neutrinos (see Appendix B). It is convenient to start by
writing down the mixing transformation [1–4]:

νσ(x) = ∑
j

Uσ jνj(x) , σ = e, µ; j = 1, 2. (1)

U is the mixing matrix

U =

(
cos θ sin θ
− sin θ cos θ

)
, (2)

where θ is the mixing angle (in the case of three flavors, one has the Pontecorvo–Maki–
Nakagawa–Sakata (PMNS) matrix [49] (see Appendix B)).
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The fields νj(x), j = 1, 2, x ≡ x, t denote the Dirac field operators for massive neutrinos
with masses mj:

νj(x) = ∑
r

∫ d3k

(2π)
3
2

[
ur

k,j(t) αr
k,j + vr

−k,j(t) βr†
−k,j

]
eik·x . (3)

with ur
k,j(t) = e−iωk,jt ur

k,j , vr
k,j(t) = eiωk,jt vr

k,j, ωk,j =
√
|k|2 + m2

j . αr
k,j and βr

k,j are the

annihilation operators for the massive neutrino vacuum state |0〉1,2:

αr
k,j|0〉1,2 = 0 = βr

k,j|0〉1,2 . (4)

The anticommutation relations are, as usual,

{να
i (x), ν

β†
j (y)}tx=ty = δ3(x− y)δαβδij (5)

{αr
k,i, αs†

q,j} = δkqδrsδij ; {βr
k,i, βs†

q,j} = δkqδrsδij, (6)

and the orthonormality and completeness relations are:

ur†
k,iu

s
k,i = vr†

k,iv
s
k,i = δrs , ur†

k,iv
s
−k,i = 0 , ∑

r
(urα∗

k,i urβ
k,i + vrα∗

−k,iv
rβ
−k,i) = δαβ . (7)

Note that for i 6= j and mi 6= mj, ∑r,s vr†
k,iu

s
−k,j 6= 0 and similarly for other spinor

products. We then denote the Fock space for ν1, ν2 byH1,2 =
{

α†
1,2

, β†
1,2

, |0〉1,2

}
.

The Hamiltonian mass terms for the massive and flavored fields are

H1,2 = m1ν̄1(x)ν1(x) + m2ν̄2(x)ν2(x), (8)

He,µ = meν̄e(x)νe(x) + mµν̄µ(x)νµ(x) + meµ(ν̄e(x)νµ(x) + ν̄µ(x)νe(x)), (9)

respectively, with me = m1 cos2 θ + m2 sin2 θ , mµ = m1 sin2 θ + m2 cos2 θ ,
meµ = (1/2) sin 2θ(m2 −m1) = (1/2) tan 2θ δm, and δm ≡ mµ −me.

Let us now notice that mixing transformation (1) can be formally rewritten as [5,6]

να
e (x) = G−1

θ (t)να
1 (x)Gθ(t)

να
µ(x) = G−1

θ (t)να
2 (x) Gθ(t) (10)

with the generator given by:

Gθ(t) = exp[θ(S+(t)− S−(t))] , (11)

S+(t) ≡
∫

d3x ν†
1 (x) ν2(x) , S−(t) ≡

∫
d3x ν†

2 (x) ν1(x) . (12)

In fact, from the above equations we obtain, e.g., for νe

d2

dθ2 να
e = −να

e

with the initial conditions

να
e |θ=0 = να

1 ,
d
dθ

να
e

∣∣∣∣
θ=0

= να
2

and similarly for νµ.
The crucial remark is that the vacuum |0〉1,2 is not invariant under the action of the

generator Gθ(t):
|0(t)〉e,µ ≡ G−1

θ (t) |0〉1,2 = e−θ(S+(t)−S−(t)) |0〉1,2 (13)
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The state (13) is known as flavor vacuum, and it is annihilated by the operators ασ(t)
and βσ(t), defined by:

αe(t)|0(t)〉e,µ ≡ G−1
θ (t)α1Gθ(t) G−1

θ (t)|0〉1,2 = 0, (14)

and similarly for βσ(t). Thus, explicitly,

αr
k,e(t) = cos θ αr

k,1 + sin θ
(

U∗k(t) αr
k,2 + εrVk(t) βr†

−k,2

)
(15)

αr
k,µ(t) = cos θ αr

k,2 − sin θ
(

Uk(t) αr
k,1 − εrVk(t) βr†

−k,1

)
(16)

βr
−k,e(t) = cos θ βr

−k,1 + sin θ
(

U∗k(t) βr
−k,2 − εrVk(t) αr†

k,2

)
(17)

βr
−k,µ(t) = cos θ βr

−k,2 − sin θ
(

Uk(t) βr
−k,1 + εrVk(t) αr†

k,1

)
(18)

In Equations (15)–(18), εr ≡ (−1)r, and Uk and Vk are the Bogoliubov coefficients:

Uk(t) ≡ ur†
k,2ur

k,1 ei(ωk,2−ωk,1)t = |Uk| ei(ωk,2−ωk,1)t , (19)

Vk(t) ≡ εr ur†
k,1vr

−k,2 ei(ωk,2+ωk,1)t = |Vk| ei(ωk,2+ωk,1)t . (20)

Explicitly

|Uk| ≡ ur†
k,2 ur

k,1 = vr†
−k,1 vr

−k,2

=

(
ωk,1 + m1

2ωk,1

) 1
2
(

ωk,2 + m2

2ωk,2

) 1
2
(

1 +
k2

(ωk,1 + m1)(ωk,2 + m2)

)
. (21)

|Vk| = εr ur†
k,1 vr

−k,2 = −εr ur†
k,2 vr

−k,1

=
|k|√

4ωk,1ωk,1

(√
ωk,2 + m2

ωk,1 + m1
−
√

ωk,1 + m1

ωk,2 + m2

)
. (22)

Notice that |Uk|2 + |Vk|2 = 1. In the relativistic limit ωk,j ≈ |k|, |Uk| → 1 and
|Vk| → 0. Furthermore, |Vk| = 0 when m1 = m2 and/or θ = 0, i.e., when no mixing

occurs. |Vk|2 has the maximum at |k| = √m1m2 with |Vk|2max → 1/2 for (m2−m1)
2

m1m2
→ ∞,

and |Vk|2 ' (m2−m1)
2

4|k|2 for |k| � √m1m2. A plot of |Vk|2 is reported in Figure 1.

Figure 1. |Vk|2 for sample values of masses. The solid line corresponds to m1 = 1 and m2 = 100,
while the dashed line corresponds to m1 = 10 and m2 = 100 [37].
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The flavor fields can be thus expanded as:

νe(x) = ∑
k,r

eik·x
√

V

[
ur

k,1(t) αr
k,e(t) + vr

−k,1(t) βr†
−k,e(t)

]
, (23)

νµ(x) = ∑
k,r

eik·x
√

V

[
ur

k,2(t) αr
k,µ(t) + vr

−k,2(t) βr†
−k,µ(t)

]
, (24)

and the flavor Hilbert space is defined asHe,µ =
{

α†
e,µ , β†

e,µ , |0〉e,µ

}
.

In order to analyze the explicit structure of flavor vacuum (13), we decompose the
mixing generator as [6,50]:

Gθ = B(m1, m2) R(θ) B−1(m1, m2) , (25)

where B(m1, m2) ≡ B1(m1) B2(m2), with

R(θ) ≡ exp

{
θ ∑

k,r

[(
αr†

k,1αr
k,2 + βr†

−k,1βr
−k,2

)
eiψk − h.c.

]}
, (26)

Bi(mi) ≡ exp
{

∑
k,r

Θk,i εr
[
αr

k,iβ
r
−k,ie

−iφk,i − βr†
−k,iα

r†
k,ie

iφk,i
]}

, i = 1, 2 . (27)

Here Θk,i = 1/2 cot−1(|k|/mi), ψk = (ωk,1 − ωk,2)t and φk,i = 2ωk,it. Bi(Θk,i),
i = 1, 2 generate the Bogoliubov transformations, which are related to mass shifts (m1 6= m2)
(see Equations (A5) and (A6)), and R(θ) generates a rotation. Note that

R−1(θ)|0〉1,2 = |0〉1,2 , (28)

and the Bogoliubov transformations induce a condensate structure in the vacuum:

|0̃〉1,2 ≡ B−1(m1, m2)|0〉1,2 = ∏
k,r,i

[
cos Θk,i + εr sin Θk,iα

r†
k,iβ

r†
−k,i

]
|0〉1,2 . (29)

We remark that the vacuum with condensate structure Equation (29) is the well-
known superconductivity vacuum and the (mean-field) vacuum of Nambu–Jona Lasinio
model [51,52]. It is an entangled state for the αr

k,i and βr
−k,i modes, for any k, r and i = 1, 2.

The decomposition Equation (25) thus shows that a rotation of fields is not a simple rota-
tion of creation and annihilation operators. This fact is clearly exploited by Equations (15)–(18).

Then flavor vacuum |0(t)〉e,µ is thus [6,50] an entangled (see Section 6.2) SU(2) gen-
eralized coherent state [53]. Its explicit condensate structure is given by (Here we choose
t = 0 as reference time. Moreover we abbreviate |0〉e,µ ≡ |0(t = 0)〉e,µ. We will often use
such abbreviation and αr†

k,σ ≡ αr†
k,σ(0)) [6]

|0〉e,µ = ∏
k,r

[
(1− sin2 θ |Vk|2) − εr sin θ cos θ |Vk| (αr†

k,1βr†
−k,2 + αr†

k,2βr†
−k,1)

+ εr sin2 θ |Vk||Uk| (αr†
k,1βr†

−k,1 − αr†
k,2βr†

−k,2) + sin2 θ |Vk|2 αr†
k,1βr†

−k,2αr†
k,2βr†

−k,1

]
|0〉1,2 (30)

and we see that there are four kinds of condensate particle–antiparticle pairs with zero
momentum and spin. The condensation density for the αr

k,j particle is

e,µ〈0(t)|αr†
k,jα

r
k,j|0(t)〉e,µ = sin2 θ |Vk|2 (31)

vanishing for m1 = m2 and/or θ = 0 (in both cases no mixing occurs). The same result
holds for β j.
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At each time t, |0(t)〉e,µ is orthogonal to the vacuum for the massive neutrinos |0〉1,2 in
the infinite volume limit V → ∞ [6,41–46]:

lim
V→∞ 1,2〈0|0(t)〉e,µ = lim

V→∞
e
V
∫ d3k

(2π)3
ln (1−sin2 θ |Vk|2)

2

= 0 (32)

i.e., flavor and massive fields belong to unitarily inequivalent representations of the CAR. Moreover,
in a similar way, for t 6= t′:

lim
V→∞

e,µ〈0(t′)|0(t)〉e,µ = 0 (33)

In other words, flavor representations at different times are unitarily inequivalent.
This fact reminds us of the quantization of unstable particles [54,55] of QFT in the curved
spacetime [56] and of quantum dissipative systems [57]. In particular, we will come back
to the formal analogy of neutrinos with unstable particles in Section 7.

In Appendix A, we further analyze the Bogoliubov transformations in relation to
fields with different masses. We consider in the following the flavor charge structure and
obtain the QFT oscillation formulas.

2.2. Flavor Eigenstates, Charges and Neutrino Oscillations

Let us now introduce the flavor charges for a weak decay Lagrangian. Consider,
for example, the weak decay reaction W+ → e+ + νe. The relevant effective Lagrangian is
L = Lν + Ll + Lint with

Lν = ν
(
iγµ∂µ −Mν

)
ν , (34)

Ll = l
(
iγµ∂µ −Ml

)
l , (35)

Lint =
g

2
√

2

[
W+

µ ν γµ (1− γ5) l + h.c.
]

, (36)

where ν and l are flavor doublets for neutrinos and charged leptons, while Mν and Ml are
the respective mass matrices. In the two-flavor case ν =

(
νe, νµ

)T , l = (e, µ)T , and

Mν =

(
me meµ

meµ mµ

)
, Ml =

(
m̃e 0
0 m̃µ

)
. (37)

Of course, the components meµ in Mν imply the presence of the bilinear neutrino
mixing terms in Lν. Note that Lν can be diagonalized by the mixing transformation
Equation (1) [1–4,58], so that

L = ∑
j

νj
(
iγµ∂µ −mj

)
νj + ∑

σ

l
(
iγµ∂µ − m̃σ

)
l

+
g

2
√

2
∑
σ,j

[
W+

µ (x) νj U∗jσ γµ (1− γ5) lσ + h.c.
]

. (38)

The Lagrangian L is invariant under the global U(1) transformations ν → eiαν and
l → eiαl leading to the conservation of the total flavor charge Qtot

l corresponding to the
lepton-number conservation [58]. This can be written in terms of the flavor charges for
neutrinos and charged leptons [59]

Qtot
l = ∑

σ=e,µ
Qtot

σ (t) , Qtot
σ (t) = Qνσ (t) + Qσ(t) , (39)
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with

Qe =
∫

d3x e†(x)e(x) , Qνe(t) =
∫

d3x ν†
e (x)νe(x) ,

Qµ =
∫

d3x µ†(x)µ(x) , Qνµ(t) =
∫

d3x ν†
µ(x)νµ(x) . (40)

The above charges can be derived via Noether’s theorem [59] from the Lagrangian (36).
Explicitly:

Qνe(t) = cos2 θ Qν1 + sin2 θ Qν2 + sin θ cos θ
∫

d3x
[
ν†

1 (x)ν2(x) + ν†
2 (x)ν1(x)

]
, (41)

Qνµ(t) = sin2 θ Qν1 + cos2 θ Qν2 − sin θ cos θ
∫

d3x
[
ν†

1 (x)ν2(x) + ν†
2 (x)ν1(x)

]
. (42)

with Qj, j = 1, 2, two conserved (Noether) charges :

Qνj =
∫

d3x ν†
j (x) νj(x) , j = 1, 2, (43)

and Q1 + Q2 = Qνe(t) + Qνµ(t). Note that contributions in Qνσ that cannot be written in
terms of Qj are related to the non-trivial structure of the flavor Hilbert space.

By observing that [Lint(x, t), Qtot
σ (t)] = 0, we see that neutrinos are produced and

detected with a definite flavor [8,60,61]. However, [(Lν + Ll)(x, t), Qtot
σ (t)] 6= 0. In other

words, flavor is not preserved by neutrino propagation. This fact gives rise to the phe-
nomenon of flavor oscillations. By using the words of Reference [62], when neutrinos are
produced and detected they ‘’carry identity cards”, i.e., a definite flavor and ‘’can surrepti-
tiously change them if given the right opportunity”.

The previous discussions suggest that flavor states |νr
k,σ〉 are made by flavored particle

states obtained according to the natural choice [63]

|νr
k,σ〉 = αr†

k,σ|0〉e,µ . (44)

and similarly for the antineutrinos (|ν̄r
k,σ〉 ≡ βr†

k,σ|0〉e,µ). One can prove that such flavor
states are eigenstates of the charge operators:

Qνσ (0)|νr
k,σ〉 = |νr

k,σ〉 . (45)

In the same way, one can build a basis of the flavor Hilbert space, by repeated action
of flavor creation operators on the flavor vacuum.

As a first application, one can derive the oscillation formula by taking the expectation
value of the flavor charges [7]

Qσ→ρ(t) = 〈Qνρ(t)〉σ , (46)

where 〈· · · 〉σ ≡ 〈νr
k,σ| · · · |ν

r
k,σ〉, which gives

Qσ→ρ(t) = sin2(2θ)
[
|Uk|2 sin2

(
Ω−

k
2

t
)
+ |Vk|2 sin2

(
Ω+

k
2

t
)]

, σ 6= ρ , (47)

Qσ→σ(t) = 1 − Qσ→ρ(t) , σ 6= ρ , (48)

where Ω±
k ≡ ωk,2 ±ωk,1. Notice the presence of the term proportional to |Vk|2 in the oscilla-

tion formula Equations (47) and (48). We recall that |Vk|2 provides a measure of the condensate
structure of the flavor vacuum, as shown in the previous Section 2.1 (see, e.g., Equation (31)).
As already mentioned, |Vk|2 → 0 in the relativistic limit |k| >> mj, j = 1, 2, and the oscil-
lation formula reduces to the Pontecorvo one (see Equations (52) and (53) below) in such a
limit. As observed in [6], Equations (47) and (48) still give an exact result in the relativistic
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limit, i.e., although they reproduce the Pontecorvo formulas in that limit, they are not the
result of the quantum mechanics finite volume approximation. The dynamical scenario
out of which they are derived is not the one of perturbative physics. In this sense, the long
debated problem on the building up a Fock space for flavor states [6,60,64–67] finds only a
formal agreement on the existence of such a Fock space for relativistic neutrinos. The deep
nature of the phenomenon of neutrino mixing and oscillations remains obscure as far as
one is trapped in the inappropriate perturbative approach.

In Sections 3 and 4, we review some of the contradictions emerging in such an inap-
propriate approach, where the existence of the QFT inequivalent representations of the
CAR is ignored.

3. Contradictions in the Quantum Mechanics Approach to Neutrino Mixing
and Oscillations

On the basis of the results obtained in the previous section, we now review problems
and contradictions arising in the perturbative approximation. We show in this section and
in the following one that the definition of flavor states as linear combinations of mass-
eigenstates leads indeed to some absurd consequences. The main reason is that such states
are approximately eigenstates of flavor charges only for high momenta.

We consider first the derivation of the oscillation formula in the QM formalism, then
we consider the paradox arising in the study of Green’s functions. Then, in the next section,
we consider the lepton number conservation in the production vertex.

3.1. The Pontecorvo Oscillation Formula

We consider the states originally introduced as the flavor states by Pontecorvo and
collaborators [1–4,58]:

|νr
k,σ〉P = ∑

j
U∗j σ |νr

k,j〉 . (49)

They are constructed considering the vacuum state |0〉1,2 , which is annihilated by αr
k,j

and βr
k,j (the mass vacuum) to be the unique vacuum state of the theory. At fixed time, they

are eigenstates of flavor charges only for high momenta:

lim
mi/|k|→0

Qνσ (0)|νr
k,σ〉P = |νr

k,σ〉P . (50)

Indeed, this is not true at all energy scales. To see this, we consider the 2-flavor case
(σ = e, µ and j = 1, 2) and evaluate the oscillation formula as the expectation value of the
flavor charge on a reference neutrino state [7,59,68]:

P̃e→µ(t) ≡ P〈ν
r
k,e|Qνµ(t)|νr

k,e〉P =
sin2(2θ)

2

[
1− |Uk| cos

(
Ω−

k t
)]

, (51)

where |Uk| is given by Equation (21). For ωk,j >> mj, J = 1, 2, it is |Uk| ≈ 1, and we
obtain the Pontecorvo oscillation formula [1–4,58], P̃e→µ(t)→ Pe→µ(t):

Pe→µ(t) = sin2(2θ) sin2
(

Ω−
k

2
t
)

, (52)

which can be put in an even more familiar (and experimentally suitable) form

Pe→µ(L) = sin2(2θ) sin2
(

πL
Losc

)
, σ 6= ρ, (53)

where we used that, in the above limit, t ≈ L, where L is the traveled distance (e.g., the
source-detector distance), and we defined Losc ≡ 4π|k|/δm2

1,2, δm2
1,2 ≡ m2

2 − m2
1. Losc is

usually called oscillation length [8].
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However, at energies where |Uk| 6= 1, we have at t = 0

P̃e→µ(0) =
sin2(2θ)

2
(1− |Uk|) , (54)

which is unacceptable because it tells us that flavor is undefined even at t = 0 [61,68].
A similar paradox, which does not occur in the case of the exact oscillation formulas
Equations (47) and (48), was found in Reference [7], in connection with the study of
two-point Green’s functions for flavor fields, and it will be reviewed in the following.

3.2. Two-Point Green’s Functions for Flavor Fields

Following Reference [7], we now write down the propagator for flavor fields. Some
inconsistencies related to the use of the mass vacuum in the construction of flavor states
also emerge in this context.

Firstly, consider the propagator constructed on the mass vacuum (in this Section, we
use the same notation as in Reference [7]. The propagator is thus defined as the vacuum
expectation value of the time-ordered products of fields. Such a definition differs from the
one of Reference [69] just by a factor i.) |0〉1,2:

S f (x, y) =

(
Sαβ

ee (x, y) Sαβ
eµ (x, y)

Sαβ
µe (x, y) Sαβ

µµ(x, y)

)
(55)

=

1,2〈0|T
[
να

e (x) ν
β
e (y)

]
|0〉1,2 1,2〈0|T

[
να

e (x) ν
β
µ(y)

]
|0〉1,2

1,2〈0|T
[
να

µ(x) ν
β
e (y)

]
|0〉1,2 1,2〈0|T

[
να

µ(x) ν
β
µ(y)

]
|0〉1,2

 .

This can be explicitly written in terms of the propagators of mass fields:

S f (x, y) =(
Sαβ

1 (x, y) cos2 θ + Sαβ
2 (x, y) sin2 θ (Sαβ

2 (x, y)− Sαβ
1 (x, y)) cos θ sin θ

(Sαβ
2 (x, y)− Sαβ

1 (x, y)) cos θ sin θ Sαβ
2 (x, y) cos2 θ + Sαβ

1 (x, y) sin2 θ

)
, (56)

where

Sαβ
j = i

∫ d4k
(2π)4 e−ik·(x−y) /k + mj

k2 −m2
j + iε

, j = 1, 2 . (57)

In Reference [7], it was defined the amplitude of the process where a νe neutrino is
created at t = 0 and its flavor is observed unchanged at time t > 0, as:

P>
ee (k, t) = i ur†

k,1 eiωk,1t S>
ee(k, t) γ0 ur

k,1 , (58)

where S>
ee(k, t) is the Fourier transform of the Wightman function

S>
ee(t, x; 0, y) = 1,2〈0|νe(t, x) νe(0, y)|0〉1,2 . (59)

An explicit computation gives

P>
ee (k, t) = cos2 θ + sin2 θ |Uk|2 e−i(ωk,2−ωk,1)t . (60)

However, this result is unacceptable because

P>
ee (k, 0+) = cos2 θ + sin2 θ|Uk|2 < 1 . (61)
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This inconsistency, which is similar to the one encountered in Equation (54) disappears
by considering the propagator on the flavor vacuum [7]

G f (x, y) =

(
Gαβ

ee (x, y) Gαβ
eµ (x, y)

Gαβ
µe (x, y) Gαβ

µµ(x, y)

)
(62)

=

e,µ〈0|T
[
να

e (x) ν
β
e (y)

]
|0〉e,µ e,µ〈0|T

[
να

e (x) ν
β
µ(y)

]
|0〉e,µ

e,µ〈0|T
[
να

µ(x) ν
β
e (y)

]
|0〉e,µ e,µ〈0|T

[
να

µ(x) ν
β
µ(y)

]
|0〉e,µ

 ,

with y0 = 0. Note that this is indeed consistent from a mathematical point of view. In fact,
|0〉1,2 generally does not belong to the domain of νσ (see Equation (32)).

One can check that G f (x, y) differs from S f (x, y) just by boundary terms. For example,
we consider the Fourier transform of Gee(x, y):

Gee(k, t) = See(k, t) + 2πi sin2 θ
[
|Vk|2(/k + m2)δ(k2 −m2

2) (63)

− |Uk||Vk|∑
r

(
εr ur

k,2vr
−k,2δ(k0 −ωk,2) + εrvr

−k,2ur
k,2δ(k0 + ωk,2)

)
] . (64)

By introducing, as before, the Wightman function G>ee (k, t), we define

P>
ee (k, t) = i ur†

k,1 eiωk,1t G>ee (k, t) γ0 ur
k,1 . (65)

This can be evaluated explicitly:

P>
ee (k, t) = cos2 θ + sin2 θ

(
|Uk|2 e−i(ωk,2−ωk,1)t + |Vk|2 ei(ωk,1+ωk,2)t

)
. (66)

Now P>
ee (k, t) satisfies the right initial condition:

P>
ee (k, 0+) = 1 . (67)

Moreover,

|P>
ee (k, t)|2 + |P>

µµ(k, t)|2 + |P>
e,µ(k, t)|2 + |P>

µe(k, t)|2 = 1 . (68)

Here, P>
ρσ , ρ, σ = e, µ are defined in a similar way as P>

ee . We can thus identify
the different pieces in Equation (68) as flavor (un)-changing probabilities, and the QFT
oscillation formula can be explicitly derived. The result coincides with Equation (47) [7].

Note that the difference between the propagators on mass and flavor vacuum (cf.
Equation (63)) does not appear by using retarded propagators both on flavor and mass
vacua [43]:

Sret(t, x; 0, y) = θ(t) 1,2〈0|
{

νρ(t, x), νσ(0, y)
}
|0〉1,2 , (69)

Gret(t, x; 0, y) = θ(t) e,µ〈0|
{

νρ(t, x), νσ(0, y)
}
|0〉e,µ , ρ, σ = e, µ . (70)

and
Sret(k, t) = Gret(k, t) . (71)

Nevertheless, defining the oscillation probability as

Qνρ→νσ (k, t) = Tr
[
Gret

σρ (k, t)Gret†
σρ (k, t)

]
, (72)

one re-obtains Equations (47) and (48). Once more, this fact shows that the oscillation
formulas (47) and (48) are an extremely solid result.
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4. Lepton Number Conservation in the Vertex

In Reference [60] it was pointed out that the amplitude of the neutrino detection pro-
cess νσ + Xi → e− + X f , where Xi and X f are the initial and the final particles, respectively,
and e− is the electron, is generally different from zero if σ 6= e, if we use the Pontecorvo
states. In fact, for low-energy weak processes (where we can use the four-fermion Fermi
interaction):

〈es
−|ē(x)γµ (1− γ5)νe(x)|νr

σ〉P hµ(x) = ∑
j

UejU∗σj〈es
−|ē(x)γµ(1− γ5)νj(x)|νr

j 〉hµ(x), (73)

where hµ are the matrix elements of the X part. This is generally different from δσe. This
seems to be inconsistent because the flavor of the neutrino is defined by the flavor of
the associated charged lepton in the (lepton-neutrino) doublet (see also Reference [70]).
From this observation, in the attempt of avoiding the inconsistency, weak process states were
introduced [60].

However, there is an important remark. The S matrix is defined so that it connects in
and out states [71]:

SAB ≡ 〈A; out|B; in〉 . (74)

The asymptotic states are defined far before and after the interaction, so that neutrino
oscillation occurs, leading to the violation of family lepton number conservation. This
is actually what should be expected [46]. The previous example is thus not pathological
in this sense. However, the lepton number has to be conserved in the production and detection
vertices (at tree level), where flavor oscillation can be neglected (obviously loop diagrams
can produce a violation of the lepton number in the production and detection vertices,
but these contributions are negligible in the following discussion). Because this point was
debated in the literature [72], it is important to review it in detail.

Flavor Charge Conservation in the Vertex

Let us consider the (Pontecorvo states) amplitude of the process W+ → e+ + νe

AP
W+→e+ νe

= P〈ν
r
k,e| ⊗ 〈e

s
q|
[
−i
∫ x0

out

x0
in

d4xHe
int(x)

]
|W+

p,λ〉 . (75)

The interaction Hamiltonian density is

He
int(x) = − g

2
√

2
W+

µ (x) Jµ
e (x) + h.c. , (76)

and
Jµ
e (x) = ν̄e(x) γµ (1− γ5)e(x) , (77)

as it can be deduced from Equation (36). The usual amplitude is obtained by taking the
asymptotic limit x0

out → +∞, x0
in → −∞. However, as mentioned, the flavor states are not

asymptotic stable states, and we want to investigate the short-time behavior of the amplitude
(around the interaction time x0 = 0). Explicit calculations (cfr. Reference [73]) give:

AP
W+→e+ νe

=
ig

2
√

4π

εp,µ,λ√
2EW

p

δ3(p− q− k)

×
2

∑
j=1

U2
ej

∫ x0
out

x0
in

dx0 e−iωk,j x0
out ūr

k,j γµ(1− γ5) vs
q,e e−i(EW

p −Ee
q−ωk,j)x0

(78)

where EW
p and εp,µ,λ are the energy and the polarization vector of W+ and vs

q,e is the
positron wave function. We take x0

in = −∆t/2 and x0
out = ∆t/2, when τW � ∆t � tosc,
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where τW is the W+ lifetime, while tosc is the oscillation time. Under this condition, we can
expand the amplitude at the leading order in ∆t, obtaining:

AP
W+→e+ νe

≈ ig
2
√

4π

εp,µ,λ√
2EW

p

δ3(p− q− k)∆t
2

∑
j=1

U2
ej ūr

k,j γµ(1− γ5) vs
q,e . (79)

In the same way, one can evaluate the flavor violating amplitude

AP
W+→e+ νµ

= P〈ν
r
k,µ| ⊗ 〈e

s
q|
[
−i
∫ x0

out

x0
in

d4xHe
int(x)

]
|W+

p,λ〉 . (80)

In that case, we find

AP
W+→e+ νµ

=
ig

2
√

4π

εp,µ,λ√
2EW

p

δ3(p− q− k) (81)

×
2

∑
j=1

Uµj Uej

∫ x0
out

x0
in

dx0 e−iωk,j x0
out ūr

k,j γµ(1− γ5) vs
q,e e−i(EW

p −Ee
q−ωk,j)x0

,

which in the short time limit becomes

AP
W+→e+ νµ

≈ ig
2
√

4π

εp,µ,λ√
2EW

p

δ3(p− q− k)∆t
2

∑
j=1

Uµj Uej ūr
k,j γµ(1− γ5) vs

q,e . (82)

This is clearly different from zero, which is inconsistent.
The inconsistency disappears when considering the correct QFT flavor states (44). Let

us first evaluate the amplitudes of the decay W+ → e+ νe [73]:

AW+→e+ νe =
ig

2
√

2(2π)
3
2

δ3(p− q− k)
∫ x0

out

x0
in

dx0 εp,µ,λ√
2EW

p

δ3(p− q− k)

×
{

cos2 θ e−iωk,1 x0
in ūr

k,1 γµ(1− γ5) vs
q,e e−i(EW

p −Ee
q−ωk,1)x0

+ sin2 θ
[
|Uk| e−iωk,2 x0

in ūr
k,2 γµ(1− γ5) vs

q,e e−i(EW
p −Ee

q−ωk,2)x0

+ εr|Vk| eiωk,2 x0
in v̄r
−k,2 γµ(1− γ5) vs

q,e e−i(EW
p −Ee

q+ωk,2)x0
]}

, (83)

with εr ≡ (−1)r, and then the “wrong” one, W+ → e+ νµ:

AW+→e+ νµ
= sin θ cos θ

ig

2
√

2(2π)
3
2

δ3(p− q− k)
∫ x0

out

x0
in

dx0 εp,µ,λ√
2EW

p

δ3(p− q− k)

×
{

e−iωk,2 x0
in ūr

k,2 γµ(1− γ5) vs
q,e e−i(EW

p −Ee
q−ωk,2)x0

−
[
|Uk| e−iωk,1 x0

in ūr
k,1 γµ(1− γ5) vs

q,e e−i(EW
p −Ee

q−ωk,1)x0

+ εr|Vk| eiωk,1 x0
in v̄r
−k,1 γµ(1− γ5) vs

q,e e−i(EW
p −Ee

q+ωk,1)x0
]}

. (84)
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Looking at the case τW � ∆t� tosc, we find [73]:

AW+→e+ νe ≈ ig

2
√

2(2π)
3
2

δ3(p− q− k)
εp,µ,λ√

2EW
p

δ3(p− q− k)∆t

×
{

cos2 θ ūr
k,2 + sin2 θ

[
|Uk|ūr

k,2 + εr|Vk| v̄r
−k,2

]}
γµ(1− γ5) vs

q,e , (85)

and

AW+→e+ νµ
≈ 0 . (86)

which is the expected consistent result.

5. Neutrino Mixing and the Gauge Theory Structure

In the flavor basis, the kinematic and mass terms in the Lagrangian for the flavored
neutrino fields are (cf. Equation (34))

Lν(x) = ν̄(x)(i 6∂−Mν)ν(x) . (87)

For simplicity, when no confusion arises, we omit the space time dependence of the
fields, ν ≡ ν(x). The field equations derived from Lν(x) are

i∂0νe = (−iα ·∇+ βme)νe + βmeµνµ

i∂0νµ = (−iα ·∇+ βmµ)νµ + βmeµνe, (88)

αi, i = 1, 2, 3 and β are the Dirac matrices. We choose the representation

αi =

(
0 σi
σi 0

)
, β =

(
1I2 0
0 −1I2

)
, (89)

where σi are the Pauli matrices and 1In is the n× n identity matrix. In a compact form:

iD0ν = (−iα ·∇+ βMd)ν, (90)

with the diagonal mass matrix Md = diag(me, mµ). The mixing term, proportional to meµ,
is taken into account by the (non-Abelian) covariant derivative [74]:

D0 ≡ ∂0 + i meµ β σ1. (91)

We thus recognize that flavor mixing can be described as an interaction of the flavor
fields with an SU(2) constant gauge field:

Aµ ≡ 1
2

Aa
µσa = nµδm

σ1

2
∈ su(2), nµ ≡ (1, 0, 0, 0)T , (92)

i.e., having only the temporal component in spacetime and only the first component in
su(2) space, A1

0 = δm. The covariant derivative can be written in the form:

Dµ = ∂µ + i g β Aµ, (93)

where we have defined g ≡ tan 2θ as the coupling constant for the mixing interaction.
The Lagrangian Lν is thus written as

Lν = ν̄(iγµDµ −Md)ν. (94)
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In the case of maximal mixing (θ = π/4), the coupling constant grows to infinity
while δm goes to zero. Since the gauge connection is a constant, with just one non-zero
component in group space, its field strength vanishes identically:

Fa
µν = εabc Ab

µ Ac
ν = 0, a, b, c = 1, 2, 3. (95)

Despite the fact that Fµν vanishes identically, the gauge field leads to observable effects
(e.g., neutrino oscillations), in analogy with the Aharonov–Bohm effect [75].

If one goes ahead with the idea of considering the gauge field Aµ, as an ‘’external
field”, it is natural to define the energy momentum tensor as:

T̃ρσ = ν̄iγρDσν− ηρσ ν̄(iγλDλ −Md)ν. (96)

ηρσ = diag(+1,−1,−1,−1) is the Minkowskian metric tensor. T̃ρσ is to be compared with
the canonical energy momentum tensor (so that H =

∫
d3xT00):

Tρσ = ν̄iγρDσν− ηρσ ν̄(iγλDλ −Md)ν + ηρσmeµν̄σ1ν. (97)

The difference between the two is just the presence of the interaction terms, propor-
tional to meµ, in the 00 component, i.e., T00 − T̃00 = meµ(ν̄eνµ + ν̄µνe), while we have
T0i = T̃0i, Tij = T̃ij. One then may proceed by defining the 4-momentum operator
P̃µ ≡

∫
d3x T̃0µ and the Lorentz group generators M̃λρ(x0), which satisfy the usual Poincaré

algebra at fixed time [74].
What is the physical interpretation of the tilde operators? An intriguing suggestion

comes from the possibility of viewing a gauge field as a thermal reservoir [37,76–78]. Then,
in Reference [74], the tilde-Hamiltonian operator H̃ ≡ P̃0 = ∑σ

∫
d3x ν†

σ (−iα ·∇+ βmσ) νσ

was interpreted as a Gibbs free energy F ≡ H̃ = H − T S, where the temperature T is
identified with the coupling constant g = tan 2θ, and entropy S associated to flavor mixing
is given by [74]

S =
∫

d3x ν̄ A0 ν =
1
2

δm
∫

d3x (ν̄eνµ + ν̄µνe) . (98)

with δm ≡ mµ −me (cf. Equation (9)). The appearance of an entropy confirms that each
one of the two-flavor neutrinos can be viewed formally as an “open system”, which
presents some kind of (cyclic) dissipation. This interpretation can be compared with the
one presented in Section 7, where neutrinos are viewed as (cyclic) unstable particles.

Summing up, the gauge field structure in the mixed neutrino evolution shows that
one flavored neutrino evolution is intrinsically dependent on the other flavored neutrino
evolution, cf. Equation (88). This signals that an entanglement is present in neutrino
mixing, as will be discussed in the following Section 6.

6. Entanglement and Neutrino Mixing in QFT

The entanglement phenomenon represents a crucial feature of QM and QFT [79]. It
has been experimentally tested in recent decades and many efforts are devoted to its study
in quantum optics and in general quantum theoretical computing. It is very interesting that
it is also present in neutrino mixing and oscillations [80–87]. Here, we briefly summarize
its main aspects in the QFT neutrino mixing framework. In Section 6.1, we consider the
entanglement associated to the variances of the observables flavor charges discussed in
Section 2.2. In Section 6.2, we consider the entanglement as a property of the vacuum for the
flavor neutrinos, namely the entanglement of the neutrino–antineutrino pairs condensed
in it; therefore, entanglement is a specific QFT feature of the neutrino mixing.
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6.1. Neutrino Entanglement

It has been shown that one can regard QM flavor states as entangled states by intro-
ducing the correspondence with two-qubit states [37,88]:

|ν1〉 ≡ |1〉1|0〉2 ≡ |10〉, |ν2〉 ≡ |0〉1|1〉2 ≡ |01〉, (99)

where |〉j denotes states in the Hilbert space for neutrinos with mass mj. Thus, the occupa-
tion number allows to interpret the flavor states as arising from the entanglement of the νj,
j = 1, 2 neutrinos. This is known as static entanglement [37,88].

In a similar way, a correspondence between two-flavor QM states and two-qubit states
can be introduced [81,83,87]

|νe〉 ≡ |1〉e|0〉µ, |νµ〉 ≡ |0〉e|1〉µ, (100)

where |0〉σ and |1〉σ denote the absence and the presence of a neutrino in mode σ, respec-
tively. Because it relies on the time evolution of flavor states, this phenomenon is known as
dynamic entanglement.

In QFT, both static and dynamic entanglement are present and can be efficiently
quantified by considering the variances of operator charges [84] (see also the general
discussion of Reference [89].). For example, considering the charges Qνj , cf. Equation (43),
we obtain a measure of the static entanglement present in the states |νr

k,σ〉:

σ2
Qj
≡
(

∆Qνj

)2
= 〈Q2

νj
〉ρ − 〈Qνj〉

2
ρ =

1
4

sin2(2θ) . (101)

This result coincides with the QM one [84]. On the other hand, the dynamic entangle-
ment can be measured by the variances of the flavor charges:

σ2
Q ≡

(
∆Qνρ

)2
= 〈Q2

νρ
(t)〉ρ − 〈Qνρ(t)〉2ρ = Qρ→ρ(t)

(
1−Qρ→ρ(t)

)
. (102)

The differences with the relativistic limit result must be traced to the presence of the
vacuum condensate affecting the oscillation formulas Equations (47) and (48).

It is interesting to investigate the origin of the static and the dynamical entanglement
in relation to putting unitarily inequivalent representations into play: in the static entan-
glement, the flavor Hilbert space at time t to which the entangled state |νσ(t)〉 belongs, is
unitarily inequivalent to the Hilbert space for the qubit states |νi〉, see Equation (32); on the
other hand, in the case of dynamical entanglement, where the qubits are taken to be the
flavor states at time t = 0, the inequivalence is among the flavor Hilbert space at different
times (cf. Equation (33)).

6.2. Entangled Vacuum State

Particle–antiparticle pairs (αr
k,i, βr

−k,j) with zero momentum and spin appear to be
condensate in the flavor vacuum, as shown in Equation (30). They are entangled pairs
of condensed quanta. The entanglement correlation is due to the coherent condensate
structure of the vacuum |0〉e,µ generated by the Bogoliubov transformations. A measure of
the particle entanglement in |0〉e,µ is provided by the linear correlation coefficient J(Na, Nb)
given by (see, e.g., [90,91])

J(Na, Nb) =
cov(Na, Nb)

(〈(∆Na)2〉)1/2 (〈(∆Nb)2〉)1/2 , (103)

where a and b generically denote α and/or β quanta, the symbol 〈. . .〉 denotes expectation
value in |0〉e,µ, Na, Nb number operators, the variance 〈(∆N)2〉 ≡ 〈(N − 〈N〉)2〉 = 〈N2〉 −
〈N〉2, the covariance cov(Na, Nb) ≡ 〈NaNb〉 − 〈Na〉 〈Nb〉.
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For non-correlated modes 〈NaNb〉 = 〈Na〉 〈Nb〉, and cov(Na, Nb) is zero. Moreover,
in the case a = b, cov(Na, Na) = 〈(∆Na)2〉, so that J = 1.

Notice that 〈(∆Na)2〉 and/or 〈(∆Nb)
2〉 cannot be zero in Equation (103), i.e., such

values are excluded from the existence domain of J(Na, Nb). From inspection of the vacuum
structure (Equation (30)) and of the operator transformations (Equations (15)–(18)), we
find, for i = 1, 2, 〈(∆Nαr

k,i
)2〉 = sin2 θ |Vk|2(1− sin2 θ |Vk|2) (and similarly for 〈(∆Nβr

k,i
)2〉),

which thus has to be not zero. Therefore, we must exclude the values θ = 0 and |Vk|2 = 0
(|Uk|2 = 1), solutions of sin2 θ |Vk|2 = 0, and θ = π/2 and |Vk|2 = 1 (|Uk|2 = 0) where
sin2 θ = 1/|Vk|2 can be only satisfied (otherwise it is never satisfied since 1/|Vk|2 is always
larger than 1).

Summing up, the definition of J(Nαr
k,i

, Nβr
k,i
) is meaningful only within its existence

domain, to which the values θ = 0, θ = π/2, |Vk|2 = 0, 1 (i.e., |Uk|2 = 1, 0), for any k, do
not belong.

Then, within such existence domain, we find, for any k and i, j = 1, 2,

J
(

Nαr
k,i

, Nβr
−k,j

)
=

1
1 + tan2 θ |Uk|2

, i 6= j, (104)

and for the pairs (αr
k,i, βr

−k,i), i = 1, 2,

J
(

Nαr
k,i

, Nβr
−k,i

)
=

|Uk|2 tan2 θ

1 + tan2 θ |Uk|2
. (105)

Finally, 〈Nαr
k,i

Nαr
k,j
〉 = sin4θ |V|4 = 〈Nαr

k,i
〉 〈Nαr

k,j
〉, and similarly for {βr

k,i, βr
k,j} pairs,

for i 6= j; i, j = 1, 2. Therefore, J = 0 in such cases.
As we see, the QFT formalism describes and allows to quantify the vacuum entangle-

ment in the neutrino mixing and oscillation phenomenon.

7. Flavor–Energy Uncertainty Relations

In Section 2.2, we remarked that flavor charges do not commute with the free part of
the Lagrangian and then with the corresponding Hamiltonian H. This leads to a flavor–
energy uncertainty relation [92] that can be formalized via the Mandelstam–Tamm time-energy
uncertainty relation (TEUR) [93], where flavor charges play the role of clock observables for
the oscillating neutrino systems. Note that, because only flavor can be detected in weak
processes, such uncertainty relations put a fundamental bound on neutrino energy/mass
precision. As remarked in References [94–96], Mossbauer neutrinos could furnish an exam-
ple of neutrinos produced with a definite energy and then this could spoil the oscillation
phenomenon. Here, we do not discuss such a problem.

7.1. Time–Energy Uncertainty Relations for Neutrino Oscillations: Pontecorvo Flavor States

The Mandelstam–Tamm version of TEUR is formulated as [93]

∆E ∆t ≥ 1
2

. (106)

We put

∆E ≡ σH ∆t ≡ σO/
∣∣∣∣d〈O(t)〉

dt

∣∣∣∣ . (107)

Here, O(t) represents the “clock observable” whose dynamics quantifies temporal
changes in a system, and ∆t is the characteristic time interval over which the mean value
of O changes by a standard deviation.

TEUR for neutrino oscillations in flat spacetime have been extensively studied in
References [94–97] and later extended to stationary curved spacetimes [98]. Here, we
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follow in our presentation a slightly different strategy. We start by considering the number
operator for flavor (Pontecorvo) neutrinos:

NP,σ(t) = ∑
k,r

αr†
P,k,σ(t)α

r
P,k,σ(t) , (108)

where the Pontecorvo ladder operators αr
P,k,σ are defined as

αr
P,k,σ =

2

∑
j=1

Uσ j αr
k,j , (109)

with αr
k,j the annihilation operator of fields with definite mass (cf. Equations (1) and (3)).

The oscillation formula (52) [1–4,58] can be obtained by taking the expectation value
of the number operator over Pontecorvo flavor states (49). In particular

Pσ→σ(t) = 〈NP,σ(t)〉σ = 1− sin2(2θ) sin2
(

Ω−
k

2
t
)

, (110)

where, in this subsection, 〈· · · 〉σ = P〈νr
k,σ| · · · |ν

r
k,σ〉P. By setting O(t) = NP,σ(t) in (107)

and taking into account that

σ2
N = 〈N2

P,σ(t)〉σ − 〈NP,σ(t)〉2σ = Pσ→σ(t)(1−Pσ→σ(t)) ,

one obtains ∣∣∣∣dPσ→σ(t)
dt

∣∣∣∣ ≤ 2∆E
√
Pσ→σ(t)(1−Pσ→σ(t)) . (111)

Note that, as discussed in Section 6, σ2
N quantifies the dynamic flavor entanglement of

the neutrino state (49).
If we consider Pσ→σ(t) in the interval 0 ≤ t ≤ t1min, where t1min is the time when

Pσ→σ(t) reaches the first minimum, this is a monotonically decreasing function [94–97].
In other words, if we try to reveal neutrinos in processes with time scales much smaller
than oscillation time, they can be thought as unstable particles [92,99].

The inequality (111) can be further simplified by noticing that the maximum value of
the r.h.s. is ∆E, then the weaker inequality

∆E ≥
∣∣∣∣dPσ→σ(t)

dt

∣∣∣∣ , (112)

holds. By means of triangular inequality and integrating both sides from 0 to T, we obtain

∆E T ≥
∫ T

0
dt
∣∣∣∣dPσ→σ(t)

dt

∣∣∣∣ ≥ ∣∣∣∣∫ T

0
dt

dPσ→σ(t)
dt

∣∣∣∣ . (113)

Therefore, one finds
∆E T ≥ Pσ→ρ(T) , σ 6= ρ , (114)

with Pσ→ρ(t) = 1−Pσ→σ(t). For T = Th, so that Pσ→ρ(Th) =
1
2 , we finally obtain

∆E Th ≥
1
2

, (115)

which has a Heisenberg-like form.

7.2. Time–Energy Uncertainty Relation for Neutrino Oscillations in QFT

Let us now consider the QFT treatment of TEUR. We have seen in the previous sub-
section that this is a consequence of the non-conservation of the number of neutrinos with
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definite flavor. However, we used an approach based on Pontecorvo flavor states, which is
consistent only in the relativistic limit, as extensively discussed in the previous sections.

In the QFT treatment lepton charges are natural candidates as clock observables. In
fact, starting from

[Qνσ (t) , H] = i
dQνσ (t)

dt
6= 0 , (116)

we find the flavor–energy uncertainty relation

σH σQ ≥
1
2

∣∣∣∣dQσ→σ(t)
dt

∣∣∣∣. (117)

The flavor variance was computed in Equation (102) and quantifies the dynamic
entanglement for neutrino states in QFT (cf. Section 6). Proceeding as before, one finds∣∣∣∣dQσ→σ(t)

dt

∣∣∣∣ ≤ ∆E . (118)

From (117) we arrive at the Mandelstam–Tamm TEUR in the form

∆E T ≥ Qσ→ρ(T) , σ 6= ρ. (119)

when mi/|k| → 0, i.e., in the relativistic case, we obtain

|Uk|2 ≈ 1 − ε(k) , |Vk|2 ≈ ε(k) , (120)

with ε(k) ≡ (m1 −m2)
2/4|k|2. In the same limit

Ω−
k ≈

δm2

4|k| =
π

Losc
, Ω+

k ≈ |k| . (121)

Therefore, as previously remarked, at the leading order |Uk|2 → 1, |Vk|2 → 0 and the
standard oscillation formula (53) is recovered. The r.h.s. of (53) reaches its maximum at
L = Losc/2 and the inequality (119) reads

∆E ≥ 2 sin2(2θ)

Losc
. (122)

Note that ∆E is time independent and then (122) applies in the interaction vertex.
Inequalities of the form (122) are well-known in the literature and are usually interpreted
as conditions for neutrino oscillations [97,100]. However, having based our derivation on
exact flavor states and charges, we can see the above relations in a new light: from the
inequality (122), we infer that flavor neutrinos have an inherent energy uncertainty which
represents a bound on the experimental precision that can be reached by energy/mass
measurements. In order to clarify this point, note that (32) implies that

lim
V→∞
〈νr

k,i|ν
r
k,σ〉 = 0 , i = 1, 2 , (123)

i.e., neutrino flavor eigenstates, which are produced in charged current weak decays, cannot
be written as a linear superposition of single-particle mass eigenstates. The orthogonality
condition (123) does not hold for Pontecorvo states (49):

lim
V→∞
〈νr

k,1|ν
r
k,e〉P = cos θ . (124)

This contradiction is resolved by observing that

lim
mi/|k|→0

lim
V→∞

6= lim
V→∞

lim
mi/|k|→0

, (125)
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which means that the relativistic mi/|k| → 0 limit cannot be taken once the “thermodynam-
ical” QFT limit is performed but has to be considered just as a single-particle approximation,
which does not take into account the intrinsic multi-particle nature of QFT. Equation (123)
should be thus understood as

〈νr
k,i|ν

r
k,σ〉= 1,2〈0k|αr

k,1αr†
k,e|0k〉e,µ ∏

p 6=k
1,2〈0p|0p〉e,µ . (126)

where we used the fact that the Hilbert spaces for both massive and flavor fields have a
tensor product structure [33]. The first factor on the r.h.s. corresponds to (124), and it is
finite. However, as said above, this corresponds to a selection of a single particle sub-space
from the complete Hilbert space. In other words, beyond the QM single particle view,
the Pontecorvo definition of a neutrino state cannot work, leading to the contradictions
and paradoxes of Sections 3 and 4.

Let us now consider the exact oscillation formula (47) in the next-to-the-leading
relativistic order in ε(k):

Qσ→ρ(t) ≈ sin2(2θ)
[

sin2
(

πt
Losc

)
(1− ε(k)) + ε(k) sin2(|k|t)

]
, σ 6= ρ . (127)

By setting T = Losc/2, the relation (119) can be written as

∆E ≥ 2 sin2 2θ

Losc

[
1− ε(k) cos2

(
|k|Losc

2

)]
, (128)

i.e., the bound on the energy is lowered with respect to (122). For neutrino masses (these
values for neutrino masses are taken from Reference [23], in the case of inverted hierarchy):
m1 = 0.0497 eV, m2 = 0.0504 eV, and |k| = 1 MeV, then ε(k) = 2× 10−19.

On the other hand, in the non-relativistic regime consider, e.g., |k| = √m1m2. In this case,

|Uk|2 =
1
2

+
ξ

2
= 1− |Vk|2 , (129)

ξ =
2
√

m1m2

m1 + m2
, (130)

and we can rewrite (119) as

∆E T ≥ sin2 2θ

2
[1− cos(ω̃1T) cos(ω̃2T)− ξ sin(ω̃1T) sin(ω̃2T)] , (131)

with ω̃j =
√

mj(m1 + m2). To compare it with the relativistic case, we take T = L̃osc/4,

with L̃osc = 4π
√

m1m2/δm2, obtaining

∆E ≥ 2 sin2 2θ

L̃osc
(1− χ) . (132)

Here

χ = ξ sin
(
ω̃1 L̃osc/4

)
sin
(
ω̃2 L̃osc/4

)
+ cos

(
ω̃1 L̃osc/4

)
cos
(
ω̃2 L̃osc/4

)
. (133)

Substituting the same values for neutrino masses, we obtain χ = 0.1, i.e., the original
bound on energy decreased by 10%.

8. Dynamical Generation of Field Mixing
8.1. Basic Facts

We have seen that the formalism based on the flavor vacuum permits writing down
exact eigenstates of flavor charges (44). In contrast, the use of a mass vacuum leads to
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some inconsistencies (cf., e.g., Equation (61)). We have started our discussion on neutrino
oscillations from the effective Lagrangian L (cf. Equations (34)–(36)), regardless of the
fundamental mechanism of mass and mixing generation. The problem of dynamical gener-
ation of neutrino masses and mixing is still debated (see, e.g., References [101–104]). In a
simple extension of the Standard Model [105], neutrino masses and mixing are generated
via usual Anderson–Higgs–Kibble mechanisms with non-diagonal Yukawa-coupling ma-
trices. A popular idea for Majorana mass generation is the see-saw mechanism [106,107],
which would explain the smallness of neutrino masses with respect to the electroweak
energy scale.

In References [108,109], this subject was studied in the string theory context. In type
I string theory, the dynamical description of open strings requires imposing Dirichlet or
Neumann boundary conditions. In particular, one can impose Dirichlet boundary condi-
tions on a (p + 1)-dimensional hypersurface embedded in the complete 10 dimensional
spacetime of string theory. These hypersurfaces are named D-branes or Dp-brane and
they behave as dynamical objects. A particularly interesting perspective is the possibility
of describing the observed Universe as a D3-brane. This is assumed, e.g., in the D-foam
models. In these models, the Universe evolves in a bulk 10-dimensional spacetime through
D-particle (D0-brane) defects. An observer in the D3-brane perceives them as point-like
defects of spacetime, which realize a spacetime foam (a D-foam) [110]. Open strings can
thus scatter with such defects. At the lowest order of the perturbative expansion, this
interaction can be described by an effective four-fermions interaction. In this context,
masses and mixing of fermions (e.g., neutrinos) can be dynamically generated. It turns out
that mixing is dynamically generated when fermion–antifermion pairs, which mix particles
of different types, condensate in the vacuum. Remarkably such pairs are the ones that
result in non-trivial quantum correlations on flavor vacuum, as seen in Section 6.2.

To put these considerations on a safe ground, in Reference [111] an analysis of different
patterns of symmetry breaking for chirally symmetric models was carried out, looking at
flavor charges and currents at various symmetry breaking stages. Because of its algebraic
nature, this analysis is intrinsically nonperturbative and insensitive to the details of the
model. We now briefly review the main results of that work.

8.2. Dynamical Generation of Flavor Vacuum in Chirally-Symmetric Models

Following Reference [111], let us consider a Lagrangian density L, invariant under
the global chiral-flavor group G = SU(2)L × SU(2)R ×U(1)V . Let the fermion field be a
flavor doublet

ψ =

(
ψ̃1
ψ̃2

)
. (134)

Under a generic chiral-group transformation g, the field ψ transforms as [36]

ψ′ = gψ = exp
[
i
(

φ + ω · σ

2
+ ω5 ·

σ

2
γ5

)]
ψ . (135)

Here φ, ω, and ω5 are real-valued transformation parameters of G. Noether’s theorem
implies the conserved vector and axial currents

Jµ = ψγµψ , Jµ = ψγµ σ

2
ψ , Jµ

5 = ψγµγ5
σ

2
ψ , (136)

and the ensuing conserved charges

Q =
∫

d3x ψ†ψ , Q =
∫

d3x ψ† σ

2
ψ , Q5 =

∫
d3x ψ† σ

2
γ5ψ . (137)
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From these, we recover the Lie algebra of the chiral-flavor group G:[
Qi, Qj

]
= i εijkQk ,

[
Qi, Q5,j

]
= i εijkQ5,k ,

[
Q5,i, Q5,j

]
= i εijkQk ,[

Q, Q5,j
]
=
[
Q, Qj

]
= 0 . (138)

Here i, j, k = 1, 2, 3 and εijk is the Levi-Civita pseudo-tensor.
To proceed, let us recall [36] that SSB is characterized by the existence of some local

operator(s) φ(x) so that, on the vacuum |Ω〉,

〈[Ni, φ(0)]〉 = 〈ϕi(0)〉 ≡ vi 6= 0 , (139)

where 〈. . .〉 ≡ 〈Ω| . . . |Ω〉. Here, vi are the order parameters and Ni represent group genera-
tors from the quotient space G/H, with H being the stability group. In our case, Ni will be
taken as Q and Q5 according to the SSB scheme under consideration.

By analogy with quark condensation in QCD [36], we will limit our considerations
to order parameters that are condensates of fermion–antifermion pairs. To this end, we
introduce the following composite operators

Φk = ψ σk ψ , Φ5
k = ψ σk γ5ψ , σ0 ≡ 1I , (140)

with k = 0, 1, 2, 3. For simplicity, we now assume 〈Φ5〉 = 0.
Let us now consider three specific SSB schemes G → H:
(i) SSB sequence corresponding to a single mass generation is [36,112]

SU(2)L × SU(2)R ×U(1)V −→ U(2)V . (141)

The broken-phase symmetry (which corresponds to dynamically generated mass
matrix M = m01I) is characterized by the order parameter

〈Φ0〉 = v0 6= 0 , 〈Φk〉 = 0 , k = 1, 2, 3 . (142)

One can easily check that this is invariant under the residual symmetry group H =
U(2)V (vacuum stability group) but not under the full chiral group G.

(ii) As a second case, we consider the SSB pattern

SU(2)L × SU(2)R ×U(1)V −→ U(1)V ×U(1)3
V , (143)

which is responsible for the dynamical generation of different masses m1, m2. In this case,
the order parameters take the form

〈Φ0〉 = v0 6= 0 , 〈Φ3〉 = v3 6= 0 . (144)

(iii) Finally, we consider the SSB scheme

SU(2)L × SU(2)R ×U(1)V −→ U(1)V ×U(1)3
V −→ U(1)V , (145)

which is responsible for the dynamical generation of field mixing.
Let us introduce

Φk,m = ψ σk ψ , k = 1, 2, 3 , (146)

where m indicates that ψ is now a doublet of fields ψ = [ψ1 ψ2]
T in the mass basis. The SSB

condition now reads
〈Φ1,m〉 ≡ v1,m 6= 0 . (147)

Hence we find [111] that a necessary condition for a dynamical generation of field
mixing within chiral symmetric systems is the presence of exotic pairs in the vacuum, made
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up by fermions and antifermions with different masses (generally also diagonal condensate
may be present):

〈ψi(x)ψj(x)〉 6= 0 , i 6= j . (148)

In other words, field mixing requires mixing at the level of the vacuum condensate structure.
This conclusion is consistent with flavor vacuum. Moreover, this is an agreement with
References [108,109]. We remark that the above result is basically model independent (the
only assumption made was the global chiral symmetry) and has a nonperturbative nature.

In the mean-field approximation, the vacuum condensate responsible for Equation (147)
has exactly the same form as flavor vacuum (see Equation (30)). In that case, one can ex-
plicitly compute the order parameter [111]:

v1,m = 2 sin 2θ
∫

d3k
(

m2

ωk,2
− m1

ωk,1

)
. (149)

This correctly goes to zero, when θ = 0 or when m1 = m2.

9. Conclusions

The QFT treatment of flavor states presented in Section 2 for two-flavor Dirac neutrinos
leads to a vacuum state for the mixed fields, the flavor vacuum, which is orthogonal to
the vacuum state for the fields with definite masses. Such a result also holds in the case of
three-flavor neutrinos (see Appendix B) and can be extended to Majorana neutrinos [113].
The use of the flavor vacuum allows to define the exact eigenstates of the flavor charges,
and an exact oscillation formula can be derived by taking the expectation values of flavor
charges on flavor states. It is worth remarking that such formula can also be derived
in a first quantized approach (cf. Appendix C), independently of the QFT construction.
However, the QFT approach gives us a deeper insight, even fixing phenomenological
bounds as the TEUR (cf. Section 7), i.e., a form of Mandelstam–Tamm uncertainty relation
involving flavor charges, which fixes a lower bound on neutrino energy resolution. This
means that only flavor states have a physical meaning, both in weak interactions and
neutrino propagation. These conclusions are also supported by the fact that contradictions
and paradoxes arise by using standard QM flavor states and assuming the mass vacuum
as a physical vacuum, as shown in Sections 3 and 4.

We have also seen how the vacuum structure emerges as a condensate and that its
Poincaré group properties exhibit a peculiar character, namely at each time t the flavor
vacuum state is unitarily inequivalent to the one at a different time t′. This reminds us of a
similar scenario in the quantization in the presence of a curved background [56], of unstable
particles [54], and of quantum dissipative systems [57]. This fact, which is compatible
with the simple observation that flavor states cannot be interpreted in terms of irreducible
representations of the Poincaré group [66,114], stimulated studies of possible recovering of
Lorentz invariance for mixed fields, e.g., in Reference [115], where nonlinear realizations
of the Poincaré group [116,117] have been related to non–standard dispersion relations
for the mixed particles. It has been recently shown, in the simpler case of boson mixing,
that such Poincaré symmetry breaking (and related CPT breakdown) is actually an SSB,
which has to be traced in the mechanism of dynamical mixing generation, and that the QFT
flavor oscillation formula is, however, Lorentz invariant [114]. However, observable effects
of such violation in the cosmological scenario could be possible. Such results should be
compared to other ways, which were previously investigated in the literature, on possible
violations of the Lorentz (and CPT) invariance [118–122].

As discussed in Section 8, the origin of flavor vacuum condensate structure, and the
related Poincaré symmetry breaking, could be connected with quantum gravity physics
(e.g., string theory [108,109]), and it is then interesting to look at possible signals of quantum
gravity phenomenology on neutrino oscillations, as decoherence induced by quantum
gravity [123–125].
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The important role played by neutrinos in cosmology and astrophysics should also
be mentioned [126–133]. For example, evidence seems to exist of the so-called cosmic
neutrino background (CNB) [134], similar to the cosmic microwave background (CMB) ra-
diation, which is supposed to be leftover radiation from the early universe expansion [128].
The CMB presents today a thermal spectrum of black body radiation of temperature of
2.72548± 0.00057 K. The CNB, composed of relic neutrinos, has today an estimated temper-
ature of about 1.95 K [134]. We observe that CMB and CNB have also been studied in the
finite temperature QFT [34,35,135,136], and in relation to the dark energy puzzle [137–139]
framework, and also in these cases, the vacuum state turns out to be a time-dependent
generalized SU(1, 1) coherent state. For brevity, we do not discuss this topic further here.

We have discussed in Section 5 the gauge theory structure of the time evolution
of flavored neutrinos. Here we remark that such a discussion, framing the mixing phe-
nomenon within the gauge theory paradigm of QFT, sheds more light on the inextricable
interdependence of the flavored neutrinos fields, their evolution equations being interde-
pendent equations. Such a structure also clarifies the origin of the entanglement structure
in neutrino mixing and of the flavored vacuum discussed in Section 6 and also leads to the
recognition of the role played by free energy and entropy describing the flavored neutrino
non-unitary time evolution mentioned above. Moreover, it suggests a possible description
of the vacuum in terms of refractive medium [74,140], which, however, we do not report
here for brevity.
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Appendix A. Unitarily Inequivalent Representations of CAR and Fields with
Different Masses

Let us consider two Dirac fields ψ̃ and ψ with different masses, which for simplicity
we put m̃ = 0 and m 6= 0, satisfying:

iγµ∂µψ̃ = 0 , (iγµ∂µ −m)ψ = 0, (A1)

respectively. These fields can be expanded, at t = 0, as

ψ(x) =
1√
V

∑
k

∑
r=±1

[αr
k ur

k eik·x + βr†
k vr

k e−ik·x] , (A2)

ψ̃(x) =
1√
V

∑
k

∑
r=±1

[α̃r
k ũr

k eik·x + β̃r†
k ṽr

k e−ik·x] , (A3)

where V is the volume. The CAR and the orthonormality relations of the Dirac spinors are
the usual ones. We want to find the expressions of the creation and annihilation operators
of one of the fields in terms of the ones of the other field, which preserve the CAR and the
field representations Equations (A2) and (A3) [32,36]

∑
r=±

(α̃r
k ũr

k + β̃†
−k ṽr

−k) = ∑
r=±

(αr
k ur

k + βr†
−k vr

−k) . (A4)
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From the orthogonality relations of Dirac spinors, we obtain

αr
k = cos Θk α̃r

k + εr sin Θk β̃r†
−k , (A5)

βr†
−k = −εr sin Θk α̃r

k + cos Θk β̃r†
−k , (A6)

where Θk = 1
2 cot−1(|k|/m). This is a Bogoliubov transformation [32–37], which is indeed

a canonical transformation, i.e., it preserves the CAR. It is evident from Equations (A5)
and (A6) that the vacuum annihilated by the tilde operators α̃r

k |0̃〉 = 0 = β̃r
k |0̃〉 is not

annihilated by the non-tilde ones, αr
k |0̃〉 6= 0, βr

k |0̃〉 6= 0. We want to find the vacuum state
for these ones, say |0〉, αr

k |0〉 = 0 = βr
k |0〉. To find the relation between the two vacua |0〉

and |0̃〉, thus between the Fock spacesH and H̃, we must find the form of the generator B
for Equations (A5) and (A6):

αr
k = B(m) α̃r

k B−1(m) , βr
k = B(m) β̃r

k B−1(m) . (A7)

One can prove that B has the form

B(m) = exp

[
∑
r,k

εr Θk

(
α̃r

k β̃r
−k − β̃r†

−k α̃r†
k

)]
. (A8)

Thus, the vacuum state |0〉 is given by

|0〉 = B(m) |0̃〉 = ∏
r,k

[cos Θk − εr sin Θk α̃r†
k β̃†
−k] |0̃〉 . (A9)

As already observed in the text for Equation (29), the vacuum Equation (A9) is formally
the same as the superconductivity vacuum and the vacuum of the Nambu–Jona Lasinio
model [51,52]. It is an entangled state for the condensed modes αr†

k,i and βr†
−k,i. For such

a state, the linear correlation coefficient J(Nαr
k,i

, Nβr
−k,i

) [90] defined in Equation (103) is
found to be equal to one. The vacuum-vacuum amplitude is:

〈0̃|0〉 ≡ 〈0̃|B(m)|0̃〉 = exp

(
2 ∑

k
log cos Θk

)
, (A10)

i.e., going to the continuum limit

〈0̃|0〉 = exp
(

2 V
∫ d3k
(2π)3 log cos Θk

)
. (A11)

Taking into account that log Θk ∼ −m2/(8 |k|2) when |k| → ∞, and introducing an
ultra-violet cut off Λ, we obtain

〈0̃|0〉 = exp
(
−Λm2V

8π2

)
. (A12)

which goes to zero in the limit V → ∞ or Λ→ ∞: 〈0̃|0〉 → 0. This means that in such a limit,
|0̃〉 does not belong to the domain of B(m) or, in other words, |0〉 does not belong to H̃. This
fact implies that the two representations of CAR are unitarily inequivalent [32–37]. In such
case, the Bogoliubov transformations (A5), (A6) are improper canonical transformations, and
relations such as Equations (29) and (A9), expressing one of the vacuum in terms of the
other one, are only formal ones [33].
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Appendix B. Three-Flavor Neutrino Mixing in Quantum Field Theory

Mixing relations for three-flavor neutrinos are written as:

Ψ f (x) = M Ψm(x) (A13)

where ΨT
f = (νe, νµ, ντ) , ΨT

m = (ν1, ν2, ν3) and M is the Pontecorvo–Maki–Nakagawa–Sakata
(PMNS) matrix [49]:

M =

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 , (A14)

with cij = cos θij, sij = sin θij, i, j = 1, 2, 3 and δ is the CP-violating phase. We have [6,141]:

να
σ(x) = G−1

θ (t) να
i (x) Gθ(t), (A15)

where (σ, i) = (e, 1), (µ, 2), (τ, 3), and the generator of the mixing transformation is

Gθ(t) = G23(t)G13(t)G12(t) (A16)

G12(t) = exp
[

θ12

∫
d3x(ν†

1 (x)ν2(x)− ν†
2 (x)ν1(x))

]
,

G13(t) = exp
[

θ13

∫
d3x(ν†

1 (x)ν3(x)e−iδ − ν†
3 (x)ν1(x)eiδ)

]
, (A17)

G23(t) = exp
[

θ23

∫
d3x(ν†

2 (x)ν3(x)− ν†
3 (x)ν2(x))

]
,

As in the case of two-flavor mixing, the flavor vacuum is given by:

|0(t)〉 f = G−1
θ (t) |0〉m , (A18)

where |0〉m is the mass vaccum. The flavor annihilation operators are:

αr
k,e = c12c13 αr

k,1 + s12c13

(
Uk∗

12 αr
k,2 + εrVk

12 βr†
−k,2

)
+e−iδ s13

(
Uk∗

13 αr
k,3 + εrVk

13 βr†
−k,3

)
, (A19)

αr
k,µ =

(
c12c23 − eiδ s12s23s13

)
αr

k,2 −
(

s12c23 + eiδ c12s23s13

)(
Uk

12 αr
k,1 − εrVk

12 βr†
−k,1

)
+ s23c13

(
Uk∗

23 αr
k,3 + εrVk

23 βr†
−k,3

)
, (A20)

αr
k,τ = c23c13 αr

k,3 −
(

c12s23 + eiδ s12c23s13

)(
Uk

23 αr
k,2 − εrVk

23 βr†
−k,2

)
+
(

s12s23 − eiδ c12c23s13

)(
Uk

13 αr
k,1 − εrVk

13 βr†
−k,1

)
, (A21)

and similar ones for antiparticles (δ→ −δ). The expressions and relations for the Bogoli-
ubov coefficients U and V are the following:

Vk
ij = |Vk

ij | ei(ωk,j+ωk,i)t , Uk
ij = |Uk

ij | ei(ωk,j−ωk,i)t, i, j = 1, 2, 3, i > j, (A22)
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|Uk
ij | =

(
ωk,i + mi

2ωk,i

) 1
2
(

ωk,j + mj

2ωk,j

) 1
2
(

1 +
|k|2

(ωk,i + mi)(ωk,j + mj)

)
, (A23)

|Vk
ij | =

(
ωk,i + mi

2ωk,i

) 1
2
(

ωk,j + mj

2ωk,j

) 1
2
(

|k|
(ωk,j + mj)

− |k|
(ωk,i + mi)

)
, (A24)

|Uk
ij |2 + |Vk

ij |2 = 1 , i, j = 1, 2, 3 , i > j. (A25)

Vk
23(t)V

k∗
13 (t) + Uk∗

23 (t)U
k
13(t) = Uk

12(t) (A26)

Parameterizations of mixing matrix can be obtained by introducing different phases
and defining the more general generators:

G12 ≡ exp
[
θ12

∫
d3x
(

ν†
1 ν2e−iδ2 − ν†

2 ν1eiδ2
)]

G13 ≡ exp
[
θ13

∫
d3x
(

ν†
1 ν3e−iδ5 − ν†

3 ν1eiδ5
)]

(A27)

G23 ≡ exp
[
θ23

∫
d3x
(

ν†
2 ν3e−iδ7 − ν†

3 ν2eiδ7
)]

There are six different matrices obtained by permutations of the above generators. We
can obtain all possible parameterizations of the matrix by setting two of the phases and
permuting rows/columns to zero.

Currents and charges for 3-flavor fermion mixing can be obtained from the Lagrangian
for three free Dirac fields with different masses

L(x) = Ψ̄m(x)(i 6∂−Md)Ψm(x) (A28)

where ΨT
m = (ν1, ν2, ν3) and Md = diag(m1, m2, m3).

The SU(3) transformations:

Ψ′m(x) = eiαjλj2 Ψm(x) , j = 1, .., 8 (A29)

with αj real constants, and λj the Gell-Mann matrices, providing the currents:

Jµ
m,j(x) =

1
2

Ψ̄m(x) γµ λj Ψm(x) (A30)

The combinations:

Q1 ≡ 1
3

Q + Qm,3 +
1√
3

Qm,8,

Q2 ≡ 1
3

Q − Qm,3 +
1√
3

Qm,8 (A31)

Q3 ≡ 1
3

Q − 2√
3

Qm,8,

Qi = ∑
r

∫
d3k
(

αr†
k,iα

r
k,i − βr†

−k,iβ
r
−k,i

)
, i = 1, 2, 3. (A32)
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are the Noether charges for the fields νi with ∑i Qi = Q. The flavor charges are:

:: Qσ(t) ::= G−1
θ (t) : Qi : Gθ(t) = ∑

r

∫
d3k
(

αr†
k,σ(t)α

r
k,σ(t)− βr†

−k,σ(t)βr
−k,σ(t)

)
, (A33)

where :: . . . :: and : . . . : indicate the normal ordering with respect to the flavor and the mass
vacuum, respectively. One then proceeds in a similar way as in the two-flavor case [6,141].

Appendix C. First Quantized Oscillation Formula and Dirac Equation

In this appendix, following References [142,143] (see also References [68,144]), we
review the derivation of the neutrino oscillation formula in relativistic QM. Here, the pro-
cedure leads to the QFT oscillation formulas; however, the QFT foliation into unitarily
inequivalent representations of the CAR and its physical content does not explicitly appear.
The coincidence between Equations (A47) and (47) is a strong indication of the genuineness
of the QFT results.

Flavor wavefunction satisfies the Dirac equation:(
iγµ ∂µ ⊗ 1I2 − 1I4 ⊗Mν

)
Ψ(x) = 0 , (A34)

where Mν is the mass matrix introduced in Equation (37).
For simplicity, we limit the study to one spatial dimension (along the z-axis). By intro-

ducing wavefunctions of neutrinos with definite masses:(
iγ0∂0 + iγ3∂3 −mj

)
ψj(z, t) = 0 , j = 1, 2 , (A35)

one can express a neutrino wavepacket Ψ as:

Ψ(z, t) = cos θ ψ1(z, t) ⊗ ν1 + sin θ ψ2(z, t) ⊗ ν2

=
[
ψ1(z, t) cos2 θ + ψ2(z, t) sin2 θ

]
⊗ νσ + sin θ cos θ [ψ1(z, t)− ψ2(z, t)] ⊗ νρ

≡ ψσ(z, t) ⊗ νσ + ψρ(z, t) ⊗ νρ , (A36)

where ψj(z, t) are the wavepackets describing neutrinos with definite masses, ν1, ν2 are
the eigenstates of Mν and νσ, νρ are flavor eigenstates. A neutrino is produced as a flavor
eigenstate if ψ1(z, 0) = ψ2(z, 0) = ψσ(z, 0), with σ = e, µ. The oscillation probability will
be given by

Pνσ→νρ =
∫ +∞

−∞
dz ψ†

ρ(z, t)ψρ(z, t) . (A37)

By using Equation (A36) we can derive:

Pνσ→νρ =
sin2 2θ

2
[1− I12(t)] , (A38)

where the interference term is given by

I12(t) = <e
[∫ +∞

−∞
dz ψ†

1(z, t)ψ2(z, t)
]

. (A39)

Note that with respect to the usual QM treatment, where only positive frequency
modes are included, this analysis explicitly shows that negative frequency contribution also
has to be involved in the computation of the interference term (A39) (In the QFT formalism,
this point is strictly related to the fact that the flavor vacuum state cannot be expressed in
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terms of the vacuum for massive neutrinos, i.e., they belong to inequivalent Hilbert spaces).
In fact, let us consider the Fourier expansion of ψj(z, t):

ψj(x) = ∑
r

∫ +∞

−∞

dpz

2π

[
ur

pz ,j αr
pz ,j e−i ωpz ,j t + vr

−pz ,jβ
r∗
−pz ,j ei ωpz ,j t

]
ei pz z, j = 1, 2. (A40)

The requirement that the neutrino is produced with definite flavor assumes the form:

ur
pz ,j αr

pz ,j + vr
−pz ,jβ

r∗
−pz ,j = ϕσ(pz − p0)w , (A41)

where ϕσ(pz − p0) is the flavor neutrino distribution in the momentum space, at t = 0,
p0 is the mean momentum of mass wavepackets and w is a constant spinor, satisfying
w†w = 1. By using orthogonality conditions of Dirac spinors, we derive the relations

αr
pz ,j = ϕσ(pz − p0) ur†

pz ,j w , (A42)

βr∗
−pz ,j = ϕσ(pz − p0) vr†

−pz ,j w . (A43)

Substituting in Equation (A40) and then in Equation (A39) we finally arrive
at [142–144]:

I12(t) =
∫ +∞

−∞

dpz

2π
ϕ2

σ(pz − p0)
(
|Upz |2 cos(Ω−pz t) + |Vpz |2 cos(Ω+

pz t)
)

, (A44)

where

Ω±
pz = ωpz ,1 ±ωpz ,2 , (A45)

|Vpz |2 = 1− |Upz |2 =
ωpz ,1 ωpz ,2 − p2

z −m1m2

2ωpz ,1 ωpz ,2
. (A46)

The notation here is slightly different with respect to References [142–144] in order to
relate to previous sections. For plane waves, ϕσ(pz − p0) = δ(pz − p0). The oscillation
probability thus reads

Pνσ→νρ = sin2 2θ

[
|Up0 |2 sin2

(
Ω−

pz

2
t
)

+ |Vp0 |2 sin2
(

Ω+
p0

2
t
)]

. (A47)

The main difference with respect to the oscillation formula Equation (52) is the pres-
ence of a fast oscillating term, with frequency Ω+

p0 /2. This is analogous to the Zitterbewegung
encountered in atomic physics, which leads to the Darwin contribution to the fine structure
of the hydrogen atom [71]. In our case, this effect is very small when p0 �

√
m1m2. In that

regime, |Up0 |2 → 1 and |Vp0 |2 → 0, and the oscillation probability recovers its form (52).
Incidentally, we remark that the QM treatment [3,8], not including negative frequency

terms, is similar to the rotating wave approximation [145] usually encountered in quantum
optics and atomic physics, where fast oscillating terms in the Hamiltonian are neglected in
order to find exact solutions to the eigenvalue problem. However, in the case of neutrino
oscillations, there are no reasons to neglect the contribution with Ω+

p0
, apart from the

p0 �
√

m1m2 case, where such contributions are in fact negligible, as explicitly discussed
in Section 7.2.
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