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Abstract: In this review, we outline the expected tests of gravity that will be achieved at cosmological
scales in the upcoming decades. We focus mainly on constraints on phenomenologically parameter-
ized deviations from general relativity, which allow to test gravity in a model-independent way, but
also review some of the expected constraints obtained with more physically motivated approaches.
After reviewing the state-of-the-art for such constraints, we outline the expected improvement that
future cosmological surveys will achieve, focusing mainly on future large-scale structures and cosmic
microwave background surveys but also looking into novel probes on the nature of gravity. We will
also highlight the necessity of overcoming accuracy issues in our theoretical predictions, issues that
become relevant due to the expected sensitivity of future experiments.

Keywords: general relativity; cosmic microwave background; large-scale structures; modified gravity;
dark energy; cosmological forecast; galaxy surveys; bayesian parameter estimation

1. Introduction

Since its first formulation in 1915, Einstein’s general relativity (GR) has demonstrated
its ability to pass several observational tests. On the one hand, Einstein demonstrated
that such a theory was able to explain the anomalous precession of Mercury’s perihelion,
on the other hand, one of its theoretical predictions, the gravitational deflection of starlight
by the Sun, was tested during the total solar eclipse of 29 May 1919 [1]. Following these
early successes, several other predictions of GR passed observational tests in the following
century, with the latest being the detection of gravitational waves [2] and the observation
of a black hole shadow [3].

From the cosmological point of view, applying GR within the assumption of an
expanding, isotropic and almost homogeneous Universe, has allowed to explain most of the
observations done by cosmological surveys. However, in order to satisfy the observational
constraints, one has to assume that the Universe is made not only of the particles included
in the standard model of particle physics, but also by two unknown components: cold dark
matter (CDM) and dark energy (DE). The presence of CDM, a matter component that only
interacts gravitationally, is inferred both by cosmological and astrophysical observations
(see, e.g., in [4–6]). These tell us that the amount of standard matter (from here on named
baryons) predicted by big bang nucleosynthesis (BBN) cannot account for all the matter
content required by observations, and this unknown CDM component needs to account
for ≈25% of the current total energy budget of the Universe. With the contribution of
relativistic particles being negligible at present time, and baryons accounting for only ≈5%
of the total energy, the remaining 70% of the content of the Universe is made up by DE. Such
a component is needed to account for the late time acceleration of the Universe expansion,
which was measured for the first time in the late 90s [7,8]. DE is generally identified with
the cosmological constant Λ, whose constant energy density and negative pressure allow
to account for this accelerated phase. All these components make up the current standard
cosmological model, the so called cosmological constant-cold dark matter model (ΛCDM).
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Notice that such a model assumes that GR is the correct description of gravity; while
GR has been successfully tested, most of the bounds placed on deviations from it come
from experiments done within the Solar System, and the assumption that this theory is a
good description of gravity at cosmological scales might still be challenged. In particular,
the long-known theoretical issues with the cosmological constant (the “fine tuning” and
“coincidence” problems [9,10]), together with the recent tensions in the measurements of
cosmological parameters (see, e.g., in [11]), have prompted the investigation of models
alternative to ΛCDM, including alternative theories of gravity (see, e.g., in [12]).

During the last two decades, the improvement of data from cosmological surveys
has made possible to test the very foundation of the ΛCDM model, i.e., the assumption
that gravity is described by GR. Cosmic microwave background (CMB) and large-scale
structures (LSS) surveys have the ability to probe the way that matter clusters and how it is
distributed in the Universe, as well as giving insight on how matter distorts space-time
through gravitational lensing. This allows to constrain possible departures from GR, thus
providing observational tests of the theory of gravity at cosmological scales. The next
two decades will see a further improvement of the quality of data, further improving our
knowledge of the evolution of the Universe and, consequently, of the nature of gravity.

In this review, we want to highlight the progress on this investigation that will be
achieved thanks to upcoming cosmological surveys. In Section 2, we will briefly review
the landscape of alternative theories of gravity and we outline the parametric, model
independent methods used to constrain departure from GR. We will then outline the
currently available cosmological constraints in Section 3. In Section 4, we will review the
expected improvement that future surveys will bring on tests of the gravitational theory,
also highlighting the role of new cosmological probes. We will also outline in Section 5 the
new challenges that the improved quality of data will pose, before summarizing the status
and the perspective of this investigation in Section 6.

2. Testing Gravity at Cosmological Scales

In General Relativity it can be shown that the perturbed metric has only two scalar
degrees of freedom [13] and for the spatially flat Friedmann–Lemaitre–Robertson–Walker
(FLRW) spacetime, the perturbed line element takes the form

ds2 = −(1 + 2Ψ)dt2 + a(t)2(1− 2Φ)dxidxi, (1)

where t is the cosmic time, a(t) is the scale factor, and Ψ(t, xi) and Φ(t, xi) are the gravita-
tional scalar potentials. In this review, we will concentrate on sub-horizon scales, for which
the wavemodes are k� aH, meaning that the scales we are interested in are much smaller
than the Hubble horizon. This allows us to work in the quasi-static approximation, in which
the time variation of the gravitational potentials is small compared to the Hubble time
and one can neglect the time derivatives of these potentials in the perturbation equations.
This also means that if we were to modify gravity with an extra scalar field, under this
approximation we can also neglect the time derivatives of the scalar field fluctuations
below the sound horizon of the scalar perturbation. While the quasi-static approximation
is extremely useful to investigate alternative theories of gravity (see in [14–16] for further
details), one has to be aware of its limitations; this approximation breaks down for scales
larger than the sound horizon of the scalar field in which modifications are encoded, thus
making this unsuitable to model observables at very large scales, or in cases where the
speed of sound is much lower than the speed of light [17,18].

When including the full energy-momentum tensor, the first-order perturbed Einstein
equations in Fourier space give two equations that describe the evolution of the two
gravitational potentials Φ and Ψ. These equations read [19–22]

−k2Φ(a, k) = 4πGa2µ(a, k)ρ(a)∆(a, k) , (2)

−k2(Φ + Ψ)(a, k) = 8πGa2Σ(a, k)ρ(a)∆(a, k) , (3)
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where ρ(a) is the average dark matter density and ∆(a, k) = δ + 3aHθ is the co-moving
density contrast with δ the fractional overdensity, and θ the peculiar velocity. The so-called
Weyl potential ΨW can be defined as ΨW(a, k) = (1/2)(Φ(a, k) + Ψ(a, k)) and it is also
called the lensing potential, as it describes the propagation of relativistic particles. The
ratio of the two gravitational potentials is denoted as η, gravitational anisotropic stress or
gravitational slip

η(a, k) ≡ Ψ(a, k)/Φ(a, k) . (4)

The scale- and time-dependent functions η(a, k), µ(a, k) and Σ(a, k) stand for all
possible deviations of Einstein gravity in these equations, being equal to unity when
standard GR is recovered. This approach can encompass any modification by a scalar-
tensor theory (see Section 2.2), but it allows also for more general and even agnostic
parameter-free modifications of gravity that do not directly relate to any given model.
Given that there are only two scalar degrees of freedom, it means that of course there is a
relationship between µ, Σ and η, and they are related by

Σ(a, k) =
µ(a, k)

2
[1 + η(a, k)] . (5)

The µ(a, k) function is usually probed best by experiments that probe the evolution of
non-relativistic particles, as these directly trace the evolution of the Ψ potential. The pa-
rameter µ enters as an additional force affecting tracer particles and therefore it can be cast
as an effective Newtonian constant with

Geff(a, k)
G

= µ(a, k) (6)

in the linear regime and in Fourier space, with G being the standard Newton constant.
On the other hand, relativistic particles, and therefore light, follow the equation for the
Weyl potential, meaning that probes of gravitational lensing are mostly sensitive to the
function Σ(a, k).

For non-relativistic particles and under the assumption of zero anisotropic stress,
one can find the growth equation for the density and the velocity perurbations (δ and θ,
respectively) by considering the conservation of the energy-momentum tensor and the
linearly perturbed Einstein field equations [13]. For ΛCDM in which Φ = Ψ and in the
Newtonian approximation, one can also derive this by looking at the Vlasov–Poisson
system of equations [23]. When combining the perturbation equations for δ and θ, and
again considering only sub-horizon scales, one obtains the following differential equation
for the growth of matter perturbations δm:

δ̈m + 2Hδ̇m − 4πGρ̄µδm = 0, (7)

where the dot represents a derivative with respect to t, the Hubble function is given by
H = ȧ/a and we can see the effect of deviations from GR on the growth of perturbations
in the µ function. Defining the so-called growth rate function via f = dlnδ/d ln a, one can
obtain the following equation:

d f
d ln a

+ f 2 +

(
Ḣ
H2 + 2

)
f =

3
2

Geff
G

Ωm ≡
3
2

µ Ωm . (8)

This growth rate function f (k, z) enters prominently in the determination of redshift
space distortions for the galaxy power spectrum, as we will see below, and can be used
to constrain redshift- and scale-dependent modifications of gravity that affect the growth
of structures.

While the parameterization of departures from GR through the µ, η and Σ functions
is widely used, there are other ways for these deviations to be described. An example is
another common approach, which we will refer to as γ-parameterization. Such an approach
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focuses on possible deviations from the growth of structures expected in GR, encoding
these in the growth rate as [24]

f (z) = [Ωm(z)]γ , (9)

where γ is a free parameter that in the GR limit reduces to γ ≈ 0.55 [24,25].
The two parameterizations can be related to each other, with the assumption of having

modifications in the growth rate leading to Σ = 1, and the µ function that can be written,
dropping for simplicity the z-dependence of Ωm(z), as [26]

µ(a, γ) =
2
3

Ωγ−1
m

[
Ωγ

m + 2 +
H′

H
+ γ

Ω′m
Ωm

+ γ′ ln Ωm

]
. (10)

Another relevant parameterization, often used to constrain deviations from GR, is the
EG statistic [27–29]. This exploit the relation between the Φ and Ψ potentials in GR and can
be used to detect deviations from it using cosmological observables. In this review, we will
not focus further on this particular approach, but we refer the reader to the the literature
that investigates the possible constraints achievable with it (see, e.g., in [30–32]).

2.1. Examples of Modified Gravity Models: f (R) and Jordan–Brans–Dicke

While the functions of Equations (2)–(4) can trace generic deviations from GR, several
models alternative to Einstein’s theory have been developed, and their phenomenology
can be mapped into these functions. Here, we briefly review how this can be done for two
examples of such alternative models: f (R) and Jordan–Brans–Dicke models.

The set of models known as f (R) theory [33], are obtained when modifying the
Einstein–Hilbert action by assuming a function of the Ricci scalar, in the form f (R) such that

S =
∫

d4x
√
−g f (R) + 16πG

∫
d4x

√
−gLm(ψ

(i)
m , gµν) (11)

The field equations can be obtained after a variation of Equation (11) with respect to
the metric gµν and they read

fRRµν −
1
2

f gµν −∇µ∇ν fR + gµν� fR = 8πGTµν , (12)

where fR ≡ ∂ f (R)/∂R and � is the d’Alambertian operator. These equations naturally
reduce to Einstein’s field equations when f (R) = R.

We can recast the Einstein-frame action of Equation (11) as a scalar field action in the
Jordan frame (for a modern review on these frames, see [34]), by replacing the f (R) term
by f (λ) + (R − λ)d f (λ)/dλ, which is identical to the original f (R) Lagrangian, when
varied with respect to the scalar field. An auxiliary field ψ ≡ d f (λ)/dλ can be introduced,
together with a potential V(ψ) = m2

Pl( f (λ(ψ))− λ(ψ)ψ)/2. The scalar field action for ψ is
then obtained when replacing back into the original action, and it takes the form

S =
∫

d4x
√
−g[ψR−V(ψ)] + 16πG

∫
d4x

√
−g̃Lm(ψ

(i)
m , gµν) . (13)

This theory corresponds to the Generalized Jordan–Fierz–Brans–Dicke [35,36] theory
with ωBD = 0. When this ωBD parameter is not zero, there is a kinetic term added to the
action in the form ωBD(ψ)

ψ ∇µψ∇µψ and when ωBD is just a constant, this reduces to the
popular Jordan–Brans–Dicke theory [37].

In the case of f (R) gravity, the expressions for the gravitational potentials and its
modifications defined above in Equations (2) and (3) become relatively simple and reflect
the presence of an additional fifth force with a characteristic mass scale [38]

m2
fR
∼ 1 + fR

3 fRR
∼ 1

3 fRR
, (14)
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where fRR is the second derivative of the f (R) function with respect to the Ricci scalar R.
Assuming negligible matter anisotropic stress and again under the quasistatic approxima-
tion, one finds [16]

µ(a, k) =
1

1 + fR(a)

1 + 4k2a−2m−2
fR
(a)

1 + 3k2a−2m−2
fR
(a)

, (15)

η(a, k) =
1 + 2k2a−2m−2

fR
(a)

1 + 4k2a−2m−2
fR
(a)

, (16)

and
Σ(a) =

1
1 + fR(a)

. (17)

In the case of Jordan–Brans–Dicke, the modifications µ and η become scale-independent
and one can derive again the equations for µ, η and Σ in the quasi-static approxima-
tion [35,37,39,40]

µ =
2(2 + ωBD)

(3 + 2ωBD)ψ
(18)

Σ =
1
ψ

(19)

η =
1 + ωBD

2 + ωBD
. (20)

2.2. General Scalar-Tensor Models

The two models described above fall in a more general class of theories, called scalar-
tensor models. For scalar-tensor theories, the action in the Einstein frame, which defines its
equations of motion, is expressed as

S =
∫

d4x
√
−g

[
M2

Pl
2

R− 1
2
(∇φ)2 −V(φ)

]
+
∫

d4x
√
−g̃Lm(ψ

(i)
m , g̃µν) (21)

where φ is the scalar field, V(φ) its potential and it couples to the matter fields ψ
(i)
m through

the Jordan frame metric g̃µν, which is related to the metric gµν as

g̃µν = A2(φ)gµν . (22)

The conformal parameter A(φ) represents an universal coupling to matter and it
implies that particles will feel a total gravitational potential ΦT which will be the sum of
the standard Newtonian term ΦN and an additional contribution ΦA ,

Φ = ΦN + ΦA , (23)

whose consequence is the fact that matter particles of mass m are sensitive to a “fifth force”
given by the gradient of the “conformal” contribution to the potential ΦA.

As can be expected, Equation (21) can be generalized to account for all possible
theories of a scalar field coupled to matter and the metric tensor. Imposing that the
equations of motion are only second order, this general action described the class of
Horndeski theories [41,42]. This general action can be written as

S =
∫

d4x
√
−g

[
5

∑
i=2
Li + Lm(ψ

(i)
m , gµν)

]
(24)
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where the four Lagrangian terms corresponds to different combinations of four functions
G2,3,4,5 of the scalar field and its kinetic energy χ = −∂µ∂µφ/2, the Ricci scalar and the
Einstein tensor Gµν and are given by [43,44]

L2 = K(φ, χ),

L3 = −G3(φ, χ)�φ,

L4 = G4(φ, χ) R + G4,χ [(�φ)2 − (∇µ∇νφ) (∇µ∇νφ)] ,

L5 = G5(φ, χ) Gµν (∇µ∇νφ)

− 1
6

G5,χ [(�φ)3 − 3(�φ) (∇µ∇νφ) (∇µ∇νφ)

+ 2(∇µ∇αφ) (∇α∇βφ) (∇β∇µφ)] , (25)

After the gravitational wave event GW170817 [45,46], which constrained the propaga-
tion of gravitational waves to be practically equal to the speed of light [47], a large part of
Horndeski theory, was ruled out, as in order to satisfy the observational bound the func-
tions G4,χ, G5,χ and G5,φ need to vanish [48]. As a consequence, the viable theories within
this class remained to be Jordan–Brans–Dicke models and Cubic Galileons (Horndeski
theories with Lagrangians up to L3) [48–53]. See the work in [54] for a summary on the
implications of the GW event on scalar-tensor theories and beyond.

For a generic Horndeski theory the two functions µ (expressing the effective gravi-
tational constant) and η (the gravitational slip) can be expressed as a combination of five
free functions of time p1,2,3,4,5, which are related to the free functions Gi in the Horndeski
action [55,56]

µ(a, k) =
p1(a) + p2(a)k2

1 + p3(a)k2 , (26)

η(a, k) =
1 + p3(a)k2

p4(a) + p5(a)k2 . (27)

The aim of this review is to focus as much as possible on model independent tests of
gravity, but the Horndeski class of scalar-tensor theories is taken here as an example of
a broad class that, while specifying to specif mechanisms of departure for GR, allows to
remain reasonably agnostic. However, while the scalar-tensor theories that fall under the
Horndeski class cover quite a large part of the alternatives theories of gravity of current
interest for cosmology, the space of currently available theories is significantly wider.
Several reviews focusing more in detail on the different classes of modified gravity models
are available in the literature (see, e.g., in [36,54,55,57,58]), and we refer the reader to these
should they be interested in this topic.

2.3. The α-Parametrization in Modified Gravity

A physically meaningful parametrization of the linear Horndeski action, given bythe
work in [15], is related to the Effective Field Theory of dark energy [59–61], where all pos-
sible deviations to the scalar-tensor action are parameterized linearly. This parametrization
is of great help when discussing current cosmological constraints. It is defined using four
functions of time—αM, αK, αB and αT—plus the effective Planck mass M2

? and a function
of time for a given background specified by the time variation of the Hubble rate H(a) as a
function of the scale factor a. The term αT measures the excess of speed of gravitational
waves compared to light and after the event GW170817, this term is constrained to be
effectively zero. The term αK quantifies the kineticity of the scalar field and therefore
appears in models like K-mouflage, which require the K-mouflage screening [62] in order
to pass solar system constraints. The coefficient αB quantifies the braiding or mixing of the
kinetic terms of the scalar field and the metric and can cause dark energy clustering. It
appears in modified gravity models where a fifth force is present [16]. Finally, αM quantifies
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the running rate of the effective Planck mass and it is generated by a non-minimal coupling.
This parameter modifies the lensing terms, as it directly affects the lensing potential [54].

While this α-parameterization is not easily mapped into the µ, η and Σ functions
(see in [15] for specific mappings under certain limits), and it refers to the specific class
of Horndeski theories rather than to generic deviations from GR, obtaining observational
constraints on the αi functions is extremely useful to investigate the theory of gravity, as it al-
lows to directly relate possible deviations from the expected GR behavior to physical effects.

2.4. Impact on Cosmological Observables

In Equations (2) and (3), we saw how the functions parameterizing departures from
GR enter in the Poisson equations for relativistic and non-relativistic particles, while we
have shown explicitly in Equation (8) how the µ function enters the expression for the
growth rate of cosmological perturbations. These effects naturally enter the equations used
to obtain theoretical predictions on observables, thus imprinting signatures of the gravity
theory that can be detected by cosmological surveys.

Given their impact on the growth of structures and on gravitational lensing, natural
candidates to test gravity are the LSS probes of galaxy clustering (GC) and weak lensing
(WL). GC measures the two-point correlation function of galaxy positions either in three
dimensions, i.e., angular positions and redshift, or using a two-dimensional tomographic
approach (angular galaxy clustering) when the redshift information is not particularly good.
The first approach is used for spectroscopic surveys, which provide a very small error on the
redshift of the observed galaxies, while the second is more suited for photometric surveys.

For the former, one works in Fourier space, where the correlation function of galax-
ies, known as the observed galaxy power spectrum Pobs

gg is directly related to the power
spectrum of matter density perturbations Pδδ,zs in redshift space by [63–66]

Pobs
gg (z, k, µθ) = AP(z)Pδδ,zs(k, z)Eerr(z, k) + Pshot(z) , (28)

where AP(z) corresponds to the Alcock–Paczynski effect, Eerr(z, k) is a damping term given
by redshift errors and Pshot(z) is the shot noise from estimating a continuous distribution
out of a discrete set of points. µθ is the cosine of the angle between the line of sight and the
wave vector k. Furthermore, the redshift space power spectrum, is given by [65,66]

Pδδ,zs(z, k, µθ) = FoG(z, k, µθ)K2(z, µθ ; b(z); f (z))Pδδ(k, µθ , z) , (29)

where FoG(z, k, µθ) is the “Fingers of God” term that accounts for nonlinear peculiar
velocity dispersions of the galaxies and K is the redshift space distortion term that depends—
in linear theory, where it is known as the Kaiser term [67]—on the growth rate f (z) and the
bias b(z), but can be more complicated when taking into account nonlinear perturbation
theory at mildly nonlinear scales [23,68,69]. For a detailed explanation of these terms, we
refer the reader to the work in [70] and the many references therein.

As it can be seen in Equation (29), the growth rate enters the K term, thus imprinting
in it possible signatures of departures from GR through Equation (8). In addition to this,
also the Pδδ contains information on the µ function, as it is obtained through Equation (2),
thus making a spectroscopic survey of GC an ideal probe to test gravity.

While not able to provide a 3D information, a photometric GC survey would be able
to provide constrain on deviations from the standard clustering of matter. In this case, one
compares the angular power spectrum of galaxy correlations, obtained in tomographic
redshift bins, with the theoretical predictions obtained as [70]

Cgg
ij (`) =

c
H0

∫ Ŵg
i (z)Ŵ

g
j (z)

E(z)r2(z)
Pδδ(k`, z)dz , (30)

where the Ŵg
i functions contain information on the galaxy distribution in the i-th bin and

the galaxy bias needed to relate the correlation of galaxies to that of matter, r(z) is the



Universe 2021, 7, 506 8 of 29

co-moving distance and E(z) = H(z)/H0 is the dimensionless Hubble parameter. Even
though Equation (30) does not depend on the K term containing the growth rate, deviations
from GR would still affect such an observable through its dependence on Pδδ.

Photometric galaxy surveys also allow to measure the distortion of the shape of distant
galaxies caused by the lensing effect produced by the matter distribution between them
and the observers. The measurement of such a shear does not rely on the measurement
of galaxy correlation functions and it is therefore a direct tracer of matter distribution,
avoiding the dependence on the galaxy bias b(z). Furthermore, for this observable, one
can obtain the angular power spectrum [70]

Cγγ
ij (`) =

c
H0

∫ Ŵγ
i (z)Ŵ

γ
j (z)

E(z)r2(z)
PΦ+Ψ(k`, z)dz , (31)

where the window functions, or lensing kernels, Ŵγ
j (z) contain information on the geom-

etry of space-time, and PΦ+Ψ(k`, z) is the Weyl power spectrum, coming from the Weyl
potential defined Equation (3). This is related to the matter power spectrum Pδδ by

PΦ+Ψ = Σ2(k, z)

[
3
(

H0

c

)2
Ω0

m(1 + z)

]2

Pδδ . (32)

In this equation, we can see clearly the observational signature of the Σ lensing
function defined above in Equation (3), thus making WL of distant galaxies an ideal probe to
constrain deviations from the lensing effect expected in GR. Notice that in Equation (31) we
neglected the contribution of intrinsic alignment, a systematic effect for such a measurement
that is described in detail in [70].

The discussion above highlights the potential of LSS observations to test the theory
of gravity, as the combination of GC and WL can bring information on two of the MG
functions, µ and Σ.

Alongside LSS observables, another mean to test the theory of gravity is through
observations of the cosmic microwave background (CMB). This radiation is composed
of photons coming from very high redshift, and the anisotropies in their temperature
and polarization are related to the small perturbations in the matter–photon plasma in
the early Universe. While departures from GR are expected to be relevant only at late
times, signatures of these can still be detected or ruled out using CMB observations.
The anisotropies in the CMB angular power spectra are indeed affected also by a number
of secondary effects cause by the distribution of matter and its effect on photons during
their travel to the observer from the last scattering surface. The main signatures of the
theory of gravity on CMB spectra can indeed be found in the integrated Sachs–Wolfe (ISW)
effect [71,72], caused by the time evolution of the potentials Φ and Ψ, and in the lensing
effect on CMB peaks [73,74], which is related to the Weyl potential. We show in Figure 1 an
example of the effects of deviations from GR on CMB temperature and lensing potential
power spectra, following the approach of the Planck Collaboration [75], highlighting the
sensitivity of CMB measurements to signatures of the gravity theory. Such predictions
were obtained using Equations (2) and (4), with the µ and η functions parameterized as

µ(z) = 1 + E11ΩDE(z) , (33)

η(z) = 1 + E22ΩDE(z) , (34)

where Eii are free parameters and ΩDE(z) is the abundance of the dark energy component.
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Figure 1. Temperature (left) and lensing potential (right) CMB power spectra obtained for possible
departures from GR. This figure is obtained using the same parameterization and parameter values
in [75] using a private Boltzmann-solver.

Note that at this point, while we have focused in this section on perturbation observ-
ables, and we will do so throughout the paper, tests of gravity can be performed also using
observations of the background expansion of the Universe. Indeed, models alternative to
GR usually predict an expansion history that departs from the one expected in ΛCDM,
and observations of this can be used to constrain such models. Furthermore, such an inves-
tigation can be performed in a model independent way, e.g., by employing a cosmographic
approach [76,77], which would allow to exploit to use observations of supernovae and
baryon acoustic oscillations to constrain deviations from a cosmological constant driven
Universe, and to connect the results to possible modifications of gravity (see, e.g., in [78]).
Noteworthy, other observables could even allow to reconstruct the expansion history at
even higher redshift, e.g., through Quasars or γ-ray bursts (see, e.g., in [79–81]).

2.5. Codes and Tools to Compute Cosmological Observables

Theoretical predictions for the evolution of cosmological perturbations and, con-
sequently, for cosmological observables, can be obtained very efficiently when these
perturbations are small, and linear perturbation theory can be applied. The so-called
Einstein–Boltzmann solvers apply this formalism to evolve primordial perturbations to
present time and to obtain prediction on the observables that we described ago. Two
commonly used public codes of this kind are CAMB1 (Code for Anisotropies in the Mi-
crowave Background) [82,83], which is written mainly in fortran, and CLASS2 (Cosmic
Linear Anisotropy Solving System) [84,85], which is mainly written in the C programming
language. Both of these codes come with user-friendly python wrappers. These codes can
be modified to account for alternative theories of gravity, or to account for parameterized
departures from GR. While in the first case once implements specific modified gravity (MG)
models or generic class of models solving their full scalar field equations, in the latter one
modifies the evolution equations through Equations (2) and (4).

The most commonly used codes implementing the generic parametrization approach are
ISitGR3 [86,87], MGCAMB4 [22,88] and, more recently, a branch of CLASS, called QSA_CLASS [89].
For the implementation of specific classes of alternatives to GR we will mention here the two
most important ones, namely, hi_class5 [90] and EFTCAMB6 [91,92]. The first one, works di-
rectly on the Horndeski action of Equation (25) and its five free functions of time or, alternatively,
by using the α-parametrization defined in Section 2.3. On the other hand, EFTCAMB works
within the formalism of the Effective Field Theory of Dark Energy [59–61], even though it allows
a reparameterization of the EFT functions by means of the αi.

3. Current Constraints on Modified Gravity

The current state of the art for constraints on deviations from GR is given mainly by
CMB and LSS observations.
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Current CMB constraints come mainly from the observations of Planck [93], a satellite
survey that obtained data from 2009 to 2013; the Planck Collaboration released in 2015 a
paper dedicated to constraints on DE and modified gravity models, containing also bounds
on possible deviations from GR [75], which were then updated in 2018 with the last data
release of the collaboration [6].

In their latest results, the collaboration constrained deviations from GR parameterized
as in Equations (33) and (34). We show in Figure 2 the results obtained fitting the Planck
data using the parameterization of Equations (33) and (34) through MGCAMB, corresponding
to those reported in [6]. One can notice how the µ(z) and η(z) function are compatible
with their GR limit within 2σ. As pointed out in [6,75], this agreement is worsened if CMB
lensing reconstruction data are removed from the data combination; this is due to the
fact that Planck data prefer a lensing amplitude higher than what one would expect in
standard ΛCDM, a preference that is reduced when lensing extraction data are included,
and that can be explained by a departure from GR. The right panel of Figure 2 shows this
effect highlighting how the Σ(z) function is degenerate with AL, the phenomenological
parameter used to take into account deviations from a standard lensing effect [94].
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Figure 2. 68% and 95% confidence level contours for µ(z = 0)− 1 and η(z = 0)− 1 (left), and for
Σ(z = 0)− 1 and AL (right). The dashed lines show the expected values in a GR-ΛCDM Universe.

Following the results of Planck, the observables useful to improve constraints on
deviations from GR were those related to LSS observations. In particular, the Dark Energy
Survey (DES) collaboration, after its latest data release, has employed a subset of its data,
the DMASS galaxy catalog [95], in combination with baryon acoustic oscillations (BAO)
and redshift space distortions (RSD) data from CMASS [96], and the CMB data from Planck
to further improve the bounds on possible deviations from GR. The analysis performed
uses a slightly different parameterization from the one of Equations (33) and (34), relying
instead on [97]

µ(z) = 1 + µ0
ΩDE(z)

Ω0
DE

, (35)

Σ(z) = 1 + Σ0
ΩDE(z)

Ω0
DE

, (36)

where Ω0
DE is the present time abundance of dark energy, and the GR limit is achieved

for µ0 = Σ0 = 0. The results obtained show a slight deviation from GR when DMASS
and CMASS are combined, with µ0 = −1.23+0.81

−0.83 and Σ0 = −0.17+0.16
−0.15. However, when

Planck data are included in the analysis, the GR limit is consistent with the results, with
µ0 = 0.37+0.47

−0.45 and Σ0 = 0.078+0.078
−0.082 [97].

Other results are available thanks to current data (see, e.g., in [98,99]), but qualitatively
the same conclusions can be taken; the GR limit of the parameterized departures used is in
agreement with the observational data or has a tension that is not statistically significant
(.2σ). However, the bounds obtained would still allow for some of the available alternative
gravity models to be viable and to be candidates to explain the accelerated expansion of the
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Universe. In order to further put GR to test and possibly to rule out some of its alternatives,
the next generation of observational surveys will be crucial.

4. Upcoming Constraints

In the previous section we summarized the current constraints on deviations from GR
achievable with currently available data. Here, we focus instead on how Einstein’s theory
could be tested in the upcoming decades.

We expect stronger constraints thanks to the improvement in sensitivity that future
LSS and CMB surveys will have. This means that the same approach used until now can be
applied using future surveys to constrain GR, and we discuss the expected improvement
in Sections 4.1 and 4.2.

However, new cosmological probes are now reaching a level of maturity that could
allow us to use them to test gravity, and we will review the constraining power that these
will bring to the investigation in Section 4.4.

4.1. LSS Forecast

Next-generation galaxy surveys will be one of the most powerful probes of cosmology
in the upcoming decade. These were designed to measure cosmological parameters with
1% precision, through the use of two-point statistics likeGC and WL. Among the most
important upcoming missions there will be the Javalambre-Physics of the Accelerated
Universe Astrophysical Survey (J-PAS) [100], the Dark Energy Spectroscopic Instrument
(DESI) [101], Euclid [102,103], the Vera Rubin Observatory [104], WFIRST [105] and the
SKA Observatory [106].

Euclid is a European space satellite mission that has an infrared spectrograph and a
visible camera. The latter is capable of taking spectra of about 50 million galaxies in the
sky from redshifts 0.9 < z < 1.6 with a sub-percent accuracy in the redshift estimation,
perfect for spectroscopic galaxy clustering studies. On the other hand, the visible camera
will be able to take low-noise level pictures of ~1 billion galaxy shapes and positions up to
a redshift of about z . 3.0, which makes it adequate to detect the tiny cosmic shear effect
statistically, by looking at the change of ellipticities of the galaxies across space and time. It
will cover an approximate area of 15,000 deg2 in the sky [70,103]. Euclid is expected to be
launched by late 2022.

WFIRST, a NASA mission, will have similar capabilities in terms of area coverage,
instruments and redshift range, but it will also serve other purposes, such as the search
for exoplanets and detailed studies of stars [107]. On the spectroscopic side, but based on
the ground, DESI will be at the forefront of the observation capabilities in the next years,
with its mission starting in 2021 and with very good spectroscopic resolution, it will be able
to capture up to 50 million galaxies on the night sky. It will be able to differentiate between
several populations of galaxies, such as Luminous Red Galaxies (LRGs), Emission Line
Galaxies (ELGs) and it also will be able to measure quasars and the Lyman-α forest, which
will allow the determination of independent clustering statistics along the history of the
Universe [108]. On the side of photometric observables, the Vera Rubin Observatory will
be the main ground-based experiment in the upcoming decade. Its Legacy Survey of Space
and Time (LSST) will cover an area of about 20,000 deg2 and it will be capable of obtaining
accurate shapes and angular positions of about a billion galaxies up to redshift z . 3.0. It
will also serve other purposes such as the study of Supernovae and transients, making it a
very versatile observatory [109]. Another photometric survey relevant for the purpose of
gravity tests is J-PAS, a wide field survey carried out from the Javalambre Observatory in
Spain, which started observations in 2015, and which will observe an area of 8500 deg2.

The SKA Obesrvatory (SKAO) will instead provide a different window for cosmologi-
cal investigation, as it will perform observations in the radio band. It will be the largest
radio array ever built and it will provide observations of galaxy clustering and weak
lensing from resolved galaxies and intensity mapping, through radio continuum and 21-cm
line emission [106].
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LSS surveys are extremely interesting for the purpose of testing gravity; these will
be able to map the distribution of matter in the Universe by probing its evolution from
primordial perturbations and the gravitational lensing effect that it has on photons (see
Section 2). For this reason, the literature on this topic is extensive, and we report here a
subset of the forecast results available as an example.

Most of the available forecast results, rely on the Fisher matrix approach [110–112], that
allows to forecast the constraining power of future experiments. Despite its limitations, like
assuming a Gaussian likelihood and a Gaussian posterior, the Fisher matrix F allows us to
obtain an optimistic bound [113] on the confidence contours of the model parameters, given
a prior and a set of experimental settings. F can be obtained by knowing the theoretical
model (in the case of LSS, the observable power spectra) and its derivatives with respect
to the parameters, together with a model for the experimental noise. The individual
uncertainties on the cosmological parameters θi are then obtained by taking the inverse of
F, the so-called forecasted covariance matrix C, with C = F−1 and looking at its diagonal
elements, so that σ(θi) =

√
Cii.

Such a method has been applied with several parameterizations for deviations from
GR. Constraints on the γ parameter of Equation (9) have been obtained by the Euclid
Consortium [70], whose results are shown in Figure 3. The authors found that combining
photometric and spectroscopic observables (WL and spectroscopic GC), the γ parameter
can be measured with a relative error .0.1, thus tightly constraining deviations from the
growth of structure expected in GR, even in the case where the background expansion is
given freedom to deviate from the standard cosmological constant, and the assumption of
a flat Universe is dropped.
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Figure 3. Relative errors on cosmological parameters and on the γ controlling the deviation from
the standard growth. The results shown here include spectroscopic galaxy clustering (purple), weak
lensing (blue) and their combination (orange). This figure is obtained in [70].

Forecast constraints from Euclid have been also obtained for the functions µ(z) and
Σ(z) that parameterize deviations from both the standard growth and lensing effect. The au-
thors of [114] constrained these functions exploring two different assumptions: a “late-time”
parameterization where the two functions scale with the DE energy density ΩDE and an
“early-time” parameterization where the redshift trend of µ(z) and Σ(z) is described with a
Taylor expansion. Moreover, the authors explored a case in which the two functions are
binned in redshift, an approach that allows to avoid any assumption on the evolution of
these functions, at the expense of a higher number of parameters and, therefore, looser
constraints. This analysis was performed assuming values of the free parameters that do
not coincide with the GR limit, but are still not ruled out by Planck measurements (see
Section 3).

In Figure 4, we show the constraints obtained in [114] when the ’late-time’ parameteri-
zation is assumed, i.e.,

µ(z) = 1 + E11ΩDE(z) , (37)

η(z) = 1 + E22ΩDE(z) , (38)
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where E11 and E22 are the free parameters ruling the amplitude of the deviation from GR,
and the two functions can be combined to obtain Σ(z) following Equation (5). These results
highlight how the GC and WL probes are complementary, with the former measuring the
clustering of matter (and therefore constraining the µ(z) function), while the latter is more
sensitive to the Σ(z) function, as it probes the shear of galaxy shapes due to gravitational
lensing. Combining these two probes, Euclid can reach constraints of 1.6% and 1% on
the present day values of µ(z) and Σ(z) respectively in the late-time parameterization,
with the precision reaching 0.7% and 0.6% if instead the measurements for the two probes
are assumed to come from the planned phase 2 of SKAO. In the binned case, the best
constrained value of µ(z) is measured with a precision of 2.2%, while for η(z) the best
precision in 3.6%. Such a result highlights how upcoming surveys will allow to test gravity
even without a priori assumptions on the redshift trend of the parameterized deviations
from GR.

Notice that the constraints of [114] are obtained with a specific prescriptions for the
nonlinear evolution of cosmological perturbations, which allows to include small scales in
the analysis (see Section 5).

Euclid
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Figure 4. 68% and 95% confidence level contours on the current values of µ(z) and Σ(z) obtained
using forecast observations for Euclid’s spectroscopic GC (green) and photometric WL (purple).
The combination of the two is studied with CMB data from Planck also included (orange). Reprinted
from the work in [114], with permission from Elsevier.

Constraints on a parameterization analogous to the one of Equations (37) and (38)
were also obtained for the expected observations of J-PAS [115]. The authors of this paper
show how the constraints achievable on the parameters ruling the amplitude of deviations
from GR are competitive with those that can obtained from Euclid, thanks to the amount of
data that J-PAS will obtain at low redshift, where such parameterization departs the most
from the standard model. In this paper, the authors also explored the possibility for this
functions to be scale-dependent, highlighting how future surveys such as J-PAS and Euclid
can potentially detect a deviation from the scale independent behavior of GR.

The binned approach to constrain the MG functions µ(z) and η(z) was also used in
other forecast for upcoming missions (see, e.g., in [116,117]). Of particular interest is the
approach of [117], where the binning of the functions, together with a principal component
analysis (PCA) [118], was used to constrain these functions when the assumption that
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they are scale independent is dropped. The authors explored both the case in which the
dependence on the scale k is arbitrary, thus binning the functions in both z and k, and the
case in which the k-dependence is obtained by requiring that µ(z, k) and η(z, k) come from
physically motivated theories [119]. For this latter case, the authors write the MG functions
as in Equations (26) and (27), and they bin in redshift the pi functions. The results in [117]
show that the LSST survey, while unable to constrain individual pi functions due to their
degeneracies, will be able to measure combinations of all of them with a precision of 1%
on the best constrained eigenmode, a measurement which will allow to constrain generic
deviations from GR.

As discussed in Section 2, an alternative to the µ(z) and Σ(z) function to test gravity is
the use of the αi functions of Section 2.3. Constraints on these functions, that consider only
departures from GR that fall under the Horndeski class, were also forecasted for upcoming
LSS surveys.

In [39], the authors explore the possibility to constrain the αi functions parameter-
ized as

αi = ci
ΩDE(z)

ΩDE(z = 0)
. (39)

They explore the bounds that can be obtained on the ci parameters from LSST and
also using the intensity mapping survey of SKAO. We show in Figure 5 an example of the
results of this analysis, showing the complementarity of the different probes. In particular
one can notice how the combination of LSST clustering and weak lensing observations can
significantly tighten the constraints on cM and cB, ruling the deviation from the standard
Planck mass and braiding term respectively.

0.
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c M
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S4+LSSTδg

S4+LSSTγg
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Figure 5. Sixty-eight percent (68%) confidence level contours on cM and cB obtained combining a
stage IV CMB survey with the expected measurements of intensity mapping from SKAO (yellow),
weak lensing (blue) and galaxy clustering (green) from LSST, and the combination of the latter two
(red). Reprinted figure with permission from the authors of [39] by the American Physical Society.

Another analysis, performed in [120], focuses on the impact of the choice of analysis
method on the expected bounds on the αi, comparing the tomographic approach for weak
lensing to an analysis that fully considers 3D information, finding that the latter can
improve the constraints of ≈20%. Moreover, they investigate they impact of cutting the
small scales out of the analysis; such a cut is necessary when one is not able to obtain
theoretical predictions for scales at which the linear perturbation description is not valid
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anymore, which is a common issue for models that deviate from ΛCDM. As shown in
Figure 6 the impact of nonlinear scales can be critical to obtain stringent test of gravity,
but the to fully exploit the data in such a regime can be extremely challenging, as we will
discuss in Section 5.

3

0

3

M
linear
non-linear

0.24

0.30

0.36

m

0.78

0.84

0.90

8

0.0

0.8

1.6

h

0.8

1.0

1.2

n s

0.00

0.08

0.16

b

1.5 0.0 1.5

B

1.5

0.0

1.5

m
[e

V]

3 0 3

M

0.24 0.30 0.36

m
0.78 0.84 0.90

8
0.0 0.8 1.6

h
0.8 1.0 1.2

ns
0.00 0.08 0.16

b

Figure 6. 68% confidence level contours on cosmological and MG parameters obtained by a Euclid-
like survey cutting the nonlinear scales out of the analysis (blue) or including them (pink). This figure
is taken from [120].

We conclude this section by stressing that in realistic settings, these constraints might
suffer from degeneracies with nuisance parameters that account for observational effects
such as intrinsic alignment of galaxies, galaxy bias and other systematic effects, which, if not
accounted for, can severely limit the robustness of the constraints obtained on deviations
from GR [121,122].

4.2. CMB

While the current CMB data provided by Planck have reached the cosmic variance
limit for a wide range of multipoles in temperature, i.e., the correlation where most on the
information on gravity can be extracted, we still expect an improvement in the constraints
on deviations from GR from upcoming CMB surveys.

On the one hand, upcoming surveys and especially those performed by ground based
telescopes, will be able to access smaller scales and therefore access higher multipoles with
respect to Planck. On the other hand, upcoming surveys will significantly improve the
sensitivity for polarization spectra, for which the cosmic variance limited data provided
by Planck is much more limited in the range of multipoles. Both these improvement will
allows to extract more information on the CMB lensing potential, by measuring temperature
power spectra oscillation at high multipoles, and by improving the lensing reconstruction
methods that also rely on a precise measure of polarization spectra [123].

As discussed in Section 3, most of the CMB constraining power on gravity comes from
the impact of lensing on CMB observables; thus, thanks to the future improvements in its
characterization, we can expect better constraints on deviations from GR.

For the purpose of testing gravity, the main CMB surveys expected in the upcoming
decades are the Simons Observatory (SO) [124] and CMB-S4 [125]. The former is a new
CMB experiment that is being built in Chile, while the second is an envisioned CMB survey
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that would consist of dedicated facilities at the South Pole, Chile and possibly a northern
hemisphere site.

Most of the forecast obtained for future CMB surveys have been obtained in the
context of scalar-tensor theories, rather than as generic deviations from GR, thus aiming to
constrain either the Gi functions included in the Horndeski Lagrangian, e.g., through the
parameterization done with the α functions described in Section 2.3.

Constraints on this kind of theories are indeed one of the science cases proposed in
the CMB-S4 science book [125]; the authors considered simulated observations for this
proposed experiment and use Planck measurements to complete the sky map in the areas
not surveyed by CMB-S4 to obtain a full sky map. They find that the inclusion of CMB-S4
data can improve the constraints on the parameters ruling the deviations from GR in
scalar-tensor theories, in particular with the bound on the speed of gravitational waves
parameter αT that is improved by a factor ≈3, a constraint mainly due to the increased
sensitivity of such a survey on primordial gravitational waves.

Despite the fact that future CMB surveys will improve our constraints on deviations
from GR, such surveys will not be competitive by themselves with contemporary exper-
iments mapping the LSS. The latter kind of surveys is indeed more suited to map the
distribution of matter in the Universe and the evolution of perturbations at times when
one expects deviations from GR to be relevant (if present). However, both SO and CMB-S4
surveys will contribute to this investigation when used in combination with LSS surveys,
as they will break degeneracies between cosmological and MG parameters [124,125].

An investigation on the role played by CMB with respect to LSS surveys was carried
out in [39]. Together with more general scalar tensor theories, the authors constrained
the Jordan–Brans–Dicke theory obtaining bounds on the parameter ωBD. In Figure 7, we
report the results found by the authors, which highlight how, even though CMB obtains
constraints at redshifts where the modifications to gravity have no significant impact and
it is therefore not competitive on its own, it can still be used to improve the constraints
achieved with LSS.
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Figure 7. Posterior distribution of ωBD obtained combining a CMB-S4 survey with contemporary
stage IV LSS experiments. Reprinted figure with permission from the authors of [39] by the American
Physical Society.
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4.3. CMB-LSS Cross Correlation

While the improvement brought by the upcoming CMB and LSS surveys will be
significant, a crucial boost in the sensitivity on departures from GR could be achieved
considering the cross-correlation between CMB and LSS observables. The correlation
between CMB temperature and galaxy positions allows to improve the sensitivity to
the ISW effect, which would be instead severely limited by cosmic variance. This effect
depends directly on the time derivatives of the Bardeen potentials Φ and Ψ which can
be changed significantly if one deviates from GR and, therefore, can potentially bring to
strong constraints on such departures (see, e.g., in [126]).

Such a strong synergy was explored for the combination of Euclid with present and
future CMB experiments, i.e., Planck, SO and CMB-S4 [127]. This analysis was done on the
γ parameterization, thus in a particular framework where only the growth of structure is
modified, while the lensing effect is unchanged with respect to GR.

The authors of [127] found that the inclusion of CMB data and its cross-correlation
with Euclid observables will significantly improve the bound on the γ parameter that
determines the deviation from GR. In Figure 8, we show the results reported in [127] for
the bounds on γ; the posterior distributions shown highlight that while including only
CMB lensing to Euclid does not significantly improve the constraints, adding the full CMB
observables and their correlation with Euclid leads to a significant improvement both when
assuming a flat Universe and when dropping the flatness assumption.

0.53 0.54 0.55 0.56

γ

0.0

0.2

0.4

0.6

0.8

1.0

P
/
P

m
a
x

σ = 8.1 × 10−3

σ = 7.0 × 10−3

σ = 4.8 × 10−3

0.53 0.54 0.55 0.56

γ

σ = 8.6 × 10−3

σ = 7.3 × 10−3

σ = 4.8 × 10−3

Figure 8. 1D posterior distribution for the γ parameter for Euclid alone (black), and adding CMB
lensing (blue) and all CMB observables (orange). The CMB data here are taken to be SO-like. The left
panel refers to a flat w0waγCDM cosmology, while the right one drops the flatness assumption. This
figure is taken from in [127].

4.4. New Probes of Gravity

In the previous subsections, we focused on the expected cosmological tests of gravity
that could be achieved thanks to upcoming CMB and LSS surveys. These constraints rely
on improving the sensitivity with respect to current surveys, but still rely on the same
observational probes to constrain deviations from GR.

However, recent observations have made available several new probes that could
contribute in a significant way to the investigation of the theory of gravity.

After the first detection of a gravitational wave event [2], significant interest has been
devoted to this new window on cosmological evolution. Concerning the investigation
of the gravity theory, the observation of gravitational waves shows significant promise;
as the existence of such a phenomenon is seen as one of the most striking validation of
Einstein’s theory, deviations from the expected behavior of such events would constituted
a smoking gun for violations of GR. Indeed, one expects that if the gravity theory is differ-
ent from GR, several effects could potentially be observed when detecting gravitational
waves, e.g., a difference between the propagation speed of light (c) and gravitational
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waves (cT), the emission of additional polarizations and a modified damping of the waves
amplitude [128].

The difference between c and cT has been already tightly constrained thanks to a
single GW event with an electromagnetic counterpart [45,46]. Such an event allowed to
measure the speed of both propagations, constraining their relative difference to be smaller
than ≈10−15 [47]. Such a strong constraint has significant consequences for the study
of deviations from GR, with several possible alternative models being ruled out by this
observation [50,51].

With the future increase in the number of observed events, as the amplitude of
the observed waves is proportional to the inverse of the luminosity distance dL(z), we
expect to be able to obtain distance–redshift relation catalogs through GW observations,
if electromagnetic counterparts are available. Such catalogs have the potential to provide
significant information on the theory of gravity. Indeed, in the presence of an additional
(1− δ(t)) factor in the friction term of gravitational waves, with δ = 0 corresponding to
the GR limit, one expects to find a difference between the luminosity distances measured
through GW (dGW

L ) and electromagnetic probes (dEM
L ) [129,130]

dGW
L (z)

dEM
L (z)

= exp
[
−
∫ z

0

δ(z′)
1 + z′

dz′
]

. (40)

This possibility has been extensively explored in the literature, with forecast for the
possible deviations from GR obtained for future GW observatories such as LISA [131] and
the Einstein Telescope [132].

The LISA collaboration has indeed focused on this possible investigation with future
observations, and produced forecast on possible deviations from GR using a simulated
catalog of massive binary black holes merger events [133]. Here, the authors parameterized
Equation (40) as

dGW
L (z)

dEM
L (z)

= Ξ0 +
1− Ξ0

(1 + z)n , (41)

with Ξ0 and n free parameters. The results of their analysis are shown in Figure 9 which
highlights how the constraining power of LISA can reach the level of 1% on the parameter
Ξ0 which dictates the amplitude of deviations from the GR expected damping of GW
amplitudes. Forecast constraints for the same parameterization of Equation (41) were
also obtained using a simulated Einstein Telescope catalog, finding a bound on Ξ0 of
0.8% [130]. The expected constraining power on deviations from GR of both LISA and
Einstein Telescope are therefore very similar even though the two experiments explore
complementary ranges in redshift; this highlights how the use of GW catalogs has the
potential to test gravity over an extended redshift range and possibly rule out several of
the alternative theories of gravity that are currently available.

Despite the promise shown by these results, the forecast reported above do not
consider the impact of screening mechanisms on the constraints that can be achieved.
Alternative theories of gravity need to be screened in the local environment to satisfy
Solar System constraints. It could be expected that such screening mechanisms will be
also at play in the local environment where the merger happens. In such a case, both the
observer and merger environments would be screened from MG effects. While most of the
propagation area of a gravitational wave will not be screened, it has been shown that for
screening mechanisms that fall into the chameleon class the deviation expected from the
GR propagation only depends on the difference in the Planck mass at the observer and at
the merger [134,135]. Such an effect would therefore completely remove any signature of
departures from GR from the observations of GW luminosity distances.
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Figure 9. Constraints on w0, parameterizing a constant DE equation of state, and Ξ0 obtained using
CMB+BAO+SN (red) and when adding LISA forecast data to the previous combination (blue). This
figure is taken from [133], where also different cases for the noise and for the seeds of the binaries
have been investigated, and reproduced by permission of IOP Publishing. All rights reserved.

In addition to the possibility to directly test gravity with GW, it has been shown
how GWs can be included in the set of observations used to probe the distance duality
relation (DDR) [136]. The DDR is a consequence of the assumptions at the foundation of
our cosmological models, including the fact that it is based on a metric theory of gravity
and that photons travel on null geodesic with their number conserved [137]. Such a relation
connects the luminosity and angular distance as

dL(z) = (1 + z)2dA(z) . (42)

While deviations from GR are not the only possible responsible for a deviation from
the DDR, indeed a detection of this would prompt a serious investigation on the nature
of gravity.

While the common observations to probe the DDR are supernovae (providing data
on dL) and BAO (measuring dA), the independent luminosity distance measure that can
be obtained with GWs could be crucial for such an investigation. As it does not rely on
the observation of photons, a measurement of dGW

L could be used to break degeneracies
between cosmological parameters and those ruling the deviation from the standard DDR.
This possibility was investigated in [136], where the authors used a simulated catalog with
Einstein Telescope specifications, alongside simulated data for SNIa and BAO. The results
found in their analysis are shown in Figure 10 where it can be seen how GW data can con-
tribute in tightening the constraints on the parameter A, which determines the amplitude
of the deviation from DDR, with the standard relation recovered for A = 1.
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Figure 10. Constraints on cosmological parameters and on the DDR breaking parameter A. The results
are obtained for LSST+ET (red), LSST+DESI (yellow) and LSST+ET+DESI (purple). This figure is
taken from in [136].

We conclude this overview by mentioning another probe that is becoming increasingly
important for cosmology: strong lensing time delays (SLTD). The observation of SLTD
has recently provided constraints on standard cosmological parameters, and it has been
used to obtain an independent measurement for H0 with respect to the one inferred from
CMB or obtain from the distance ladder (see, e.g., in [138]). At the same time, such an
observable can be used to constrain deviations from GR; bounds on the parameterized
post-Newtonian parameter γPPN, which modifies the Weyl potential entering the lensing
equations, have been obtained with current observations of strong lensing system [139,140],
highlighting how future observations will be able to improve such bounds. Forecast on
the constraining power of these observations have been done at the level of deviations
from the standard ΛCDM background expansion [141], while a multi-messenger approach,
studying the possible detection of strongly lensed GW events, could be used to constrain
deviations from the GR limit of the Σ function Equation (3) at an 8% level [142].

5. New Challenges

While the continuous improvements of observations will provide a great opportunity
to test our gravity model, the increased sensitivity and the possibility to access previously
unavailable scales will also put to test our ability to obtain accurate theoretical predictions
without introducing biases due to approximations or assumptions.

One very known example of this possible issue is the modeling of nonlinear scales.
LSS surveys will provide data at scales where the linear perturbation theory used to obtain
theoretical predictions in any cosmological model cannot be used, as the amplitude of
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cosmological perturbations will be too high to use a linear approximation. If the analysis
one performs is limited to the standard ΛCDM model, this is not an issue; several N-body
simulation performed for this model have allowed to obtain fitting functions that can
complement our analytical theoretical predictions in the range of scales where these are not
available. Codes like Halofit [143] or HMCode [144] have been integrated in the Boltzmann
solvers CAMB and CLASS and allow to obtain predictions also at nonlinear scales.

However, one cannot rely on these codes if the goal of the analysis is to test gravity; the
N-body simulations used to obtain the fitting functions assume GR and ΛCDM, and their
use in different contexts can lead to significant biases in the parameter estimation pipeline,
already when they are applied to very minimal extensions of the standard concordance
model [145,146].

One possible solution is to include in the analysis a theoretical error, modeled in
such a way that it can account for the possible biases on the nonlinear theoretical predic-
tions [147–149]. Such a method allows reducing the biases that incorrect modeling would
propagate to the final estimate of the parameters, but at the expense of larger uncertainties.
Moreover, while this approach works for simple extensions of the ΛCDM, it might not be
trivial to model the theoretical uncertainties when there is a more significant departure
from the standard model, as is the case for deviations from GR.

Ideally, one would want to perform N-body simulation in all the models of interest,
in order to obtain fitting functions similar to those obtained in ΛCDM. This has been
done for some specific models alternative to GR. Several interesting approaches have
been taken in the literature such as COLA [150], Ramses [18], Ecosmog [151], φ-enics (an
interesting finite-element method approach that can capture the nonlinear evolution of a
scalar field) [152] and the simulation work on f (R) theories by several groups [153–156].
However, applying such an approach for all available models, or for model indepen-
dent tests of gravity (performed through the µ and Σ functions) is extremely difficult.
In MG-evolution [157] the authors introduced the µ-Σ parameterization into a relativistic
N-body code and managed to obtain predictions for those generalized models at nonlin-
ear scales.

N-body simulations are computationally expensive and therefore only few realizations
in a reduced parameter space are available for modified gravity models. Therefore, several
approaches have appeared recently in order to reduce the required computational time
and to allow for a more versatile evaluation of the observables. These include fitting
formulae based on simulations [158], emulators for f (R) and scalar-field theories [159–161]
and hybrid approaches in which the halo model, perturbation theory and simulations
are calibrated to create a model, such as REACT (see [162,163]). This code can compute
predictions for f (R) and other modified gravity models which are approximately 5%
accurate at scales k . 5 h/Mpc.

While the linear scales are exempt from this specific issue, very large-scale pose differ-
ent challenges to our modeling capabilities. LSS observables at the extremely large scales
that will be probed by experiments such as Euclid and SKAO can indeed be modeled using
the linear approach; however, additional contributions from relativistic effects become
relevant at such scales [164–166], and, in addition to this, the approximations usually done
to facilitate analytical computations (e.g., the Limber approximation [167–169]) are not
valid anymore. Computing the exact analytical spectra is extremely expensive from the
computational point of view, but the use of approximated spectra can produce false detec-
tions of deviations from ΛCDM already when simple extensions are considered [170]. Such
an effect would be particularly important for tests of the theory of gravity, as deviations
from GR are expected to produce significant signatures at these scales [171,172].

This issue has prompted several attempts to make the exact calculations less com-
putationally expensive. For instance, fast Fourier transform (FFT) or logarithmic FFT
(FFTLog) methods can be exploited to accelerate the computation of the theoretical pre-
dictions [173–175]. Alternatives are represented by the use of emulators also in this case,
as these can allow to significantly speed up parameter estimation pipelines reducing the

https://github.com/nebblu/ReACT
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number of spectra for which the exact calculations need to be performed [161], or by the
use of correction terms that allow to reduce the bias on parameter estimation [170].

In addition to this, exploiting the future data at extremely large-scale can raise the
issue of validity of the quasi-static approximation, as we discussed in Section 2, further
complicating the possibility of obtaining robust theoretical predictions when moving away
from the GR paradigm.

We conclude by briefly mentioning that the theoretical modeling of observables is not
the only issue that the improvement of surveys will bring to light. Parameter estimation
pipelines commonly assume a Gaussian likelihood when comparing theoretical predictions
to data, an assumption that might lead to inaccurate results given the extreme sensitivity
that future data will have [176]. Overcoming such an issue will require to either improve
the theoretical modeling of the likelihood function or to resort to methods that completely
eliminate the necessity of computing such a function (see, e.g., in [177,178]). While such an
issue is not specific to cosmological tests of gravity, the high sensitivity expected for future
data requires the analysis to reach the best possible accuracy, in order to fully exploit the
available data to obtain robust and unbiased constraints on the theory of gravity.

6. Summary

The aim of this review was to give an outlook of the future possibilities to test the
theory of gravity at cosmological scales. We briefly reviewed a subset of the available
alternatives to the theory of general relativity, which is at the base of the current standard
cosmological model ΛCDM. While it is indeed necessary to explore alternatives to GR
from the theoretical point of view, here we focused mainly on how GR itself can be tested
with cosmological observables, by means of parameterized descriptions of departures from
the expected cosmological evolution in GR. We briefly reviewed the most common param-
eterizations available, introducing free functions that allow cosmological perturbations
to evolve differently with respect to the standard model, thus allowing to search from
signatures of non-standard behavior in cosmological observables.

We reviewed the state of the art of this investigation, highlighting how the most recent
data, both from CMB and LSS, show a general agreement with GR, with deviations from
the standard paradigm that are not statistically significant (.2σ). Nevertheless, current
data still leave open the possibility for a theory of gravity that does not coincide with GR.

Upcoming surveys will therefore be crucial to further improve the bounds on depar-
tures from the standard paradigm, thanks to the increase in sensitivity and the possibility
to probe a larger range of scales. We reviewed forecast results for this investigation of
both upcoming CMB and LSS surveys, highlighting how the latter can in principle provide
much stronger constraints with respect to the former. In particular, we have shown how
LSS surveys will be crucial to test gravity, thanks to their ability to probe the evolution of
cosmological perturbations, through measurements of the matter distribution and growth
rate, and the lensing effect that matter has on the path of photons, through measurements
of the shear of distant galaxies. The two probes of GC and WL show a great complementar-
ity and, if combined, they would allow to tightly constrain for deviations from GR, both
when analyzing specific classes of alternative models and when purely phenomenological
parameterizations are applied.

While future CMB surveys will have less constraining power on deviations from GR,
their impact on tests of gravity will nevertheless be extremely important; we pointed out
how the cross-correlation of CMB and LSS probes will allow to further improve the bounds
on parameterized deviations from GR.

Throughout this review, we have considered future CMB and LSS surveys as the main
tools to test the theory of gravity, given the great expertise that the cosmological community
has built on them through an extended period of time. However, we also highlighted how
relatively new observations, such as strong lensing time delays and gravitational waves
could also be used for this purpose. In particular, we have shown how next-generation
GW surveys will be able to tightly constrain deviations from the expected GR damping of
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the waves amplitude with distance, reaching an error of ≈ 1% on the parameter ruling the
amplitude of such deviations. Moreover, we have also highlighted how the detection of
strongly lensed gravitational wave could lead to independent constraints of the deviation
from the lensing effect expected in GR, while the combination of GW observations with
BAO and SNIa could improve the bounds on departure from the distance duality relation,
which would signal that the fundamental assumptions at the base of our cosmological
model should be reviewed.

Finally, we focused our attention to the new challenges that we will face if we want
to fully exploit this abundance of data that we will have available in the near future. We
focused mainly on issues concerning the theoretical modeling of cosmological observables,
pointing out that both very small and very large scale will put to test our ability to produce
accurate theoretical predictions, showing how a failure from this point of view will make
complicated to obtain robust tests of the theory of gravity.

Author Contributions: Conceptualization, M.M. and S.C.; writing—original draft preparation, M.M.
and S.C.; writing—review and editing, M.M. and S.C.; visualization, M.M.; supervision, M.M.; project
administration, M.M. All authors have read and agreed to the published version of the manuscript.

Funding: MM has received the support of a fellowship from “la Caixa” Foundation (ID 100010434),
with fellowship code LCF/BQ/PI19/11690015, and the support of the Centro de Excelencia Severo
Ochoa Program SEV-2016-059.

Acknowledgments: This paper is submitted to the Special Issue entitled “Large Scale Structure of
the Universe”, led by N. Frusciante and F. Pace , and belongs to the section “Cosmology”. We thank
the authors of [39,70,114,120,127,133] for granting us permission to use their figures in this review.

Conflicts of Interest: The authors declare no conflict of interest.

Notes
1 https://camb.info, accessed on 15 December 2021
2 https://lesgourg.github.io/class_public/class.html, accessed on 15 December 2021
3 https://labs.utdallas.edu/mishak/isitgr/, accessed on 15 December 2021
4 https://github.com/sfu-cosmo/MGCAMB, accessed on 15 December 2021
5 http://miguelzuma.github.io/hi_class_public/, accessed on 15 December 2021
6 http://eftcamb.org/, accessed on 15 December 2021

References
1. Kennefick, D. Not only because of theory: Dyson, Eddington and the competing myths of the 1919 eclipse expedition. Einstein

Stud. 2012, 12, 201–232.
2. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari,

R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102,
3. Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Balokovic, M.; Barrett, J.; Bintley, D.; et al. First

M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L1,
4. Corbelli, E.; Salucci, P. The Extended Rotation Curve and the Dark Matter Halo of M33. MNRAS 2000, 311, 441–447.
5. Markevitch, M.; Gonzalez, A.H.; Clowe, D.; Vikhlinin, A.; David, L.; Forman, W.; Jones, C.; Murray, S.; Tucker, W. Direct

constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56. Astrophys. J. 2004,
606, 819–824. [CrossRef]

6. Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak,
S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron Astrophys 2020, 641, A6, Erratum in Astron Astrophys 2021, 652,
C4. [CrossRef]

7. Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gillil, ; R.L.; Hogan, C.J.; Jha, S.; Kirshner,
R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998,
116, 1009–1038. [CrossRef]

8. Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.;
et al. Measurements of Ω and Λ from 42 high redshift supernovae. Astrophys. J. 1999, 517, 565–586.

9. Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1–23. [CrossRef]
10. Velten, H.E.S.; vom Marttens, R.F.; Zimdahl, W. Aspects of the cosmological “coincidence problem”. Eur. Phys. J. C 2014, 74, 3160.

[CrossRef]

https://camb.info
https://lesgourg.github.io/class_public/class.html
https://labs.utdallas.edu/mishak/isitgr/
https://github.com/sfu-cosmo/MGCAMB
http://miguelzuma.github.io/hi_class_public/
http://eftcamb.org/
http://dx.doi.org/10.1086/383178
http://dx.doi.org/10.1051/0004-6361/201833910
http://dx.doi.org/10.1086/300499
http://dx.doi.org/10.1103/RevModPhys.61.1
http://dx.doi.org/10.1140/epjc/s10052-014-3160-4


Universe 2021, 7, 506 24 of 29

11. Perivolaropoulos, L.; Skara, F. Challenges for ΛCDM: An update arXiv 2021, arXiv:2105.05208.
12. Di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J. In the realm of the Hubble

tension—a review of solutions. Class. Quant. Grav. 2021, 38, 153001,
13. Ma, C.P.; Bertschinger, E. Cosmological Perturbation Theory in the Synchronous and Conformal Newtonian Gauges. Astrophys. J.

1995, 455, 7,
14. Noller, J.; von Braun-Bates, F.; Ferreira, P.G. Relativistic scalar fields and the quasistatic approximation in theories of modified

gravity. PRD 2014, 89, 023521. [CrossRef]
15. Bellini, E.; Sawicki, I. Maximal freedom at minimum cost: Linear large-scale structure in general modifications of gravity. JCAP

2014, 7, 050,
16. Pogosian, L.; Silvestri, A. What can cosmology tell us about gravity? Constraining Horndeski gravity with Σ and µ. PRD 2016,

94, 104014,
17. Sawicki, I.; Bellini, E. Limits of quasistatic approximation in modified-gravity cosmologies. Phys. Rev. D 2015, 92, 084061,
18. Llinares, C.; Mota, D.F. Cosmological simulations of screened modified gravity out of the static approximation: Effects on matter

distribution. Phys. Rev. D 2014, 89, 084023. [CrossRef]
19. Caldwell, R.; Cooray, A.; Melchiorri, A. Constraints on a new post-general relativity cosmological parameter. PRD 2007,

76, 023507. [CrossRef]
20. Zhao, G.B.; Pogosian, L.; Silvestri, A.; Zylberberg, J. Searching for modified growth patterns with tomographic surveys. PRD

2009, 79, 083513. [CrossRef]
21. Amendola, L.; Kunz, M.; Sapone, D. Measuring the dark side (with weak lensing). JCAP 2008, 2008, 013. [CrossRef]
22. Hojjati, A.; Zhao, G.B.; Pogosian, L.; Silvestri, A. MGCAMB: Modification of Growth with CAMB. Astrophys. Source Code Libr.

2011, 2011, ascl-1106.
23. Bernardeau, F.; Colombi, S.; Gaztanaga, E.; Scoccimarro, R. Large-scale structure of the Universe and cosmological perturbation

theory. Phys. Rep. 2002, 367, 1–248. [CrossRef]
24. Linder, E.V. Cosmic growth history and expansion history. PRD 2005, 72, 043529,
25. Lahav, O.; Lilje, P.B.; Primack, J.R.; Rees, M.J. Dynamical effects of the cosmological constant. MNRAS 1991, 251, 128–136.

[CrossRef]
26. Mueller, E.M.; Percival, W.; Linder, E.; Alam, S.; Zhao, G.B.; Sánchez, A.G.; Beutler, F.; Brinkmann, J. The clustering of galaxies in

the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Constraining modified gravity. MNRAS 2018, 475, 2122–2131.
27. Zhang, P.; Liguori, M.; Bean, R.; Dodelson, S. Probing Gravity at Cosmological Scales by Measurements which Test the

Relationship between Gravitational Lensing and Matter Overdensity. Phys. Rev. Lett. 2007, 99, 141302,
28. Leonard, C.D.; Ferreira, P.G.; Heymans, C. Testing gravity with EG: Mapping theory onto observations. JCAP 2015, 12, 051,
29. Ghosh, B.; Durrer, R. The observable Eg statistics. JCAP 2019, 06, 010,
30. Ferreira, P.G. Cosmological Tests of Gravity. Ann. Rev. Astron. Astrophys. 2019, 57, 335–374.
31. Blake, C.; Amon, A.; Asgari, M.; Bilicki, M.; Dvornik, A.; Erben, T.; Giblin, B.; Glazebrook, K.; Heymans, C.; Hildebrandt, H.; et al.

Testing gravity using galaxy-galaxy lensing and clustering amplitudes in KiDS-1000, BOSS and 2dFLenS. Astron. Astrophys. 2020,
642, A158,

32. Nunes, R.C.; Vagnozzi, S. Arbitrating the S8 discrepancy with growth rate measurements from redshift-space distortions. Mon.
Not. Roy. Astron. Soc. 2021, 505, 5427,

33. Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 1980, 91, 99–102. [CrossRef]
34. Catena, R.; Pietroni, M.; Scarabello, L. Einstein and Jordan frames reconciled: A frame-invariant approach to scalar-tensor

cosmology. PRD 2007, 76, 084039. [CrossRef]
35. Will, C.M. The confrontation between general relativity and experiment. Living Rev. Relativ. 2014, 17, 1–117. [CrossRef] [PubMed]
36. Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified gravity and cosmology. Phys. Rep. 2012, 513, 1–189. [CrossRef]
37. Brans, C.; Dicke, R.H. Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 1961, 124, 925. [CrossRef]
38. Sawicki, I.; Hu, W. Stability of cosmological solutions in f (R) models of gravity. PRD 2007, 75, 127502. [CrossRef]
39. Alonso, D.; Bellini, E.; Ferreira, P.G.; Zumalacarregui, M. Observational future of cosmological scalar-tensor theories. PRD 2017,

95, 063502. [CrossRef]
40. Joudaki, S.; Ferreira, P.G.; Lima, N.A.; Winther, H.A. Testing Gravity on Cosmic Scales: A Case Study of Jordan-Brans-Dicke

Theory. arXiv 2020, arXiv:2010.15278.
41. Horndeski, G.W. Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys. 1974, 10, 363–384.

[CrossRef]
42. Deffayet, C.; Deser, S.; Esposito-Farese, G. Generalized Galileons: All scalar models whose curved background extensions

maintain second-order field equations and stress tensors. PRD 2009, 80, 064015. [CrossRef]
43. Deffayet, C.; Gao, X.; Steer, D.A.; Zahariade, G. From k-essence to generalized Galileons. PRD 2011, 84, 064039. [CrossRef]
44. Kobayashi, T.; Yamaguchi, M.; Yokoyama, J. Generalized G-Inflation: —Inflation with the Most General Second-Order Field

Equations—. Prog. Theor. Phys. 2011, 126, 511–529. [CrossRef]
45. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al.

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101,

http://dx.doi.org/10.1103/PhysRevD.89.023521
http://dx.doi.org/10.1103/PhysRevD.89.084023
http://dx.doi.org/10.1103/PhysRevD.76.023507
http://dx.doi.org/10.1103/PhysRevD.79.083513
http://dx.doi.org/10.1088/1475-7516/2008/04/013
http://dx.doi.org/10.1016/S0370-1573(02)00135-7
http://dx.doi.org/10.1093/mnras/251.1.128
http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://dx.doi.org/10.1103/PhysRevD.76.084039
http://dx.doi.org/10.12942/lrr-2014-4
http://www.ncbi.nlm.nih.gov/pubmed/28179848
http://dx.doi.org/10.1016/j.physrep.2012.01.001
http://dx.doi.org/10.1103/PhysRev.124.925
http://dx.doi.org/10.1103/PhysRevD.75.127502
http://dx.doi.org/10.1103/PhysRevD.95.063502
http://dx.doi.org/10.1007/BF01807638
http://dx.doi.org/10.1103/PhysRevD.80.064015
http://dx.doi.org/10.1103/PhysRevD.84.064039
http://dx.doi.org/10.1143/PTP.126.511


Universe 2021, 7, 506 25 of 29

46. Goldstein, A.; Veres, P.; Burns, E.; Briggs, M.S.; Hamburg, R.; Kocevski, D.; Wilson-Hodge, C.A.; Preece, R.D.; Poolakkil, S.;
Roberts, O.J.; et al. An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB
170817A. Astrophys. J. Lett. 2017, 848, L14,

47. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al.
Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 2017,
848, L13,

48. Baker, T.; Bellini, E.; Ferreira, P.G.; Lagos, M.; Noller, J.; Sawicki, I. Strong constraints on cosmological gravity from GW170817
and GRB 170817A. PRL 2017, 119, 251301. [CrossRef]

49. Langlois, D.; Saito, R.; Yamauchi, D.; Noui, K. Scalar-tensor theories and modified gravity in the wake of GW170817. PRD 2018,
97, 061501. [CrossRef]

50. Ezquiaga, J.M.; Zumalacárregui, M. Dark Energy After GW170817: Dead Ends and the Road Ahead. Phys. Rev. Lett. 2017,
119, 251304,

51. Creminelli, P.; Vernizzi, F. Dark Energy after GW170817 and GRB170817A. PRL 2017, 119, 251302. [CrossRef] [PubMed]
52. McManus, R.; Lombriser, L.; Peñarrubia, J. Finding Horndeski theories with Einstein gravity limits. JCAP 2016, 2016, 006.

[CrossRef]
53. Sakstein, J.; Jain, B. Implications of the neutron star merger GW170817 for cosmological scalar-tensor theories. PRL 2017,

119, 251303. [CrossRef] [PubMed]
54. Ishak, M. Testing general relativity in cosmology. Living Rev. Relativ. 2019, 22, 1–204. [CrossRef] [PubMed]
55. Koyama, K. Cosmological tests of modified gravity. Rep. Prog. Phys. 2016, 79, 046902. [CrossRef] [PubMed]
56. Pogosian, L.; Silvestri, A.; Koyama, K.; Zhao, G.B. How to optimally parametrize deviations from general relativity in the

evolution of cosmological perturbations. PRD 2010, 81, 104023. [CrossRef]
57. Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution.

Phys. Rept. 2017, 692, 1–104.
58. Saridakis, E.N.; Lazkoz, R.; Salzano, V.; Moniz, P.V.; Capozziello, S.; Jimenez, J.B.; De Laurentis, M.; Olmo, G.J.; Akrami, Y.;

Bahamonde, S.; et al. Modified Gravity and Cosmology: An Update by the CANTATA Network. arXiv 2021, arXiv:2105.12582.
59. Gubitosi, G.; Piazza, F.; Vernizzi, F. The Effective Field Theory of Dark Energy. JCAP 2013, 02, 032,
60. Bloomfield, J.K.; Flanagan, E.E.; Park, M.; Watson, S. Dark energy or modified gravity? An effective field theory approach. JCAP

2013, 08, 010,
61. Piazza, F.; Vernizzi, F. Effective Field Theory of Cosmological Perturbations. Class. Quant. Grav. 2013, 30, 214007,
62. Brax, P.; Valageas, P. The effective field theory of K-mouflage. JCAP 2016, 01, 020,
63. Ballinger, W.; Peacock, J.; Heavens, A. Measuring the cosmological constant with redshift surveys. MNRAS 1996, 282, 877–888.

[CrossRef]
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