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Abstract: Apart from the familiar structure firmly-rooted in the general relativistic field equations
where the energy–momentum tensor has a null divergence i.e., it conserves, there exists a considerable
number of extended theories of gravity allowing departures from the usual conservative framework.
Many of these theories became popular in the last few years, aiming to describe the phenomenology
behind dark matter and dark energy. However, within these scenarios, it is common to see attempts
to preserve the conservative property of the energy–momentum tensor. Most of the time, it is done
by means of some additional constraint that ensures the validity of the standard conservation law, as
long as this option is available in the theory. However, if no such extra constraint is available, the
theory will inevitably carry a non-trivial conservation law as part of its structure. In this work, we
review some of such proposals discussing the theoretical construction leading to the non-conservation
of the energy–momentum tensor.

Keywords: general relativity; cosmology; extended theories of gravity

1. Introduction

The principle of matter–energy conservation is one of the main pillars of General
Relativity (GR). Its importance when formulating a generally covariant gravitational theory
is a matter of intense discussion since the first few years of GR. Indeed, the seminal work
by E. Noether has its origins in the debate between F. Klein, E. Noether, D. Hilbert and A.
Einstein about the mathematical relevance of energy conservation (see Ref. [1] for historical
details). Throughout the 20th century, the features of conservation laws in GR have been
frequently discussed in the literature [2–6].

Within a general relativistic based description of gravity, the covariant conservation
law obeyed by ordinary matter is straightforwardly obtained when one applies the con-
tracted Bianchi identities to the Einstein equations, which provides the well-known null
covariant derivative of the energy–momentum tensor for the respective gravitating system.
However, there is much more than a mere mathematical result in this important aspect of
General Relativity (GR). It reveals two paramount features of the Einstein’s gravity: the
invariance under diffeomorphism and the minimal matter–curvature coupling. The former
aspect means, in other words, that GR is a coordinate invariant theory, whereas the latter
reflects the clear separation between the geometrical and matter sectors seen in the effective
action of the theory.

Thus, one expects that any extended gravity theory evading some of these properties
shall lead to a different conservation condition to be obeyed by a given energy–momentum
tensor. It is possible, however, to have a deviation from the usual conservation law by
imposing it by hand. A famous example is the Rastall gravity [7]. In addition, like Brans–
Dicke theory, popular in some scalar tensor theories, non-conservation can also be achieved
if one works within the Einstein frame [8–10], where the dilaton comes up as part of the
matter sector. Many other works can be found in the literature dedicated to analyzing the
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arising of non-conservation within the context of alternative theories of gravity. In this
review, we shall revisit some of them.

The breaking of diffeomorphism may be verified in the gravity sector of the so-called
Standard Model Extension (SME), in general accompanied also by a local violation of
Lorentz symmetry [11]. As discussed in such a reference, the breaking is caused by the
presence of a background field, which can either be endowed with dynamics or not. When
this field has a dynamical character, the standard conservation of the energy–momentum
tensor is naturally obeyed. On the other hand, when this field has no dynamics, the break-
ing it induces is denoted “explicit” and leads to a deviation from the usual conservation
law. In models where gravity is thought as an emergent phenomenon, i.e., a low energy
manifestation of a fundamental higher energy theory where a background dependence
shows up, diffeomorphism breaking is also verified, as discussed in [12]. In that work,
as expected, the vanishing of the covariant divergence of a given energy–momentum
tensor is not automatically satisfied. Actually, the authors had to impose it by assuming an
additional constraint in the model.

Another nonconservative gravity that has attracted recent attention is the Lazo’s
theory, in which the Lagrangian density carries a dependence on the action itself [13]. This
theory consists of a covariant version of the Herglotz variational problem, which by its
turn was an attempt to incorporate dissipative effects into the classical mechanics via a
variational principle [14]. In Lazo’s approach, the non-conservation of energy–momentum
is caused by the presence of a background four-vector that introduces into the theory a
preferred direction, thus breaking the diffeomorphism invariance.

As mentioned above, models where matter and gravity are non-minimally coupled
constitute another realm where a departure of the usual conservation law is verified. In [15],
the author discusses how this conservation condition should look for a wide class of such
modified gravity theories, both in the metric and Palatini formulations. Considering a
family of models whose action carries both non-minimal coupled terms and arbitrary
functions of the scalar curvature, he finds expressions for the modified conservation law
for both of the variational formalisms. In addition, he shows that it is possible to generalize
the Bianchi identity so that the usual conservation law is ensured. This result arises thanks
to a specific choice of boundary conditions made during the process of extremization of
the action under a given infinitesimal active coordinate transformation. In [16], the authors
obtain the energy–momentum conservation for an even wider class of theories of gravity,
where the geometric dependence of the non-minimal coupling function is not restricted
to scalar curvature, as it may also depend on the square of the Ricci and Riemann tensors.
Furthermore, they also consider another family of non-minimal coupled theories where
Lagrangian density has an arbitrary dependence on multiple curvature invariants. For
both cases, they obtained the extended conservation law, generalizing previous results.

An interesting case where such a non-minimal interaction between matter and curva-
ture is also admissible, having expected consequences for the covariant conservation law,
is the family of the so-called f (R, T) theories [17]. There are, however, specific functional
forms for f (R, T) in which the standard conservation can be preserved [18]. On the other
hand, it is worth mentioning that, in this conservative subclass, there is no mixing involving
the both dependencies on R and T. In other words, the density Lagrangian f (R, T) admits
the particular form f (R, T) = f1(R) + f2(T). In this vein, it is possible to use the purely
T-dependent term as part of a redefinition of the matter sector in a minimally coupled grav-
ity [19]. This aspect helps us to illustrate the close relation between the matter/curvature
coupling and the conservation law to be obeyed by an energy–momentum tensor.

Apart from proposals of modified gravitational theories, it is worth mentioning
that the steady state cosmological model, proposed by T. Gold, H. Bondi, and F. Hoyle
(see [20,21]), proposes that the universe expands eternally, with continual creation of matter
assuring a constant density of mass. It became clear that predictions of the steady state
model were not compatible with new observational data that supported the Big Bang
cosmology. The concept of matter creation is still present in modern phenomenological
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models to mimic a possible interaction between dark matter and dark energy [22,23]. Even
in the context of modified gravity theories, the cosmological particle creation process has
been investigated [24–27].

In the next section, we review the notion of energy–momentum conservation tensor
in General Relativity. The interpretation of conserved quantities in a gravitational field
background is a very subtle issue and deserves a proper discussion. In the subsequent
sections, we present specific nonconservative theories. At the end of this work, we revisit
the notion of energy conditions in modified gravity theories (Section 11) and then present
our final considerations.

2. The Conservative Landscape
2.1. From Special to General Relativity

The conservation principles are one of the most interesting aspects of physics. They
help us to make predictions about the evolution of a given physical system, ensuring that,
despite the change, it undergoes certain aspects present in it that shall remain the same.
Already in our high school physics and early undergraduate classes, we made contact
with such an important property and learned that, under certain circumstances, the energy,
linear, and angular momentum of physical systems are preserved (see [28] for a recent
discussion).

It is also usual to associate the notion of conservation with ideal physical situations
in which dissipative mechanisms do not take place. Indeed, one of the main pillars of
physics is the Hamilton’s principle of stationary action used to derive equations of motion
for many conservative systems of varying degrees of complexity. It is worth noting that
only recently an extension of the Hamilton’s principle to nonconservative classical systems
has been developed [29].

From a strictly, but crude, mathematical standpoint, the notion of conservation is
intrinsically related to the way one performs derivatives of physical quantities. Our
usual concept of conservation has its foundations in simple laboratory experiments in
which classical systems e.g., hydrodynamics experiments, are tested. Starting with a flat
spacetime metric with signature ηµν = (−1,+1,+1,+1), one defines the derivative of
a scalar quantity ϕ simply as ∂ϕ/∂x ≡ ϕ,x or, in a multi-dimensional spacetime with
coordinates denoted by index µ, i.e., ∂ϕ/∂xµ ≡ ϕ,µ. Here, the symbol comma “, “ refers to
an ordinary derivative. However, the formulation of currents and the energy conservation
has revealed much more intricacies than that [30].

The tensorial formalism is a more generic structure to represent fluid quantities. In
any spacetime, the energy–momentum tensor Tµν can be decomposed in its rest frame com-
ponents such that T00 = ρ = energy density; T0i represents the internal heat-conduction;
Ti0 corresponds to the momentum transferred in the internal energy flux process and Tij is
the momentum flux. This tensor is symmetric so that Tµν = Tνµ. For a fluid element occu-
pying a non expanding volume subjected to energy/particle flowing across its surface, the
conservation of energy is stated by T0µ

,µ = 0 while momentum conservation by Tiµ
,µ = 0

where i refers to the momentum component under analysis. This implies in the general
conservation law

Tµν
,µ = 0. (1)

Along the fluid flow, one also defines the particle quadriflux with components
N0 = c× particle number density and Ni = particle flux. The macroscopic descrip-
tion of relativistic fluids demands the introduction of the four-velocity uµ for which by
convention one has uµ = ηµνuν with u0 = −1 and ui = 0. Therefore, Nµ = nuµ. The
particle flux conservation is then expressed by the law

Nµ
,µ = (nuµ),µ = 0. (2)

Apart from vacuum solutions e.g., black holes, in which the intrinsic gravitational
aspects are studied, it is obvious that the universe is not empty. It is therefore mandatory
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to set up an energy–momentum tensor for relativistic fluids. The simplest possible configu-
ration, and widely used as the standard starting point in the study of relativistic fluids, is
to consider the so-called perfect fluids. They are basically non-viscous fluid configurations
obeying the structure

Tµν = (ρ + p)uµuν + pηµν = ρuµuν + phµν, (3)

where ρ is the energy density and p the fluid pressure. The second equality of (3) states
that the pure pressure contribution is associated with the symmetric projection tensor
hµν = uµuν + ηµν.

In the context of a covariant gravitational theory as, e.g., GR, the manifestation of the
gravitational interaction is seen as an effect of the curvature of the spacetime. Trajectories,
flows, and the variation rates of physical quantities should obey new rules that take
into account curvature. The mathematical mechanism used to address this issue is the
replacement of the flat spacetime metric ηµν by the curved one gµν. The metric gµν is
adapted to the physical problem one wants to study and is written in such a way that it
describes the geometry of the curved spacetime. Now, the equivalence principle implies
that the conservation law (1) is replaced by its version in a curved spacetime

Tµν
;µ = Tµν

,µ + TανΓµ
αµ + TµαΓν

αµ = 0, (4)

where the symbol “;” means covariant derivative. The additional contributions on the
right-hand side brings the so-called affine connection, which, for a Riemannian manifold,
coincide with the Christoffel symbols, defined as follows:

Γα
µν =

gαβ

2
(

gβµ,ν + gβν,µ − gµν,β
)
. (5)

There are four different equations within (4) since ν = 0, 1, 2, 3. The ν = 0 equation
denotes conservation of energy while, for ν = i = 1, 2, 3, one has the conservation of the
ith component of the momentum.

According to our discussion so far, Equation (4) has been introduced as an extension
of the flat spacetime conservation to curved geometries. The gravitational interaction is
not implicitly stated at this stage. However, we know that matter curves spacetime via
gravity. Then, prior to the appropriate introduction of the gravitational interaction in our
discussion, let us continue to describe generic curved geometries via the definition of the
Riemann curvature tensor

Rα
βµν = Γα

βν,µ − Γα
βµ,ν + Γα

σµΓσ
βν − Γα

σνΓσ
βµ. (6)

Using the fact that second derivatives of the metric tensor are non-vanishing quantities
and that partial derivatives commute, the following identity takes place:

Rαβµν + Rανβµ + Rαµνβ = 0. (7)

Similarly, one can find symmetry properties of the Riemann tensor e.g., Rαβµν =
−Rβαµν; Rαβµν = −Rαβνµ; Rαβµν = Rµναβ. Finally, with such results, one can find the
desired results for our discussion, the so-called Bianchi identities

Rαβµν;λ + Rβλµν;α + Rλαµν;β = 0. (8)

Now, we can show the consequence of this identity to the conservation of Tµν. By
contracting Ref. (8) twice, firstly with gαµ, then, with gβν and using the symmetry properties
of the metric tensor, the Bianchi identity becomes

(2Rµ
λ − δ

µ
λ R);µ = 0, (9)
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where the Ricci tensor Rαβ = Rµ
αµβ = Rβα and the Ricci scalar R = gµνRµν have been

defined. In principle, there is nothing special with Equation (9). Let us analyze an important
consequence of (9). As it is well known, the GR field equations may be derived from a
variational principle. The starting point of this procedure is the total action below

S =
1

2κ

∫
d4x
√
−gR +

∫
d4x
√
−gLm. (10)

The first term on the right-hand side is the so-called Einstein–Hilbert action, defined
via the Lagrangian LEH = R, whilst the second one is the matter action defined as usual,
in terms of the Lagrangian density associated with the matter fields, Lm. The energy–
momentum tensor of arbitrary matter configurations is defined in terms of Lm in the
following way:

Tµν =
2√−g

δ(
√−gLm)

δgµν . (11)

Taking (11) into account, the variation of the action (10) gives

Rµν −
1
2

gµνR = κTµν, (12)

where one immediately recognizes the left-hand side of this equation, also known as the
Einstein tensor

Gµν = Rµν −
1
2

gµνR, (13)

with the quantity appearing in (9). Therefore, the covariant derivative in (9) should also
apply to the right-hand side of (12) implying conservation of Tµν. In the equation above,
κ ≡ 8πG is the gravitational coupling constant by assuming that we are working with
c = 1 units.

Alternatively, in the presence of a cosmological constant, the Einstein–Hilbert La-
grangian would be redefined as LEH → LEH − 2Λ. The resulting field equations in this
case are given by

Gµν + Λgµν = κTµν. (14)

The above equation also has vanishing covariant divergence, and it is the only field
equation of the generic type Fµν(gαβ, gαβ,δ, gαβ,δγ) = Tµν, where Fµν is a tensor functional,
derivable from an action principle in which the gravitational Lagrangian density is a scalar
invariant of the metric [31].

2.2. Diffeomorphism Invariance

A remarkable aspect of GR arises when we consider the invariance of the theory under
diffeomorphism. Consider an infinitesimal active transformation generated by a given
vector field Vµ. This corresponds to the following mapping

xµ → xµ + Vµ. (15)

It is well known that such a transformation allows us to introduce a derivative operator
which provides the rate of change of a given tensor along the integral curves of Vµ. This
operator is the so-called Lie derivative, denoted as LV (where the index refers to Vµ). In
any GR textbook, the reader can find a detailed discussion on how such an operator acts
on arbitrary-rank tensors [32–34]. An interesting relation shows up when one applies such
operator on the metric tensor. In this case, we have

LV gµν = 2∇(µVν). (16)
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In order to proceed with our purpose, let us rewrite the total action (10) as follows:

S =
1

2κ
SEH [gµν] + Sm[gµν, ψi]. (17)

The theory is diffeomorphism-invariant if such a transformation implies in a variation
of the action so that δS = 0. Thus, let us assume this property a priori and examine its
consequences. By varying (17) and making it equal to zero, we have

1
2κ

∫
d4x

δ(
√−gLEH)

δgµν
δgµν +

∫
d4x

δ(
√−gLm)

δgµν
δgµν +

∫
d4x
√
−g

δSm

δψi δψi = 0 (18)

For a diffeomorphism generated by Vµ, the variation of the metric is simply its Lie
derivative along Vµ, which is given by (16). We can check that the Einstein–Hilbert action
is itself invariant under diffeomorphism. To verify this, notice that the first term of (18)
corresponds to

δSEH =
∫

d4x
δ(
√−gLEH)

δgµν
δgµν =

∫
d4x
√
−gGµνδgµν

=
∫

d4x
√
−gGµνLV gµν

= 2
∫

d4x
√
−gGµν∇µVν. (19)

If we now integrate (19) by parts and use the covariant form of the Gauss law, we find

δSEH =
∫

d4x
√
−g
(
∇µGµν

)
Vν, (20)

where we get rid of the surface integral, as it is assumed that the vector Vµ vanishes on the
boundary, although Vµ is arbitrary within the volume enclosed by such a boundary. Thus,
for a generic Vµ, (20) tells us that the invariance of diffeomorphism of the Einstein–Hilbert
action, δSEH = 0, is ensured by ∇µGµν = 0, which is the contracted Bianchi identity,
previously presented in (9).

It is implicit that the fields ψi satisfy the matter equations of motion, which leads to
the third term vanishing. Thus, the remaining term has necessarily to obey∫

d4x
δ(
√−gLm)

δgµν
δgµν = 0. (21)

Using the definition (11) and (16) in (21), one finds∫
d4x
√−g

2
TµνLV gµν = 0. (22)

Analogous to the previous case, we can repeat here the procedure described by (19)
and (20). This shall lead (23) to∫

d4x
√
−g
(
∇µTµν

)
Vν = 0. (23)

Given an arbitrary Vµ, (23) implies in the covariant conservation of Tµν, namely (4)

∇µTµν = 0. (24)

Now, we understand how the standard energy–momentum conservation emerges
within GR as a product of an essential property of the theory, i.e., the diffeomorphism
invariance. In the first few years after General Relativity was formulated, an intense debate
existed on whether or not energy conservation was a true mathematical identity of the
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theory [1]. Finally, in [35], E. Noether showed that the conservation of energy, linear,
and angular momentum of physical systems, as well as other physical quantities, are
justified by first principles. The Noether’s claim is that the conservation of a given quantity
follows from a specific symmetry obeyed by the action. In this vein, the time translation
invariance leads to the energy conservation, whereas the position translation makes the
linear momentum to be conserved, as it happens to the angular momentum when the
action exhibits invariance under space rotations. This feature reveals a universal aspect
of conservative systems in nature, and its validation is evoked in all physical domains
ranging from the quantum world to the cosmos. There is also a recent attempt to provide a
unified view on the conservation laws in gravitational systems [36].

The above discussion can not be seen as an argument to refute any alternative to
Equation (14) as long as gµν is the only field variable sourced by Tµν. In the next sections,
we are going to show some remarkable examples in the literature.

2.3. The Meaning of the Term “Energy-Momentum Conservation” in the Presence of a
Gravitational Field

Although we refer to Equation (4) in most of this work as a conservation law for the
energy–momentum tensor, led mainly by the common usage of the term, it is important to
emphasize that, roughly speaking, this classification may be misleading and not strictly
correct if we think of how to extract in practice from Tµν the physical quantities that will
follow conservation laws, namely, the energy and momentum. This discussion is made by
taking different paths in the various GR textbooks. As it is shown in [37] in the Minkowski
spacetime, the quantity below1

Pµ =
1
c

∫
TµνdSν (25)

is a conserved quantity identified with the 4−momentum of the system. The integration
is taken on the hypersurface S which contains all the three-dimensional space. It is well
known that the conservation of Pµ can be expressed in terms of the null divergence of Tµν:

∂µTµν = 0, (26)

which makes it clear why the statement of (26) as a conservation law is totally consistent.
It is natural to think of the extension of (25) in a curved spacetime as follows:

Pµ =
1
c

∫
S

√
−gTµνdSν. (27)

We may wonder if does lead to conservation of energy and momentum in a curved
manifold as (25) does in the Minkowski spacetime. If this is true, the integral (27) would be
conserved if the following condition applied:

∂(
√−gTµ

ν)

∂xµ = 0. (28)

However, a mismatch is verified when we rewrite the equation (4) in the form below

Tµ
ν ;µ =

1√−g
∂(
√−gTµ

ν)

∂xµ − 1
2

∂gµλ

∂xν
Tµλ = 0. (29)

The above expression is different from (28), unless we are in a particular coordinate
system, x∗, where ∂gµλ(x∗)/∂xν = 0 holds. This result points to the need of reformulating
the relation (27) in order to properly describe conservation of the energy and momentum
in a curved spacetime. In this vein, Landau and Lifshitz call our attention to the fact that,

1 Although we consider c = 1 throughout this work, particularly in this section we show c explicitly, in order to match the Ref. [37] that is used in the
present discussion.
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although Equation (4) indeed expresses a local covariant conservation of Tµν, it is not true
globally, since the gravitational field itself carries energy, whose contribution is missing
in (27). This point is also illustrated by S. Weinberg in [38], by comparing the gravity
with the electromagnetism. While in the latter case the electromagnetic field itself does
carry charge, in the former, the gravitational field indeed carries energy and momentum
that works as a source for gravity. This explains partially both the well-known linear
nature of the Maxwell electromagnetic theory and the fully nonlinear character of GR.
Thus, in [37], the author handles this issue by including into the model the contribution
of the gravitational field. Such a contribution comes up in the form a pseudo-tensor tµν,
which is constructed with the aid of the geometric terms present in the Einstein equations.
Thereby, they show that, instead of Equation (27), we shall have the following relation for
the 4-momentum in order for us to properly describe a conservation law for energy and
momentum:

Pµ =
1
c

∫
S
(−g)(Tµν + tµν)dSν, (30)

where the quantity tµν is given by

tσκ =
c4

16πG
[(2Γν

λµΓθ
νθ − Γν

λθΓθ
µν − Γν

λνΓθ
µθ)(gσλgκµ − gµκ gλµ)

+ gσλgµν(Γκ
λθΓθ

µν + Γκ
µνΓθ

λθ − Γκ
νθΓθ

λµ − Γκ
λµΓθ

νθ)

+ gκλgµν(Γκ
λθΓθ

µν + Γσ
µνΓθ

λθ − Γσ
νθΓθ

λµ − Γσ
λµΓθ

νθ) + gκλgµν
(

Γσ
λµΓκ

µθ − Γσ
λµΓκ

νθ

)
]. (31)

The expression above for tµν is achieved by means of a lengthy calculation which is
provided step by step in the aforementioned reference Landau & Lifshitz [37], to which we
refer the interested reader for full details. Given (30), the equivalent equation that indeed
leads to a conservation law shall be

∂µ[(−g)(Tµν + tµν)] = 0. (32)

Notice that the nontensorial nature of tµν is evident due to its explicit dependence
on products of Christoffel symbols. However, it does behave as a tensor under linear
coordinate transformations, of which the Lorentz transformation is a particularly interesting
case. In addition, notice that it vanishes in the locally inertial frame x∗, where Γα

µν(x∗) = 0,
at which the special relativity relation (27) is recovered. This enhances the fact that even the
procedure leading to (32) fails in providing a meaningful local conservation law that we
could associate with the energy conservation, due to the absence in GR of a local meaning
for the gravitational field.

In the R. Wald textbook [33], the physical meaning of (4) is also discussed, although
in a bit of a different way. The author shows that, in special relativity, the meaning of
∂µTµν = 0 is unambiguous as a conservation expression for the energy–momentum tensor.
To show this, let us consider a family of inertial observers with parallel worldlines, vα,
which means

∂βvα = 0. (33)

If we assume, for instance, a perfect fluid (although the reasoning actually holds for
any matter and fields) described by Tµν, it is known that the quantity

Jα = −Tαβvβ (34)

shall correspond to the mass–energy current density 4-vector as measured by these ob-
servers. Given (26), from (34), it follows that

∂α Jα = 0. (35)
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The Gauss law tells us that the integration of (35) over a four-dimensional volume, V,
is equal to the surface integral below ∫

S
JαnαdS = 0, (36)

where nα is the unit normal vector to S. The null flux defined by (36) clearly indicates a
conservation of energy, as it leads to the vanishing of the time variation of such a quantity
inside the volume V. In other words, we can say that (26) is a requirement for the energy
conservation as measured by a family of inertial observers.

On the other hand, in a curved spacetime, as it is known, the relation (26) is replaced
by (4). However, the presence of curvature spoils the interpretation of such a equation as
a conservation law, since in this case there is no well-defined notion of parallel vectors
at different points, which harms the introduction of a global family of inertial observers
able to measure the energy of a distant particle. Let us see this feature in more detail. It is
natural to think of the curvature-dependent extension of the condition (33) as

∇(βvα) = 0. (37)

Thus, the energy–momentum four vector (34) now is the one measured by observers
satisfying (37). Nevertheless, in this case, the covariant derivative of Tµν does not lead
naturally to the covariant divergence of the current Jµ,

∇α(Tµνvν) = 0, (38)

which, by Gauss law, as we see before, this could ensure the conservation of energy. Because
in the curved spacetime, in general, one is not able to define a family of observers satisfying
vαvα = −1 and (37). However, notice that an exception occurs if vµ is a Killing vector that
generates a one-parameter group of isometries in the spacetime. In this case, as it is well
known, vµ shall obey Equation (37), which, in this context, is called the Killing equation.
Thus, this inconsistency between (37) and (38) prevents ∇µTµν = 0 to be interpreted as a
requirement for a global energy conservation. In fact, let us recall that gravitational field
itself, by means of tidal effects, can do work on a material system, thus altering locally its
energy content. However, if we consider a small region of the space where such effects can
be neglected, the energy of the system shall be conserved in a reasonable approximation.
Thus, within such a small spacetime region, it is possible to define a vector field such that
∇βvα ≈ 0. Thus, Equation (4) would indeed reflect an approximate conservation of energy
as seen by these observers. Therefore, it is plausible to say that Ref. (4) represents a local
conservation of the energy content of a physical system over small regions of spacetime.

3. Rastall Gravity

The Rastall proposal extends GR causing a violation of the usual conservation law,
making the covariant divergence of Tµν proportional to the covariant divergence of the
curvature scalar R [7]. While non-trivial to explain the nature of such a new source, this can
be phenomenologically seen as the emergence of quantum effects in curved spacetimes as
e.g., in the case of gravitational anomalies [39,40]. Due to the fact that the Rastall model is
originally formulated only on the basis of this phenomenological approach and the absence
of any variational formalism from which the field equations of Rastall theory could emerge
have attracted the attention of many authors that tried to formulate a variational principle
for the Rastall gravity. Some efforts in this sense can be found in the references [41–43].

In Rastall gravity, the conservation law is replaced by the equation

Tµν
;ν =

1− λ

16πG
gµνR;ν (39)
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where the GR framework is recovered by setting λ = 1. The associated field equations
according to the Rastall’s proposal are

Rµν −
λ

2
gµνR = κTµν. (40)

Within the context of Riemannian geometry, there is no variational principle associated
with this theory, but similar structures may be found in the context of Weyl geometry [44].

Applications of the Rastall gravity to cosmology have been performed in Refs. [45–47].
Black holes and other exact solutions have been studied in Refs. [48,49]. However, since
Rastall theory should manifest mostly in high curvature environments, compact objects
like neutron stars are perfect laboratories to constrain the parameter λ. In Ref. [50], by
using realistic equations of state for neutron stars, interior conservative bounds on the
non-GR behaviour of the Rastall theory have been placed at the 1% level i.e., λ < 0.01.

There is a long discussion on whether the Rastall theory (and also similar models [51])
is or is not equivalent to GR. Since the time this theory appeared in the 1970s, there have
been claims that Rastall theory is an artificial construction of non-conserved quantities
within a conservative theory [52]. This discussion has been revisited recently in Ref. [53].

It is worth noting that there is a common criticism in the field of extended theories
of gravity stating that any theory can be recast into the original GR form since the new
geometrical terms appearing on the left-hand side of Einstein’s equation can be sent to the
right-hand side to assemble an effective energy–momentum tensor Tµν

e f f . This is also the
case of Rastall as discussed in [54].

4. Brans–Dicke Theory in the Einstein Frame

It is well known that string theory predicts a scalar partner of the graviton in the
low energy limits, the so-called dilatonic field (or dilaton). The Brans–Dicke theory is the
simplest model in which such an extra degree of freedom shows up [8]. There are, however,
two approaches by which such a theory can be studied [55]. In the Jordan frame, the dilaton
is a crucial piece of the geometrical sector in which it takes part as being co-responsible
by the gravitational field, along with the metric tensor. However, in the Einstein frame,
this scalar field is shifted to the matter sector, where it now shall couple to the ordinary
matter. Both frames are related merely by a conformal transformation. As a consequence
of this coupling, the paths followed by test particles become non-geodesic for a given
spacetime and the standard covariant conservation of the energy–momentum deviates
from the usual one.

In the Jordan frame, the gravitational action is

SJF =
1

16π

∫
d4x
√
−g
[

φR− ω

φ
∇µφ∇µφ

]
+
∫

d4x
√
−gLm, (41)

where ω is the Brans–Dicke parameter and Lm is the Lagrangian of the matter fields.
By extremizing the action above with respect to the metric, one has the following set of
field equations:

Rµν −
1
2

gµνR =
8π

φ
Tµν +

ω

φ2

(
∇µφ∇νφ− 1

2
gµν∇αφ∇αφ

)
+

1
φ

(
∇µ∇νφ− gµν�φ

)
. (42)

The variation of the action with respect to the scalar field gives the dynamics obeyed
by φ

�φ =
8πT

3 + 2ω
, (43)

where T is the trace of the energy–momentum tensor. Let us recall that the GR limit is
achieved when ω → ∞ and φ→ φ0 = G−1 [38]. In this frame, Tµν conserves according to
the standard condition:

∇νTµν = 0. (44)
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It should be mentioned that there is an interesting version of the Brans–Dicke gravity
in the Jordan frame in which the non-conservation of Tµν shows up. In this alternative
scenario, the Brans–Dicke model is combined with the Rastall theory, thus inheriting its
non-conservative aspect [56]. This model was called Brans–Dicke-Rastall gravity. In [56],
the authors analyze some consequences of this theory both to the background cosmology
and the parametrized post-Newtonian formalism.

It is well known, however, that an alternative formulation for the Brans–Dicke theory
is possible. It is achieved by means of the conformal transformation below

gµν −→ g̃µν = Gφgµν, (45)

along with the following redefinition

φ −→ φ̃ =
∫ √2ω + 3

16πG
dφ

φ
. (46)

Equations (45) and (46) lead the theory to the so-called Einstein frame. In this formula-
tion, the gravitational action is rewritten as follows:

SEF =
∫

d4x
√
−g̃
[

R̃
16πG

− 1
2

g̃µν∇̃µφ̃∇̃νφ̃

]
+ SM

(
e−αφ̃ g̃µν, ψ

)
, (47)

where α ≡
√

16πG
2ω+3 and ψ denotes the matter fields. Notice that, in this case, the rede-

fined dilaton, φ̃, couples minimally to the curvature, and the geometric sector is solely the
Einstein–Hilbert action with φ̃ acting as a matter field. This novel aspect arising in the
Einstein frame reinterprets the role of the dilaton in the Brans–Dicke gravity, since now
it indeed appears in the matter action, thus becoming able to couple with a given matter
configuration. The main consequence of that is a departure of the energy–momentum
conservation from its traditional expression. Now, this law is led to the following noncon-
servative form:

∇νTµν = αT∂µφ. (48)

Notice that, leaving aside the trivial case of the GR limit (for which α → 0 and
φ→ φ0), the standard conservation can also occur for a given matter configuration whose
energy–momentum tensor is trace free.

5. Gravity Theories from the Standard Model Extension

In the gravity sector of the Standard Model Extension (SME), it is also possible to
envisage physical properties with consequences to the energy–momentum conservation
law. The SME is an effective theory encompassing the Standard Model of the particle
physics and the General Relativity that incorporates possible deviations from the Lorentz
and diffeomorphism symmetries [57–61]. The breaking of diffeomorphism invariance is, in
general, a remarkable feature of gravity theories arising from extensions of the standard
model. Usually, this violation is induced by the presence of fixed background fields, which
can break the local Lorentz and diffeomorphism symmetries either explicitly or sponta-
neously [11]. In the former case, the background fields show up explicitly in the Lagrangian
of the model, whereas, in the latter case, this does not happen, and the background just
appears as a vacuum solution of the theory. It is well known, however, that, while the
explicit breaking imposes difficulties for the gravity sector of the SME, with serious con-
flicts between the dynamical and the geometrical model’s constraints, the spontaneous one
points towards a promising direction, free of such drawbacks. Nevertheless, as Kostelecký
shows in [58], these conflicts can be fixed in the context of Chern–Simons and massive
gravity with an underlying Riemannian spacetime.
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An effective gravity theory exhibiting Lorentz and diffeomorphism breaking can be
generically represented by the action below (in the low energy limit)

S = SEH + SLV + SLI , (49)

where SEH is the Einstein–Hilbert action,

SEH =
1

2κ

∫
d4x
√
−gR. (50)

The Lorentz-violation term SLV is

SLV =
∫

d4x
√
−gLLV(gµν, f ψ, k̄χ), (51)

where f ψ means the usual matter fields and k̄χ denoting the diffeomorphism violating
background field. Moreover, ψ and χ represent all the component indices of the tensors f ψ

and k̄χ, respectively. In addition, finally, the Lorentz- and diffeomorphism-invariant term
LLI is given by

SLI =
∫

d4x
√
−gLLI(gµν, f ψ). (52)

As mentioned above, when the diffeomorphism symmetry breaking is explicit, the
fixed background field k̄χ is nondynamical. This means that

(δSLV)diff =
∫

d4x
√
−g

δLLV

δk̄χ
δk̄χ 6= 0. (53)

In addition, the variation of the full action (49) gives

Gµν = κ(Tµν
LI + Tµν

LV). (54)

As clearly showed in Section 2, the contracted Bianchi identity can be understood as a
consequence of the diffeomorphism invariance of (50) in isolation. As this same invariance
is not respected by SLV , by taking the covariant divergence of (54), one is left with

∇µ(T
µν
LI + Tµν

LV) = 0, (55)

which must hold on-shell. In this equation, the energy–momentum tensors Tµν
LI and Tµν

LV
are defined in terms of LLI and LLV , respectively, according to (11). Thus, in general, the
conventional matter described by Tµν

LI will not conserve as usual due to the presence of the
inhomogeneous diffeomorphism breaking term in Equation (55). However, it is usual to
require the additional constraint ∇µTµν

LV = 0 in order to ensure the standard conservation
condition [11].

The equations above are presented in a quite general form, in order to cover arbitrary
cases involving explicit spacetime symmetry breaking. However, following the spirit of the
Ref. [11], we can look at specific examples. It is common that these models present conflicts
between its dynamical description and some geometrical constraints. Such conflicts are
usually evinced when the Bianchi identity is imposed onto the field equations. Let us
analyze two examples that will help us to understand this aspect.

5.1. Spacetime-Dependent Cosmological Constant

For this model, the gravity is endowed with a spacetime-dependent cosmological
constant. The total action of this theory is given by

S =
∫

d4x
√
−g
{

1
2κ

[R− 2Λ(x)] + Lm

}
. (56)
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By comparing (56) with (49), we can set the mapping among the corresponding
variables. Here, the fixed background is k̄χ = Λ(x), and the Lorentz-invariant Lagrangian
is LLI = Lm, whereas the symmetry-violating piece is LLV = −Λ(x)/κ.

Notice that, when Λ(x) 6= 0 and is non-constant, the condition (53) applies, as the
theory is endowed with a fixed, non-dynamical, background field given by Λ(x) that
breaks explicitly the diffeomorphism, since this field appears explicitly in the action. In
fact, for this case, Equation (53) becomes

(δSLV)diff =
∫

d4x
√
−g

δLLV
δΛ(x)

LVΛ(x) = −
∫

d4x
√
−g

1
κ

Vµ∂µΛ(x) 6= 0, (57)

since the Lie derivative on Λ(x) is LVΛ(x) = Vµ∂µΛ(x). The corresponding field equa-
tions are

Gµν = −Λ(x)gµν + κTµν
m , (58)

where the symmetry-breaking energy–momentum tensor in the present example is Tµν
LV =

−gµνΛ(x)/κ. By using the contracted Bianchi identity on (58), we obtain for this case the
corresponding form for (55), which is

∇µTµν
m = (1/κ)gµν∂µΛ(x). (59)

Therefore, the presence of a non-constant Λ(x) in the description of the gravity leads
to a deadlock: if the standard conservation for Tµν

m is required, Equation (59) tells us that
necessarily ∂µΛ(x) = 0 implying in Λ(x) = const., thus restoring the diffeomorphism
invariance and contradicting the a priori assumption that Λ(x) is non-constant. Notice
that, in this case, the aforementioned conflict between the dynamics and the geometrical
identities (in the present case, the Bianchi identity) is not evaded unless one assumes the
non-trivial conservation law above (59). One may wonder if such a conflict is unavoidable,
by raising the following question: is it possible to ensure the standard conservation law
for Tµν

m without necessarily restoring the diffeomorphism invariance? The next example
provides an affirmative answer for this question.

5.2. Chern–Simons Gravity

The so-called Chern–Simons term was first introduced in the context of three-dimensional
gauge field theory and gravitational models [62,63]. Some years later, this same model was
extended in order to represent a theory of gravity in the four-dimensional spacetime [64,65].
The action for the Chern–Simons gravity in four dimensions can be written as follows:

SCS =
∫

d4x
[

1
2κ

(√
−gR +

1
4

θ ∗RR
)
+
√
−gLm

]
, (60)

where ∗RR ≡ ∗Rκ
λ

µνRλ
κµν is the gravitational Pontryagin density and ∗Rκ

λ
µν= 1

2 εµναβRκ
λαβ.

The explicit breaking of diffeomorphism invariance occurs due to the embedding coordi-
nate, vµ, which is related to the non-dynamical scalar θ(x) through vµ ≡ ∂µθ. The variation
of the action (60) gives

Gµν + Cµν = κTµν
m , (61)

where Cµν is the four-dimensional Cotton tensor which has the following form:

Cµν = − 1
2
√−g

[
vσ

(
εσµαβ∇αRν

β + εσναβ∇αRµ
β

)
+∇σvτ(

∗Rτµσν +∗ Rτνσµ)
]
. (62)

Due to the dependence of Cµν upon the embedding coordinate vµ, the Cotton tensor
encodes the information of diffeomorphism breaking in the field equations, so that we can
set the following correspondence:

Tµν
LV =

Cµν

κ
. (63)
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By computing the covariant divergence of Cµν, we will have

∇µCµν =
1

8
√−g

(∂νθ) ∗RR. (64)

Looking at the action (60) and considering diffeomorphism transformations like (15),
Equation (53) shall be

(δSLV)diff =
∫

d4x
√
−g

1
4
( ∗RR)Vµ∂µθ. (65)

Thus, by the equation above, we find a twofold condition for the explicit breaking of
diffeomorphism. The first condition is ∂µθ 6= 0 and the second one is that the Pontryagin
density is non-zero. We can examine the occurrence (or not) of the dynamics-geometry
conflict by taking the covariant divergence of (61). If ∇µTµν

m = 0 is required, the Bianchi
identity then obliges the relation below:

∇µCµν = 0 (66)

to hold on shell. Since the divergence of Cµν was also computed in (64), the condition (66)
imposes that ∗RR ∂µθ = 0. Thus, the conflict is evaded not only in the trivial situation
when ∂µθ = 0, implying in the restoration of the diffeomorphism invariance. It is evaded
as well when the Pontryagin density vanishes, obeying the so-called Pontryagin constraint

∗RR = 0. (67)

This is a constraint on the geometry that indicates a way to avoid the mentioned
dynamics-geometry conflict by restricting the class of allowed geometries. It is known,
for example, that any spacetime of Petrov types III, N, and O automatically satisfy (67)
(See [66]).

On the other hand, if the usual conservation law ∇µTµν
m = 0 was somehow relaxed,

when we took the covariant divergence of (61), we would have

∇µTµν
m =

1
8κ
√−g

∂νθ ∗RR, (68)

which means a deviation from the standard conservation law sourced by both the presence
of ∂νθ and the Pontryagin density.

The formulation showed here for the Chern–Simons gravity is not the only one found
in the literature. In [66], one can see an alternative one, where it is possible to render
dynamics to the scalar field θ. In this case, such a field shall obey a Klein–Gordon like
equation of motion that is sourced both by stress-energy tensor and the curvature of
spacetime.

To end this section, let us mention an important attempt of setting experimental
bounds on the non-dynamics Chern–Simons gravity. In [67], by studying gravitomagnetic
effects within this theory, the authors place important bounds on the parameter mcs. In that
work, they define such a parameter as m−1

cs ∝ θ̇ and assume the scalar field θ as being time
varying but spatially homogeneous. They compute orbits of test bodies and the precession
of gyroscopes in the linearized Chern–Simons gravity around a massive spinning bod.
Then, they use observation from the LAGEOS [68] and Gravity Probe B [69] satellites to
restrict m−1

cs to be less than 1000 km, which corresponds to mcs ≥ 2× 10−22 GeV.

6. Emergent Gravity Theories Breaking General Covariance

The so far weakly unexplored high energy limit of GR leaves room for investigation
of emergent gravity theories i.e., approaches in which the low energy behavior appears as
a manifestation of some yet unknown fundamental theory.
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Small violations of diffeomorphism invariance can be introduced into a physical theory
in order to explore the phenomenology behind emergent phenomena. As an example,
one such approach has been discussed in Ref. [12]. The general action proposed in this
reference is of the form

L =
1

2κ

[
R + ∑

i
aiLi

]
+ Lm, (69)

where theLi terms involve contributions that induce a violation of diffeomorphism invariance

L1 = −gµνΓα
µλΓλ

να, L2 = −gµνΓα
µνΓλ

λα, L3 = −gαγgβρgµνΓµ
αβΓν

γρ, (70)

L4 = −gαγgβλgµνΓλ
µνΓβ

γα, L5 = −gαβΓλ
λαΓµ

µβ, L6 = −gµν∂νΓλ
µλ, L7 = −gµν∂λΓλ

µν,

leading to the following field equations

Rµν −
1
2

gµνR + aMµν = κTµν. (71)

The departure from GR is encoded in the new contributionMµν defined as

Mµν = Bµν +Dµν (72)

Bµν = −1
2

gµνgαβgγδgεηΓα
γεΓβ

δη + gαβgγδgνφgµεΓε
αγΓφ

βδ + 2gφεgαγgδεgφβΓβ
µαΓδ

νγ

Dµν = Γλ
αλAα

µν +Aα
µν,α,

Aα
µν = gαβgγµΓγ

νβ + gαβgγνΓγ
µβ − Γα

µν.

which is clearly not invariant under general coordinate transformation.
In order to implement a consistent condition on this set of equations in Ref. [12], it has

been imposed the constraint below:

∇µMµν = 0 (73)

In that reference, the authors analyzed this theory by expanding Equation (71) along
with the (73) in light of the recipe given by the PPN formalism. With this treatment,
they aimed at constraining the diffeomorphism-breaking terms present in the model. As
expected, this investigation shows that the parameters usually identified with the non-
conservation of energy and momentum will not be zero for this model; they will in fact
depend on the dimensionless parameter a appearing in (71). In addition, they found a
strong bound on this parameter coming from the absence of preferred-frame effects in
pulsars that leads a to be less than 10−20 in gravitational strength.

7. Action Dependent Lagrangian Theories

This class of theory is based on the so-called Herglotz problem. The latter was
originally built within a classical mechanics scenario, and consists of generalizing the
action principle by introducing in the Lagrangian an action-dependence. Though non
trivial, this kind of construction reads

S =
∫
L(x, ẋ, S)dt. (74)

This allows a proper description of dissipative phenomena in classical systems from
first principles. Recently, Lazo et al. [13] found that there exists a covariant generalization
of this problem. Hence, a prototype of gravitational theory can be designed from

L =
√
−g(R− λαsα) + Lm (75)
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where quantity sα is an action-density field. The coupling term λµ depends on the space-
time coordinates. The interpretation employed in this approach refers to the action-
dependence introduced in (75) associated with sα only with respect to the standard Einstein–
Hilbert action. The matter action is not coupled to the sα field. Therefore, departures from
standard gravity provided by this theory are purely of geometric nature. As a result, this
approach leads to a geometrical viscous gravity model in which the dynamics of the theory
is described by the generalized field equations

Rµν −
1
2

Rgµν + Kµν −
1
2

Kgµν = κTµν. (76)

By applying the Bianchi identities to the above equation, one finds a relation involving
Kαβ, its trace, and the matter sector. By considering a constant G coupling, the system of
field equations is sourced by the modified conservation law

κTµ
ν;µ = Kµ

ν;µ −
1
2

K;ν. (77)

The new aspect here is clearly encoded in the quantity Kµν given by

Kµν = λαΓα
µν −

1
2

(
λµΓα

να + λνΓα
µα

)
. (78)

The quantity λα plays the role of a background four-vector necessary in this noncon-
servative structure.

In recent years, many gravitational problems have been investigated within this theory.
In [70], the authors performed a study both of the FLRW background cosmology and the
linear perturbative regime for this nonconservative gravity. They found that the back-
ground dynamics are equivalent to that one provided by the bulk viscous cosmology [71].
On the other hand, the evolution of the linear perturbations indicated a possibility of
avoiding, within the nonconservative theory, some of the problems present in the viscous
scenarios [72,73]. In [74], the authors deepen such a cosmological study. In that work,
they submitted the cosmology emerging from this theory to the scrutiny of some impor-
tant cosmological datasets, both at the background and perturbative levels. This study
revealed that the nonconservative cosmology was not viable, at least in the way it was
originally formulated. However, the authors showed an interesting way out for this issue,
by assuming that the matter conserves as usual, whereas the dark energy that obeys the
non-standard conservation law becomes able to be pressureless. This new framework was
revealed as a viable model in light of the analyzed cosmological data. In this study, we
have computed the f σ8 observable for the perturbative regime of the theory.Next, we use
the compilation of measurements of this quantity provided in [75] to impose a stringent
bound on the parameter of the theory, given by the interval −0.9H0 < λ0 < −0.7H0, which
also revealed compatible with H(z) data, indicating a viable model both in the background
and the perturbative levels.

This theory was also used to study cosmic string configurations, where were investi-
gated the Abelian–Higgs strings as well as the phenomenological model of the Hiscock–
Gott string, by means both of analytical and numerical techniques [76]. The sum rules
formalism for braneworld models within this nonconservative theory was examined in [77].
In Ref. [78], the authors discussed the conditions for the existence of static spherically sym-
metric solutions in this gravity (see also [79]).

8. Nonminimal Curvature–Matter Coupling

The principle of minimal coupling is evoked as one of the pillars to realize a gravita-
tional theory. Alternative gravitational theories designed to stay close to GR maintain it.
The consequences of abandoning this principle directly affect the way matter fields interact
with geometry. If this principle is abandoned, the resulting field equations are non-trivial
since the direct interplay between flat and curved spacetime, given by the familiar principle
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of General Covariance and the Equivalence Principle, is damaged. A direct consequence
of adopting non-minimally couplings between the matter and geometric sectors is the ap-
pearance of nonconservative features. Extensions of f (R) theories involving non-minimal
couplings between curvature and the matter Lagrangian represent a class of theories in
which Tµν does not conserve. The family of f (R,Lm) theories is the typical prototype for
this situation [80] (see also [16,81]).

Particularly, the particle creation phenomena is a simple mechanism leading to the idea
of non conservation. Ref. [82] has discussed how one can associate this to a non-minimal
coupling between the matter Lagrangian and curvature terms. This idea is designed by the
following action:

S =
∫ √

−g
[

f1(R)
2κ

+ f2(R)Lm

]
, (79)

where f1(R) and f2(R) are arbitrary functions of the Ricci scalar.
The energy–momentum tensor is defined in terms of the matter Lagrangian accord-

ing to (11). Then, one show that a general property of this type of theories is the non-
conservation such that

∇µTµν =
λF2

1 + λF2

[
gµνLm − Tµν

]
∇µR, (80)

where Fi = fi,R and λ is a coupling constant that measures how strong the interaction
is between f2(R) and the matter Lagrangian. Of course, the usual conservation law is
recovered with λ = 0.

This interpretation has been criticized, however, in Ref. [83]. The reasoning of the
criticism contained in the latter reference is based on the claim that the non-minimal
coupling actually induces a change in the particle–momentum on a cosmological timescale,
which can not be associated with the particle creation process.

Observational constraints on this class of theories can be found in, e.g., Ref. [84].

9. f (R, T) Theories

The non-minimal coupling between matter and curvature terms has been indeed
widely studied. One such proposal is the so-called f (R, T) theory where T = Tµ

µ is the
trace of the stress–energy tensor. Of course, the GR limit of such theory corresponds to
f (R, T) = R in the action

S = SG + Sm =
1

2κ

∫
d4x
√
−g f (R, T) +

∫
d4x
√
−gLm (81)

This approach has been introduced in Ref. [17] aiming to describe running cosmo-
logical constant cosmologies. Therefore, this modification of gravity trying to explain
the accelerated expansion of the universe and dark matter seems to be a fundamental
ingredient in the viable f (R, T) scenarios [85].

By defining Tµν as2

Tµν = gµνLm − 2
∂Lm

∂gµν . (82)

By varying the action with respect to the metric (as in the standard metric formalism),

fR(R, T)Rµν −
1
2

f (R, T)gµν + (gµν�−∇µ∇ν) fR(R, T) = [κ − fT(R, T)]Tµν − fTΘµν, (83)

where

Θµν ≡ gαβ
δTαβ

δgµν = −2Tµν + gµνLm − 2gαβ ∂2Lm

∂gµν∂gαβ
. (84)

2 With a minus sign with respect to (11).
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In addition, the conservation law to be obeyed by Tµν in this case shall be

∇µ
[
(κ − fT)Tµν − fTΘµν

]
= 0. (85)

This condition is easily obtained by taking the covariant divergence of (83), bearing in
mind that the left-hand side of these equations has null divergence, as can be straightfor-
wardly verified (see [15]).

In a FLRW background sourced by an energy–momentum tensor of a perfect fluid
written in terms of its energy density ρ and the pressure p, we can write (given the
definitions above) the Lagrangian as Lm = −p, while the tensor (84) reduces to Θµν =
−2Tµν − pgµν. Let us focus on a class of f (R, T) theories given by f (R, T) = f1(R) + f2(T).
The background expansion obeys equations

− 3(Ḣ + H2) f ′1 −
f1

2
− f2

2
+ 3H ḟ ′1 = κρ + f ′2(1 + w) (86)

and
(Ḣ + 3H2) f ′1 +

f1

2
+

f2

2
− f̈ ′1 − 2H ḟ ′1 = κp, (87)

where the prime and dot denote derivatives with respect to the argument, i.e., f ′1 =
d f1(R)/dR, and to the cosmic time, respectively.

In practice, any f (R, T) model gives rise to a deviation from the usual conservation
law such that

ρ̇ + 3Hρ(1 + w) = − 1
κ + f ′2

[
(1 + w)ρ ḟ ′2 + wρ̇ f ′2 +

1
2

ḟ2

]
, (88)

where p = wρ. Notice that (86)–(88) form a system of three independent differential
equations. The fourth-order derivatives of the metric appearing in these equations, f̈ ′1,
gives rise to new degrees of freedom in f (R, T) theory, so that, along with the variables a
and ρ, it is also necessary to consider ä as an independent variable in order to provide a
solution for such system of equations.

In the context of interacting dark energy models, a local violation of∇µTµν = 0 may be
allowed by means of a possible exchange of either energy or momentum (or both) between
the two dark components. Nonetheless, even in these models, this exchange occurs in such
a way as to preserve the conservation of the total dark fluid. Differently, Equation (88)
shows a non-conservation of the matter–energy content as a whole, revealing a significant
drawback of this class of f (R, T) theories. In light of this, in [18], the authors imposed
by hand the fulfillment of (88) by setting to zero the expression inside the bracket, e.g
(1 + w)ρ ḟ ′2 + wρ̇ f ′2 +

1
2 ḟ2 = 0. By using a chain rule, one can get rid of the time derivatives

and write this constraint condition as a second order differential equation for the function
f2(T), whose integration provides a solution in the form

f2(T) = σT
3w+1

2(w+1) + σ0, (89)

where σ and σ0 are integration constants. We may avoid the trivial case f2(T) = const. by
assuming the necessary condition ω 6= −1/3. In addition, ω 6= +1/3 is adopted in order
to assure that T 6= 0. Considering pressureless matter, ω = 0, the solution becomes

f2(T) = σT
1
2 + σ0. (90)

Then, this is the only choice assuring conservation, as it constitutes the only case in
which the standard conservation law is preserved, which implies automatically ruling
out anyone else if one demands that conservation is required. It is not surprising that
the usual conservation condition is gained in “separable” f (R, T) models, namely those
ones obeying f (R, T) = f1(R) + f2(T). Let us recall that the departure from the traditional
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conservation law in arbitrary f (R, T) theories arises precisely because of the non-minimal
coupling between curvature and matter. When these two sectors appear in such a separated
added up terms as f (R, T) = f1(R) + f2(T), it makes it possible to obtain a differential
equation only for f2(T), decoupled from the function f1(R), therefore free from any R-
dependence. As we have seen in (88), this differential equation constitutes a constraint
leading to the usual conservation law. Thus, it is somehow expected that, when a non-
coupling is imposed, the standard conservation appears as a particular case. It is also
possible to redesign the f (R, T) theory in such a way that it evades the continuity equation
by adding the extra geometric terms to sum up the effective energy–momentum tensor [86].

However, if one intends to assume the usual conservation, a stringent restriction on
f (R, T) gravity applies. By taking this path, Refs. [18] as well as [85] bring the message
that versions of f (R, T) models based on the separation f (R, T) = f1(R) + f2(T) are
disfavored in light of recent data and therefore cannot be interpreted as viable theories.
Furthermore, there is a more profound argument to not take into consideration this class
of f (R, T) models. In a recent discussion, it was claimed that the term f2(T) may be
simply incorporated into the matter Lagrangian Lm, which means that it is not possible to
physically separate their effects as they depend on the same variables and are added up in
the total action [87]. Thus, these models would consist of a mere redefinition of the matter
sector without bringing any new information or physical effect to the problem under study.
Other authors, however, have disputed this claim. We direct the reader to Refs. [87,88],
where it is possible to follow the entire debate on it.

The discussion on the conservation properties in f (R, Tφ), a scalar field variant for-
mulation, has been recently discussed in [89].

10. Nonconservative Traceless Gravity

Unimodular gravity is a well-known alternative gravitational theory. In this approach,
the cosmological constant appears naturally in the form of an integration constant. By
obtaining the field equations from the Einstein–Hilbert Lagrangian imposing the condition
gµνδgµν = 0, one finds

Gµν +
1
4

gµνR = κ

(
Tµν −

1
4

gµνT
)

. (91)

In addition, by taking the divergence of the above equation and using the Bianchi
identities,

R,ν

4
= 8πG

(
Tµν

;µ −
T;ν

4

)
. (92)

It is worth noting that there is an extra constraint on the determinant of the metric,
and therefore there are nine independent equations of motion, one less than GR. Then,
energy–momentum conservation is ad hoc imposed in this theory.

Using the approach adopted in Ref. [90], it is possible to design a non-conservation
unimodular theory. In Ref. [91], a constant curvature R =const. has been used to constrain
unimodular gravity. If this condition is applied to Equation (92), one immediately finds

Tµν =
T;ν

4
. (93)

A consequence of this case is the fixing of the scaling law for the enthalpy of the
system such that

ρ + p = Ca−4, (94)

where C is a constant.
It is also noted in Ref. [91] that other constraining conditions such as e.g., when the

quantity
√−g(R + 4Λ) is constant, also lead to nonconservative models with background

expansions similar to the ΛCDM, but with distinct perturbative behavior.
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11. Energy Conditions When Tµν
;ν 6= 0.

The interface between non-conservation in modified gravity theories and how energy
conditions are employed is worth being highlighted. Most of the theories discussed in this
work are considered nonconservative since new geometric terms appear on the left-hand
side of their field equations. Then, very often seen in the literature, in order to maintain the
application of the contracted Bianchi identities to the Einstein tensor Gµν, all remaining
new geometric contributions are sent to the right-hand side of field equations to compose
an effective Te f f

µν = T̄µν. While formally possible to impose in a ad hoc manner that such
new T̄µν conserves i.e., T̄µν

;µ = 0, this procedure leads to a different interpretation e.g., on
how the familiar energy conditions should apply to the T̄µν components.

Let us sketch now the basic idea behind the above argument. At the field equations
level, one can formally recast most of the modified gravity theories in the form

σ(Ψi)
(
Gµν + Wµν

)
= κTµν, (95)

where the factor σ(Ψi) is a coupling to the gravity while Ψi represents curvature invariants
or other fields, like scalar ones. The symmetric tensor Wµν stands for additional geometrical
terms which may appear in specific theory under consideration. We want to mention that,
in Equation (95), the energy–momentum tensor Tµν will be considered as the one of a
perfect fluid as defined in (3). Of course, Equation (95) does not encompass all the possible
alternatives to GR at the field equations level. However, most of the main proposals in
the market (including most of the theories discussed in this work) can be reshaped in
this form. From the structure presented in (95), one identifies that GR is immediately
recovered if σ(Ψi) = 1 and Wµν = 0. Equation (95) can also be rewritten as a GR-like
theory according to

Gµν = κT̄µν =
κ

σ
Tµν −Wµν. (96)

In principle, one can not postulate that the effective energy–momentum tensor is
conserved i.e., T̄µν ; µ = 0. However, this is indirectly achieved due to the Bianchi identities.
Then, what is the meaning of the former statement (T̄µν

;µ=0)?
This issue has been extensively discussed in Refs. [92,93] (see also [94]), and we briefly

review it now since this topic is critical for the discussion of the viability of modified gravity
models.

Firstly, let diffeomorphism invariance take place in the perfect fluid matter action i.e.,
Tµν

;µ = 0. On the other hand, contracted Bianchi identities assure that Gµν
;µ = 0. Then, if both

conditions take place, there appears a new constraint equation derived from (96). It reads

Wµν
;µ = − κ

σ2 Tµνσ ;µ. (97)

However, if one evades the diffeomorphism invariance of the matter action, the physi-
cal meaning of the above constraint can be translated to the notion of a non-conservation,
i.e., the mere application of the Bianchi identities to the field Equation (96) yields to

Tµν
;ν = (σWµν); ν +

(σ; ν

σ

)
[Tµν − (σWµν)], (98)

implying a different geodesic structure for the matter fields.
As an example of how delicate this issue is, let us focus on the weak energy condition as

a simple instance of a situation in which care must be taken when comparing the structure of
modified gravity theories with GR. In GR, the weak energy condition is usually interpreted
as the one that guarantees positiveness of energy density in a locally inertial frame i.e.,
ρ > 0. Actually, in a coordinate-independent way, the weak energy condition reads

Tµν Uµ Uν > 0, (99)



Universe 2021, 7, 38 21 of 24

where Uµ is any timelike vector.
It is a common practice in the literature to replace Tµν in the above inequality by T̄µν

i.e., one writes down an effective energy density ρ̄ which depends on the curvature terms
and interprets ρ̄ > 0 as the true energy condition in modified gravity theories. As shown
in Ref. [93], this is not exactly true, not only for the weak energy conditions but also for the
remaining ones, and care must be taken when analyzing energy conditions in modifications
of GR, in particular, proposals in which the conservation of the energy momentum energy
is not observed. As a simple example, for a given geometric contribution W00, one can
find situations unacceptable situations where ρ̄ > 0 while the physical ρ, derived from the
microphysical description of the matter fields, is negative.

12. Conclusions

Modified gravity theories represent a fruitful way to study the astronomical obser-
vations behind the dark matter/energy phenomena. While the direct searches for the
cosmic dark components do not deliver positive results proving the existence of exotic
matter fields in nature, there is room for investigations aiming to explain the observed
astrophysical/cosmological data via the introduction of geometrical features beyond GR.
In order to promote departures from GR, one has to either abandon one (or more) of the
pillars over which GR has been built up, or add new fields. A modification that leads to a
new modified gravitational theory can be seen as more or less radical depending on how
strong the assumptions it is based on are.

In this contribution, we have discussed some of the attempts found in literature to
explore alternative gravity theories in which the null covariant divergence of the energy–
momentum tensor is not achieved. Such non-conservation appears in a modified grav-
itational theory by different methods. As reviewed in this work, this occurs either by
imposing in an ad hoc manner the non-vanishing of the covariant derivative of the energy–
momentum tensor or obtaining this feature as a consequence from a first principle construc-
tion. Though we have probably failed to mention all existing proposals, the main ideas that
have motivated current research in this field have been discussed here. In addition, inter-
esting proposals in which there appears violation of the energy–momentum conservation
include e.g., cosmological diffusion effects [95–97] and other physical mechanisms [98–101].

We have also revisited in Section 11 how subtle the direct application is of well-
established results of the general relativistic framework to the case of nonconservative
theories. In particular, the application of energy conditions when Tµν

;ν 6= 0 requires a
careful treatment not usually seen in the literature.

While one can not find conclusive evidence that nonconservative theories of gravity
should be ruled out as viable alternatives, they will stay on the market and be a matter of
intense investigation as seen currently in the literature.

Author Contributions: The authors have contributed equality to this work. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was partially funded by CAPES, CNPq, FAPES, and Proppi/UFOP.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We acknowledge discussions with Jose Beltrán Jimenez, Júlio Fabris, Oliver
Piattella and Saulo Carneiro.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Brading, K. A Note on General Relativity, Energy Conservation, and Noether’s Theorems. Einstein Stud. 2005, 11, 125–135.
2. Goldberg, J.N. Conservation Laws in General Relativity. Phys. Rev. 1958, 111, 315–320. [CrossRef]

http://doi.org/10.1103/PhysRev.111.315


Universe 2021, 7, 38 22 of 24

3. Komar, A. Covariant conservation laws in general relativity. Phys. Rev. 1959, 113, 934–936. [CrossRef]
4. Bergmann, P.G. Conservation Laws in General Relativity as the Generators of Coordinate Transformations. Phys. Rev. 1958, 112,

287–289. [CrossRef]
5. Bondi, H. Conservation and Non-Conservation in General Relativity. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 1990, 427, 249–258.
6. Bak, D.; Cangemi, D.; Jackiw, R. Energy momentum conservation in general relativity. Phys. Rev. D 1994, 49, 5173–5181; Erratum

in 1995, 52, 3753. [CrossRef]
7. Rastall, P. Generalization of the einstein theory. Phys. Rev. D 1972, 6, 3357–3359. [CrossRef]
8. Brans, C.H.; Dicke, R.H. Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 1961, 124, 925. [CrossRef]
9. Magnano, G.; Sokolowski, L.M. Physical equivalence between nonlinear gravity theories and a general-relativistic self-gravitating

scalar field. Phys. Rev. D 1994, 50, 5039. [CrossRef]
10. Faraoni, V.; Gunzig, E. Einstein frame or Jordan frame? Int. J. Theory Phys. 1999, 38, 217–225. [CrossRef]
11. Bluhm, R. Explicit versus spontaneous diffeomorphism breaking in gravity. Phys. Rev. D 2015, 91, 065034. [CrossRef]
12. Anber, M.M.; Aydemir, U.; Donoghue, J.F. Breaking Diffeomorphism Invariance and Tests for the Emergence of Gravity. Phys.

Rev. D 2010, 81, 084059. [CrossRef]
13. Lazo, M.J.; Paiva, J.; Amaral, J.T.S.; Frederico, G.S.F. Action principle for action-dependent Lagrangians toward nonconservative

gravity: Accelerating universe without dark energy. Phys. Rev. D 2017, 95, 101501. [CrossRef]
14. Herglotz, G. Berührungstransformationen; University of Göttingen: Göttingen, Germany, 1930.
15. Koivisto, T. A note on covariant conservation of energy–momentum in modified gravities. Class. Quant. Grav. 2006, 23, 4289.

[CrossRef]
16. Tian, D.W.; Booth, I. Lessons from f (R, R2

c , R2
m, Lm) gravity: Smooth Gauss-Bonnet limit, energy-momentum conservation, and

nonminimal coupling. Phys. Rev. D 2014, 90, 024059. [CrossRef]
17. Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f (R, T) gravity. Phys. Rev. D 2011, 84, 024020. [CrossRef]
18. Alvarenga, F.G.; Cruz-Dombriz, A.D.; Houndjo, M.J.S.; Rodrigues, M.E.; Sáez-Gómez, D. Dynamics of scalar perturbations in

f (R, T) gravity. Phys. Rev. D 2013, 87, 103526; Erratum in 2013, 87, 129905. [CrossRef]
19. Fisher, S.B.; Carlson, E.D. Reexamining f (R, T) gravity. Phys. Rev. D 2019, 100, 064059. [CrossRef]
20. Hoyle, F. A New Model for the Expanding Universe. Mon. Not. R. Astron. Soc. 1948, 108, 372–382. [CrossRef]
21. Bondi, H.; Gold, T. The Steady-State Theory of the Expanding Universe. Mon. Not. R. Astron. Soc. 1948, 108, 252–270. [CrossRef]
22. Fritzsch, H.; Sola, J. Matter Non-conservation in the Universe and Dynamical Dark Energy. Class. Quant. Grav. 2012, 29, 215002,

doi:10.1088/0264-9381/29/21/215002. [CrossRef]
23. Pigozzo, C.; Carneiro, S.; Alcaniz, J.S.; Borges, H.A.; Fabris, J.C. Evidence for cosmological particle creation? JCAP 2016, 5, 022,

doi:10.1088/1475-7516/2016/05/022. [CrossRef]
24. Koutsoumbas, G.; Ntrekis, K.; Papantonopoulos, E. Gravitational Particle Production in Gravity Theories with Non-minimal

Derivative Couplings. JCAP 2013, 8, 027, doi:10.1088/1475-7516/2013/08/027. [CrossRef]
25. Ema, Y.; Jinno, R.; Mukaida, K.; Nakayama, K. Particle Production after Inflation with Non-minimal Derivative Coupling to

Gravity. JCAP 2015, 10, 020, doi:10.1088/1475-7516/2015/10/020. [CrossRef]
26. Capozziello, S.; Luongo, O.; Paolella, M. Bounding f (R) gravity by particle production rate. Int. J. Mod. Phys. D 2016, 25, 1630010,

doi:10.1142/S021827181630010X. [CrossRef]
27. Yu, H.; Guo, W.D.; Yang, K.; Liu, Y.X. Scalar particle production in a simple Horndeski theory. Phys. Rev. D 2018, 97, 083524,

doi:10.1103/PhysRevD.97.083524. [CrossRef]
28. Maudlin, T.; Okon, E.; Sudarsky, D. On the Status of Conservation Laws in Physics: Implications for Semiclassical Gravity. Stud.

Hist. Philos. Sci. B 2020, 69, 67–81. doi:10.1016/j.shpsb.2019.10.004. [CrossRef]
29. Galley, C.R. Classical Mechanics of Nonconservative Systems. Phys. Rev. Lett. 2013, 110, 174301, doi:10.1103/PhysRevLett.110.174301.

[CrossRef]
30. Forger, M.; Romer, H. Currents and the energy-momentum tensor in classical field theory: A Fresh look at an old problem. Ann.

Phys. 2004, 309, 306–389. doi:10.1016/j.aop.2003.08.011. [CrossRef]
31. Lovelock, D. The Einstein tensor and its generalizations. J. Math. Phys. 1971, 12, 498–501. [CrossRef]
32. Carroll, S. Spacetime and Geometry: An Introduction to General Relativity; Cambridge University Press: Cambridge, UK, 2019.
33. Wald, R. General Relativity; Chicago University Press: Chicago, IL, USA, 1984.
34. D’Inverno, R. Introducing Einstein’s Relativity; Clarendon Press: Oxford, UK, 1998.
35. Noether, E. Invariant variation problems. Gott. Nachr. 1918, 1918, 235–257. Reprint in Transp. Theory Statist. Phys. 1971, 1, 186–207.

[CrossRef]
36. Obukhov, Y.N.; Puetzfeld, D. Conservation laws in gravity: A unified framework. Phys. Rev. D 2014, 90, 024004. [CrossRef]
37. Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields; Pergamon Press: Oxford, UK, 1975.
38. Weinberg, S. Gravitation and Cosmology; Wiley: New York, NY, USA, 1972.
39. Bertlemann, R.A. Anomalies in Quantum Field Theory; Oxford University Press: Oxford, UK, 1996.
40. Birrell, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge University Press: Cambridge, UK, 1982.
41. Smalley, L.L. Variational principle for a prototype Rastall theory of gravitation. Il Nuovo Cimento B 1984, 80, 42–48. [CrossRef]
42. Santos, R.V.D.; Nogales, J.A.C. Cosmology from a Lagrangian formulation for Rastall’s theory. arXiv 2017, arXiv:1701.08203.

http://dx.doi.org/10.1103/PhysRev.113.934
http://dx.doi.org/10.1103/PhysRev.112.287
http://dx.doi.org/10.1103/PhysRevD.49.5173
http://dx.doi.org/10.1103/PhysRevD.6.3357
http://dx.doi.org/10.1103/PhysRev.124.925
http://dx.doi.org/10.1103/PhysRevD.50.5039
http://dx.doi.org/10.1023/A:1026645510351
http://dx.doi.org/10.1103/PhysRevD.91.065034
http://dx.doi.org/10.1103/PhysRevD.81.084059
http://dx.doi.org/10.1103/PhysRevD.95.101501
http://dx.doi.org/10.1088/0264-9381/23/12/N01
http://dx.doi.org/10.1103/PhysRevD.90.024059
http://dx.doi.org/10.1103/PhysRevD.84.024020
http://dx.doi.org/10.1103/PhysRevD.87.103526
http://dx.doi.org/10.1103/PhysRevD.100.064059
http://dx.doi.org/10.1093/mnras/108.5.372
http://dx.doi.org/10.1093/mnras/108.3.252
http://dx.doi.org/10.1088/0264-9381/29/21/215002
http://dx.doi.org/10.1088/1475-7516/2016/05/022
http://dx.doi.org/10.1088/1475-7516/2013/08/027
http://dx.doi.org/10.1088/1475-7516/2015/10/020
http://dx.doi.org/10.1142/S021827181630010X
http://dx.doi.org/10.1103/PhysRevD.97.083524
http://dx.doi.org/10.1016/j.shpsb.2019.10.004
http://dx.doi.org/10.1103/PhysRevLett.110.174301
http://dx.doi.org/10.1016/j.aop.2003.08.011
http://dx.doi.org/10.1063/1.1665613
http://dx.doi.org/10.1080/00411457108231446
http://dx.doi.org/10.1103/PhysRevD.90.024004
http://dx.doi.org/10.1007/BF02899371


Universe 2021, 7, 38 23 of 24

43. Moraes, W.A.G.D.; Santos, A.F. Lagrangian formalism for Rastall theory of gravity and Gödel-type universe. Gen. Relativ. Gravit.
2019, 51, 167, doi:10.1007/s10714-019-2652-9. [CrossRef]

44. Almeida, T.S.; Pucheu, M.L.; Romero, C.; Formiga, J.B. From Brans-Dicke gravity to a geometrical scalar-tensor theory. Phys. Rev.
D 2014, 89, 064047, doi:10.1103/PhysRevD.89.064047. [CrossRef]

45. Fabris, J.C.; Piattella, O.F.; Rodrigues, D.C.; Batista, C.E.M.; Daouda, M.H. Rastall cosmology. Int. J. Mod. Phys. Conf. Ser. 2012, 18,
67–76. doi:10.1142/S2010194512008227. [CrossRef]

46. Batista, C.E.M.; Daouda, M.H.; Fabris, J.C.; Piattella, O.F.; Rodrigues, D.C. Rastall Cosmology and the—Lambda CDM Model. Phys.
Rev. D 2012, 85, 084008, doi:10.1103/PhysRevD.85.084008. [CrossRef]

47. Akarsu, Ö.; Katırcı, N.; Kumar, S.; Nunes, R.C.; Öztürk, B.; Sharma, S. Rastall gravity extension of the standard ΛCDM model:
theoretical features and observational constraints. Eur. Phys. J. C 2020, 80, 1050, doi:10.1140/epjc/s10052-020-08586-4. [CrossRef]

48. Heydarzade, Y.; Moradpour, H.; Darabi, F. Black Hole Solutions in Rastall Theory. Can. J. Phys. 2017, 95, 1253–1256.
doi:10.1139/cjp-2017-0254. [CrossRef]

49. Kumar, R.; Ghosh, S.G. Rotating black hole in Rastall theory. Eur. Phys. J. C 2018, 78, 750, doi:10.1140/epjc/s10052-018-6206-1.
[CrossRef]

50. Oliveira, A.M.; Velten, H.E.S.; Fabris, J.C.; Casarini, L. Neutron Stars in Rastall Gravity. Phys. Rev. D 2015, 92, 044020,
doi:10.1103/PhysRevD.92.044020. [CrossRef]

51. Smalley, L.L. Modified Brans-Dicke gravitational theory with nonzero divergence of the energy-momentum tensor. Phys. Rev. D
1974, 9, 1635. [CrossRef]

52. Lindblom, L.; Hiscock, W.A. Criticism of some non-conservative gravitational theories. J. Phys. A Math. Gen. 1982, 15, 1827–1830.
[CrossRef]

53. Darabi, F.; Moradpour, H.; Licata, I.; Heydarzade, Y.; Corda, C. Einstein and Rastall Theories of Gravitation in Comparison. Eur.
Phys. J. C 2018, 78, 25. [CrossRef]

54. Visser, M. Rastall gravity is equivalent to Einstein gravity. Phys. Lett. B 2018, 782, 83–86. [CrossRef]
55. Faraoni, V.; Gunzig, E.; Nardone, P. Conformal transformations in classical gravitational theories and in cosmology. Fund. Cosm.

Phys. 1999, 20, 121.
56. Caramês, T.R.P.; Daouda, M.H.; Fabris, J.C.; Oliveira, A.M.; Piattella, O.F.; Strokov, V. The brans-dicke-rastall theory. Eur. Phys. J.

C 2014, 74, 3145. [CrossRef]
57. Kostelecky, V.A. Gravity, Lorentz violation, and the standard model. Phys. Rev. D 2004, 69, 105009. [CrossRef]
58. Kostelecky, V.A.; Potting, R. CPT, strings, and meson factories. Phys. Rev. D 1995, 51, 3923. [CrossRef]
59. Colladay, D.; Kostelecky, V.A. CPT violation and the standard model. Phys. Rev. D 1997, 55, 6760. [CrossRef]
60. Colladay, D.; Kostelecky, V.A. Lorentz-violating extension of the standard model. Phys. Rev. D 1998, 58, 116002. [CrossRef]
61. Kostelecky, V.A.; Lehnert, R. Stability, causality, and Lorentz and CPT violation. Phys. Rev. D 2001, 63, 065008. [CrossRef]
62. Deser, S.; Jackiw, R.; Templeton, S. Topologically Massive Gauge Theories. Ann. Phys. 1982, 140, 372. [CrossRef]
63. Deser, S.; Jackiw, R.; Templeton, S. Three-dimensional massive gauge theories. Phys. Rev. Lett. 1982, 48, 975. [CrossRef]
64. Jackiw, R.; Pi, S.-Y. Chern-Simons modification of general relativity. Phys. Rev. D 2003, 68, 104012. [CrossRef]
65. Jackiw, R. CPT and Lorentz Symmetry TV; Kostelecky, V.A., Ed.; World Scientific: Singapore, 2008.
66. Alexander, S.; Yunes, N. Chern-Simons modified general relativity. Phys. Rep. 2009, 480, 1. [CrossRef]
67. Smith, T.L.; Erickcek, A.L.; Caldwell, R.R.; Kamionkowski, M. Effects of Chern-Simons gravity on bodies orbiting the Earth. Phys.

Rev. D 2008, 77, 024015. [CrossRef]
68. Ciufolini, I.; Pavlis, E.C. A confirmation of the general relativistic prediction of the Lense—Thirring effect. Nature 2004, 431, 958.

[CrossRef]
69. Will, C.M. Covariant calculation of general relativistic effects in an orbiting gyroscope experiment. Phys. Rev. D 2003, 67, 062003.

[CrossRef]
70. Fabris, J.C.; Velten, H.; Caramês, T.R.P.; Lazo, M.J.; Frederico, G.S.F. Cosmology from a new nonconservative gravity. Int. J. Mod. Phys.

D 2018, 27, 1841006. [CrossRef]
71. Zimdahl, W. Bulk viscous cosmology. Phys. Rev. D 1996, 53, 5483 . [CrossRef]
72. Velten, H.; Schwarz, D.J.; Cosmol, J. Constraints on dissipative unified dark matter. Astropart. Phys. 2011, 9, 16. [CrossRef]
73. Velten, H.; Schwarz, D. Dissipation of dark matter. Phys. Rev. D 2012, 86, 083501. [CrossRef]
74. Caramês, T.R.P.; Velten, H.; Fabris, J.C.; Lazo, M.J. Dark energy with zero pressure: Accelerated expansion and large scale

structure in action-dependent Lagrangian theories. Phys. Rev. D 2018, 98, 103501. [CrossRef]
75. Nesseris, S.; Pantazis, G.; Perivolaropoulos, L. Tension and constraints on modified gravity parametrizations of Geff(z) from

growth rate and Planck data. Phys. Rev. D 2017, 96, 023542. [CrossRef]
76. Bragança, E.A.F.; Thiago, R.P.; Caramês, J.C.F.; de Pádua Santos, A. Some effects of non-conservative gravity on cosmic string

configurations. Eur. Phys. J. C 2019, 79, 162. [CrossRef]
77. Fabris, J.C.; Caramês, T.R.P.; da Silva, J.M.H. Braneworld gravity within non-conservative gravitational theory. Eur. Phys. J. C

2018, 78, 402. [CrossRef]
78. Fabris J.C; Velten, H.; Wojnar, A. Existence of static spherically-symmetric objects in action-dependent Lagrangian theories. Phys.

Rev. D 2019, 99, 124031. [CrossRef]

http://dx.doi.org/10.1007/s10714-019-2652-9
http://dx.doi.org/10.1103/PhysRevD.89.064047
http://dx.doi.org/10.1142/S2010194512008227
http://dx.doi.org/10.1103/PhysRevD.85.084008
http://dx.doi.org/10.1140/epjc/s10052-020-08586-4
http://dx.doi.org/10.1139/cjp-2017-0254
http://dx.doi.org/10.1140/epjc/s10052-018-6206-1
http://dx.doi.org/10.1103/PhysRevD.92.044020
http://dx.doi.org/10.1103/PhysRevD.9.1635
http://dx.doi.org/10.1088/0305-4470/15/6/022
http://dx.doi.org/10.1140/epjc/s10052-017-5502-5
http://dx.doi.org/10.1016/j.physletb.2018.05.028
http://dx.doi.org/10.1140/epjc/s10052-014-3145-3
http://dx.doi.org/10.1103/PhysRevD.69.105009
http://dx.doi.org/10.1103/PhysRevD.51.3923
http://dx.doi.org/10.1103/PhysRevD.55.6760
http://dx.doi.org/10.1103/PhysRevD.58.116002
http://dx.doi.org/10.1103/PhysRevD.63.065008
http://dx.doi.org/10.1016/0003-4916(82)90164-6
http://dx.doi.org/10.1103/PhysRevLett.48.975
http://dx.doi.org/10.1103/PhysRevD.68.104012
http://dx.doi.org/10.1016/j.physrep.2009.07.002
http://dx.doi.org/10.1103/PhysRevD.77.024015
http://dx.doi.org/10.1038/nature03007
http://dx.doi.org/10.1103/PhysRevD.67.062003
http://dx.doi.org/10.1142/S0218271818410067
http://dx.doi.org/10.1103/PhysRevD.53.5483
http://dx.doi.org/10.1088/1475-7516/2011/09/016
http://dx.doi.org/10.1103/PhysRevD.86.083501
http://dx.doi.org/10.1103/PhysRevD.98.103501
http://dx.doi.org/10.1103/PhysRevD.96.023542
http://dx.doi.org/10.1140/epjc/s10052-019-6672-0
http://dx.doi.org/10.1140/epjc/s10052-018-5891-0
http://dx.doi.org/10.1103/PhysRevD.99.124031


Universe 2021, 7, 38 24 of 24

79. Ayuso, I.; Lobo, F.S.N.; Mimoso, J.P. Wormhole geometries induced by action-dependent Lagrangian theories. arXiv 2020,
arXiv:2012.00047.

80. Harko, T.; Lobo, F.S.N. f(R,Lm) gravity. Eur. Phys. J. C 2010, 70, 373–379. [CrossRef]
81. YObukhov, N.; Puetzfeld, D. Conservation laws in gravitational theories with general nonminimal coupling. Phys. Rev. D 2013,

87, 081502, doi:10.1103/PhysRevD.87.081502. [CrossRef]
82. Harko, T.; Lobo, F.S.N.; Mimoso, J.P.; Pavón, D. Gravitational induced particle production through a nonminimal curvature-matter

coupling. Eur. Phys. J. C 2015, 75, 386, doi:10.1140/epjc/s10052-015-3620-5. [CrossRef]
83. Azevedo, R.P.L.; Avelino, P.P. Particle creation and decay in nonminimally coupled models of gravity. Phys. Rev. D 2019, 99,

064027, doi:10.1103/PhysRevD.99.064027. [CrossRef]
84. An, R.; Xu, X.; Wang, B.; Gong, Y. Dynamical analysis of modified gravity with nonminimal gravitational coupling to matter.

Phys. Rev. D 2016, 93, 103505, doi:10.1103/PhysRevD.93.103505. [CrossRef]
85. Velten, H.; Caramês, T.R.P. Cosmological inviability of f (R, T) gravity. Phys. Rev. D 2017, 95, 123536, doi:10.1103/PhysRevD.95.123536.

[CrossRef]
86. Moraes, P.H.R.S.; Correa, R.A.C.; Ribeiro, G. Evading the non-continuity equation in the f (R, T) cosmology. Eur. Phys. J. C 2018,

78, 192, doi:10.1140/epjc/s10052-018-5655-x. [CrossRef]
87. Fisher, S.B.; Carlson, E.D. Reply to “Comment on ‘Reexamining f (R,T) gravity’”. Phys. Rev. D 2020, 101, 108502. [CrossRef]
88. Harko, T.; Moraes, P.H.R.S. Comment on “Reexamining f (R,T) gravity”. Phys. Rev. D 2020, 101, 108501. [CrossRef]
89. Singh, V.; Beesham, A. The f (R, Tφ) gravity models with conservation of energy-momentum tensor. Eur. Phys. J. C 2018, 78, 564.

[CrossRef]
90. Gao, C.; Brandenberger, R.H.; Cai, Y.; Chen, P. Cosmological perturbations in unimodular gravity. JCAP 2014, 1409, 021. [CrossRef]
91. Daouda, M.; Fabris, J.C.; Oliveira, A.M.; Smirnov, F.; Velten, H.E.S. Nonconservative traceless type gravity. Int. J. Mod. Phys. D

2019, 28, 1950175. [CrossRef]
92. Capozziello, S.; Lobo, F.S.N.; Mimoso, J.P. Energy conditions in modified gravity. Phys. Lett. B 2014, 730, 280–283. [CrossRef]
93. Capozziello, S.; Lobo, F.S.N.; Mimoso, J.P. Generalized energy conditions in Extended Theories of Gravity. Phys. Rev. D 2015, 91,

124019. [CrossRef]
94. Visser, M.; Barcelo, C. Energy Conditions and Their Cosmological Implications; World Scientific: Singapore, 2000.
95. Calogero, S.; Velten, H. Cosmology with matter diffusion. JCAP 2013, 11, 025. [CrossRef]
96. Josset, T.; Perez, A.; Sudarsky, D. Dark Energy from Violation of Energy Conservation. Phys. Rev. Lett. 2017, 118, 021102.

[CrossRef]
97. Perez, A.; Sudarsky, D.; Wilson-Ewing, E. Resolving the H0 tension with diffusion. Gen. Relativ. Gravit. 2021, 53, 7. [CrossRef]
98. Banerjee, R.; Gangopadhyay, S.; Kulkarni, S. Nonconservation of energy-momentum tensor in classical Liouville theory. EPL

2010, 89, 11003. [CrossRef]
99. Maulana, H.; Sulaksono, A. Impact of energy-momentum nonconservation on radial pulsations of strange stars. Phys. Rev. D

2019, 100, 124014. [CrossRef]
100. Lobato, R.V.; Carvalho, G.A.; Martins, A.G.; Moraes, P.H.R.S. Energy nonconservation as a link between f (R, T) gravity and

noncommutative quantum theory. Eur. Phys. J. Plus 2019, 134, 132, doi:10.1140/epjp/i2019-12638-6. [CrossRef]
101. Pan, S.; de Haro, J.; Paliathanasis, A.; Slagter, R.J. Evolution and Dynamics of a Matter creation model. Mon. Not. R. Astron. Soc.

2016, 460, 1445–1456. doi:10.1093/mnras/stw1034. [CrossRef]

http://dx.doi.org/10.1140/epjc/s10052-010-1467-3
http://dx.doi.org/10.1103/PhysRevD.87.081502
http://dx.doi.org/10.1140/epjc/s10052-015-3620-5
http://dx.doi.org/10.1103/PhysRevD.99.064027
http://dx.doi.org/10.1103/PhysRevD.93.103505
http://dx.doi.org/10.1103/PhysRevD.95.123536
http://dx.doi.org/10.1140/epjc/s10052-018-5655-x
http://dx.doi.org/10.1103/PhysRevD.101.108502
http://dx.doi.org/10.1103/PhysRevD.101.108501
http://dx.doi.org/10.1140/epjc/s10052-018-5913-y
http://dx.doi.org/10.1088/1475-7516/2014/09/021
http://dx.doi.org/10.1142/S021827181950175X
http://dx.doi.org/10.1016/j.physletb.2014.01.066
http://dx.doi.org/10.1103/PhysRevD.91.124019
http://dx.doi.org/10.1088/1475-7516/2013/11/025
http://dx.doi.org/10.1103/PhysRevLett.118.021102
http://dx.doi.org/10.1007/s10714-020-02781-0
http://dx.doi.org/10.1209/0295-5075/89/11003
http://dx.doi.org/10.1103/PhysRevD.100.124014
http://dx.doi.org/10.1140/epjp/i2019-12638-6
http://dx.doi.org/10.1093/mnras/stw1034

	Introduction
	The Conservative Landscape
	From Special to General Relativity
	Diffeomorphism Invariance
	The Meaning of the Term ``Energy-Momentum Conservation'' in the Presence of a Gravitational Field

	Rastall Gravity
	Brans–Dicke Theory in the Einstein Frame
	Gravity Theories from the Standard Model Extension
	Spacetime-Dependent Cosmological Constant
	Chern–Simons Gravity

	Emergent Gravity Theories Breaking General Covariance
	Action Dependent Lagrangian Theories
	Nonminimal Curvature–Matter Coupling
	f(R,T) Theories
	Nonconservative Traceless Gravity
	Energy Conditions When T  ;  =0.
	Conclusions
	References

