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Abstract: We construct a class of knot solutions of the time-dependent gravitoelectromagnetic (GEM)
equations in vacuum in the linearized gravity approximation by analogy with the Rañada–Hopf
fields. For these solutions, the dual metric tensors of the bi-metric geometry of the gravitational
vacuum with knot perturbations are given and the geodesic equation as a function of two complex
parameters of the time-dependent GEM knots are calculated. By taking stationary potentials, which
formally amount to particularizing to time-independent GEM equations, we obtain a set of stationary
fields subjected to constraints from the time-dependent GEM knots. Finally, the Landau–Lifshitz
pseudo-tensor and a scalar invariant of the static fields are computed.

Keywords: classical theories of gravity; gravitational knots; gravitational Hopfions; gravitoelectro-
magnetism

1. Introduction

The gravitoelectromagnetism (GEM) formulation of gravity has proved to be a practi-
cal approach to studying gravitating systems and physical processes in the gravitational
field. The GEM formalism based on the analogy at the classical level between grav-
ity and electromagnetism has been formulated from different points of view: linearized
gravity [1,2], Weyl tensor approach [3], tidal force tensor construction [4–6], irreducible
tensor correspondence [7], Lagrangian formulation [8,9], teleparallel gravitoelectromag-
netism [10–12].

A very large range of fundamental problems have been addressed in the GEM frame-
work. The generalization of the GEM concepts to the non-linear electromagnetism was
studied in [13], to the non-commutative geometry in [14], to higher dimensions in [15], to
the teleparallel gravity in [10,11] and to the non-local gravity in [16]. By analogy with the
quantization of the electromagnetic systems, several quantum aspects of the GEM were
investigated in [17–20]. The gauge properties and the non-abelian extension of GEM for-
malism were discussed in [9,21]. The thermalization of the GEM systems and the research
of several thermal quantum processes was performed in [22–26]. (For excellent reviews on
the topic of the GEM formalism and on its applications see, e.g., [27–33]).

In most of these works, the GEM equations are postulated by analogy with Maxwell’s
equations in flat space-time, like in [1,2,8–12] and in many applications. Other works
derive the GEM equations from the analogy between gravitational and electromagnetic
phenomena, like the covariant forces exerted on particles and charges, e.g., [4]. The
main difference between the two approaches is that the postulated GEM equations allow
time-dependent gravitational fields while the derived GEM equations from covariant
interactions restrict the GEM analogy to static fields (see also [34–36]). At present, there
is no complete resolution of the tension between the formulations of GEM with time-
dependent and stationary GEM potentials.

In this paper, we do not aim at contributing to the above discussion. Our purpose is to
look for knot solutions in gravity similar to the ones in electromagnetism. To this end, the
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linearized gravity is the best starting point since knot solutions are known for Maxwell’s
equations. Therefore, for the discussion of GEM knot fields the most productive analogy
between electromagnetism and GEM is in terms of time-dependent potentials for which
the GEM equations are postulated analogously to Maxwell’s equations. Formally, the
GEM equations that describe the stationary settings in the linearized limit are a particular
case of the GEM equations for time-dependent potentials. Thus, we can obtain particular
solutions for static potentials from the more general time-dependent solutions by reducing
to static fields.

By following the above procedure, we propose in this paper a class of knot solutions of
the time-dependent GEM equations in vacuum, in the linearized gravity approach. These
are new solutions parameterized by a pair of complex scalar maps φ and θ from R×R3 to C
which describe the knot structure of the corresponding gravitomagnetic and gravitoelectric
fields. The existence of GEM knot fields guaranteed by the formal equivalence between the
GEM equations and the Maxwell equations for which knot solutions are known to exist
for some time [37–39]. In the context of GEM, the knot fields bring novelty to the body of
the known solutions of the linearly perturbed Einstein equations, in the sense that they
describe a topologically non-trivial gravitational vacuum with the knot topology controlled
by a set of complex scalar maps.

A general major motivation to study the topological abelian fields is to understand
the relationship between their physical and mathematical properties. This is an active
area of research in classical electromagnetism with significant progress made recently
in this direction by the discovery and the analysis of a large set of new solutions of
the field equations that generalize the electromagnetic Rañada fiels in the linear [40–59]
and non-linear electrodynamics [60–63]. From the mathematical point of view, several
mathematical structures related to the topologically non-trivial fields have been explored
in the recent literature among which are the twistors [47], rational functions [56,59], fibre
bundles [64], space-time foliations [65] and generalized Finsler geometries [66]. The
interaction of electromagnetic knots with the matter for classical and quantum particles
is discussed. Refs. [66–71] (for recent reviews on many of these results, see, e.g., [72–75]).
By generalizing the knot solutions to the gravitating system, one could largely explore the
knowledge obtained so far in field theory to better understand the gravitational field’s
structure at least in the weak field approximation.

This work’s primary goal is to give results of the generalization of the knot fields to
gravity. Here, we focus on the linearized gravity away from sources in the time-dependent
GEM formulation, which originated in the works of Thirring and Lens [67,68]. The exis-
tence of the knot fields for gravitational and gravitating electromagnetic fields has been
discussed in other research papers [36,76–83]. In particular, the existence of the Hopf–
Rañada solutions of the spin 2 field theory and their properties in the GEM formulation in
terms of Weyl tensor were analyzed in [76–78,82,84]. In the time-dependent GEM linearized
gravity, the discussion of the Hopfions in the gravity/fluid correspondence was recently
approached in [36]. For another interesting approach to the knot structure of vacuum
see [83].

Since the GEM potentials are identified with some components of the linearized classi-
cal perturbation field in the harmonic gauge, the gravitational knots are interesting from
mathematical and physical points of view1. The analogy between gravity and electro-
magnetism is used to construct the knotted field. However, the GEM fields’ gravitational
nature imposes typical constraints on the structure of these knots that do not have an
electromagnetic equivalent. The existence of knots in the fluctuating gravitational vacuum
induces a linearly perturbed space-time bi-metric geometrical structure. The two metrics
are related to each other by the GEM equations’ duality symmetry under the swap of the
gravitoelectric and gravitomagnetic fields and represent a redundant description of the
space-time geometry. While this is a general property of the GEM induced geometry away

1 For a critical discussion of the time-dependent GEM equations in the linearized limit see [4,36].
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from sources, in the knot fields, the relationship between the two metrics imposes a set of
non-linear constraints on scalar complex maps that parametrize the gravitational knot field.
This paper constructs the GEM knot fields and starts the analysis of their geometrical and
physical properties.

The paper is organized as follows. In Section 2, we give a concise review of the GEM
formulation’s fundamental relations in the linearized gravity following the reviews cited
above, mainly [29,31,32]. In Section 3, we construct the time-dependent GEM knot fields in
vacuum by analogy with the corresponding solutions to the Maxwell equations. A novelty
here is the analysis of the time-dependent GEM potentials in the polar representation of
the complex scalars. Furthermore, we give the explicit form of the dual metric tensors of
the perturbed space-time in terms of the scalar fields and calculate the geodesic equations.
Since all the formulas are symmetric under the duality transformation of fields, we present
our relation only for one of the scalars to avoid cluttering the formulas. By particular-
izing the time-dependent knot solutions to stationary potentials, which correspond to
the time-independent GEM equations, we obtain a class of stationary magnetic fields for
the simplest GEM knot parametrization compatible with the static field condition. The
electric fields vanish in this case. More generally, electric fields are also allowed as long
as their parameter field obeys a constraint obtained from static field condition. Also, the
electric-magnetic duality is broken in this case. The static field condition introduces a
constraint on the modulus and phase of the scalar field. The description in terms of a
second scalar field, used in the time-dependent settings, is no longer available. Next, we
calculate the Landau–Lifshitz pseudo-tensor for the static GEM fields GEM knots and
compute the scalar invariant of these fields. In the last section, we discuss our results and
give some details on the GEM constraint for the static potentials. Furthermore, we present
a shortlist of interesting topics on this subject. Throughout this paper, the Minkowski
metric with signature (+,−,−,−) and the natural units 8πG = c = 1 are used.

2. GEM Formalism of Linearized Gravity

In this section, we briefly review all the necessary relations of the GEM formalism
following mainly [29,31,32] and we establish our notations.

The GEM is a formulation of the General Relativity in the weak field approximation in
which an analogy between the Maxwell equations and the gauge fixed linearized Einstein
equation is established. The main equations of the GEM are established by starting with
small perturbations of the flat space-time metric defined in the standard way

gµν(x) = ηµν + hµν(x) , (1)

where ηµν is the Minkovski metric and
∣∣hµν

∣∣ � 1. In the decomposition given by
Equation (1), the gravitational field is represented by a spin two tensor field hµν (clas-
sical graviton field) in the flat space-time background. The dynamics of the graviton field
are obtained from the linearized Einstein tensor. With the purpose to establish our notation,
let us briefly review the relevant relations. The linearized Christoffel symbols, the Ricci
tensor and the Ricci scalar have the following form [85]

Γα
µν =

1
2

ηαρ
(
∂νhµρ + ∂µhνρ − ∂ρhµν

)
, (2)

Rµν =
1
2

ηρσ
(
∂ρ∂νhσµ + ∂ρ∂µhσν − ∂ρ∂σhµν − ∂µ∂νhρσ

)
, (3)

R = ηµρηνσ
(
∂ν∂µhρσ − ∂µ∂ρhνσ

)
. (4)

The linearized Einstein tensor results from combining the equations above and takes
the following standard form

Gµν =
1
2

(
∂α∂νhα

µ + ∂α∂µhα
ν − ∂2hµν − ∂ν∂µh− ηµν∂β∂αhαβ + ηµν ∂2 h

)
, (5)
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where ∂2 = ηµν∂µ∂ν and h = ηµνhµν. The linearized Einstein equations are simplified by
introducing the following trace-reversed metric perturbation

h̃µν = hµν −
1
2

ηµνh . (6)

Then the linearized Einstein equations take the following form

∂α∂ν h̃α
µ + ∂α∂µ h̃α

ν − ∂2h̃µν − ηµν∂β∂α h̃αβ = Tµν , (7)

where Tµν is the matter energy-momentum tensor. As it is well known, the free graviton
has a gauge symmetry given by the infinitesimal transformations

δξ hµ = ∂µξν + ∂νξµ , (8)

where ξ is an infinitesimal arbitrary smooth vector field on flat space-time. By using this
symmetry and fixing the gauge, the Einstein equations are simplified further. For example,
in the trace-reversed harmonic gauge defined by the following equation

h̃µν
,ν = 0 , (9)

the Einstein equations take the following simpler form

∂2h̃µν = −2Tµν . (10)

The analogy with the Maxwell equations which is at the core of the GEM approach to
the linearized gravity is made apparent by the following ansatz for the trace-reversed field
h̃µν [2,69]

h̃0µ = 4Aµ , h̃ij = 0 . (11)

The approximation above of the spatial components of h̃µν is justified by the depen-
dence of h̃ij on c at order O(c−4) while h̃0µ runs as O(c−2) 2. The GEM potentials are
written in the three dimensional form by identifying Aµ = (Φ, A/2) 3. The harmonic gauge
condition implies the following relations among the components of the GEM potential

Aµ
,µ = 0 , h̃ij

,j + Ai
,0 = 0 . (12)

The first equation above corresponds to the Lorentz gauge in the covariant form.
The second equation is a typical GEM constraint and it has its origin in the gravitational
structure that underlies the potentials. It implies that the spatial components of the potential
A are independent of time for the ansatze given by Equations (11) above. Due to this
limitation it imposes on the type of solutions of the GEM equations and to the fact that it
contains terms of order O(c−4), the second constraint from (12) is sometimes ignored [2,69].
This point of view is adopted here and the properties of the general solutions are analyzed.
However, the consequences of the GEM constraints are briefly discussed in the last section.

By analogy with the classical electromagnetism, the GEM electric and magnetic fields
are introduced by the following combinations of derivatives of potentials

E = −∇Φ− ∂0

(
A
2

)
(13)

B = ∇×
(

A
2

)
. (14)

2 In the references [4,32], it was assumed that h̃ij take a different form from the one considered here, but this we will not discuss this hypothesis.
3 The numerical factors result from the identification of the GEM potentials with the corresponding components of the tensor h̃µν such that the

equations obtained for Aµ have the form of Maxwell’s equations. For different numerical factors, the analogy between the electric permittivity of
vacuum and εG = 1/4πG is lost.
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It follows that the gravitomagnetic field and the gravitoelectric field satisfy the Gauss
and the Faraday–Lenz laws, respectively,

∂iBi = 0 , εijk∂jEk = −∂0Bi . (15)

As is the case of the electromagnetism, the above equations are constraints on structure
of the fields E and B that must be obeyed at all times. The dynamics of E and B can be read
off of the linearized Einsten equations (10). In the three dimensional formulation, these
equations have the following decomposition

∂2A0 = ∂2Φ =
1
2

T00 , (16)

∂2Ai =
1
2

∂2 Ai =
1
2

T0i . (17)

Equations (16) and (17) are the Gauss law for the gravitoelectric field and the Maxwell–
Ampère law, respectively,

∂iEi =
1
2

T00 , (18)

εijk∂jBk = ∂0Ei +
1
2

T0i . (19)

Using the electrodynamics tools to study the GEM fields’ background, we gain valu-
able insight into various gravitating physical systems. The background has a pseudo-
Riemann geometry, given by the line element of the form

ds2 = (1 + 2Φ)(dx0)2 − 4δij Aidx0dxj − (1− 2Φ)δijdxidxj . (20)

The dynamics of the massive particles in the GEM background results from the
classical geodesic equation

d2xµ

ds2 + Γµ
νρ

dxν

ds
dxρ

ds
= 0 . (21)

Note that the linearized Christoffel symbols calculated from the metric (20) should be
employed in the equation in the (21) above. For further details, we refer the reader to [31].

3. General Knot Fields in Linearized GEM

In this section, are constructed a class of knot type solutions of the in-vacuum GEM
equations and the space-time geometry generated by the GEM knots is also discussed.
These form a class of GEM fields parameterized by two scalar fields that satisfy some
differentiability and regularity conditions, introduced by Rañada in the context of the
electromagnetism in [38,39]. A different set of knotted GEM fields was obtained in the
GEM formulation in terms of Weyl tensor in [76–78].

3.1. Knot Fields in Linearized GEM

In order to explore the knot like solutions in the GEM formalism in the linearized
gravity reviewed in the previous section, we need to consider the GEM field away from
its sources for which the field equations are (15), (18) and (19) in vacuum. In this case,
the knot-like solutions are confirmed by the analogy with the corresponding Maxwell
equations that admit topologically non-trivial solutions with knot structure, which were
given for the first time in [37–39].

In the absence of the matter fields, the set of GEM Equations (15), (18) and (19) is
invariant under the gravitoelectromagnetic duality transformation Ei → Bi and Bi → −Ei.
That allows one to describe the fields E and B symmetrically in terms of two potentials
A and C which help visualize the line structure of each field. Since this is a redundant
description of the GEM field, there is a relationship between A and C. Let us construct the
general knot solutions of the GEM equations.
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Let us start by taking two smooth complex scalar maps φ, θ : R×R3 → C whose level
equations φ(x) = φ0 = constant and θ(x) = θ0 = constant are associated to gravitomag-
netic and gravitoelectric field lines 4. The functions φ and θ are assumed to be regular at
spatial infinity and they define the following pair of potentials [79]

Aµ =

√
a

4πi

(
φ̄∂µφ− φ∂µφ̄

1 + |φ|2

)
, (22)

Cµ =

√
a

4πi

(
θ̄∂µθ − θ∂µ θ̄

1 + |θ|2

)
, (23)

where a is a dimensionful constant. Since the two potentials must describe the same fields
E and B, there is the relationship between A and C that has the following form in terms of
scalar fields (

1 + |φ|2
)−2

εijk∂jφ∂kφ̄ =
(

1 + |θ|2
)−2(

∂0θ̄∂iθ − ∂0θ∂i θ̄
)

, (24)(
1 + |θ|2

)−2
εijk∂jθ∂k θ̄ =

(
1 + |φ|2

)−2
(∂0φ̄∂iφ− ∂0φ∂iφ̄) . (25)

The potentials defined by Equations (22) and (23) generate the following knotted fields
that is in vacuum solutions to the GEM equations

Ei =

√
a

2πi
εijk∂jθ∂k θ̄

(1 + |θ|2)2 , (26)

Bi =

√
a

2πi
εijk∂jφ∂kφ̄

(1 + |φ|2)2 . (27)

The relations (24) and (25) show that a single potential is sufficient to describe the
gravitomagnetic and the gravitoelectric field. For example, by employing only φ, we have
the following representation of E and B

Ei =

√
a

2πi
∂0φ̄∂iφ− ∂0φ∂iφ̄

(1 + |φ|2)2 , (28)

Bi =

√
a

2πi
εijk∂jφ∂kφ̄

(1 + |φ|2)2 . (29)

The two potentials help to visualize the field lines of each field and display the duality
symmetry of the GEM equations. The above solutions form a class of knot type GEM
fields because they are defined in rather general complex functions. By taking φ and θ of
particular forms, sets of solutions with specific features are constructed (see for a recent
review [72]).

In order to analyze the properties of the GEM knot fields and the induced space-time
geometry, it is convenient to pass to the following polar representation of the scalar fields

φ(x) = ρ(x)eiα(x) , φ̄(x) = ρ(x)e−iα(x) , (30)

θ(x) = λ(x)eiβ(x) , θ̄(x) = λ(x)e−iβ(x) , (31)

4 The Hopf knots are given by maps from S3 to S2. We will comment on the particularities of this case in the last section.
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where ρ and λ are positively defined functions everywhere and obey regularity conditions
at infinity. In this representation, the GEM potentials take the following form

Aµ =

√
a

2π

ρ2∂µα

(1 + ρ2)
, (32)

Cµ =

√
a

2π

λ2∂µβ

(1 + λ2)
. (33)

From the relations (32) and (33) we derive the gravitoelectric and gravitomagnetic
fields in the following form

Ei = −
√

a
π

[
ρ(∂0ρ∂iα + ∂iρ∂0α)

(1 + ρ2)
2 +

ρ2∂0ρ∂iα

1 + ρ2

]
, (34)

Bi =

√
a

π
εijk

ρ∂jρ∂kα

(1 + ρ2)
2 . (35)

The relations (24) and (25) between the complex fields take the following form in polar
representation

ρ

(1 + ρ2)
2 εijk

(
∂jρ∂kα− ∂jα∂kρ

)
=

2λ

(1 + λ2)
2 (∂iλ∂0β− ∂0λ∂iβ) , (36)

λ

(1 + λ2)
2 εijk

(
∂jλ∂kβ− ∂jβ∂kλ

)
=

2ρ

(1 + ρ2)
2 (∂iρ∂0α− ∂0ρ∂iα) . (37)

Next, a few comments are required. As mentioned above, the fact that the fields
defined by Equations (26) and (27) are solutions of the in-vacuum GEM equations is a
consequence of the formal equivalence between the Maxwell and the GEM equations,
respectively. However, there is an important particularity of the gravitoelectric and gravit-
omagnetic fields which is a result of their gravitational origin, namely, the constraints on
E and B given by the equations from (12) above. Of particular interest here is the second
GEM constraint on which we will comment in the last section. Furthermore, it is known
that in the electromagnetism, new solutions are generated from a given knot field by using
the invariance of the Maxwell equations under Lorentz and conformal symmetries or by
working on specific space-time manifolds. These methods might not be applicable to GEM
knots due to the underlying graviton structure [56,59,72].

3.2. Space-Time Geometry from GEM Knots

Interesting information about the space-time geometry generated by GEM knots away
from the matter distribution is obtained by calculating the relevant tensorial objects. Since
the geometry is of pseudo-Riemann type, its fundamental tensors are obtained from the
metric tensor given by the line element from Equation (20) above.

One important characteristic of the knot solutions is that they generate a bi-metric
geometry on space-time with the two metrics depending on each other according to the
relations (24) and (25). As we have seen before, this is a consequence of the gravitoelec-
tromagnetic duality of the vacuum equations. The bi-metric geometry has one metric
generated by the field associated with the potential A and the second (dual) metric associ-
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ated with the potential C. The dual metric is obtained by replacing A by C in Equation (20).
Explicitly, we have the following metric tensors

gµν =


1 +

√
a

π
ρ2∂0α

1+ρ2 − 4
√

a
π

ρ2∂1α

1+ρ2 − 4
√

a
π

ρ2∂2α

1+ρ2 − 4
√

a
π

ρ2∂3α

1+ρ2

− 4
√

a
π

ρ2∂1α

1+ρ2 −1 +
√

a
π

ρ2∂0α

1+ρ2 0 0

− 4
√

a
π

ρ2∂2α

1+ρ2 0 −1 +
√

a
π

ρ2∂0α

1+ρ2 0

− 4
√

a
π

ρ2∂3α

1+ρ2 0 0 −1 +
√

a
π

ρ2∂0α

1+ρ2

 , (38)

fµν =


1 +

√
a

π
λ2∂0β

1+λ2 − 4
√

a
π

λ2∂1β

1+λ2 − 4
√

a
π

λ2∂2β

1+λ2 − 4
√

a
π

λ2∂3β

1+λ2

− 4
√

a
π

λ2∂1β

1+λ2 −1 +
√

a
π

λ2∂0β

1+λ2 0 0

− 4
√

a
π

λ2∂2β

1+λ2 0 −1 +
√

a
π

λ2∂0β

1+λ2 0

− 4
√

a
π

λ2∂3β

1+λ2 0 0 −1 +
√

a
π

λ2∂0β

1+λ2

 . (39)

The relationship between the two dual geometries is an open problem. The main
difficulty in determining the explicit relations between geometrical objects, e.g., the two
metric tensors, resides in the non-linearity of Equations (24) and (25) that makes it hard
from the analytical point of view to define a duality map between the two geometries.
Indeed, as Equations (38) and (39) show, the scalar functions enter non-linearly in the
metric tensors gµν and fµν. The main difficulty is to solve Equations (24) and (25) and to
find out an explicit relationship between gµν and fµν. The same problem occurs in the
Rañada construction.

Let us focus on the geodesic equation in the geometry determined by the metric tensor
gµν. The dual geometry calculations follow precisely the same line, and avoid cluttering
formulas will not be displayed here. In determining the geodesic equation in the GEM knot
background, are needed the Christoffel symbols. They result from Equations (2) and (32)
above. The following expressions result after applying some straightforward algebra

Γ0
00 =

√
a

2π

[
2ρ∂0ρ∂0α

(1 + ρ2)
2 +

ρ2∂2
0α

1 + ρ2

]
, (40)

Γ0
0i =

√
a

2π

[
2ρ∂0ρ∂iα

(1 + ρ2)
2 +

ρ2∂0∂iα

1 + ρ2

]
, (41)

Γ0
ij =

√
a

π

[
ρ
(
∂iρ∂jα + ∂jρ∂iα

)
(1 + ρ2)

2 +
ρ2∂i∂jα

1 + ρ2

]
, (42)

Γi
00 =

√
a

2π
δik

[
2ρ(∂kρ∂0α− 4∂0ρ∂kα)

(1 + ρ2)
2 − 3ρ2∂k∂0α

1 + ρ2

]
, (43)

Γi
0j = −

√
a

π
δik

[
2ρ
(
∂kρ∂jα− ∂jρ∂kα

)
(1 + ρ2)

2

]
−
√

a
2π

δi
j

[
2ρ∂0ρ∂0α

(1 + ρ2)
2 +

ρ2∂2
0α

1 + ρ2

]
, (44)

Γi
jk =

√
a

2π
δim

2ρ
(

δjk∂mρ∂0α− δjm∂kρ∂0α
)

(1 + ρ2)
2 +

ρ2
(

δjk∂m∂0α− δjm∂k∂0α
)

1 + ρ2


−
√

a
2π

δimδkm

[
2ρ∂jρ∂0α

(1 + ρ2)
2 +

ρ2∂j∂0α

1 + ρ2

]
. (45)
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The geodesic equation can be easily obtained from the above equations. For complete-
ness, we give it here in the component form

ẍ0 +

√
a

2π

[
2ρ∂0ρ∂0α

(1 + ρ2)
2 +

ρ2∂0∂0α

1 + ρ2

]
ẋ0 ẋ0 +

√
a

π

[
2ρ∂0ρ∂iα

(1 + ρ2)
2 +

ρ2∂0∂iα

1 + ρ2

]
ẋ0 ẋi

+

√
a

2π

[
2ρ
(
∂iρ∂jα + ∂jρ∂iα

)
(1 + ρ2)

2 +
ρ2(∂i∂jα + ∂j∂iα

)
1 + ρ2

]
ẋi ẋj = 0 , (46)

ẍi +

√
a

2π
δik

[
2ρ(∂kρ∂0α− 4∂0ρ∂kα)

(1 + ρ2)
2 +

ρ2(∂k∂0α− 4∂0∂kα)

1 + ρ2

]
ẋ0 ẋ0

− 2
√

a
π

δik

[
2ρ
(
∂kρ∂jα− ∂jρ∂kα

)
(1 + ρ2)

2 +
ρ2(∂k∂jα− ∂j∂kα

)
1 + ρ2

]
ẋ0 ẋj

−
√

a
π

δi
j

[
2ρ∂0ρ∂0α

(1 + ρ2)
2 +

ρ2∂0∂0α

1 + ρ2

]
ẋ0 ẋj

+

√
a

2π
δim

2ρ
(

δjk∂mρ∂0α− δjm∂kρ∂0α
)

(1 + ρ2)
2 +

ρ2
(

δjk∂m∂0α− δjm∂k∂0α
)

1 + ρ2

 ẋj ẋk

−
√

a
2π

δimδkm

[
2ρ∂jρ∂0α

(1 + ρ2)
2 +

ρ2∂j∂0α

1 + ρ2

]
ẋj ẋk = 0 . (47)

Equations (46) and (47) describe the dynamics of a test particle of given mass in the
GEM knot background.

3.3. Knot Solutions in Static Gravitational Field

As mentioned in the introduction, there are several approaches to GEM in which the
potentials are considered static from the very beginning. In the linearized limit, the GEM
equations for static potentials can be formally obtained from the time-dependent equations
by setting ∂0 Ai = 0. Then solutions of the stationary GEM equations can be obtained from
the time-dependent knot fields by substituting the stationary potentials.

Let us discuss the properties of the stationary solutions for the most general case
∂0 Aµ = 0. (The particular case of this which is studied in the literature is ∂0 Ai = 0.) By
inspecting Equations (22) and (23), we see that a scalar field with the property ∂0φ = 0
generates a stationary potential Aµ. On the other hand, the electric-magnetic duality
of the Equations (15), (18) and (19) is broken. As a consequence, the description of the
gravitoelectric and gravitomagnetic fields in terms of two potentials A and C is no longer
valid, since the fields are no longer mapped into each other. This implies that one should
use a single scalar field which we chose to be φ for both E and B fields. Thus, the static
solution is described by the Equations (28) and (29) written for static φ(x), that is

E(x) = 0 , B(x) =
√

a
2πi
∇φ(x)×∇φ̄(x)

(1 + |φ(x)|2)2 . (48)

Note that the static fields obtained from the knots solution are purely gravitomagnetic if
the static potentials Aµ have a trivial structure.

In the most general case when ∂0 Aµ = 0 and ∂0φ 6= 0, there are static gravitoelectric
and gravitomagnetic solutions of the form given by the Equations (28) and (29) if the
modulus and the phase of φ satisfy the following equation

2∂0ρ∂µρ + ρ∂µ∂0ρ + ρ3∂µ∂0α = 0 . (49)



Universe 2021, 7, 46 10 of 15

Then it is easy to see that the geodesic equation takes the following form

ẍ0 +

√
a

2π

[
2ρ
(
∂iρ∂jα + ∂jρ∂iα

)
(1 + ρ2)

2 +
ρ2(∂i∂jα + ∂j∂iα

)
1 + ρ2

]
ẋi ẋj = 0 , (50)

ẍi − 2
√

a
π

δik

[
2ρ
(
∂kρ∂jα− ∂jρ∂kα

)
(1 + ρ2)

2 +
ρ2(∂k∂jα− ∂j∂kα

)
1 + ρ2

]
ẋ0 ẋj = 0 . (51)

In the case ∂0 Ai = 0, only the spatial derivatives ∂iα enter the Equations (49). The fields E
and B and the geodesics have the general form given in the previous section but with the
real functions ρ and ∂iα related by (49).

It is important to note that while particular solutions for static potential backgrounds
can be formally derived from the knot fields, the interpretation of these solutions in terms
of knots is not obvious due to the constraints (49) above.

3.4. Energy-Momentum Pseudo-Tensor and Scalar Invariant of Static Fields

The physical and geometrical properties of the GEM knot fields are described in terms
of several tensor and scalar objects. One important quantity that contains information
similar to the Maxwell tensor and the Poynting vector of the electromagnetic field is the
Landau–Lifshitz pseudo-tensor. The general form of it in the GEM formalism was given
in [29]. Here, we will discuss its form for static GEM knots with ∂0Aµ = 0. After some
algebra, we obtain the following relations for the Landau–Lifshitz tensor

t00 = − a

(4π)2(1 + ρ2)
4

[
4ρ2

(1 + ρ2)
4

(
∂(iρ∂j)α

)(
∂(iρ∂j)α

)
+

8ρ3

(1 + ρ2)
3 ∂(iρ∂j)α ∂i∂jα

+
4ρ2

(1 + ρ2)
2 ∂i∂jα ∂i∂jα

]
, (52)

t0i = 0 , (53)

tij =
aρ4

π2(1 + ρ2)
6

[
εimnε jrs∂mρ∂rρ∂nα∂sα + δij(∂

mρ∂mρ)(∂nα∂nα)− (∂mρ∂mα)2
]

. (54)

From the above equations, we see that the GEM Poynting vector Si = εijkEiBk vanishes
since for static GEM fields t0i = 4εijkEiBk. Thus, only the gravitomagnetic field contributes
to the spatial components of the Landau–Lifshitz pseudo-tensor. However, in the dual
picture, only the gravitoelectric field enters the Maxwell tensor analog while the GEM
Poynting vectors continue to be zero.

The analogy between linearized gravity and electromagnetism provides more infor-
mation about the scalar invariants’ GEM fields. Let us calculate the invariant F2 that
depends on the first derivative of the h̃µν. This invariant was discussed for more general
configurations in [86]. The general definition of F2 is

F2 = FαµνFαµν , (55)

where Fµνρ is obtained from the linearized Einstein tensor and has the following form

Fαµν = ∂ν h̃αµ + ∂µ h̃αν − ∂α h̃µν − ηµν∂β h̃αβ . (56)
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For the GEM fields discussed here, the scalar F2 takes the following form

1
4 F2 = − 16aρ2

π2(1+ρ2)
4

[
(∂mρ∂mρ)(∂nα∂nα)− (∂mρ∂mα)2

]
− 8a

π2

[
ρ(∂0ρ∂mα+∂iρ∂0α)

(1+ρ2)
2 + ρ2∂0ρ∂mα

1+ρ2

]2

− a
4π2(1+ρ2)

4

{[
2ρ∂mρ∂0α

(1+ρ2)
2 + ρ2∂m∂0α

1+ρ2

]2
+

[
2ρ∂mρ∂mα

(1+ρ2)
2 + ρ2∂m∂mα

1+ρ2

]2
}

+ a
4π2(1+ρ2)

4

[
2ρ(∂mρ∂nα+∂nρ∂mα)

(1+ρ2)
2 + ρ2(∂m∂nα+∂n∂mα)

1+ρ2

]2
,

(57)

where v2 = vmvm = δmnvmvn is the spatial norm.
The results obtained in this section show that the general GEM knot fields’ relevant

quantities are calculable, but the formulas obtained are in general non-linear and non-
polynomial in terms of field line maps. Therefore, in concrete applications, computer-
assisted methods and approximations are necessary to extract the physical information
from these relations. A complete analysis of the energy-momentum tensor along the line
of [87] could be made here, but this is out of the present study’s scope.

4. Discussions

This paper has investigated a class of knot solutions of the in-vacuum time-dependent
GEM equations and discuss some geometrical and physical properties. We have shown
that the time-dependent knot fields induce a bi-metric geometry of the perturbed space-
time with the two metric tensors gµν and fµν related to each other in a complicated way.
The derivation of an explicit relation between the two metric tensors is challenging due
to the non-linear equations that connect the two scalar functions that determine these
tensors according to Equations (38) and (39). This is just a dual description of the space-
time geometry due to the electric-magnetic duality of the GEM equations in the absence of
matter. In one of these descriptions, the field lines of the gravitoelectric component of the
linearized gravitational tensor h̃µν are given by the level lines of the scalar field θ, while in
the dual geometry the field lines of the gravitomagnetic components are identified with
the level lines of the field φ. All this suggests that away from matter sources, one describes
the GEM field in two complementary ways. Nevertheless, since only one GEM potential is
necessary to solve the motion equations, the two descriptions based on the two potentials
A and C should be physically equivalent.

Other results obtained here are the derivation of the geodesic equation that describes
a test particle’s motion in a time-dependent GEM knot field in one of the geometries.
Also, by taking time-independent potentials in the GEM knot solutions, we have obtain
stationary fields with the following characteristics: i) they are described in terms of a single
complex scalar field φ; ii) the components of φ are constrained; and iii) the static fields are
purely gravitomagnetic for stationary φ. These solutions are given in the Section 3.3. For
the static fields, we have calculated the Landau–Lifschitz tensor and a scalar invariant.

A critical feature of the time-dependent GEM knot fields obtained here is that they
are parametrized by two complex scalar maps φ and θ. However, an essential subtlety
arises when the domain of definition and values of the functions φ and θ is analyzed. For
example, if the domains are R×R3 and C, the maps act upon the arbitrary distant point
relative to the origin, which implies that regularity conditions on the type |φ(x0, x)| → 0
and |θ(x0, x)| → 0 at |x| → ∞ must be imposed. Another consequence is that in the
calculations, the limits |φ| � 1 and |θ| � 1 are accessible. On the other hand, if the maps
have compact subdomains such as R× S3 and S2 which is the case of the Hopf knots, the
regularity conditions and the limits are different.

Another important property of the time-dependent GEM knot fields discussed here
is the existence of the constraints that must be imposed on the scalar maps due to the
gravitational nature of the GEM fields, i.e., Equations (12) above. While the Lorentz gauge
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is a natural relation among the potential vector components in electromagnetism and,
therefore, leads to known properties of the knot fields, the pure GEM constraint is new
and emerges in several places in GEM literature. These equations establish conditions that
the knot maps must satisfy, which are new in the knot fields study. To exemplify, let us
consider the second equation from (12) with the second equation for the ansatz (11) in the
polar representation. It is easy to see that the following set of equations should be satisfied(

ρ2 + 1
)

ρ∂0∂iα + 2∂0ρ∂iα = 0 , (58)(
λ2 + 1

)
λ∂0∂iβ + 2∂0λ∂iβ = 0 . (59)

Thus, we conclude that given one of the two real scalars that determines either the
potential A or C, one can determine the second scalar. To understand these equations’
content, consider the variation in x0 at a fixed point in space xi. Then a simple calculation
shows that (58) and (59) imposes the following constraint among the functions (ρ, α) and
(λ, β)

δij∂
iα∂jα =

3
(
1 + ρ2)

ρ4 , δij∂
iβ∂jβ =

3
(
1 + λ2)

λ4 . (60)

The above equations place the spatial derivatives of the phases of the maps φ and θ on
spheres whose radii results from calculating the modulus of these functions at any instant
of time.

The study of the analogy between classical electromagnetism and the GEM equations
in the linearized gravity is an exciting research field. Independently on the final resolution
of the tension between the different formulations of GEM, the time-dependent linear GEM
equations are an important tool to investigate properties of the GEM fields since, formally,
the stationary GEM equations can be viewed as a particular case of the time-dependent
equations. Another advantage of the time-dependent approach is that problems like
breaking the electric-magnetic duality, conservation laws and breaking of the symmetries
of solutions, e.g., Lorentz symmetry, can be easily studied in this set up.

The investigation of the time-dependent GEM knot fields started here unfolds signifi-
cant and noteworthy problems. One important aspect worth being studied further is the
stability of the knots fields in the presence of matter and under perturbations. The knots
fields’ stability in the presence of matter and under perturbations is an open problem even
in classical electromagnetism.

Another interesting topic is the existence of static knots that satisfy Equation (49).
Non-trivial static solutions can lead to new types of mathematical knots. By generalizing
this problem, one can look for knot solutions of the exact GEM equations, e.g., in the tidal
tensor approach of [4]. Furthermore, it is essential to investigate other mathematical
and physical properties of the general time-dependent knots such as their topological
structure, the energy-momentum tensor (along the line of [87]), the types of fields limited
by constraints, the generations of new solutions, the discussion of concrete examples and
the analysis of the GEM knot fields in different limits, to mention just a few. We hope to
report on some of these topics soon.
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