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1. Introduction

The center vortex model assumes that the relevant excitations of the QCD vacuum
are center vortices, closed color magnetic flux lines evolving in time. It can explain Con-
finement [1] and chiral symmetry breaking [2–4]. In four-dimensional space–time, the flux
lines form closed surfaces in dual space, see Figure 1. In the low-temperature phase, they
percolate space–time in all dimensions.

Figure 1. The geometric relation between piercings, the flux line and the vortex surface is schemati-
cally shown. Left: A flux line can be traced by following non-trivial plaquettes (depicted in orange
with a “−1”) after transformation to maximal center gauge and projection to the center degrees
of freedom. Middle: Each non-trivial plaquette belongs to four elementary cubes, where the flux
enters and has to leave through another plaquette. The depicted grey rectangles correspond to the
same plaquette. For each cube, the three involved coordinates are indicated. Right: Due to the
evolution in time, the flux line (depicted as orange line) forms a closed two-dimensional surface in
four-dimensional spacetime.

Within lattice simulations, the center vortices are detected in maximal center gauge after
projection to the center degrees of freedom. The procedure is described in more detail in
Section 2. As long as the detected vortices reproduce the relevant physics, we speak of a
valid vortex finding property. During the analysis of the color structure of vortices in smooth
configurations [5] one is confronted with a loss of the vortex-finding property. Problems in
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detecting center vortices due to ambiguities in the gauge-fixing procedure were already
found by Kovacs and Tomboulis [6]. They also point out that the thickness of vortices is
of importance for the extraction of properties related to confinement. We found that this
thickness can cause troubles in the vortex detection, resulting in a loss of the string tension.
In search for improvements in the vortex detection, the cause of this loss is analyzed and a
possible resolution discussed. We model the influence of cooling on the vortex thickness
and the corresponding loss of the vortex density. An upper limit for the lattice spacing and
a lower limit for the lattice size is presented. These limits are derived from measurements
of the vortex density and estimates of the cross-section of flux tubes.

2. Materials and Methods

Our lattice simulations of the SU(2) Wilson action cover an interval of inverse coupling
β ∈ [2.1, 3.6] in steps of 0.05. We start with low β values to identify discretization effects
and to detect the onset of finite size effects. To check how far the compatibility of our model
reaches, we expand the calculations to relatively large values of β. The lattice spacing a
corresponding to the respective values of β is determined by assuming a physical string
tension of (440 MeV)2 via a cubic interpolation of the literature values given in Table 1.
This is complemented by an extrapolation according to the asymptotic renormalization
group equation for β > 2.576

a(β) = Λ−1e−
β

8β0 with β0 =
11

24π2 and Λ = 0.015(2) fm−1, (1)

with Λ obtained by fitting this equation to the values of a for β ≥ 2.6 in Table 1.

Table 1. The indicted dependence of the lattice spacing a in fm and the string tension σ in lattice
units on the inverse coupling β is taken from references [7–11].

β 2.3 2.4 2.5 2.635 2.74 2.85

a [fm] 0.165(1) 0.1191(9) 0.0837(4) 0.05409(4) 0.04078(9) 0.0296(3)
σ [lattice] 0.136(2) 0.071(1) 0.0350(4) 0.01459(2) 0.00830(4) 0.00438(8)

The analysis is performed on lattices of size 84 and 104 with 0, 1, 2, 3, 5 and 10 Pisa-
Cooling [12] steps with a cooling parameter of 0.05. We have chosen these small lattice
sizes because, in bigger lattices, the finite-size effects are expected at higher values of β and,
as we will show, the detection of center vortices becomes increasingly difficult with rising
values of β.

A central part of our analysis consists of identifying non-trivial center regions, regions
whose is perimeter evaluated as close to non-trivial center elements, using the algorithms
presented in references [13–15]. In the gauge-fixing procedure, we look for gauge matrices
Ω that maximize the functional

R2 = ∑
x

∑
µ

| Tr[Úµ(x)] |2 with Úµ(x) = Ω(x + eµ)Uµ(x)Ω†(x). (2)

The non-trivial center regions are used to guide this procedure to prevent the problems
found by Bornyakov et al. [16]. The detection of such non-trivial center regions is based
on enlarging regions until they get as close as possible to non-trivial center elements.
This quite calculation-intensive procedure is depicted in Figure 2.

As not all resulting regions are evaluated sufficiently near to a non-trivial center
element, we take only those into account which are sufficiently near to non-trivial center el-
ements.

During the gauge-fixing, only such gauge matrices Ω are allowed that preserve the
sign of the non-trivial center regions. As this causes the rejection of some gauge matrices,
the number of required simulated annealing steps until convergence of the gauge functional
might increase.
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Figure 2. The non-trivial center regions, used for the gauge-fixing procedure, are detected by
repeating the depicted procedure until every plaquette either belongs to an identified region or has
already been used as the seed to grow a region. The direction of enlargement of the respective regions
is marked by an arrow. Plaquettes that belong to a region are colored; plaquettes already used as
seed are shaded. In the final determination of the non-trivial center regions enclosing a thick vortex,
no collision handling is performed.

After gauge fixing and projection, plaquettes are identified that evaluate non-trivial
center elements. These are dubbed P-plaquettes and considered to be pierced by a P-vortex.

If the number of P-plaquettes is smaller than the number of non-trivial center regions
used to guide the gauge-fixing procedure, this is a clear indication of a failing vortex
detection. For each value of β, the proportion of configurations where this is the case
is determined. This allows to quantify the loss of the vortex-finding property besides
quantifying it directly via the string tension of the center-projected configurations.

The further analysis is performed in the full SU(2) configurations. For each P-plaquette,
a non-trivial center region that encloses the P-plaquette is identified. This center region is
considered to be pierced by the thick vortex detected by the P-vortex. Figure 3 depicts the
relation between P-vortices, thick vortices and the non-trivial center regions.

→ →

Figure 3. Two-dimensional slices through a four-dimensional lattice are depicted. The vortex
detection starts as a best-fit procedure of P-Vortices to thick vortices, indicated by the first arrow.
Then, starting from the detected P-plaquettes, non-trivial center regions are identified to reconstruct
the thick vortex. These non-trivial center regions are, in general, not rectangular.
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The cross-section of the flux building thethick vortex, Avort, is measured by counting
the plaquettes that build up the non-trivial center regions enclosing the corresponding thick
vortex. In each configuration, we determine minimal, average and maximal cross-sections.

The string tension σ is determined via Creutz ratios χ calculated in the center pro-
jected configurations

σ ≈ χ(R, T) = − ln
〈W(R + 1, T + 1)〉 〈W(R, T)〉
〈W(R, T + 1)〉 〈W(R + 1, T)〉 , (3)

with R× T Wilson loops W(R, T). As the Coloumb-part of the potential is strongly sup-
pressed after projecting to the center degrees of freedom, the linear part corresponding
to a non-vanishing string tension is already reproduced with small loop sizes, as we saw
in references [14,15,17]. Symmetric Creutz ratios are used and the average of χ(1, 1) and
χ(2, 2) is taken to determine the string tension. Our study is based on the data generated
in reference [5], where we did not save a sufficiently wide range of Wilson loop data.

Assuming independence of vortex piercings, the string tension can also be related to
the vortex density $vort, the number of P-plaquettes per unit volume, via

σ ≈ −ln(1− 2× $vort). (4)

The requirement of uncorrelated piercing is only fulfilled if the vortex surface is
strongly smoothed, otherwise this simple equation overestimates the string tension.

The working hypothesis is that the loss of the vortex-finding property, observed via
a loss of the string tension, when cooling is applied, can be related to a thickening of the
vortices. We will try to model the loss of the vortex density based on an analysis of the
geometric structure of center vortices.

3. Results

The different measurements are performed for a lot of different values of β and several
cooling steps. So as not to overload the visualizations only a part of the intermediate results
is depicted, showing only specific numbers of cooling steps and restricting to a smaller
interval of β-values. Those parts of the data that are dominated by finite size effects are
identified and excluded from the further analysis.

Starting with the quantification of the vortex-finding property presented in Figure 4,
some troubles are brought to light. The proportion of configurations where fewer P-
plaquettes have been identified than non-trivial center regions exist, rises rapidly when
passing a specific value of β. This specific value depends on the lattice size and the number
of cooling steps.

When reducing the lattice size or increasing the number of cooling steps, the loss
of the vortex-finding property occurs at lowered values of β. The proportion depicted
seems to saturate at about 30%, except for 10 cooling steps at a lattice of size 84, where it
reaches higher values. The fact that some non-trivial center regions have no corresponding
P-plaquettes after gauge fixing and projection to the center degrees of freedom hints at
a possible explanation for part of the lost string tension. The gauge functional given in
Equation (2) is local in the sense that each gauge matrix Ω is solely based on the eight
gluonic links connected to the specific lattice point. Farther distances than a single lattice
spacing are not directly taken into account. In contrast, the detection of the non-trivial
center regions is, in a sense, more physical as it is based solely on gauge-independent
quantities, that is, the evaluation of arbitrary big Wilson loops. When detecting P-vortices
in smooth configurations and high lattice resolutions, the center flux can be distributed
over many link variables. Each of these links can evaluate arbitrarily close to the trivial
center element, although a Wilson loop build by the links can evaluate arbitrarily near to
the non-trivial center element. In such a scenario, a gauge-fixing procedure, only taking
the vicinity of lattice points into account, will likely fail and result in an underestimated
string tension.
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Figure 4. The proportion of configurations is depicted where less non-trivial plaquettes have been
identified than non-trivial regions exist. The datapoints are joined to guide the eye. Due to the
logarithmic scaling of axes, only non-vanishing values are depicted: all lines start with 0% at lower
values of β. The interruption of the green line corresponding to the lattice of size 104 at 10 cooling
steps at β = 2.55 results from a vanishing percentage at the respective β-value. Observe that the
curves rise at different values of β for different number of cooling steps and different lattice sizes.

Looking at the Creutz ratios depicted in Figure 5 two possibly intertwined effects can
be observed.

Figure 5. The string tension σ is estimated via an average of the Creutz ratios χ(1, 1) and χ(2, 2)
calculated in center-projected configurations for different numbers of cooling steps and lattice sizes.
The datapoints are joined by lines to guide the eye. The literature values correspond to those listed
in Table 1; the asymptotic line is given by Equation (1). Observe that, in the low β-regime, an
underestimation of the string tension correlates to the number of cooling steps. This underestimation
is independent of the lattice size. At higher values of β, finite size effects set in.

At sufficiently low values of β, the string tension is independent of the lattice size,
but decreases with an increasing number of cooling steps. Of interest is that, for sufficiently
small values of β, the deviation from the asymptotic prediction decreases with a rising
value of β—for example, the 104-lattice starts at 10 cooling steps with an underestimation
of the asymptotic string tension of 50% ± 1% at β = 2.1, improving to 40.8% ± 0.4%
at β = 2.25. At higher values of β, the independence from the lattice size no longer
holds. For different lattice sizes, a sudden decrease in the string tension occurs at different
values of β. The respective β-values are compatible for different numbers of cooling steps.
The dependency on the lattice size and the independence on the number of cooling steps
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hint at finite size effects, but finite size effects do not give a direct explanation of the
reduction in the string tension at lower values of β: We do not observe a dependency on the
lattice size in the low β-regime. Based on the deviations of the string tensions for different
lattice sizes, we expect finite size effects to occur at length scales around 1.3 fm, independent
of cooling: observing that the lattice of size 84 deviates from the 104-lattice at β ≈ 2.3,
corresponding to a lattice spacing of a ≈ 0.165, we acquire a physical lattice extend around
1.32 fm for the smaller lattice. The finite size effects on the bigger lattice set in at β between
approximately 2.35 and 2.4, resulting in a length scale between approximately 1.2 fm and
1.4 fm. This length scales are compatible with the findings of Kovacs and Tomboulis [18].
In Ref. [5] we also found color-homogeneous regions embedded in the vortex surface with
roughly the same diameters. Similar distances can also be found between neighbouring
piercings of a Wilson loop, extracted from the vortex density, as will be seen in Table 4.

A relation to the thickness Avort of center vortices is suspected and points towards
possible further analysis. The possibility of a thick vortex expanding due to a spreading
of the center flux was already suggested by Kovacs and Tomboulis in [19]. Assuming a
circular cross-section of the flux tube, its diameter can be calculated as

dflux = 2×
√

Avort

π︸ ︷︷ ︸
rflux

, (5)

with Avort being the area of the flux cross-section. That flux lines are closed requires that
within each two-dimensional slice through the lattice at least two vortex piercings can find
place. This give a criteria on the lattice extent L

L > 2 ∗ dflux. (6)

If Avort measured by a plaquette count exceeds 19 for a lattice of size 104, or 12 for a
lattice of size 84, we can expect finite size effects to step in. These thresholds are of relevance for
the average, minimal and maximal flux tube cross-section depicted in Figures 6–8. The mean
flux tube cross-section presented in Figure 6 shows that we have to restrict to relative low
values of β to stay away from finite size effects.

Figure 6. The average cross-sections of the flux tubes, measured by counting plaquettes, increases
when cooling is applied. It reaches a threshold at which finite size effects are expected to become
problematic, shown as a dashed line for the two lattice sizes. Measurements performed on lattices of
different size have good compatibility.

Taking a look at the maximal flux tube cross-section depicted in Figure 7, we can
expect finite size effects at even lower values of β: None of the data with 10 cooling steps
can be expected to be free of finite size effects.
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Figure 7. The maximal cross-sections of the flux tubes hint at finite size effects. Within our β-interval,
only the lattice of size 104 stays below the threshold when cooling is applied. With cooling, the
different lattice sizes become more and more incompatible.

The lattice of size 84 could be too small even without any cooling applied. With cooling
and increasing β the different lattice sizes become more and more incompatible. This may
be caused by finite size effects and insufficient statistics. Still, the overall behaviour
with cooling is qualitatively reproduced and allows the gain of another estimate on the
growth rate.

Looking at the minimal tube size depicted in Figure 8 an even more sudden rise in the
cross-section can be observed.

Figure 8. The minimal size of the flux tubes cross-sections shows a strong dependency on the lattice
size. This dependency becomes even stronger when cooling is applied. Only with, at most, three
cooling steps applied, the data seem thrust-worthy for β < 2.3.

We expect that the minimal flux tube cross-sections starts to grow with a certain β,
where the high action density of non-trivial plaquettes leads to a suppression within the
path integral. This causes a dependency on the lattice size due to the reduced statistics.
For sufficiently low values of β and sufficiently low numbers of cooling steps, the minimal
flux tube cross-section is given by exactly one plaquette, independent of β and the number
of cooling steps. We restrict further analysis to 104-lattices with β ≤ 2.3 and, at most, five
cooling steps. Nevertheless, we depict the full data in all relevant figures to allow for a
check of the plausibility of our model by looking at the specific deviations of the data from
our prediction.
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Assuming an exponential growth in the flux tubes’ cross-section with an increase in
the number of cooling steps, a model of the form

Avort(Ncool) = Avort(0) eNcool (gcool+gdiscret a) (7)

is fit to the data, with Ncool being the number of cooling steps and a the lattice spacing.
The fit-parameter gcool corresponds to the exponential growth in the flux tube with cooling.
As the tube size is measured by counting plaquettes, we have to account for discretization
effects. This is done by adding another fit-parameter gdiscret in the exponent, related to the
lattice spacing and the number of cooling steps. The two parameters are not necessarily
constant as they can depend on the specific structure of interest. We restrain from carrying
along another index: In the following, the values of these two parameters are to be con-
sidered only with respect to the specific context. They differ for the average cross-sections
and the maximal cross-sections of flux tubes. The fit of this model to the average flux tube
sizes is shown in Figure 9 in physical units. The fit is done for small β and cooling steps
indicated by black points.

Figure 9. The measured data of the average flux tube cross-section for various numbers of cooling
steps and several β are shown by black and orange points. The dashed lines depict the fits according
to Equation (7), where only the black datapoints were used. The corresponding fit parameters are
given in Table 2. Deviations of the data from the fits can be related to finite size effects.

The fit, dashed lines reproduce the data well until the expected onset of finite size
effects for cross-sections, increasing with the number of cooling steps and β. This onset
is compatible to the estimates in Equation (6) and will be discussed later. At present, we
concentrate on the growth in the flux tube cross-section described by the fit parameters given
in Table 2. The suspected exponential growth of Avort is confirmed by the good quality of
the fit for positive gcool, even for larger values of β and cooling steps.

Table 2. The parameters of the model described by Equation (7) and depicted in Figure 9 for average
cross-sections are shown.

Average
Cross-Sections Estimate t-Statistic p-Value

gcool 0.14(1) 13.6393 6.3× 10−11

gdiscret −0.17(5) fm−1 −3.62376 1.9× 10−3
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The negative value of gdiscret reflects the decreasing slope of the dashed lines with
increasing β, indicating an influence of the lattice resolution: a coarser lattice reduces the
growth of Avort. The overall behaviour of Avort is qualitatively reproduced by the maximal
cross-sections, as depicted in Figure 10.

Figure 10. The measured data of the maximal flux tube cross-section for various numbers of cooling
steps and several β are shown by black and orange points. The dashed lines depict the fits according
to Equation (7), where only the black datapoints were used. The corresponding fit parameters are
given in Table 3. Deviations of the data from the fits can be related to finite size effects.

Only the growth has slowed down, as can be seen in the values given in Table 3.

Table 3. The parameters of the model described by Equation (7) and depicted in Figure 10 for
maximal cross-sections are shown.

Maximal
Cross-Sections Estimate t-Statistic p-Value

gcool 0.0999(10) 9.1369 3.5× 10−8

gdiscret −0.13(5) fm−1 −2.61939 1.7× 10−2

This implies that the growthin Avort with increased cooling is limited.
A further influence of cooling is a smoothing of the vortex surface. We will now model

this smoothing and show that the vortex flux tubes can be thickened without pushing each
other apart. The vortex density $vort allows to gain information about the distance of the
vortex centers. Here, we have to take into account that some of the P-plaquettes belong
to correlated piercings and can be attributed to short-range fluctuations. We define the
quantity Amax as the non-overlapping area around vortex centers.

The vortex density $vort is usually calculated by dividing the number P-plaquettes by
the total plaquette number. Given enough statistics, it can be determined by counting the
number of piercings Nvort within a sufficiently large Wilson loop of Area Aloop build by
Nloop plaquettes

$vort =
Nvort

Nloop
=

Nvort

Aloop ∗ a−2 =
Nvort

(Afree + Nvort ∗ Amax) ∗ a−2 . (8)
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In the last identity, we have split the area of the loop into two non-overlapping parts:
each piercing is enclosed by circular area given by Amax and Afree covers the remaining
part of the loop. When cooling is applied, we have to take into account that Amax grows.

$vort(Ncool) =
Nvort

(Afree + Nvort ∗ (Amax(0) + δAmax(Ncool))) ∗ a−2 . (9)

Using Aloop = Afree + Nvort ∗ Amax(0) and a model of the form given in Equation (7)
for Amax(Ncool) we attain δAmax = Amax(0)(eNcool (gcool+gdiscrete a) − 1). It follows

$vort(Ncool) =
$vort(0)

1 + $vort(0) Amax(0)a−2 (eNcool (gcool+gdiscrete a) − 1)
. (10)

We fit gcool, gdiscrete and Amax(0) to the measurements of $vort. The measured data
and the fit are shown in Figure 11.

Figure 11. The vortex density is depicted for different values of β and different numbers of cooling
steps. For the model prediction, shown as dashed lines, only the black datapoints were used. That the
datapoints fall below the model prediction at specific numbers of cooling steps for different values
of β can be explained by finite size effects. The corresponding parameters of the model are given
in Table 4.

The respective fit parameters are listed in Table 4.

Table 4. The parameters of the model described by Equation (10) for the loss of the vortex density
during cooling.

Vortex Density Estimate t-Statistic p-Value

gcool 0.035(1) 26.5368 2.8× 10−15

gdiscret 0.066(2) fm−1 27.6254 fm−1 1.5× 10−15

Amax(0) 1.41(5) fm2 25.8937 fm2 4.2× 10−15

The value of Amax(0) is larger than the flux tube cross-sections depicted in Figure 9.
This, and the fact that the value of gcool, for the vortex density is smaller than those of the
vortex flux tube cross-sections indicate that the majority of piercings remain separated from



Universe 2021, 7, 122 11 of 14

one another even when cooling is applied. Assuming circular geometry, we can calculate
the minimal possible distance between vortex centers

dcenter(Ncool) = 2

√
Amax(Ncool)

π
. (11)

To determine how many cooling steps are possible, we need to know how much
the vortices can grow by cooling without getting into conflict. We estimate the minimal
available separation by

sflux(Ncool) = 2

√
Amax(0)

π︸ ︷︷ ︸
dcenter(0)

− 2

√
Avort(Ncool)

π︸ ︷︷ ︸
dflux(Ncool)

. (12)

We use dcenter(0), the average distance between piercings when no loss of the vortex
density occurred, and subtract the average diameter of the flux tubes dflux(Ncool) with
cooling applied. If sflux(Ncool) becomes smaller than one lattice spacing, our methods
of center vortex detection are likely to fail: we can no longer find two non-overlapping
non-trivial center regions enclosing the thick vortex flux tubes. This allows for a limit for
the lattice spacing to be derived, a, given in Equation (13) together with a limit on L based
on Equation (6)

a < sflux and L > Max(2dflux, Max(dflux)). (13)

The requirement for the lattice extent L is based on the fact that two vortex piercings
have to fit in every two-dimensional slicing through the lattice. Assuming a vanishing
minimal flux tube size, the limit is given either by two times the average diameter dflux
or one times the maximal diameter Max(dflux)—whatever is bigger. The assumption
of a vanishing minimal flux tube size is an approximation: on the lattice, the minimal
size is given by exactly one plaquette, which is normally negligible in comparison to the
lattice extent.

Using what we learned so far, we can evaluate these inequalities and find numerical
values for the upper limit of a and the lower limit of L. These are depicted in Figure 12 and
will now be discussed. Discretization effects are neglected by setting gdiscret = 0. Fitting
the average flux tube cross-sections for configurations without cooling for 2.1 ≤ β ≤ 2.3,
see Figure 9, by a polynom up to quadratic order with respect to the lattice spacing a gives

Avort(0) ≈ 3.367(38) a2 + 0.200(9) fm a, (14)

compatible with the values we found in [20]. A fit to the maximal cross-sections without
cooling for 2.1 ≤ β ≤ 2.3, see Figure 10, results in higher fit parameters

Max(Avort(0)) ≈ 11.3(2) a2 + 0.224(37) fm a. (15)

Using this fit and Equation (12) with Amax(0) from Table 4 we obtain an upper limit
for the lattice spacing that depends on the number of cooling steps and gcool. With this
limit, we can determine a lower limit for the required lattice extent. Both limits are shown
in Figure 12 for the two different values of gcool resulting from average and maximal flux
tube sizes from Tables 2 and 3. Let us remember how these limits were derived. Closed flux
lines require sufficient room for two piercings within each two dimensional slice through
the lattice—a lower limit for the lattice extent arises.

Taking the stronger limits with gcool = 0.14, we determine the corresponding limits
of β for given lattice size and number of cooling steps. In Table 5 some numerical values
are shown.
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Figure 12. Based on the growth in the flux tubes and the reduction in the vortex density in dependency of the number
of cooling steps, an upper limit for the lattice spacing (left) and a lower limit for the lattice extent (right) can be derived,
as given in Equation (13). The weaker limit depicted in red is based on the slower growth in the maximal sized flux tubes
with gcool = 0.0999 (see Table 3), the stronger limit, depicted in orange, is based on the faster growth in average-sized flux
tubes with gcool = 0.14 (see Table 2).

Table 5. For different numbers of cooling steps and different lattice extents, the table gives a lower
and an upper limit for β. “None” indicates that the limits exclude one another.

Ncool \ L 8 10 14 20 30 40 50

0 2.12
2.32

2.12
2.39

2.12
2.48

2.12
2.58

2.12
2.73

2.12
2.84

2.12
2.92

1 2.14
2.31

2.14
2.38

2.14
2.48

2.14
2.58

2.14
2.73

2.14
2.83

2.14
2.91

2 2.16
2.31

2.16
2.38

2.16
2.47

2.16
2.58

2.16
2.72

2.16
2.83

2.16
2.91

3 2.19
2.3

2.19
2.37

2.19
2.47

2.19
2.57

2.19
2.71

2.19
2.82

2.19
2.9

5 2.23
2.29

2.23
2.36

2.23
2.46

2.23
2.56

2.23
2.7

2.23
2.81

2.23
2.89

10 None 2.34
2.34

2.34
2.44

2.34
2.54

2.34
2.67

2.34
2.78

2.34
2.86

15 None None None 2.44
2.52

2.44
2.65

2.44
2.76

2.44
2.84

20 None None None None 2.54
2.63

2.54
2.73

2.54
2.82

25 None None None None None 2.66
2.71

2.66
2.79

We now look at the meaning of these limits for the string tension. In Figure 5, we
observe that the deviation from the asymptotic prediction decreases with increasing β in
the low β-regime. We believe that this behaviour holds within the β-intervals of Table 5.
The upper limit of β can be extended by increasing the lattice size. It would be inter-
esting to see if this alone suffices to restore full compatibility with the asymptotic string
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tension with modest cooling, but the required computational power might exceed our
present capabilities.

4. Discussion

Using non-trivial center regions we analyzed how Pisa-cooling influences the cross-
sections of thick center vortices. We found an exponential growth that slows down with
increasing cross-sections. By geometric arguments, we derived an upper limit for the lattice
spacing above which discretization effects trouble the vortex detection and a lower limit
for the lattice extent where finite size effects set in. This window gets smaller with cooling
and decreasing lattice extent. Cooling results in deviations from the asymptotic behaviour:
an underestimation of the string tension occurs. Within the window, increasing β leads to
better agreement with the asymptotic behaviour. It would be interesting to see whether the
string tension calculated on the projected lattice is, in fact, fully restored with sufficiently
large β or if only a partial restoration occurs.

By improving the method of center vortex detection, it might be possible to soften the
aforementioned limits. The method of vortex detection used in this work was based on
the direct maximal center gauge guided by non-trivial center regions [13–15]: we identify
regions whose perimeter evaluates to the non-trivial center element and preserve their
evaluation during gauge-fixing and center projection. This approach comes with three
possibilities of improvement.

The growth in the flux tube due to cooling results in the non-trivial center factors
within the evaluation of Wilson loops being spread over more and more links. In the
original direct maximal center gauge the contribution to the gauge functional at a given
site x is determined by its attached links only. By taking farther links into account, the
troubles arising from the spread of the center flux may be counteracted.

When two thick vortices are not separated by at least one lattice spacing, the identifi-
cation of non-trivial center regions enclosing the single piercings might fail. The original
method used for the detection of non-trivial center regions is based on enlarging the
perimeter of Wilson loops while preventing overlaps of the resulting regions: if overlaps
occurred, the region that evaluates to a higher trace is deleted. By allowing overlaps, an
improvement might be possible: more non-trivial center regions are kept to guide the
further gauge-fixing procedure.

With rising number of cooling steps, more non-trivial center regions than P-plaquettes
were found: The direct maximal center gauge failed to preserve some of the non-trivial
center regions. This could be counteracted by inserting non-trivial factors before starting the
simulated annealing procedure used to maximize the gauge functional. These non-trivial
factors should guarantee that each non-trivial center region evaluates to the non-trivial
center element when evaluated in the center projected configuration.

Author Contributions: Conceptualization, R.G.; methodology, R.G.; software, R.G. and M.F.; writing—
original draft preparation, R.G.; writing–-review and editing, R.G. and M.F.; supervision, M.F.; project
administration, M.F.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We thank the company Huemer-Group (www.huemer-group.com, accessed on
3 March 2021) and Dominik Theuerkauf for providing the computational resources speeding up
our calculations.

Conflicts of Interest: The authors declare no conflict of interest.

www.huemer-group.com


Universe 2021, 7, 122 14 of 14

References
1. Del Debbio, L.; Faber, M.; Giedt, J.; Greensite, J.; Olejnik, S. Detection of center vortices in the lattice Yang-Mills vacuum. Phys. Rev.

1998, D58, 094501. [CrossRef]
2. Faber, M.; Höllwieser, R. Chiral symmetry breaking on the lattice. Prog. Part. Nucl. Phys. 2017, 97, 312–355. [CrossRef]
3. Höllwieser, R.; Schweigler, T.; Faber, M.; Heller, U.M. Center Vortices and Chiral Symmetry Breaking in SU(2) Lattice Gauge

Theory. Phys. Rev. 2013, D88, 114505. [CrossRef]
4. Höllwieser, R.; Schweigler, T.; Faber, M.; Heller, U.M. Center vortices and topological charge. In Proceedings of the Xth Quark

Confinement and the Hadron Spectrum—PoS(Confinement X), Munich, Germany, 21 May 2013. [CrossRef]
5. Golubich, R.; Golubich, R.; Faber, M. Properties of SU(2) Center Vortex Structure in Smooth Configurations. Particles 2021, 4,

93–105. [CrossRef]
6. Kovacs, T.G.; Tomboulis, E.T. On P vortices and the Gribov problem. Phys. Lett. B 1999, 463, 104–108. [CrossRef]
7. Bali, G.S.; Schlichter, C.; Schilling, K. Observing long color flux tubes in SU(2) lattice gauge theory. Phys. Rev. D 1995,

51, 5165–5198. [CrossRef] [PubMed]
8. Booth, S.P.; Hulsebos, A.; Irving, A.C.; McKerrell, A.; Michael, C.; Spencer, P.S.; Stephenson, P.W. SU(2) potentials from large

lattices. Nucl. Phys. 1993, B394, 509–526. [CrossRef]
9. Michael, C.; Teper, M. Towards the Continuum Limit of SU(2) Lattice Gauge Theory. Phys. Lett. 1987, B199, 95–100. [CrossRef]
10. Perantonis, S.; Huntley, A.; Michael, C. Static Potentials From Pure SU(2) Lattice Gauge Theory. Nucl. Phys. 1989, B326, 544–556.

[CrossRef]
11. Bali, G.S.; Fingberg, J.; Heller, U.M.; Karsch, F.; Schilling, K. The Spatial string tension in the deconfined phase of the (3+1)-

dimensional SU(2) gauge theory. Phys. Rev. Lett. 1993, 71, 3059–3062. [CrossRef] [PubMed]
12. Campostrini, M.; Di Giacomo, A.; Maggiore, M.; Panagopoulos, H.; Vicari, E. Cooling and the String Tension in Lattice Gauge

Theories. Phys. Lett. B 1989, 225, 403–406. [CrossRef]
13. Golubich, R.; Faber, M. The Road to Solving the Gribov Problem of the Center Vortex Model in Quantum Chromodynamics.

Acta Phys. Pol. B Proc. Suppl. 2020, 13, 59–65. [CrossRef]
14. Golubich, R.; Faber, M. Center Regions as a Solution to the Gribov Problem of the Center Vortex Model. Acta Phys. Pol. B

Proc. Suppl. 2021, 14, 87. [CrossRef]
15. Golubich, R.; Faber, M. Improving Center Vortex Detection by Usage of Center Regions as Guidance for the Direct Maximal

Center Gauge. Particles 2019, 2, 491–498. [CrossRef]
16. Bornyakov, V.G.; Komarov, D.A.; Polikarpov, M.I.; Veselov, A.I. P vortices, nexuses and effects of Gribov copies in the center

gauges. Quantum chromodynamics and color confinement. In Proceedings of the International Symposium, Confinement 2000,
Osaka, Japan, 7–10 March 2000; pp. 133–140.

17. Dehghan, Z.; Deldar, S.; Faber, M.; Golubich, R.; Höllwieser, R. Influence of Fermions on Vortices in SU(2)-QCD. Preprints 2021,
2021040233. [CrossRef]

18. Kovacs, T.G.; Tomboulis, E.T. Vortex structure of the vacuum and confinement. Nucl. Phys. B Proc. Suppl. 2001, 94, 518–521.
[CrossRef]

19. Kovács, T.G.; Tomboulis, E. Bound on the string tension by the excitation probability for a vortex. Nuclear Phys. B Proc. Suppl.
2000, 83–84, 553–555. [CrossRef]

20. Golubich, R.; Faber, M. Thickness and Color Structure of Center Vortices in Gluonic SU(2) QCD. Particles 2020, 3, 444–455.
[CrossRef]

http://doi.org/10.1103/PhysRevD.58.094501
http://dx.doi.org/10.1016/j.ppnp.2017.08.001
http://dx.doi.org/10.1103/PhysRevD.88.114505
http://dx.doi.org/10.22323/1.171.0078
http://dx.doi.org/10.3390/particles4010011
http://dx.doi.org/10.1016/S0370-2693(99)00944-2
http://dx.doi.org/10.1103/PhysRevD.51.5165
http://www.ncbi.nlm.nih.gov/pubmed/10018988
http://dx.doi.org/10.1016/0550-3213(93)90023-I
http://dx.doi.org/10.1016/0370-2693(87)91469-9
http://dx.doi.org/10.1016/0550-3213(89)90141-7
http://dx.doi.org/10.1103/PhysRevLett.71.3059
http://www.ncbi.nlm.nih.gov/pubmed/10054847
http://dx.doi.org/10.1016/0370-2693(89)90590-X
http://dx.doi.org/10.5506/APhysPolBSupp.13.59
http://dx.doi.org/10.5506/APhysPolBSupp.14.87
http://dx.doi.org/10.3390/particles2040030
http://dx.doi.org/10.20944/preprints202104.0233.v1
http://dx.doi.org/10.1016/S0920-5632(01)00899-4
http://dx.doi.org/10.1016/S0920-5632(00)00307-8
http://dx.doi.org/10.3390/particles3020031

	Introduction
	Materials and Methods
	Results
	Discussion
	References

