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Abstract: By using a machine learning algorithm, we present an improved nuclear mass table with a
root mean square deviation of less than 200 keV. The model is equipped with statistical error bars
in order to compare with available experimental data. We use the resulting model to predict the
composition of the outer crust of a neutron star. By means of simple Monte Carlo methods, we
propagate the statistical uncertainties of the mass model to the equation of state of the system.
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1. Introduction

Neutron stars (NS) are fascinating objects; with a typical mass M ≈ 1.5 M� and
radius R ≈ 12 km [1], they represent the ideal laboratory to study the properties of nuclear
matter under extreme conditions. Due to a strong pressure gradient, the matter within the
NS arranges itself into layers with different properties [2]. Going from the most external
regions of the star to its centre, the matter density ρ spans several orders of magnitude
from ≈10−11 ρ0 to ≈ 3–5 ρ0, where ρ0 = 0.16 fm−3 ≈ 2.7× 1014 g cm−3 is the typical value
of density at the centre of an atomic nucleus [3].

The external region of a cold nonaccreting NS is named the outer crust. It consists of a
Coulomb lattice of fully-ionized atoms with Z protons and N neutrons. As discussed in
Refs. [4,5], at β-equilibrium, the composition of each layer of the crust at a given pressure P
is obtained by minimising the Gibbs free energy per nucleon. The latter is the sum of three
main contributions: the nuclear, electronic, and lattice. The effects of considering the system
at a finite temperature have been presented in Ref. [6]. Since a large fraction of nuclei
present in the outer crust are extremely neutron-rich, their binding energies are not known
experimentally, and consequently, one has to rely on a nuclear mass model. We refer the
reader to Ref. [7] for a review of the properties of various equations of state (EoS) used to
describe dense stellar matter.

Several mass models are available within the scientific literature with a typical accu-
racy, i.e., the root mean square (RMS) deviation of the residuals, of 500 keV [8]. In recent
years, some of these mass models have been equipped with additional algorithms such
as kernel ridge regression [9] or radial basis function interpolation [10,11], thus reducing
the typical RMS to ≈200–300 keV. Although such an RMS is remarkably low compared to
the typical binding energy of a nucleus, the discrepancies between various models are still
important, especially when used to predict the composition of the outer crust of a NS [12].

Analysis of the residuals of various mass models shows that they do not present
chaotic behaviour [13], thus, it should be possible to further improve their accuracy, at least
up to the level of Garvey–Kelson relations [14], by adding additional terms to account for
the missing physics. This may be a very complex task, but machine learning methods can
provide major support in achieving this goal.
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In recent years, several authors have tried to reduce the discrepancy between theory and
experiment by supplementing various mass models with neural networks (NNs) [15–20],
where the NN learns the behaviour of the residuals. NNs are excellent interpolators [21],
but they should be used with great care for extrapolation. The major problem is the
presence of an unwanted trend (on top of the residuals) related to the particular choice of
the activation function. See Refs. [22,23] for a more detailed discussion on the topic.

A possible alternative to NNs has been discussed in Ref. [19], and it is based on
Gaussian processes (GPs) [24–26]. This GP method assumes that the residuals originate
from some multivariate Gaussian distribution, whose covariance matrix contains some
parameters to be adjusted in order to maximise the likelihood for the GP’s fit to the residuals.
The main advantage of a GP over a NN is that its predictions do not contain unwanted
trends in extrapolation (other than the trend of the underlying model), but instead will
always return to 0 after a predictable extrapolation distance. Moreover, GP predictions
come naturally equipped with error bars. This is not the case for a standard NN (only
Bayesian neural networks are equipped with posterior distributions that can be interpreted
as error bars [27]), and a more involved procedure is required to obtain an estimate [23].

In the current article, we present a new mass table, made by combining the predictions
of a Duflo–Zucker [28] mass model with a GP, in order to further reduce the RMS of the
residuals. We use the resulting model to analyse the composition of the outer crust of a NS.
As previously conducted in Ref. [20], we perform a full error analysis of the mass model
and use a Monte Carlo procedure to propagate these statistical uncertainties through to the
final EoS.

The article is organised as follows: In Section 2, we briefly introduce the concept of
GPs and their use for regression, and in Section 3, we discuss the nuclear mass model and
the improvement provided by the GP. In Section 4, we illustrate our results concerning the
outer crust; finally, we present our conclusions in Section 5.

2. Gaussian Process Regression

We now introduce Gaussian processes, and their use as a regression tool. A Jupyter
notebook is available as a Supplementary Material; it was used to create Figures 1 and 2,
and contains additional plots that give a step-by-step introduction.

A Gaussian process is an infinite-dimensional Gaussian distribution. Similar to how a
one dimensional (1D) Gaussian distribution has a mean µ and variance σ2, a GP has a mean
function µ(x) and a covariance function k(x, x′), also known as the kernel. In principle, x
can be a vector of length d representing a point in a d-dimensional input space, but for
now, we will just consider the case d = 1, i.e., where x is a single number. Just as we
can draw random samples (numbers) from a 1D Gaussian distribution, we can also draw
random samples from a GP, which are functions f (x). The kernel k(x, x′) tells us the typical
correlation between the value of f at any two inputs x and x′, and entirely determines the
behaviour of the GP (relative to the mean function). For simplicity, we use here a constant
mean function of 0.

GPs can be used for regression of data if the underlying process generating the
data is smooth and continuous. See Ref. [29] for a thorough introduction to GPs for re-
gression and machine learning. Many software packages are available for GP regres-
sion; in the current article, we use the Python package GPy [30]. For a set of data
Y(x) = {y1(x1), y2(x2), . . . yn(xn)}, instead of assuming a fixed functional form for the
interpolating function, we treat the data as originating from a Gaussian process GP :

Y(x) ∼ GP(µ(x), k(x, x′)). (1)

No parametric assumption is made about the shape of the interpolating function,
making GPs a very flexible tool. We adopt the commonly used RBF (radial basis function)
kernel, also known as the squared exponential or Gaussian, which yields very smooth
samples f (x) and has the form
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kRBF(x, x′) = η2exp

[
− (x− x′)2

2`2

]
, (2)

where η2, ` are parameters to be optimised for a given Y . Both have easily interpretable
meanings: η gives the typical magnitude of the oscillations of f (x), and ` gives the typical
correlation length in x. When |x− x′| is small, the correlation is large, and we expect f (x)
and f (x′) to have similar values. As |x− x′| grows beyond a few correlation lengths `,
the correlation between f (x) and f (x′) drops rapidly to 0.

A simple way to understand GP is to make use of Bayes’ theorem. Before doing
the experiments we have a prior distribution of f (x), characterised by the kernel given in
Equation (2). We can then draw sample functions from this prior, which are fully deter-
mined by the parameters η2, `. In Figure 1, we show five sample draws of functions f (x)
from some priors, which have η = 1 and various choices of `. We observe that by varying
`, we can have very different shapes in the prior samples. On average, they all lie within
the shaded area representing the 1σ confidence interval 68% of the time.
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Figure 1. Colours online. Examples of the structure of prior functions for various choices of the `

parameter. The shaded area represents the 1σ confidence interval.

In Figure 2, we show a simple demonstration of GP regression, where the underlying
true function generating the data (dotted line) is simply y = sin(x). We perform the
experiment and extract five data points, indicated by crosses on the figure. The GP is fully
characterised by two kernel parameters; clearly, some sets of these parameters lead to
better regression. For example, if ` is smaller than the typical data spacing, the GP mean
will approach 0 between data points, making it useless for interpolation (overfitting); if η2

is too large, the size of the confidence intervals will be overestimated. These parameters
are determined using likelihood maximisation, as discussed in Ref. [31]. We provide the
expression for the log-likelihood in Appendix A.

The GP mean (solid line) here represents the average of all possible samples (from the
posterior distribution of f (x)) passing through the data Y (crosses), i.e., the mean prediction.
Since both the likelihood and the prior are Gaussian, so is the posterior. The GP mean is
smooth, and interpolates all data points exactly. Outside the input domain, it approaches 0.
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As we would expect, the quality of the GP regressions is greatest where there is more data
available, in this case, 0 ≤ x ≤ 4.
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1.5
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True
Data
GP

Figure 2. Demonstration of Gaussian process regression. The true function is y = sin(x), and the
data points are at x = {0, 0.5, 2, 3.5, 6}. The solid line represents the GP mean, and the shaded areas
give the 2σ confidence intervals. The optimised kernel parameters are η2 = 0.602, ` = 1.063. See text
for details.

Confidence intervals are also shown in Figure 2, representing 2σ (≈95%) here. The con-
fidence intervals are 0 at each data point, and grow in between data points, more rapidly
so when data are further apart. At the edges of the input domain, they also grow rapidly,
representing the uncertainty in extrapolation, until reaching a maximum of 2η. A very
important aspect of the GP is the confidence intervals: in this case, we see that the true
function does not always match the GP mean, but ≈ 95% of the true function falls within
the 2σ interval.

The expressions for the GP mean and confidence intervals are provided in Appendix A.

3. Nuclear Masses

Nuclear mass models are used to reproduce the nuclear binding energies of all known
nuclei, ≈3200, given in the AME2016 database [32]. Within the mass database, we distin-
guish two types of data: nuclear masses that have been directly measured (≈2400) and
the extrapolated ones (≈750). The latter, referred to in Ref. [32] as trends from the mass
surface, are obtained from nearby masses and from reaction and decay energies, under sev-
eral constraints explained in Section 4 of this reference. We will use them to benchmark
our extrapolations.

In the current article, we use the Duflo–Zucker mass model [28]; it consists of 10 terms
(DZ10 model), and is able to reproduce all known masses with a root mean square deviation
of σRMS ≈ 0.6 MeV [20]. We refer the reader to Refs. [33,34] for a detailed discussion on the
different terms in the models.

The parameters of the DZ10 model were adjusted in Ref. [20] using the block boot-
strap (BB) method [35], yielding the optimal parameter set a0. The reason for using BB
is that it provides robust error bars on the parameters that take into account correlations
between them [36,37].

The assumption used to fit DZ10, as with any other mass model, is that the experi-
mental binding energies Bexp(N, Z) are equal to the theoretical ones Bth(N, Z|a0) up to a
Gaussian error ε(N, Z):

Bexp(N, Z) = Bth(N, Z|a0) + ε(N, Z), (3)

where Bth(N, Z) is the binding energy calculated using DZ10. In Figure 3, we illustrate the
residuals for DZ10 as a function of the nucleon number A = N + Z. One clearly sees that
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these residuals show structure, thus indicating the presence of some missing physics that is
not properly accounted for by the model. In the right panel of the same figure, we plot the
same residuals as a histogram, and we draw a Gaussian with mean 0 and width fixed to
the RMS of the residuals. The height of the Gaussian is fitted on the residuals.
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Figure 3. Left panel: residuals as a function of nucleon number A for the DZ10 model, for measured
masses. In the right panel are the same residuals shown as a histogram, with a Gaussian fit overlaid
(for which the mean is fixed to 0, and the standard deviation to that of the residuals). See text
for details.

A more detailed statistical test can be performed on these residuals to verify that
they do not follow a regular Gaussian distribution (see, for example, Refs. [20,38] for more
details) but for the current discussion, a qualitative analysis is sufficient.

Having identified that there is room to improve the accuracy of the model, the most
natural option to take is to add new terms [34]. For example, a version of the Duflo–
Zucker model with 33 parameters is available. Although the RMS reduces to ≈300 keV,
the extra terms appear poorly constrained [34], and therefore, the model is unsuitable
for extrapolation. We refer the reader to Ref. [39] for a detailed discussion on poorly
constrained parameters.

Instead of explicitly creating new terms for a given mass model, we can take advantage
of machine learning methods. For example, in Refs. [18,20], the authors adjusted a NN on
the residuals of the DZ10 model in order to reduce the discrepancy between theory and
experiment. The NN is able to reduce this discrepancy to a typical RMS of ≈350 keV [20].

NNs are often very complex models, with several hundred free parameters. As dis-
cussed in [19], a Gaussian process represents a valid alternative to a NN; the main advan-
tages are the very small number of adjustable parameters, as discussed in Section 2, and the
superior performance on the database of nuclear masses when compared with a NN [19].

3.1. Augmenting the DZ10 Model with a GP

Having introduced the GP in Section 2, we now apply it to the case of nuclear masses.
As done in Ref. [19], we consider the same kernel given in Equation (1), but now in the 2D
case, meaning there are three adjustable parameters. We also use a fourth parameter σn,
named the nugget. The use of the nugget carries several advantages, including numerical
stability [40] and improved predictions [41]. The kernel we use is then given by

kRBF(x, x′) = η2exp

[
− (N − N′)2

2ρ2
N

− (Z− Z′)2

2ρ2
Z

]
+ σ2

nδxx′ , (4)

where in the present case, x = (N, Z) and η2, ρZ, ρN are the adjustable parameters. Follow-
ing Ref. [19], ρN and ρZ are interpreted as correlation lengths in the neutron and proton
directions, while η2 gives the strength of the correlation between neighbouring nuclei.
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The addition of the nugget means that the GP mean does not necessarily pass di-
rectly through each data point. After performing a preliminary investigation using a
full likelihood maximisation with all four parameters, we found that the optimal value
is σn = 0.2 MeV. We decided to fix this value in order to simplify the analysis of the
posterior distribution.

The main role of the nugget is to avoid overfitting, which manifests itself via a
correlation length smaller than the typical separation of the data. For example, setting
σn = 0 MeV would lead to a perfect reproduction of the data, but the resulting model
would be totally useless; it would not be able to perform any kind of prediction, since the
correlation lengths would be smaller than one (i.e., the separation between nuclear mass
data). The nugget gives us extra flexibility in identifying the residual correlations between
the data as discussed in Ref. [23]. For a more detailed discussion on GP and the role of the
nugget, we refer to Ref. [19].

As discussed previously, we adjust the parameters of the GP on the residuals of
the DZ10 model (shown in Figure 3). The parameters η, ρN , ρZ are determined through
maximising the likelihood for the GP. See Ref. [31] for details. In Figure 4, we illustrate the
posterior distribution of the parameters in the form of a corner plot. The distributions were
obtained with Markov chain Monte Carlo (MCMC) sampling [42]. The plot illustrates the
shapes of the distributions around the optimal parameter set and provides us with error
bars for the parameters and information about their correlations. In this case, we see that
all parameters are very well determined by the residuals data, and a weak correlation is
observed between η and ρN and between η and ρZ.

A very interesting result is that the two correlation lengths ρN,Z are as large as,
or greater than, 2. This means that, if we know the residual for a nucleus with mass
number A, we can infer properties of the nucleus with A± 2. This result is in agreement
with the analysis done in Ref. [20], which was based on the autocorrelation coefficients.

We now construct our new model for Bth (appearing in Equation (3)) as Bth = BDZ10−
GP, which we name DZ10-GP. In Figure 5, we compare the residual distributions for the
DZ10 and DZ10-GP models for measured masses. We see that the RMS of the DZ10 model
has been greatly reduced. The total RMS of the DZ10-GP model is σ = 178 keV, which
until now is probably among the lowest values ever obtained using a mass model fitted
on all the available masses, with a total of 10 + 4 = 14 adjustable parameters. It is worth
stressing that, contrary to a standard mass model that relies on several hypotheses in order
to describe the data, the GP takes information directly from the data, and therefore, the
dataset is an important ingredient of the model. Consequently, the number of parameters
quoted here should not be directly compared with that of a standard mass model.

In Figure 6, we illustrate the residuals obtained from the DZ10-GP model as a function
of mass number A. We clearly see that the GP has been able to capture the missing physics
of the DZ10 model, in particular, smoothing out the spikes observed in Figure 3. We
observe that the maximum discrepancy between theory and experiment is now always
lower than 1 MeV, and the structure observed in Figure 3 has now disappeared, with the
new residuals exhibiting behaviour close to white noise. The presence or lack thereof of
white noise in the model may represent a lower bound on the accuracy one can achieve
with a theoretical model, as discussed in Ref. [13]; we leave such an interesting analysis for
a future investigation.
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Figure 4. Posterior distributions of GP parameters obtained through MCMC sampling. The horizontal
and vertical solid lines indicate the optimal parameter values obtained by maximising the likelihood.
The vertical dotted lines on each 1D histogram indicate the mean and 1σ confidence intervals obtained
through MCMC sampling. See text for details.
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Figure 5. Distributions of the residuals for the DZ10 and DZ10-GP models for measured masses.
Gaussian fits to the residuals are also shown, with the mean fixed to 0 and the standard deviation
fixed to that of the residuals. See text for details.
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Figure 6. The same as Figure 3 but for the DZ10-GP model. See text for details.
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3.2. Extrapolation Using the DZ10-GP Model

Having created the DZ10-GP model, we now benchmark its extrapolations on the
set of ≈750 nuclear masses estimated in Ref. [32]. The results are presented in Figure 7.
The original DZ10 model gives an RMS of 1.426 MeV; the inclusion of GP corrections
reduces the RMS to 1.100 MeV. It is worth noting that some outliers are still present.
We confirm that the six nuclei with a residual larger than 6 MeV are all in the region of
super-heavy nuclei with Z ≥ 108.
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Figure 7. Same as Figure 5 but for extrapolated masses. See text for details.

Since the main goal of this article is the study of the outer crust of a neutron star,
in Figure 8, we illustrate in great detail the evolution of the residuals for two isotopic
chains—copper and nickel—that play a very important role in determining the composition
of the outer crust [12].
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Figure 8. Residuals for the DZ10 and DZ10-GP models, for the Z = 28 and Z = 29 isotopic chains.
The vertical dashed lines represent the transition from nuclei used for training to nuclei for which
predictions are made. See text for details.

We observe that the original DZ10 model reproduces the data in the middle of the
isotopic chains fairly well, and that it tends to give large discrepancies at the edges. Even the
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inclusion of the statistical error bars of DZ10 are not enough to explain such discrepancies.
We refer the reader to Ref. [20] for a detailed discussion on how these error bars have
been obtained. On the contrary, the use of the GP helps to flatten out the discrepancies
and produces predictions very close to the data in the extrapolated region. By considering
the experimental and theoretical error bars, we observe that our DZ10-GP model reproduces
these data reasonably well. The error bars of the DZ10-GP model have been obtained using
a näive approach, i.e., summing the statistical error bars of the original DZ model and the
confidence intervals of the GP model in quadrature.

As done in Ref. [20], we validate the error bars by comparing with experimental
masses. In particular, we expect that 68% of known masses differ from the model prediction
no more than σ = σth + σexp, where σth is the theoretical error bar of the DZ10-GP model
and σexp is the experimental error bar. By increasing the error bar by a factor of 2 and 3, we
should obtain 95% and 99.7% of experimental binding energies falling into the interval.

From Table 1, we observe that most of the nuclei fall within these error bars, as
expected, although we still underestimate in some relevant regions of the chart, such
as 20 ≤ Z ≤ 50, which is important for outer crust calculations. This discrepancy may
be a sign of other contributions to the error bar that were not taken into account here,
for example, correlations between the DZ10 and GP error bars.

Table 1. Percentage of nuclei included in the total error bars for the DZ10-GP model for three different
sectors of the nuclear chart.

1σ 2σ 3σ

Full chart 61% 88.8% 96.2%
50 ≤ A ≤ 150 59.2% 89.1% 97.3%
20 ≤ Z ≤ 50 54.4% 84.1% 95.5%

In Figure 9, we show the evolution, along two isotopic chains, of the GP’s contribution
to binding energy. We see that these contributions drop to 0 as the neutron-rich region is
approached. On the same figure, we also report the evolution of a 1σ error bar provided by
the GP. As discussed previously, we notice that the error bars grow towards the neutron
drip-line, where we have little or no available data to constrain the GP.
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Figure 9. GP correction for Z = 28 and Z = 29. The vertical dashed lines represent the transition
from nuclei used for training to nuclei for which predictions are made. The shaded ares represent the
GP 1σ error bars. See text for details.

From Figure 9, we observe that the confidence interval provided by the GP model
at large values of N becomes constant and equal to η. This means that at very large
extrapolations, the GP error bar is most likely underestimating. In this case, the model error
bar should become larger and be the dominant source of error (see, for example, Ref. [43]).
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This behaviour can be understood from the value of the GP’s correlation length for
neutrons, ρN = 2.67: by construction, the GP predictions tend to the mean of the data,
in this case 0, after ≈2–3 times ρN . This means that the GP will be effective in describing
extrapolated neutron-rich nuclei with at most ≈8–10 neutrons more than the last nucleus
in our training set. This is clearly only a rule of thumb, but it is enough to cover most of
the extrapolated nuclei that are present in the outer crust [44] of a neutron star. For nuclei
further away from the known dataset, the extrapolation is governed by the underlying
nuclear mass model, i.e., the DZ10 model. This is not the case for other approaches,
for example, with NNs that can introduce an additional trend on top of the model. Such a
trend is difficult to predict a priori, and may be strongly biased by the training method. See
Ref. [23] for a more detailed discussion.

3.3. Comparison with AME2020

Having trained and developed the DZ10-GP model on the AME2016 database [32],
we now benchmark the predictions against the newly published AME2020 database [45].
Between the 2016 and 2020 database, we have 74 new isotopes.

In Figure 10, we report the distribution of the residuals for the new isotopes presented
in AME2020 database, apart from the Cu measurements already published in Ref. [46]. We
observe that the RMS of the original DZ10 model for these new data is σDZ10 = 701 keV,
while for the DZ10-GP model, it is σDZ10-GP = 299 keV. Notice that in this case, we do
not readjust the GP model over the new data. This test clearly proves that the GP is not
overfitting the data, but it was really able to grasp a signal in the residuals and is therefore
capable of performing extrapolations in regions in the proximity of the dataset used for
the training. We also observed that 50% of the new isotopes fall within the error bars of
the original DZ10-GP model. This value is slightly lower than what is reported in Table 1,
but still reasonable compared to the expected 68%.
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Figure 10. Distributions of the residuals for the DZ10 and DZ10-GP models, for new masses presented
in AME2020 [45]. Gaussian fits to the residuals are also shown, with the mean fixed to 0 and the
standard deviation fixed to that of the residuals. See text for details.

4. Outer Crust

To determine the chemical composition of the outer crust, we minimise the Gibbs free
energy per particle, which is defined as [47]

g = Enuc(N, Z) + Ee(A, Z) + El(A, Z) +
P
ρb

, (5)

where ρb is the baryonic density. The three terms Enuc, Ee, El are the nuclear, electronic, and
lattice energies per nucleon, respectively [48]. The pressure P arises only from lattice and
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electron contributions as P = PL + Pe. For more details, we refer to Ref. [47], where the
entire formalism has been discussed in great detail.

The novelty of the current approach is in the treatment of the nuclear term, which
takes the form

Enuc(N, Z) =
Zmp + Nmn

A
− B(N, Z)

A
, (6)

where mp(n) is the mass of the proton (neutron) and B is the nuclear binding energy given
by the mass model. In the current article, we use the mass model DZ10-GP, as discussed in
Section 2. The composition predicted by the mass models is given in Table 2. By comparing
the DZ10-GP results with those obtained using only the DZ10 model, we observe some
discrepancies in the extrapolated region at low P. In particular, we notice that the improved
mass model (DZ10-GP) predicts the existence of 80Zn, which is not considered in the
original DZ10 model. At higher P, the two mass models give very similar results. This is
simple to understand since, as discussed in Section 2, the GP correction tends to 0 for large
extrapolations, as seen in Figure 9.

Table 2. Composition of the outer crust of a NS using the DZ10 and DZ10-GP mass models. In the
first and fourth columns, we report the maximum value of pressure at which the nucleus is found
using the minimisation procedure. The horizontal line separates the measured and extrapolated
masses reported in AME2016 [32].

DZ10 DZ10-GP

Pmax [MeVfm−3] N Z Pmax [MeVfm−3] N Z

3.30 × 10−10 30 26 3.30 × 10−10 30 26
4.36 × 10−8 34 28 4.36 × 10−8 34 28
3.56 × 10−7 36 28 3.56 × 10−7 36 28
4.02 × 10−7 38 28 4.02 × 10−7 38 28
1.03 × 10−6 50 36 1.03 × 10−6 50 36
5.59 × 10−6 50 34 5.59 × 10−6 50 34

1.76 × 10−5 50 32 5.59 × 10−6 50 32
1.77 × 10−5 50 30

1.58 × 10−4 50 28 3.22 × 10−5 50 28
1.82 × 10−4 82 42 1.21 × 10−4 82 42
3.31 × 10−4 82 40 1.81 × 10−4 82 40
4.83 × 10−4 82 38 3.31 × 10−4 82 38
4.86 × 10−4 82 36 4.84 × 10−4 82 36

Since our goal is to obtain the statistical uncertainties of the equation of state, we
perform a simple Monte Carlo sampling of the error bars of our DZ10-GP model (under a
Gaussian assumption). We generate 104 new mass tables, and we use them to calculate the
composition of the outer crust.

Using a frequentist approach [49], we define the existence probability of each nucleus
as the ratio of the number of times a given nucleus appears in the various EoS at a given
pressure, divided by the total number of mass tables. See Ref. [20] for more details.

In Figure 11, we show the evolution of the existence probability for each nucleus in the
outer crust as a function of the pressure of the star. We notice that, as confirmed by other
authors [44], the favourable configurations are those close to the neutron shell closures
at N = 50 and N = 82. However, due to the large error bars, there is a non-negligible
probability for several nuclei to be present within the outer crust.
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Figure 11. Colours online. Existence probability of a given nucleus within the outer crust as a
function of the pressure, obtained via a Monte Carlo sampling using the DZ10-GP mass table. See
text for details.

It is interesting to compare the composition obtained with DZ10-GP with the predic-
tions of other mass models, since different mass models may yield different extrapolations.
We have selected two popular mass models currently used in astrophysics: BSk20 [44] and
BPS [50]. The results are reported in Figure 12. The shaded area on the figure represents
all the possible EoSs obtained using the Monte Carlo procedure detailed above using a
1% cut-off on the existence probability. We observe that the results obtained with the dif-
ferent procedures are in good agreement with the DZ10-GP model once the error bars are
properly taken into account. It is important to notice that the transition region between the
outer and inner crust is mainly governed by the mass model and not by the GP correction.
As a consequence, we may expect different results using the various models, as shown in
Figure 12.

0.0001 0.0002 0.0003 0.0004

P [MeVfm
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80

90

Z
,N

BSk20
BPS

Z

N

Figure 12. Variations of Z and N with pressure in the outer crust for the BSk20 and BPS models.
The shaded area represents the regions covered by the Monte Carlo procedure detailed in the text
and obtained using the DZ10-GP model. See text for details.

Using the same dataset, we also define a statistical uncertainty for the EoS: by counting
the 104 EoS built before, we define the 68%, 95%, and 99% quantiles of the counts, i.e., 1σ,
2σ, and 3σ deviations, under the assumption that the errors follow a Gaussian distribution.
The results are presented in Figure 13. We observe that the largest uncertainties are located
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close to the transition from N = 50 to N = 82 at P ≈ 1.2× 10−4 [MeV fm−3] and approaching
the transition to the inner crust at P ≈ 5× 10−4 [MeV fm−3].
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Figure 13. Equation of state, including statistical uncertainties, of the outer crust of a NS, calculated
using the DZ10-GP mass model. See text for details.

5. Conclusions

By using a Gaussian process fitted to the residuals of the Duflo–Zucker mass model, we
have been able to create a mass model with a global RMS of less than 200 keV. The resulting
DZ10-GP model has the major advantage of having a very limited number of parameters
(ten in the original DZ model plus four for the GP), but it is also one of the very few mass
models equipped with error bars [34,51]. The values of the mass table are available in the
Supplementary Material.

We have then applied the resulting mass model to study the composition of the outer
crust of a neutron star, paying particular attention to the role of statistical errors and how
they propagate to the final EoS. Following the methodology presented in Ref. [20], we
have defined an existence probability of a nucleus within the crust. Such a quantity helps
us to identify the possible accuracy problems related to our model, and it may help in
prioritising future experimental proposals to further improve our knowledge of the crust
of a neutron star.

Supplementary Materials: Here we provide the Jupiter notebooks used to perform the calculations
that appear in the present manuscript. The file GP_tutorial.ipynb is a small tutorial to introduce the
reader to the use of Gaussian Process and it is used to produce the figures presented in Section 2 of
the manuscript. The file ame16_GPmodel.ipynb contains the actual calculations of the new mass
table and presented in Section 3 of the manuscript. The files are available online https://www.mdpi.
com/article/10.3390/universe7050131/s1.

Author Contributions: Data curation, A.P.; Formal analysis, M.S. and A.P.; Investigation, M.S.;
Methodology, A.P.; Software, M.S.; Writing—review and editing, M.S. and A.P. All authors have read
and agreed to the published version of the manuscript.

Funding: This work has been funded by STFC Grant No. ST/P003885/1.

Acknowledgments: We thank A. Gration for training us on the usage of Gaussian process regression.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Gaussian Process Regression Equations

Here, we give the expressions for the mean prediction and confidence intervals in
Gaussian process regression, and the expression for the likelihood used in the optimisa-
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tion of the kernel parameters. All expressions are for the special case where the mean
function µ(x) (see Section 2) is 0. For a more general description, we refer to Ref. [31].

The GP mean at a new point x∗ is given by

µ̂(x∗) = rT(x∗)R−1Y , (A1)

where, for a kernel k, R is the correlation matrix given by R = k(Y ,Y) (a matrix of the
kernel evaluated at all possible pairs of data points) and r(x∗) = R(Y , x∗) is a vector
corresponding to the correlation of x∗ with each data point in Y . The GP 1σ confidence
intervals are given by

σ̂(x∗) = R(x∗, x∗)− rT(Y)R−1r(Y). (A2)

The kernel parameters θ are optimised by maximising the likelihood of the GP,
or equivalently, the log-likelihood, given by

lnL(θ;Y) = −1
2
YT R−1Y − 1

2
ln |R| − n

2
ln 2π, (A3)

where n is the number of data points in the dataset Y .
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