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Abstract: It is well known that General Relativity cannot be considered under the standard of a
perturbatively renormalizable quantum field theory, but asymptotic safety is taken into account as a
possibility for the formulation of gravity as a non-perturbative renormalizable theory. Recently, the
entropy argument has however stepped into the discussion claiming for a “no-go” to the asymptotic
safety argument. In this paper, we present simple counter-examples, considering alternative theories
of gravity, to the entropy argument as further indications, among others, on the possible flows in
the assumptions on which the latter is based. We considered different theories, namely curvature-
based extensions of General Relativity as f (R), f (G), extensions of teleparallel gravity as f (T), and
Horava–Lifshitz gravity, working out the explicit spherically symmetric solutions in order to make a
comparison between power counting and the entropy argument. Even in these cases, inconsistencies
were found.

Keywords: renormalization; Bekenstein–Hawking entropy; modified gravity

1. Introduction

One of the main issues arising when considering a quantum theory of gravity is the
non-renormalizability of General Relativity (GR). More precisely, GR cannot be formulated
as a perturbatively renormalizable quantum field theory. This can be easily understood
by simple power-counting arguments. However, starting from the Weinberg results [1],
researchers started looking for non-perturbative renormalizable quantum field formula-
tions of GR. This latter case is usually referred to as asymptotic safety (see [2–5] for reviews
on the subject). This belief relies on the possibility that there may be another non-trivial
UV fixed point in the renormalization group flow of the gravitational field with respect
to which GR can be considered as a perturbation by some relevant operator. In this case,
the non-renormalizability of gravity would just mean that we are expanding in the wrong
variables, and power counting fails for this reason. However, the fixed point of asymptotic
safety scenario is gauge dependent; this issue can be addressed by considering a general-
ization of the standard effective action, the so-called gauge-fixing independent effective
action. Although it formally yields the same S-matrix as the standard one, it is independent
of the choice of the gauge condition [6].

Starting from holographic aspects of gravity, seen as incompatible with the aim of
turning GR into a local quantum field theory, one may be led to ask whether there could be
some no-go result obstructing the asymptotic safety scenario. In [7] (but the idea behind
was presented earlier in [8]) for example, the so-called entropy argument was adopted
as an explicit argument against GR renormalizability in any spacetime dimension. The
crux of the argument relies on the assumption that the high-energy spectrum of GR is
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dominated by black holes, in the sense that once enough energy is concentrated in a
spacetime region, a black hole will form, claiming that the high-energy behavior of any
n-dimensional renormalizable quantum field theory should be that of a Conformal Field
Theory (CFT) in the same number of dimensions. Technically, this means that the entropy
of a generic conformal field theory and the entropy given by the Bekenstein–Hawking
formula should have the same energy-scaling behavior.

Even though this argument appears reasonable from different points of view, its
validity is still under debate. In fact, there are several problematic physical assumptions on
which the argument is based. The clearest exposition of the issues and the debate under
discussion to our current knowledge is the one given in [9]. The main assumption of
the entropy argument is the black hole dominance. This is surely reasonable from our
low-energy expectation, but it is indeed borrowed from the low-energy approximation, so
that it is legitimate to wonder to what extent this expectation should be trusted. In fact, at
the Planck scale, physics could be different from what we expect, and furthermore, our
understanding of micro black holes is still dominated by conjectures. Shomer [7] pointed
out that this counter argument should not hold since the asymptotic safety scenario is based
on the assumption that gravity is a valid low-energy approximation of some quantum
field theory. Therefore, arguing against the non-renormalizability of gravity is like arguing
against the validity of the Bekenstein–Hawking formula. However, this is another source
of concern. Indeed, there is no a priori reason to expect the Bekenstein–Hawking formula
to hold at Planck scales, and even more if one considers the recent literature concerning
quantum corrections to the formula [10–13].

Specifically, the statement that the n-dimensional Bekenstein–Hawking entropy is asymp-
totically the same as that in n-dimensional CFT, in the high-energy regime, it suffers some
inconsistencies. Indeed, this is basically due to the fact that, if we have a field of mass M
and take the energy to be E � M, almost all of the energy will be momentum, and the
mass will be negligible, resulting in a UV CFT fixed point. However, because of this, it is
more appropriate to consider the entropy argument only as a necessary condition. This latter
consideration makes it only useful as a way to understand if a QFT is non-renormalizable.

What is usually done in GR is to consider the energy-scaling behavior of an n-dimensional
CFT as S ∼ E n−1

n and compare it with the energy scaling of the entropy of a Schwarzschild
black hole (considering, for instance, asymptotically flat spacetimes) via the Bekenstein–
Hawking formula for the entropy:

S =
A

4G
∼

rn−2
H
G
∼ E

n−2
n−3 , (1)

with G being the Newton constant, A the black hole surface area, and rH the horizon
radius. In this case, it is evident that there is no dimension where the two formulas
agree. According to this result, it follows that n-dimensional GR is non-renormalizable.
The same can be done for a negative cosmological constant, where the usual AdS/CFT
correspondence is recovered as a manifestation of holography. On the other hand, the
positive cosmological constant (de Sitter) is instead peculiar and cannot be addressed in
this way.

In this paper, we considered counterexamples to this approach, analyzing four dif-
ferent modified theories of gravity and checking their coupling constant mass dimension
via power counting (around a Gaussian fixed point, the superficial degree of divergence
must give the correct information about the renormalizability of quantum field theory;
the other way around is prevented by the possibility that cancellations occur). Then, we
compared the results with the entropy argument, showing that the approach manifests
a clear non-agreement in the comparison. Interestingly, we also showed that spherically
symmetric solutions of modified theories (e.g., f (R) = Rk and f (G) = Gk) occur when the
power-law parameter k is linked to the dimension such that the theory results in being
power-counting renormalizable.

Throughout the paper, we use natural units: h̄ = c = kB = e+ = 1.
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2. A Summary of Extended and Modified Theories of Gravity

As a general remark, we dealt with modified gravity [14] when some basic assumption
of GR, as the Equivalence Principle, the metric connection, or Lorentz invariance is not
requested at the foundation of the theory. On the other hand, extended gravity [15] means
that GR is recovered in some limit or as a particular choice in the action. To give an
example, Teleparallel Equivalent General Relativity (TEGR), based on the torsion scalar T,
is a modified theory of gravity, while f (R) gravity, based on the curvature scalar R, is a
straightforward extension of GR.

This section aims to outline the main properties of some modified/extended theories
of gravity, in order to deal with their spherically symmetric solutions and to compute
power counting and Bekenstein–Hawking entropy in view of a possible renormalizability
of gravitational interaction. We mainly analyze four different theories, namely f (R), f (G),
f (T), and Horava–Lifshitz gravity. The idea of extending GR started due to the need
to explain many inconsistencies at the astrophysical and cosmological level, but also for
better adapting gravity with other fundamental interactions. With regards to the large
scale, most modified/extended theories explain the accelerating expansion of the universe
by introducing new curvature or torsion contributions, instead of dark matter or dark
energy [16–21]. These geometric terms are also considered for the early universe inflationary
paradigm [22–25]. The simplest case is f (R) gravity, since it represents a natural extension
of Einstein’s GR to a generic function of the Ricci scalar curvature R, not required to be
linear in the Einstein–Hilbert action. By relaxing the hypothesis of second-order field
equations, it is possible to construct an action of the form S =

∫ √−g f (R) d4x. By varying
with respect to the metric, one gets the following field equations:

fR(R)Rµν −
1
2

gµν f (R) + (gµν�−∇µ∇ν) fR(R) = 0. (2)

The presence of higher order terms yields several interesting aspects, as well as
massive gravitational waves [26–28] or modifications of the Newtonian potential [29–31].
Other theories leading to higher than fourth-order field equations can be constructed by
the general action:

S =
∫ √

−g f (R,�R,�2R, ...�kR) d4x , (3)

where � is the d’Alembert operator. A detailed treatment can be found in [32–34]. Another
possibility is to deal with other higher order curvature invariants, such as RµνRµν, RµνρσRµνρσ.
Among possible extensions involving these second-order scalars, a particular combination
gives rise to the topological surface term G, defined as:

G ≡ R2 − 4RµνRµν + RµνρσRµνρσ, (4)

the so-called Gauss–Bonnet topological invariant. In four dimensions, it represents the
Pfaffian of the curvature form of the Levi–Civita connection, and due to the generalized
Gauss–Bonnet theorem, its integral over the manifold provides the Euler characteristic of
the manifold. For this reason, in four dimensions, it does not provide any contribution
to the dynamics. Nevertheless, a function of G is topologically trivial only in less than
3 + 1 dimensions and can be used in the gravitational action in order to study the dynamics
of the system. Varying f (G) with respect to the metric leads to the field equations:

1
2

gµν f (G)−
(

2RRµν − 4RµαRα
ν + 2Rµ

αβγRναβγ − 4RαβRµανβ

)
fG(G)

+
[
2R∇µ∇ν + 4Gµν�− 4(Rρ

ν∇µ + Rρ
µ∇ν)∇ρ + 4gµνRρσ∇ρ∇σ − 4Rµανβ∇α∇β

]
fG(G) = 0. (5)

An important advantage of this formulation of gravity is given by the absence of ghost
modes in gravitational waves, as discussed in [28]; even in cosmology, the theory yields
many interesting predictions, which alleviate the GR issues at infrared scales [35–39].
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Another theory we considered is TEGR and its extensions. It is mainly aimed at solving
problems occurring in GR by treating gravity as a gauge theory of the translation group in the
flat tangent spacetime. The flat and curved spacetime have a point-by-point correspondence,
which is mathematically represented by a tetrad field through the relation:

gµνeµ
a eν

b = ηab, (6)

where the Latin indices label the flat spacetime, while the Greek indices label the curved
spacetime. The fundamental field is represented by torsion, while curvature vanishes
identically after neglecting the spin connections. The action reads as:

S =
1

16πG

∫
d4x |e| T, (7)

where e is the determinant of tetrad fields ea
µ and T is the torsion scalar, defined as:

T = Sρµν Tρµν, (8)

with Sρµν being the so-called “superpotential”:

Sρµν = Kµνρ − gρνTσµ
σ + gρµTσν

σ, (9)

Kρµν the “contorsion tensor”:

Kρ
µν =

1
2

gρλ
(
Tµλν + Tνλµ + Tλµν

)
, (10)

and Tρµν the “torsion tensor”:
Tρ

µν = 2Γρ

[µν]
. (11)

When discarding the curvature and dealing only with torsion, the Christoffel connec-
tion can be written in terms of tetrad fields as:

Γα
µν = eα

a ∂µea
ν (12)

which is called the Weitzenböck connection.
The main properties of TEGR and its applications to cosmology can be found in [40,41].

Treating gravity as a gauge theory of the translation group might solve some ultraviolet
inconsistencies, though it does not provide any further prediction with respect to GR at the
large scales. However, an extension of the teleparallel action (7) can be considered in the
action through a function of the torsion scalar [14], namely:

S =
∫

d4x |e| f (T). (13)

By varying the action with respect to the tetrad fields, second-order field equations
arise, that is:

1
e

∂µ(e eρ
aS µν

ρ ) fT(T)− eλ
a Tρ

µλS νµ
ρ fT(T) + eρ

aS µν
ρ (∂µT) fTT(T) +

1
4

eν
a f (T) = 0 (14)

Though the teleparallel field equations are exactly equivalent to those of Einstein’s GR, f (R)
theory and f (T) theory are different. Nevertheless, extended TEGR provides several cosmo-
logical predictions not contemplated by GR, as well as modifications to the ΛCDM model [42],
the explanation of the accelerated universe expansion without dark energy [14,17,43,44], and
models for the inflationary paradigm [25].

To conclude, the last theory of gravity we considered is the Horava–Lifshitz gravity,
firstly proposed by Horava in [45,46]; it represents a quantum gravity approach aimed to
extend GR to the UV scales. According to this theory, the Lorentz invariance is a low-energy
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symmetry, which breaks at the fundamental level, whose spacetime structure turns out
to be anisotropic. Moreover, as pointed out in [47–51], it can provide a solution for the
divergences in the two-loop effective action of GR, since it is power counting renormalizable.
With a generic line element:

ds2 = N2dt2 − gij

(
dxi + Nidt

)(
dxj + N jdt

)
(15)

the Horava–Lifshitz four-dimensional action reads:

S =
∫

d3x dt
√
−g
{

2
κ2

(
KijKij − λK2

)
− κ2

2w4

(
∇iRjk∇iRjk −∇iRjk∇jRik − 1

8
∇iR∇iR

)}
(16)

with

Kij =
1

2N
(

ġij −∇i Nj −∇jNi
)

K2 = gijKij (17)

where λ, ω, and κ are coupling constants. To develop the entropy analysis, in Section 3.4, we
use the spherically symmetric solution of the above action, provided in [52]. For further
reading, see [53–56] and the reference therein.

The above ones are the theories that we considered in view of the issue of the renor-
malizability of gravitational interaction.

3. Spherical Symmetry

Let us consider now the spherical symmetry for the above theories of gravity to
calculate the power counting analysis and the Bekenstein–Hawking entropy.

3.1. f (R) Gravity

Let us solve the f (R) field equations in n-dimensional spherically symmetric space-
time starting from the action:

S =
∫ √

|g| f (R) dnx. (18)

The above action can be recast in terms of Lagrange multiplier λ as:

S =
∫ [√

|g| f (R)− λ(R− R̃)
]

dnx, (19)

R̃ being the spherically symmetric scalar curvature expression. By assuming an interval of
the form:

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dΩ2
n−2, (20)

the n-dimensional Ricci scalar can be written as [57,58]:

R̃ = e−λ

(
ν′′ − ν′2

2
− ν′λ′

2

)
+

(n− 2)e−λ

r
(ν′ − λ′)− (n− 2)(n− 3)

r2 (1− e−λ), (21)

where the prime denotes the derivative with respect to r and dΩ2
n−2 is the n− 2 sphere

volume element. As a check, we see that by setting n = 4, Equation (21) reduces to the
well-known four-dimensional case. By varying the action (19) with respect to R, we find
Lagrange multiplier λ:

δS
δR

= |g| fR(R)− λ = 0 → λ = |g| fR(R), (22)

fR(R) being the first derivative of f (R) with respect to the scalar curvature. Replacing
Equations (21) and (22) in Equation (19), the action becomes:
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S =
∫ {

e
ν+λ

2 [ f (R)− R fR(R)] + e
ν−λ

2 rn−2
(

ν′′ +
ν′2

2
− ν′λ′

2

)
fR(R)

+(n− 2)e
ν−λ

2 rn−3(ν′ − λ′) fR(R) + (n− 2)(n− 3)e
ν+λ

2 rn−4(1− e−λ) fR(R)
}

dnx. (23)

By integrating second derivatives and neglecting the surface terms, the point-like
Lagrangian finally takes the form:

L = e
ν+λ

2 [ f (R)− R fR(R)]− (n− 2)e
ν−λ

2 rn−3λ′ fR(R) + (n− 2)(n− 3)e
ν+λ

2 rn−4(1− e−λ) fR(R)− e
ν−λ

2 rn−2R′ν′ fRR(R). (24)

To find out exact solutions of the equations of motion, we focus on the function
f (R) = f0Rk, with k being a real number parameter. As soon as k = 1, Einstein’s GR is
recovered. This choice is motivated by symmetry considerations [59,60], which may be
helpful in reducing the dynamics. Specifically, as demonstrated in [60], a power-law form of
f (R) gravity is compatible with the existence of Noether symmetries. The Euler–Lagrange
equations provide the following solution in n dimensions:

eν = e−λ = 1− 2(c2 − c1n)
n(n− 1)(n− 2)

1
rn−3 +

r2R0

n(n− 1)
k =

n
2

R(r) = R0, (25)

with c1, c2 integration constants. Interestingly, it is worth noticing that the n-dimensional
solution of the spherically symmetric field equations occurs analytically for k = n/2. The
only exception is for k = 1, where there exists a solution also in four dimensions. As
pointed out in the next section, the value k = n/2 is the limit for the renormalizability of
Rk gravity. Note also that the n = 4 limit provides:

eν = e−λ =
4c1 − c2 + 12r + r3R0

12r
, (26)

so that R0 plays the role of the cosmological constant. Assuming c1 = (c2 − 24GM)/4, the
solution can be recast as:

eν = e−λ = 1− 2GM
r

+
R0

12
r2, (27)

which is a Schwarzschild–de Sitter-like solution [60].

3.2. f (G) Gravity

Let us consider now a spherically symmetric background in n-dimensional f (G)
gravity. In order to get the point-like Lagrangian, we start from the action:

S =
∫ [√

−g f (G)− λ(G − G̃)
]
dnx; (28)

with G̃ being the spherically symmetric expression of the Gauss–Bonnet scalar (4), written
in terms of the interval (20), namely [61]:

G̃ =
e−2λ

r4 (n− 2)(n− 3){4rλ′eλ/2[(eλ − 1)(n− 4) + (eλ − 3)eν/2rν′]

+ (eλ − 1)[(eλ − 1)(n− 4)(n− 5)− 4(n− 4)eν/2rν′ − 4r2eν/2ν′2 − 4r2eν/2ν′′]}. (29)

Note that the Gauss–Bonnet term vanishes for n ≤ 3, while it turns into a surface term
for n = 4. After varying the action with respect to G and integrating the terms containing
higher spatial derivatives, the point-like Lagrangian takes the form:

L = e−2λrn−6{e
1
2 (5λ+ν)r4( f − G fG) + (eλ − 1)(n− 2)(n− 3)[(n− 4)(n− 5)e(ν+λ)/2 fG(eλ − 1)

+ 4e3λ/2rλ′] + 4eλ/2+νr2G ′ν′ fGG}. (30)
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By choosing a power-law function of the form f (G) = f0Gk, suggested by symmetry
considerations, the solution of the Euler–Lagrange equations turns out to be [61]:

eν = e−λ = 1± r
5−n

2

√
4c1(n− 1)
120( n

n−5)
± r2

√
G0(n− 4)
120( n

n−5)
G(r) = G0 k = n/4, (31)

with c1, G0 constants. Equation (31) is a de Sitter-like solution for f (G) gravity, so that
√
G0

can be intended as a cosmological constant and c1 as a dimensional coupling with mass
dimension c1 ∼ M2. Similar to f (R) gravity, the constraint k = n/4 can be considered to
obtain analytic solutions. Note that setting n = 4, the only possible solution occurs for
k = 1, which does not provide any contribution to the dynamics. Here as well, the value
k = n/4 is the limit value for the renormalizability of f (G) = Gk gravity. As a matter of
fact, being constructed by second-order curvature invariants, the renormalizability limit
of Gk gravity can be easily inferred by the definition of the Gauss–Bonnet scalar. This link
between analytic solutions and the power-counting renormalizability of modified theories
of gravity represents an interesting feature, which deserves to be discussed in detail.

3.3. f (T) Teleparallel Gravity

f (T) gravity is another interesting case. Here, the approach is not straightforward as
in the previous extended theories. In fact, the interval yields different sets of tetrad fields,
which must be selected according to the postulate of “good tetrads” [62]. For this reason,
let us focus on the four-dimensional case starting from the action:

S = f0

∫
|e| Tk d4x. (32)

As a starting point, among all the possible sets of tetrad fields providing the inter-
val (20), it seems reasonable to choose:

ea
µ = diag(e

ν
2 , e

λ
2 , r, r sin θ). (33)

It yields the following torsion scalar [14]:

T̃ =
e−2λ(1 + rν′)

r2 , (34)

and after some computations, two classes of solutions are:

ds2 =
c1

r
dt2 − r

c2 − 4r
dr2 − r2dΩ2 (35)

and:

ds2 =

(
c4

c5r8 − 2c3

) 1
8
dt2 −

(
2c3 − c5r8

2r6

)
dr2 − r2dΩ2. (36)

Notice that both solutions are independent of the parameter k labeling the power-
law function f (T) = f0Tk. This is due to the fact that the diagonal set of tetrads (33)
constrains the free parameter k to be k = 1

2 . Therefore, the function f (T) is also further
constrained to f (T) = f0

√
T. Moreover, solution (36) can be obtained only after the

imposition T(r) ∼ const. Another possibility is to consider a non-diagonal set of tetrads of
the form [14]:

ea
µ =


e

ν
2 0 0 0

0 e
λ
2 sin θ cos φ r cos θ cos φ −r sin θ sin φ

0 e
λ
2 sin θ sin φ r cos θ sin φ r sin θ cos φ

0 e
λ
2 cos θ −r sin θ 0

, (37)
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whose determinant is |e| = e
ν+λ

2 r2 sin θ. Under this assumption, the torsion scalar becomes:

T =
2e−λ(e

λ
2 − 1)(e

λ
2 − 1− rν′)

r2 . (38)

The Lagrange multiplier method allows finding a suitable point-like Lagrangian of
the form:

L = e
ν−λ

2

{
eλr2[ f (T)− T fT(T)] + 2 fT(T)(e

λ
2 − 1)(e

λ
2 − 1− rν′)

}
. (39)

admitting as a possible solution:

ds2 =
( r
`

)m
dt2 − 1

n2 dr2 − r2dΩ2, (40)

with n and m constants of integration. Furthermore, a relation among k, n, and m occurs, i.e.,

f (T) = f0Tk k =
m2 + 4(n− 1)2

4(2 + m− 2n)
6= 0. (41)

This solution is directly linked to the ansatz in (37), while other teleparallel black hole
solutions can be found in [63–70].

3.4. Horava–Lifshitz Gravity

The last alternative theory of gravity we discuss is the four-dimensional Horava–
Lifshitz theory. Let us take into account the action (16) in the spherically symmetric
background (20) with n = 2. This choice, as pointed out in [52,71], yields the solution:

eν = e−λ = 1 + (ω−Λ)r2 −
√

r[ω(ω− 2Λ)r3 + β], (42)

with β and ω constants. Equivalently, by means of the assumption β = 4ωGM and Λ = 0,
the solution can be written as:

eν = 1 + ωr2 −ωr2

√
1 +

4GM
ωr3 , (43)

which, in the second-order expansion
4GM
ωr3 � 1, provides a Schwarzschild-like interval.

4. Power-Counting Analysis

The renormalizability of the above theories of gravity can be developed according
to a power-counting analysis. As a first remark of this section, we point out that the
analysis of the coupling constant mass dimension can provide only an indication about the
renormalizability. Indeed, most of the above treated modified theories of gravity might
be not-renormalizable when more detailed aspects are considered, as well the propagator
homogeneity in the momenta space [72]. Detailed discussions on the renormalizability of
f (R) theories of gravity can be found e.g., in [73–76]. One of the first attempts towards a
renormalization scheme was pursued by Stelle in [77]. He showed that the gravitational
action can be renormalized only when all possible combinations of second-order curvature
invariants are considered along with the Hilbert-Einstein action. Adding terms with more
than four derivatives, indeed, makes the theory finite after a certain order in the loop
expansion, but does not remove the divergences at the one-loop order.

However, in this case, we follow the same prescription as [7] with the aim to find in-
consistencies between the two approaches. Moreover, power counting can suggest possible
candidates for a perturbatively renormalizable theory.

We first consider the Einstein–Hilbert action and its f (R) extension, which is a good
starting point for dealing with theories constructed by the scalar curvature and its deriva-
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tives. Then, we find the renormalizability limit of the modified Gauss–Bonnet gravity and,
finally, we apply the same approach to teleparallel actions. For this purpose, the actions
must be rewritten in terms of a sum between a free term, acting as a Gaussian fixed point,
and other higher perturbative contributions. In this way, it is possible to check the mass
dimension of the coupling constant of each term. The first step is to recast the metric tensor
as a perturbation of the Minkowski background, i.e.,

gµν = ηµν + hµν, (44)

so the Ricci scalar can be written in terms of ηµν and hµν. Considering the Levi–Civita
connection:

Γρ
µν =

1
2
(ηρλ − hρλ)(∂νhλµ + ∂µhνλ − ∂λhµν) (45)

and the form of the scalar curvature:

R = (ηµν − hµν)(∇ρΓρ
µν −∇νΓρ

µρ), (46)

it turns out that the perturbed Ricci scalar depends on the second derivatives of hµν

multiplied by hµν itself. Since we were not interested in writing the exact form of R,
rather to check the mass dimension of each term, a naive procedure permits recasting the
Einstein–Hilbert action as:

S =
1

χ2

∫ [
(∂∂h) + (∂h∂h) + h(∂h∂h) + h2(∂h∂h) + ...

]
d4x, (47)

with χ being a generic coupling constant. Notice that the notation does not take into
account constant factors, while it only considers the amount of h and ∂h occurring in each
term. For instance, the quantity ∂h∂h includes all terms made of the product of the first
derivatives of the tensor hµν. By an appropriate gauge choice, it is always possible to
delete the first term. Thus, by means of the reparameterization h = χh̃, the action can be
written as:

S =
∫ [

(∂h̃∂h̃) + χh̃(∂h̃∂h̃) + χ2h̃2(∂h̃∂h̃) + ...
]
d4x. (48)

In this form, the action accounts for a perturbation of the Gaussian fixed point∫
(∂h̃)2dnx, which is the expression needed in order to check the coupling constant mass

dimension of any terms. To this aim, there is no need to study the mass dimension of higher
order terms, since it can be inferred from the mass dimension of the first one. Because
of the negative mass dimension of χ, the above action shows the reason why GR is not a
renormalizable field theory.

Considering the linearized form of R in Equation (48), the prescription can be easily
extended to the more general action:

S =
1

χ2

∫ √
|g|Rk dnx. (49)

Now, by the expansion (47), the action (49) (up to first order) reads as:

S =
1

χ2

∫
[(∂h∂h) + h(∂h∂h)]kdnx =

1
χ2

∫ k

∑
i=0

(
k
i

)
(∂h∂h)k−ihi(∂h∂h)i dnx =

1
χ2

∫ k

∑
i=0

(
k
i

)
(∂h∂h)khi dnx

=
1

χ2

∫ [
(∂h∂h)k + kh(∂h∂h)k +

k(k− 1)
2

h2(∂h∂h)k + ...
]

dnx

=
1

χ2

∫ [
(∂h∂h)k

(
1 + kh +

k(k− 1)
2

h2 + ... + hk
)]

dnx ∼ 1
χ2

∫ [
(∂h∂h)k + kh(∂h∂h)k

]
dnx. (50)
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Similar to the previous case, to check the coupling constant dimension, we can intro-
duce the definition h = (χ)

1
k h̃, so that the action takes the form:

S =
∫ [

(∂h̃∂h̃)k + k χ
1
k h̃(∂h̃∂h̃)k

]
dnx. (51)

From the initial action (49), it is possible to infer the mass dimension of χ in n-
dimensional Rk gravity, that is χ→ [Mk− n

2 ]. Therefore, power-law f (R) gravity, with f (R),
must satisfy at least one of the following conditions:

1− n
2k
≥ 0 → k < 0 ∨ k ≥ n

2
. (52)

to be power-counting renormalizable. Thus, according to the power-counting argument,
only f (R) = R2 gravity is renormalizable in four dimensions. In addition, all power-law
models of the form f (R) = Rk, with k > 2, are super-renormalizable.

By similar reasons, it is straightforward to show that higher order theories with action
S =

∫ √
|g|�`Rk dnx must satisfy the conditions:

k ≥ n
2
− ` ∨ k ≤ 0 if n > 2`,

k ≤ n
2
− ` ∨ k ≥ 0 if n < 2`,

(53)

to be at least renormalizable. Notice that this result holds for any ` ∈ Z, which means that
even negative powers of the operator � can occur in the action. In this case, the corresponding
theory turns out to be non-local [78,79]. The most general higher order action containing one
single term that depends on the d’Alembert operator and on the scalar curvature is:

S =
1

χ2

∫ √
|g|Rk�`Rp dnx. (54)

In this case, the mass dimension of the coupling constant is [χ] = Mk+`+p− n
2 , and the

first-order linearization of the action (54) reads as:

S =
1

χ2

∫ [
(∂h∂h)k + h(∂h∂h)k

]{
�`(∂h∂h)p +�`[h(∂h∂h)p]

}
dnx. (55)

The reparameterization of h, which allows writing the action in the form required by

power-counting analysis, is h = h̃χ
1

p+k . Therefore, Equation (55) becomes:

S =
∫
(∂h̃∂h̃)k�`(∂h̃∂h̃)p dnx +

∫ {
(∂h̃∂h̃)k�`

[
h̃(∂h̃∂h̃)p]+ h̃(∂h̃∂h̃)k�`(∂h̃∂h̃)p

}
χ

1
p+k dnx. (56)

The conditions that makes the theory power-counting renormalizable are therefore:
k ≥ n

2
− p− ` ∨ k ≤ −p if n > 2`,

k ≤ n
2
− p− ` ∨ k ≥ −p if n < 2`.

(57)

This general result can be extended to actions containing higher order curvature
invariants. For this purpose, we considered as equivalent all those scalar quantities with
the same mass dimensions. This is the case of the Gauss–Bonnet term G and the quadratic
scalar curvature R2. In the modified Gauss–Bonnet gravity with action:

S =
1

χ2

∫ √
|g|Gk�`G p dnx, (58)
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the relation (57) can be recast as:
k ≥ n

4
− p− ` ∨ k ≤ −p if n > 4`,

k ≤ n
4
− p− ` ∨ k ≥ −p if n < 4`.

(59)

Specifically, in the limit ` = p = 0, the condition k > n
4 is recovered. As a consequence,

the four-dimensional action:
S =

1
χ2

∫ √
−gGk d4x, (60)

is not-renormalizable only in the range 0 < k < 1.
To conclude, the last example is given by the action:

S =
1

χ2

∫ √
−gRkGm dnx, (61)

considered, e.g., in [37,80]. The resulting power-counting analysis can be inferred from the
previous cases, so that the theory turns out to be (super-)renormalizable if:

k ≥ n
4
−m ∨ k ≤ −m (62)

It is worth pointing out the analogy with the teleparallel case, where the lineariza-
tion of the metric is replaced by the expansion of the tetrad fields around the unity ma-
trix, namely:

ea
µ = δa

µ + ha
µ. (63)

By means of Equations (63) and (12), the first-order teleparallel action can be written as:

S =
1

χ2

∫
(∂h∂h + h∂h∂h)dnx, (64)

which is formally equivalent to the first-order Einstein–Hilbert action. This implies that the
same results, provided in Equation (57), hold also in this case, and a separate treatment is
not needed. This is mainly due to the mass dimension of the torsion scalar T, which turns
out to be the same as that of the scalar curvature.

5. Renormalizability via the Bekenstein–Hawking Entropy Argument

The renormalizability of theories of gravity can be studied also by comparing their
asymptotic behavior to that of a CFT in the appropriate dimension. To introduce the ap-
proach, let us first treat the case of n-dimensional GR with the cosmological constant, whose
spherically symmetric solution reads:

ds2 =

(
1− ηnGM

rn−3 −
Λ
3

r2
)

dt2 − 1

1− ηnGM
rn−3 − Λ

3 r2
dr2 − r2dΩ2

n−2, (65)

ηn being a constant depending on the spacetime dimension. The Bekenstein–Hawking
formula S = A

4G can be used to infer the relation between S and the energy E . According
to the entropy argument, if such dependence is the same as that of an n-dimensional CFT,
the theory turns out to be renormalizable. For a CFT, the energy turns out to scale as:

S

E ∼
(RT)n−1

Rn−1Tn → S ∼ E
n−1

n . (66)

so that, in four dimensions, the condition S ∼ E 3
4 is satisfied. To compare Equation (66)

with the entropy provided by n-dimensional Schwarzschild black holes, we must dis-
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tinguish the cases Λr2 � 1 and Λr2 � 1. In the former case, the time-like component
simply becomes:

eν = 1− ηnGM
rn−3 , (67)

so that the horizon sits at r̃ ∼ GM
1

n−3 . Therefore, the Bekenstein–Hawking entropy has the
following trend:

S =
A

4G
∼ rn−2

G
∼ E

n−2
n−3 . (68)

By comparing Equation (68) with Equation (66), it turns out that there are no dimen-
sions in which GR can be renormalized. On the other hand, in the latter case (Λr2 � 1), no
terms can be neglected in the time-like component of the interval (65), and the solution can
be written as:

1− ηnGM
rn−3 −

Λ
3

r2 =
rn−3 − ηnGM− rn−1 Λ

3
rn−3 =

Λ
3

3 rn−1

r2Λ − 3 ηnGM
Λ − rn−1

rn−3

. (69)

Considering that, for the first term, the condition
rn−1

r2Λ
� 1 must hold, similar

computations as before show that the horizon is:

r̃ ∼
(

GM
Λ

) 1
n−1

(70)

and the entropy scales as:

S ∼ rn−2

G
∼ E

n−2
n−1 . (71)

Here as well, according to the entropy argument, the Schwarzschild–de Sitter theory
cannot be renormalized in any dimensions, in agreement with the power-counting analysis
in Section 4. However, as will be shown in the next section, this represents the only case in
which the two approaches agree.

5.1. The f (R) Case

Let us now follow a similar procedure for spherically symmetric solutions coming
from GR extensions, starting from f (R) gravity. As shown in the previous section, f (R)
theory admits the following field equations’ solution:

eν = e−λ =
c2(n− 4)r3−n − 24GMnr3−n + 2(n− 2)(n2 − n + r2R0)]

2n(n− 1)(n− 2)
k =

n
2

, (72)

where the constant c1 can be identified with GM. By setting c2 = 0, the solution becomes:

eν = e−λ =
r3−n

(
−12 GMn

R0
+ n(n−1)(n−2)

R0
rn−3 + rn−1

)
2n(n− 1)(n− 2)

k =
n
2

(73)

and under the assumption
n(n− 1)(n− 2)

R0
rn−3 � 1, the horizon sits at:

r̃ ∼ M
1

n−1 . (74)

By applying the Bekenstein–Hawking formula and comparing the energy scale with
Equation (68), we notice that the entropy argument imposes the theory to be non-renormalizable
regardless of the value of n. This result disagrees with the power-counting analysis in
Section 4. Furthermore, noticing that the solution of the n-dimensional modified f (R)
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gravity can be recast as an Einstein–de Sitter solution, the horizon must be the same as
Equation (70).

5.2. The f (G) Case

With the purpose of studying the Bekenstein–Hawking entropy provided by f (G) = f0Gk

gravity, let us rewrite the spherically symmetric solution (31) as:

eν =
r

n−5
2 ± η1,n M± r

n−1
2 η2,n

r
n−5

2
, (75)

with η1,n and η2,n being constants depending on the dimension. In the limit r
n−5

2 � r
n−1

2 η2,n,
the horizon and the entropy scale as:

r̃ ∼ M
2

n−1 S =
A

4G
∼ rn−2

G
∼ E

2(n−2)
n−1 . (76)

This means that the entropy argument provides no values of k and n for which
f (G) = f0Gk gravity is renormalizable. On the other hand, the analysis in Section 4
suggests that the theory is power-counting renormalizable for any k ≥ n/4, at odds with
the entropy analysis.

5.3. The Teleparallel Case

In the teleparallel case, the power-law solution (40) has no event horizon besides
r = 0, so that the comparison between the two approaches cannot be applied. Let us
therefore consider the solution (36), coming from a diagonal set of tetrad fields. In this
case, the torsion scalar is constant: T = T0. Due to the general structure of the theory, some

difficulties arise in recasting the ratio
c3

c5
as a mass term. This is due to the presence of

torsion to label the spacetime, which implies that the spin of the compact object must be
somewhere considered. However, following [14] and identifying the constant c5 with T0,
the horizon sits at:

r̃ ∼ T
1
8

0 . (77)

Since the energy is linearly proportional to the torsion, the entropy scales as:

S ∼ A
4G
∼ E

1
4 , (78)

and suggests that the modified teleparallel gravity with function f (T) = f0Tk is not
renormalizable for any k. On the contrary, according to the power-counting renormalization
scheme, the function f (T) = f0Tk is renormalizable for any k > 2. Here as well, the two
approaches are not in agreement.

5.4. The Horava–Lifshitz Case

To conclude, we showed that also the analysis of Horava–Lifshitz gravity provides
disagreements between the entropy and the power counting arguments. Though we did not
consider Horava–Lifshitz gravity in Equation (4), we took for granted the result provided
in [47], where the author showed that the theory is power-counting renormalizable.

Considering the spherically symmetric solution provided in [52], the horizon is:

r̃ = GM[1−
√

1− 1/(2ωGM2)]. (79)

In the limit 2ωGM2 � 1, the horizon turns out to have the same form as in GR,
namely r̃ ∼ 2GM, so that the theory can be considered non-renormalizable according to
the entropy argument. In general, without assuming any further constraints, the entropy
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S ∼ r̃n−2 behaves differently than that of CFT, denying the validity of this method to test
the renormalizability of alternative theories of gravity.

6. Conclusions

In this paper, we addressed some concerns claiming for “no-go” arguments to the
asymptotic safety of GR, also taking into account power-counting analysis of modified
theories of gravity as counterexamples. In particular, we addressed the analysis to the so-
called entropy argument [7], which is naturally based on physical intuition. However, the
intuition behind it seems unjustified when applied to energy scales far beyond the scales of
the theories from which they come, as pointed out in [9]. One of the main premises of the
entropy argument is the presupposition of the validity of the Bekenstein–Hawking entropy
formula at high-energy scales, but there is no a priori reason to expect the Bekenstein–
Hawking entropy to be a well-defined quantity at Planck scales. Furthermore, assuming
the Bekenstein–Hawking formula, working at high energies, means that its validity is
exact, but quantum corrections to the formula, as shown, e.g., in [10,11], could be a strong
indication that this assumption is not justified. Another assumption on which the entropy
argument is based is that of black hole dominance at high energies, extrapolated from the
classical theory. Unfortunately, so far, very little knowledge concerns mini and quantum
black holes.

In summary, we briefly introduced some modified theories of gravity and wrote
down the related explicit spherically symmetric solutions. Then, we performed a naive
power counting analysis, which at least in these cases, can give sufficient conditions. This
was done in order to make a comparison with the entropy argument. What we derived
is that, even for these simple cases, the two methods disagree. Moreover, as pointed
out throughout the paper, f (R) = Rk field equations can be analytically solved in an
n-dimensional spherically symmetric background only when the relation k = n/2 occurs.
This result is even more interesting if compared to f (G) gravity. Indeed, it turns out that,
in the same background, f (G) = Gk gravity admits analytic solutions only when k = n/4.

Of course, this is not a proof of the overall validity of the entropy argument, which has
to be better investigated in modified gravity, as we will do in future papers. However, the
approach is in agreement with the results provided by Ref. [81], according to which relation
of entropy density versus energy density must be adopted to check renormalizability.

We also aim to study the power counting renormalizability and unitarity of other mod-
ified theories of gravity, such as R2 + RµνRµν, which is scale invariant and multiplicatively
renormalizable, but may have some problems with unitarity.
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