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Abstract: We discuss the quantization in the minisuperspace for the generalized fourth-order telepar-
allel cosmological theory known as f (T, B). Specifically we focus on the case where the theory is
linear on the torsion scalar, in that consideration we are able to write the cosmological field equations
with the use of a scalar field different from the scalar tensor theories, but with the same dynamical
constraints as that of scalar tensor theories. We use the minisuperspace description to write for the
first time the Wheeler-DeWitt equation. With the use of the theory of similarity transformations we
are able to find exact solutions for the Wheeler-DeWitt equations as also to investigate the classical
and semiclassical limit in the de Broglie -Bohm representation of quantum mechanics.
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1. Introduction

Modified theories of gravity have drawn the attention of cosmologists the last years
because they provide geometric mechanisms for the explanation of the cosmological obser-
vations [1–4]. The common feature of the modified theories of gravity is the introduction of
geometric invariants in the Einstein-Hilbert action such that the new field equations admit
additional dynamical terms which drive the dynamics in order to explain the observations.
The most simple modification of the Einstein-Hilbert Action which has been proposed
in the literature is the R2-gravity in which the quadratic Ricci scalar term has been intro-
duced [5]. That specific modification is the geometric mechanism for one of the well-known
inflationary models [6,7]. Generalizations of the latter modification lead to the so-called
f (R)-theory in which the gravitational Action Integral is a function f of the Ricci scalar [8].
f (R)-theory is a higher-order theory while with the use of a Lagrangian multiplier it can
be written as a scalar-tensor theory [9–11]. However, the use of the Ricciscalar to modify
General Relativity is not the unique approach which has been studied in the literature.

The formulation of the teleparallel equivalent of General Relativity (TEGR) is based on
the use of the curvature-less Weitzenböck connection instead of using the torsion-less Levi-
Civita connection. The Lagrangian of TEGR is torsion scalar T. Contrary to the Ricciscalar
for General Relativity [12,13]. A generalization of TEGR gravity is the f (T)-theory [14]
which is inspired by the f (R)-theory. In contrary to f (R)-theory, f (T)-theory is a second-
order theory, since torsion tensor includes only products of first derivatives. However,
while f (T)-theory is a second-order as General Relativity there are various differences.
However, the Ricciscalar and the Torsion scalar are not the only invariants which have
been proposed in the literature, we refer the reader to [15–29] and references therein.

In this work we are interested in the modified theory of gravity known as f (T, B)
theory, where T is the torsion scalar and B is the boundary term defined as B = T + R [30].
Because B includes second derivatives, f (T, B) is a fourth-order theory of gravity. In
general is different from that of f (R) theory. Specifically the latter is recovered for f (T, B) =
f (B− T). Moreover, in the simple case when f,BB = 0, the theory reduces to that of f (T)
teleparallel gravity [31], thus in this study we shall consider the case where f,BB 6= 0. Some
recent analysis on f (T, B) gravity can be found in [32–34] where in [35] the modified theory
is tested for the solution of the H0 tension.
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A special case of the f (T, B) theory which has been studied before is that in which
f,TT = 0, f,TB = 0 , which means that f is a linear function of T, that is, f (T, B) =
T + F(B) [36]. In the latter consideration in the case of Friedmann–Lemaître–Robertson–
Walker (FLRW) universe, the theory can be written as a scalar field theory, but not a scalar
tensor theory, with the same number of dynamical constraints as the f (R)-theory. That
observation leads to field equations which can be described by a point-like Lagrangian
with the same number of constraint equations as f (R)-gravity which means that there is
a minisuperspace description for the theory. The general asymptotic behaviour as also
the stability of some important cosmological solutions such are the scaling or the de Sitter
solutions have been studied before in [36,37]. Moreover, the integrability properties of the
field equations for this modified theory of gravity were investigated in [38].

We make use of the existence of the minisuperspace for the latter f (T, B) theory in
cosmological studies such that to perform a quantization following the minisuperspace
quantization which leads to the Wheeler-DeWitt (WdW) equation [39]. The WdW equation
is actually in general a hyperbolic functional differential equation on a spatial superspace
with infinite degrees of freedom. However, when there exists a minisuperspace description
the infinite degrees of freedom reduce to a finite number and the WdW equation is repre-
sented as a single equation for all the points of the spatial hypersurface. The WdW has been
investigated for various modified f -theories of gravity [40–44] but not for a teleparallel
f -theory before. Recently, in the de Broglie-Bohm representation of quantum mechanics it
was found that in the semiclassical limit of the WdW equation for the Szekeres universe
the field equations are modified by a quantum potential such that the Szekeres universe
does not remain silent in the early universe [45]. Moreover, in scalar field theory, the same
approach gives a mechanism in which terms of a pressureless fluid are introduced in the
field equations [46]. An interesting discussion and critique on the WdW equation can be
found in [47]. The plan of the paper is as follows.

In Section 2, we present the cosmological model of our consideration, we reproduce
previous results and we show how the f (T, B) theory can be written with the use of
a Lagrange multiplier into a scalar field theory with a minisuperspace description. In
Section 3, we write the WdW equation for the theory of our analysis and we apply the
theory of similarity transformations in order to constrain the unknown functional form
of the theory such that the similarity transformations which lead to the existence of exact
solutions. The complete classification for the similarity transformations with generators
point symmetries is presented. Furthermore, the one-dimensional optimal system is
derived. The latter is used to write all the exact wavefunctions. Furthermore, in Section 4
we investigate the classical limit in the WKB approximate where we find the analytic
solutions for the classical gravitational field equations In addition we investigate the
quantum potentiality of the theory according to the Bohmian representation of quantum
mechanics. Finally in Section 5, we summarize our results and we draw our conclusions.

2. f (T , B) Cosmology

Consider ei(xµ) to be the vierbein fields, which are the dynamical variables of telepar-
allel gravity. Vierbein fields form an orthonormal basis for the tangent space at each point
P with coordinates, P(xµ), of the manifold. Hence, g(ei, ej) = ei · ei = ηij, where ηij is the
line element of four-dimensional Minkowski spacetime. In a coordinate basis the vierbeins
are expressed as ei = hµ

i (x)∂i, from where it follows that the metric of the spacetime is

expressed as gµν(x) = ηijhi
µ(x)hj

ν(x).
The main characteristic of the teleparallel gravity is the curvatureless Weitzenböck con-

nection Γ̂λ
µν = hλ

a ∂µha
ν from where we can define the nonnull torsion tensor, Refs. [48,49]

Tβ
µν = Γ̂β

νµ − Γ̂β
µν = hβ

i (∂µhi
ν − ∂νhi

µ). On the other hand, the Lagrangian density of the
teleparallel gravity, from which is the scalar T = Sβ

µνTβ
µν, where Sβ

µν is defined as
Sβ

µν = 1
2 (K

µν
β + δ

µ
β Tθν

θ − δν
βTθµ

θ). Kµν
β is the contorsion tensor and equals the difference
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between the Levi-Civita connections in the holonomic and the nonholonomic frame and it
is defined by the nonnull torsion tensor, Tµν

β, as Kµν
β = − 1

2 (T
µν

β − Tνµ
β − Tβ

µν).
f (T, B) gravity is an extension of teleparallel theory. f (T, B) is a fourth-order the-

ory where the Action integral is a function of scalar T and of the boundary term B =

2e−1
ν ∂ν

(
eT ρν

ρ

)
, which is defined as B = T + R, where R is the Ricciscalar. Specifically, the

Action integral is defined as

S ≡ 1
16πG

∫
d4xe[ f (T, R + T)] + Sm ≡

1
16πG

∫
d4xe[ f (T, B)] + Sm, (1)

with e = det(ei
µ) =

√−g and Sm describes the additional matter sources.
Variation with respect to the vierbein fields of (1) provides the field equations [31]

4πGeT (m)
a

λ =
1
2

ehλ
a ( f,B)

;µνgµν −
1
2

ehσ
a ( f,B)

;λ
;σ +

1
4

e(B f,B − f )hλ
a + (eSa

µλ),µ f,T

+ e
(
( f,B),µ + ( f,T),µ

)
Sa

µλ − e f,TTσ
µaSσ

λµ, (2)

where T (m)
a

λ is the energy-momentum tensor of the matter source. When f (T, B) is linear
on B, i.e., f (T, B) = f (T) + f1B the latter equations take the form of f (T) teleparallel grav-
ity

With the use of the Einstein tensor Gλ
a the field equations are expressed as

4πGeT (m)
a

λ = e f,TGλ
a +

[
1
4
(T f,T − f )ehλ

a + e( f,T),µSa
µλ

]
+ (3)

+

[
e( f,B),µSa

µλ − 1
2

e
(

hσ
a ( f,B)

;λ
;σ − hλ

a ( f,B)
;µνgµν

)
+

1
4

eBhλ
a f,B

]
or

e f,TGλ
a = 4πGeT (m)

a
λ + 4πGeT (DE)

a
λ, (4)

that is,
eGλ

a = Ge f f

(
eT (m)

a
λ + eT (DE)

a
λ
)

, (5)

in which now Ge f f =
4πG

f,T
,is an effective varying gravitational constant.

We have defined as T (DE)
a

λ the effective energy momentum tensor which attributes
the additional dynamical terms which follows from the modified Action Integral,

4πGeT (DE)
a

λ = −
[

1
4
(T f,T − f )ehλ

a + e( f,T),µSa
µλ

]
+ (6)

−
[

e( f,B),µSa
µλ − 1

2
e
(

hσ
a ( f,B)

;λ
;σ − hλ

a ( f,B)
;µνgµν

)
+

1
4

eBhλ
a f,B

]
.

The geometric energy momentum tensor reads T (DE)
a

λ = T (T)
a

λ + T (B)
a

λ in which [36]

4πGeT (T)
a

λ = −
[

1
4
(T f,T)ehλ

a + e( f,T),µSa
µλ

]
(7)

and T (B)
a

λ is given by the expression

4πGeT (B)
a

λ = −
[

e( f,B),µSa
µλ − 1

2
e
(

hσ
a ( f,B)

;λ
;σ − hλ

a ( f,B)
;µνgµν

)
+

1
4
(eB f,B − f )hλ

a

]
. (8)

2.1. The f (T, B) = T + F(B) Theory

In this work we are interested in the case where f is a linear function of T, that is,
f (T, B) = T + F(B). In that case, the only geometric fluid components which survive are
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the one of T (B)
a

λ while Ge f f = 4πG. In addition, by using a Lagrange multiplier the extra
degrees of freedom have been attributed to a scalar field. It is important to mention that
this scalar field does not belong to the family of scalar-tensor theories [11].

According to the cosmological principle in large scales the universe is isotropic and
homogeneous and described by the Friedmann–Lemaître–Robertson–Walker (FLRW) line
element [50]

ds2 = −N2(t)dt2 + a2(t)
(

dx2 + dy2 + dz2
)

, (9)

where a(t) is the scale factor and describes the radius of the three-dimensional Euclidean
space and N(t) is the lapse function. Furthermore, from the cosmological principle we
select the observer to be uµ = 1

N δ
µ
t such that uµuµ = −1.

For the vierbein we consider the following diagonal frame hi
µ(t) = diag(N(t), a(t), a(t),

a(t)) from which we calculate

T =
6

N2

(
ȧ
a

)2
, B =

6
N2

(
ä
a
+

2ȧ2

a2 −
ȧṄ
aN

)
. (10)

We define the new variables φ = Φ,B(B) and V(φ) = BF(B),B − F(B), then the energy

momentum T (B)
a

λ (8) can be written in the equivalent form

4πGeT (B)
a

λ = −
[

e(F(B),BB)B;µSa
µλ − 1

2
e
(

hσ
a

(
F(B),B

) ;λ

;σ
− hλ

a

(
F(B),B

);µν
gµν

)
+

1
4

e
(

Fβ(B),B − F(B)
)

hλ
a

]
(11)

or

4πGeT (B)
a

λ = −
[

eφ,µSa
µλ − 1

2
e
(

hσ
a (φ)

;λ
;σ − hλ

a (φ)
;µνgµν

)
+

1
4

V(φ)hλ
a

]
. (12)

Hence for N(t) = 1 the gravitational field equations are [36,37]

3H2 = 3Hφ̇ +
1
2

V(φ) + ρm, (13)

2Ḣ + 3H2 = φ̈ +
1
2

V(φ)− pm (14)

while it follows the constraint equation

1
6

V,φ + Ḣ + 3H2 = 0 (15)

where H = ȧ
a is the Hubble function.

Minisuperspace Description

The gravitational field Equations (13)–(15) are derived by the point-like singular
Lagrangian function [36]

L(N, a, ȧ, φ, φ̇) = − 6
N

aȧ2 +
6
N

a2 ȧφ̇− Na3V(φ) + Lm, (16)

which is a minisuperspace description for the theory. In particular Equation (13) follows
from the variation with respect to the variable N, ∂L

∂N = 0, while the rest second-order
equations follow by the variation with respect to the scale factor and the scalar field.
Moreover, we have assumed that Lm denotes the Lagrangian component of the additional
matter source ρm, pm. We proceed by assuming that the additional matter source is an
ideal gas, that is pm = wmρm with equation of state parameter ρ̇m + 3(1 + wm)Hρm = 0,
that is ρm = ρm0a−3(1+wm).
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Hence, from Lagrangian (16) we can define the momentum

pa = −
12
N

aȧ +
6
N

a2φ̇ , pφ =
6
N

a2 ȧ, (17)

which can be used to write the Hamiltonian of the field equations

H = N

(
pa pφ

3a2 +
p2

φ

3a3 + a3V(φ) + 2ρm0a−3wm

)
, (18)

while from (13) it follows H = 0. Moreover, the field equations can be written in the
equivalent form

ȧ = N
pφ

3a2 , φ̇ = N
pa

3a2 +
2
3

Npφ , ṗφ = −Na3V,φ , (19)

ṗa = N
pa pφ

6a3 − 3a2NV(φ)− 6ρm0Na−3wm−1 . (20)

The existence of the minisuperspace description for this generalized teleparallel model
is essential in order to proceed with the quantization of the theory. Moreover because the
quantum effects refer to the very early universe we assume that there is not any contribution
of the matter source in the field equations, that is, we assume that ρm = 0.

3. Wheeler-DeWitt Equation

From the point-like Lagrangian (16) we define the minisuperspace

ds2 = −12ada2 + 12a2dadφ (21)

which is a two-dimensional space with Ricciscalar R(2) = 0, which means that it is the
two-dimensional flat space.

In general, the WdW equation is defined with the use of the conformal invariant
Laplace operator L̂γ = ∆γ + n−2

4(n−1)Rγ where γij remarks the minisuperspace metric, ∆γ is
the Laplace operator, Rγ is the Ricciscalar of γ and n = dim γ. For the two-dimensional
minisuperspace of the theory of our consideration it follows that L̂γ = ∆γ. In this case the
WdW equation is equivalent to the classical quantization [x, p] = δij and replace p with the
operator p = i ∂

∂q in the Hamiltonian Equation (18). Therefore, we write the WdW equation

W ≡
(

1
3a3

(
a

∂2

∂a∂φ
+

∂2

∂φ2

)
− a3V(φ)

)
Ψ(a, φ) = 0, (22)

where Ψ(a, φ) is the wavefunction of the universe.
In order to solve the latter partial differential equation we investigate for specific

functions of the scalar field potential V(φ) in which we can define differential operators
which leave the wavefunction invariant. Specifically, we shall investigate the existence
of one-parameter point transformations which keep the WdW equation invariant. The
infinitesimal generator of the one-parameter point transformation will be called a Lie sym-
metry.

3.1. Quantum Operators

Consider the vector field X =ξa(a, φ, Ψ)∂a + ξφ(a, φ, Ψ)∂φ + η(a, φ, Ψ)∂Ψ defined in
the jet space {a, φ, Ψ}, which is the generator of the infinitesimal one-parameter point
transformation P→ P′ defined as [51,52](

a′, φ′, Ψ′
)
= (a, φ, Ψ) + ε

(
ξa(a, φ, Ψ), ξφ(a, φ, Ψ), η(a, φ, Ψ)

)
, (23)
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in which ε is an infinitesimal parameter. Then equation (22) will remain invariant under
the action of the point transformation if and only if

lim
ε→0

W(a′, φ′, Ψ′)−W(a, φ, Ψ)

ε
= 0 (24)

or equivalently LXW = µW, modW = 0, where LX is the Lie derivative with respect to the
vector field X and µ is a function which should be determined. When the latter condition is
true, field X is called Lie symmetry for the differential equation W.

For the conformal Laplace equation it was found that the generic Lie symmetry vector
X is of the form [53]

X = ξ i
(

yk
)

∂i +

[
(2− n)

2
ψΨ + α0Ψ + β(a, ψ)

]
∂Ψ, (25)

in which ξ i
(

yk
)
=
(
ξa(a, φ), ξφ(a, φ)

)
is a conformal Killing vector field of the minisuper-

space γij, with conformal factor ψ(a, φ), that is, Lξ γij = 2ψγij and ψ = 1
n∇(γ)jξ

j. Moreover,

the conformal Killing vector ξ i
(

yk
)

and the effective potential function Ve f f (a, φ) = a3V(φ)

are constraint as LξVe f f + 2ψVe f f = 0. Moreover, a0 is a constant, while β(a, ψ) denotes the
infinity number of solutions of the original conformal Laplace equation. These two vector
fields indicate that the differential equation is linear. The vector field β(a, φ)∂Ψ is a trivial
symmetry vector and has not any application on the construction of similarity solutions.
Thus we shall omit it in the following analysis.

The main application of Lie point symmetries in partial differential equations is the
determination of similarity transformations which can be used to reduce the number
of indepedent variables for the equation. Indeed, we find the point transformations in
which the conformal vector field ξ i is written in normal coordinates that is, we search
the transformation yk → yJ in which the Lie symmetry vector is written in the normal
form [51,52]

X = ξ i
(

xk
)

∂i +

[
(2− n)

2
ψΨ + α0Ψ

]
∂Ψ. (26)

Now there two ways to proceed with the application of the symmetry vector. The two
approaches provide the same result, that is, they are equivalent.

The first approach is the derivation of the zero-order invariants for the symmetry
vector which follow by the solution of the system

dyJ

1
=

dΨ( 2−n
2 ψ + α0

)
Ψ

, (27)

that is yb, Ψ
(

yb, yJ
)

= Φ
(

yb
)

exp
[∫ ( 2−n

2 ψ + α0
)
dyJ]. Therefore by defining yb to be

the new independent variables and Φ
(

yb
)

the dependent variable we end with a new
differential equation known as reduced equation.

On the other hand, for partial differential equations every Lie symmetry is equivalent
to the Lie-Bäcklund vector field X̂ =

(
ΨJ −

( 2−n
2 ψ + a0

)
Ψ
)
∂Ψ. A symmetry vector trans-

forms solutions under solutions; that is, if Ψ is a solution then X̂Ψ = a1Ψ. from where
there is defined the quantum operator

ΨJ −
(

2− n
2

ψ + α0

)
Ψ = α1Ψ. (28)

which provides Ψ
(

yb, yJ
)
= Φ

(
yb
)

exp
[∫ ( 2−n

2 ψ + α
)
dyJ], with α = α0 + α1. Hence, it is

clear that the approaches are equivalent. Moreover, for our consideration in which n = 2, it
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follows that the quantum operator (28) reads ΨJ − αΨ = 0, which provides the reduction

Ψ
(

yb, yJ
)
= Φ

(
yb
)

exp
(
αyJ).

We apply the symmetry condition (24) for Equation (22) and we find the following
functional forms of V(φ) in which there exist Lie symmetries which keep the wavefunction
Ψ invariant.

The scalar field potentials are derived to be

VI(φ) = V0e−λφ , (29)

VI I(φ) = V0

(
eφ + V1e(1+κ)φ

)−2− 6
κ e

5+(κ+1)2
κ φ. (30)

The Lie symmetries for the WdW equation for the scalar field potential VI(φ) are

X1 = a−λeλφ∂φ , X2 = λa∂a + ∂φ , X3 = aλ−6(a∂a + ∂φ

)
, (31)

while for the potential function VI I(φ) the Lie symmetry vector is

X4 = V1a1+κ∂a + aκ
(
V1 + e−κφ

)
∂φ , (32)

while in both cases the WdW equation admits the trivial symmetry vector XΨ = Ψ∂Ψ.
From the symmetry vectors we can construct the corresponding operators

Q̂1 = a−λeλφ ∂

∂φ
, (33)

Q̂2 = λa
∂

∂a
+

∂

∂φ
, (34)

Q̂3 = aλ−6
(

a
∂

∂α
+

∂

∂φ

)
, (35)

Q̂4 = V1a1+κ ∂

∂a
+ aκ

(
V1 + e−κφ

) ∂

∂φ
. (36)

For the potential VI(φ) the WdW equation admits more than one quantum operators,
thus the natural question which follows is, how many independent quantum operators can
be constructed. Indeed, if we consider general linear operator Q̂ = ρ1Q̂1 + ρ2Q̂2 + ρ3Q̂3 we
should define the values of the coefficients ρ1, ρ2, ρ3 which lead to independent similarity
solutions. The problem is equivalent with the derivation of the one-dimensional optimal
system for the WdW Equation (22).

By definition, for the three-dimensional Lie algebra G3 with elements {X1, X2, X3} and
structure constants CA

BC, we define the two symmetry vectors [51,52]

Z =
3

∑
i=1

ρiXi , Y =
3

∑
i=1

ζiXi , ρi, ζi are coefficient constants. (37)

Then we shall say that the vector fields Z and Y are equivalent and provide the
same similarity transformation if Y = ∑n

j=i Ad(exp(εiXi))Z or W = cZ , c = const that is
ζi = cρi. The operator Ad(exp(εXi))Xj is defined as

Ad(exp(εXi))Xj = Xj − ε
[
Xi, Xj

]
+

1
2

ε2[Xi,
[
Xi, Xj

]]
+ ... (38)

and it is called the adjoint representation, which has the property Ad(exp(εX))X = X.
Therefore, the derivation of all the independent Lie symmetries and their independent
linear combination lead to the one-dimensional optimal system.
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For the Lie algebra G3 we calculate the Adjoint-representations

Ad(exp(εX1))X2 = X2 − ελ(λ− 6)X1 , Ad(exp(εX1))X3 = X3 , (39)

Ad(exp(εX2))X1 = eελ(λ−6)X1 , Ad(exp(εX2))X3 = e−ελ(λ−6)X3 , (40)

Ad(exp(εX3))X1 = X1 , Ad(exp(εX3))X2 = X2 + ελ(λ− 6)X3. (41)

Consequently, the one-dimensional system consists by the one-dimensional Lie al-
gebras {X1} , {X2} , {X3} , {X1 ± X3}, from which it follows that the quantum opera-
tors that we should consider in order to find all the possible independent solutions are{

Q̂1
}

,
{

Q̂2
}

,
{

Q̂3
}

,
{

Q̂1 + Q̂3
}

.

3.2. Potential Function VI(φ)

For the scalar field potential VI(φ), with the use of the operator Q̂1 we define the
constraint equation Q̂1Ψ = q1Ψ, thus from the WdW equation we find

Ψ1(a, φ) = Ψ0
1 exp

(
q1

λ
aλe−λφ +

3V0

q1

a6−λ

6− λ

)
. (42)

Similarly with the use of the operator Q̂2, that is, Q̂2Ψ = q2Ψ we find the similarity
solution

Ψ2(a, φ) = a−
q2(λ−3)
λ(λ−6) e

q2φ

2(λ−6)

(
Ψ01

2 J q2
λ(λ−6)

(
−2

√
3V0

λ(6− λ)
a3e−

λ
2 φ

)
+ Ψ02

2 Y q2
λ(λ−6)

(
−2

√
3V0

λ(6− λ)
a3e−

λ
2 φ

))
, (43)

where J, Y are the Bessel functions.
Furthermore, from the constraint equation Q̂3Ψ = q3Ψ we derive the wavefunction

Ψ3(a, φ) = Ψ0
3 exp

(
3V0

q3λ
aλe−λφ +

q3

6− λ
a6−λ

)
. (44)

Moreover, from the operator Q̂1 + Q̂3 we construct the constraint equation (Q̂1 + Q̂3)Ψ
= q+Ψ which with the use of the WdW equation provides the wavefunction

Ψ+(a, φ) = exp
(

q+

λ− 6
a6−λ

)(
Ψ01
+ exp

(
∆+

(
aλe−λφ(λ− 6)− a6−λ

))
+ Ψ02

+ exp
(

∆−
(

aλe−λφ(λ− 6)− a6−λ
)))

. (45)

where ∆± = −−q+±
√
(q+)2−12V0

2λ(λ−6) .

3.3. Potential Function VI I(φ)

We continue our analysis with the derivation of the similarity solution for the WdW
equation for the scalar field potential VI I(φ). Thus, with the use of the unique admitted
operator Q̂4 we define the constraint equation Q̂4Ψ = q4Ψ. In order to write the solution
we prefer to work in normal coordinates, hence we perform the change of variables

a = x−
1
κ , e−κφ =

V1x
eκy − x

. (46)

In the new variables the WdW equation becomes(
κV1ey(6+κ) ∂2

∂x∂y
+ V1e6y ∂2

∂y2 − κe6yV1
∂

∂y
+ 3V0

)
Ψ(x, y) = 0 (47)
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while the constraint equation is simplified in the simplest form
(

∂
∂x − q4

)
Ψ(x, y) = 0.

Hence the similarity solution is

Ψ(x, y) = e−q4xU(y) (48)

in which U(y) solve the differential equation(
−q4κV1ey(6+κ) ∂

∂y
+ V1e6y ∂2

∂y2 − κe6yV1
∂

∂y
+ 3V0

)
U(y) = 0 (49)

where a special solution for q4 = 0 is

U(y) = e
κ
2 y

(
U1 J κ

3

(√
V0

3V1
e−3y

)
+ U2Yκ

3

(√
V0

3V1
e−3y

))
. (50)

On the other hand for q4 6= 0 for κ = −6 the closed form solution of U(y) is expressed
in terms of Kummer’s M(α, β, x) and Tricomi’s U(α, β, x) functions, such as,

U(y) = e−6y
(

U1M
(

α, 2, q4e−6y
)
+ U2U

(
α, 2, q4e−6y

))
, α = −1 +

V0

12q4V1
. (51)

4. Semi-Classical Limit

In the Madelung representation [54] of the complex-wave function of the universe
Ψ(a, φ) = Ω(a, φ)e

i
h̄ S(a,φ), the real part of the WdW Equation (22) reads

1
3a3

(
a
(

∂S
∂a

)(
∂S
∂φ

)
+

(
∂S
∂φ

)2
)
+ a3V(φ)− h̄2

2Ω
∆γ(Ω) = 0, (52)

where in the limit h̄2 → 0, the Hamilton-Jacobi equation of the gravitational field equations
is recovered. The additional term, VQ = − h̄2

2Ω ∆γ(Ω) which depends on the amplitude of the
wavefunction Ψ(a, φ) is called the quantum potential in the de Broglie-Bohm representation
of quantum mechanics [55,56].

We continue our analysis by studying first the classical limit of the of the WKB
approximation, while secondly we investigate the case in which the effects of the quantum
potential are assumed nonzero.

4.1. Classical Limit

In this section we study the classical limit without any quantum potential term and
we derive the solution of the Hamilton-Jacobi equation. The latter is used to simplify the
field equations.

4.2. Potential Function VI(φ)

For the potential function VI(φ) from the closed-form solutions of the WdW equation
we derived before we can easily see that the solution of the Hamilton-Jacobi Equation (52) is

S(a, φ) =
1
λ

aλe−λφ + 3V0
a6−λ

6− λ
. (53)

Hence, we calculate pφ = −aλe−λφ, pa = aλ−1e−λφ + 3V0a5−λ where the field equa-
tions are reduced to the following system of first-order ordinary differential equations

ȧ = −N
3

aλ−2e−λφ , (54)

φ̇ =
N
3

(
aλ−3e−λφ + 3V0a3−λ − aλe−λφ

)
. (55)
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Without loss of generality we assume N(t) = −3a2−λeλφ, which provides a(t) = t and

φ̇ =
tλ−3e−λφ + 3V0t3−λ − t2e−λφ

tλ−2e−λφ
, (56)

which can be integrated explicitly.

dφ

da
= −

(
a−1 + 3V0a−1eλφ − a2

)
4.3. Potential Function VI(φ)

As far as the second scalar field potential in the new coordinates {x, y} is concerned
the Hamilton-Jacobi equation reads((

κV1

(
∂S
∂x

)(
∂S
∂y

)
+ V1

(
∂S
∂y

)2
)
−V0e−κy−6y

)
= 0 (57)

where we have replaced N = 3
(

x1+ 3
κ (1− xe−κy)

)−1
. Moreover in the new coordinates

we have ẋ = py , ẏ = κV1 px + 2V1 py.
From (57) we derive the solution for the Hamilton-Jacobi equation

S(x, y) =
I0

2
(2x− κy)−

√
κ2V1 I2

0 + 4V1V0eKy

V1K
+

1
2

ln

κV1 I0 +
√

κ2V1 I2
0 + 4V1V0eKy

κV1 I0 −
√

κ2V1 I2
0 + 4V1V0eKy

,

where K = −(6 + κ) and I0 is the conservation law corresponding to the symmetry vector
X4. Therefore

ẋ =
2V0eKy

κV1V0 −
√

V1
(
κ2 I2

0 V1
)
+ 4V0eKy

, (58)

ẏ = κV1 I0 +
4V0V1eKy

κV1V0 −
√

V1
(
κ2 I2

0 V1
)
+ 4V0eKy

. (59)

In the simple case where I0 = 0 the Hamilton-Jacobi equation provides S(x, y) =

− 2
KV1

√
V1V0eKy, from which the reduced system follows,

ẋ = −

√
V0

V1
e

K
2 y , ẏ = 2

√
V1V0e

K
2 y (60)

with closed-form solution y(t) = − 1
K ln

(
V0V1K2(t− t0)

2
)

and x(t) = − 1
KV1

ln(t− t0) +
x0.

4.4. Quantum Potentiality

For the derivation of the semi-classical solution in the de Broglie-Bohm representation
of quantum mechanics, in the wavefunction, Ψ(a, φ) = Ω(a, φ)e

i
h̄ S(a,φ), S(a, φ) it is assumed

to be the solution of the modified Hamilton-Jacobi equation, which is used to reduce the
field equations into a system of two first-order ordinary differential equations.

4.5. Potential Function VI(φ)

For the wavefunctions which correspond to VI(φ) a nonconstant amplitude Ω(a, φ)
follows from the wavefunction Ψ2(a, φ) as expressed by Equation (43). For Ψ02

2 = 0

and in the limit in which a3e−
λ
2 φ → ∞, the wavefunction is approximated by Ψ2(a, φ) =
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√
2

πZ e
q2φ

2(λ−6)−
q2(λ−3)
λ(λ−6) ln a cos

(
Z− q2

λ(λ−6)
π
2 −

π
4

)
where Z = −2

√
3V0

λ(6−λ)
, while q2 is assumed

to be an imaginary number, i.e., q2 = ı́|q2|.
Hence, Ω(a, φ) =

√
2

πZ from where we end with the quantum potential term VQ(a, φ)

= λ(λ−6)
96 a−3, which means that when a3e−

λ
2 φ → ∞, a term which corresponds to an ideal

gas with equation of state parameter w = 1, that is, a stiff fluid component, is introduced
in the field equations as a quantum correction. Now the quantum correction is important
for small values of a, that is when e−

λ
2 φ → ∞.

4.6. Potential Function VI I(φ)

In a similar approach, for potential VI I(φ) and for q4 = 0, for the wavefunction (50) in
the limit e−3y → ∞, we can define the amplitude Ω(x, y) = Ω0e

κ+3
2 y. Hence the quantum

correction term is derived to be VQ(x, y) = V1
8
(

R2 − 9
)
e6y; however because that is true in

the limit e−3y → ∞ easily it follows that
(
e3y)2 → 0, that is, the quantum potential tern can

be neglected.

5. Conclusions

In this study, we focused on the quantization of an extended higher-order teleparallel
cosmological theory. In particular we considered the so-called f (T, B) gravity and its
special form f (T, B) = T + F(B). In the latter scenario the cosmological field equations can
be described by a point-like Lagrangian with the same number of dynamical constraints
with that of scalar tensor theory. Indeed, with the use of a Lagrange multiplier the higher-
order derivatives can be attribute in a scalar field. However, the latter is different from that
of scalar-tensor theories.

Because the point-like Lagrangian of the cosmological theory has the 2 + 1 degrees
of freedom, they are the scale factor a(t), the scalar field φ(t) = F,B(B(t)) and the lapse
function N(t). Consequently, we can define the WdW equation by quantize the Hamilton
function for the point-like Lagrangian, that is, we performed a minisuperspace quantization
of the theory. According to our knowledge, this is the first minisuperspace quantization
in modified teleparallel theories in the literature. There are some previous studies in the
literature on the minisuperspace quantization f (T) theory, however in these studies the
authors did not considered all the degrees of freedom and the constraint equations on their
quantization approach.

In order to solve the WdW equation, we applied the theory of similarity transforma-
tions. Specifically we investigated the functional forms for the potential V(φ) = F,BB− F,
where point symmetries exists. The latter symmetries were used for the construction of
quantum operators. Furthermore, we were able to find the classical limit for this models,
that is, we solved the gravitational field equations. Finally, we investigated the existence of
quantum corrections for the field equations in the semi-classical limit as it is given by the
de Broglie -Bohm representation of quantum mechanics.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declared no conflict of interest.

References
1. Tegmark, M.; Blanton, M.R.; Strauss, M.A.; Hoyle, F.; Schlegel, D.; Scoccimarro, R.; SDSS Collaboration. The Three-Dimensional

Power Spectrum of Galaxies from the Sloan Digital Sky Survey. Astrophys. J. 2004, 606, 702. [CrossRef]
2. Kowalski, M.; Rubin, D.; Aldering, G.; Agostinho, R.J.; Amadon, A.; Amanullah, R.; Yun, J.L. Improved Cosmological Constraints

from New, Old and Combined Supernova Datasets. Astrophys. J. 2008, 686, 749. [CrossRef]

http://doi.org/10.1086/382125
http://dx.doi.org/10.1086/589937


Universe 2021, 7, 150 12 of 13

3. Komatsu, E.; Dunkley, J.; Nolta, M.R.; Bennett, C.L.; Gold, B.; Hinshaw, G.; Jarosik, N.; Larson, D.; Limon, M.; Page, L.; et
al. Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation. Astrophys. J. Suppl.
Ser. 2009, 180, 330. [CrossRef]

4. Di Valentino, E.; Mean, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J. In the Realm of the Hubble
tension—A Review of Solutions. arXiv 2021, arXiv:2103.01183.

5. Nariai, H.; Tomita, K. On the Removal of Initial Singularity in a Big-Bang Universe in Terms of a Renormalized Theory of
Gravitation. II: Criteria for Obtaining a Physically Reasonable Model. Prog. Theor. Phys. 1971, 46, 776. [CrossRef]

6. Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 1980, 91, 99. [CrossRef]
7. Barrow, J.D.; Cotsakis, S. Inflation and the conformal structure of higher-order gravity theories. Phys. Lett. B 1988, 214, 515.

[CrossRef]
8. Buchdahl, H.A. Non-linear Lagrangians and cosmological theory. Mon. Not. R. Astron. Soc. 1970, 150, 1. [CrossRef]
9. Sotiriou, T.P.; Faraoni, V. f (R) theories of gravity. Rev. Mod. Phys. 2010, 82, 451. [CrossRef]
10. Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys.

Rep. 2011, 505, 59. [CrossRef]
11. Faraoni, V. Cosmology in Scalar-Tensor Gravity; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004
12. Unzicker, A.; Case, T. Translation of Einstein’s attempt of a unified field theory with teleparallelism. arXiv 2005, arXiv:physics/0503046.
13. Hayashi, K.; Shirafuji, T. New general relativity. Phys. Rev. D 1979, 19, 3524. [CrossRef]
14. Bengochea, G.; Ferraro, R. Dark torsion as the cosmic speed-up. Phys. Rev. D 2009, 79, 124019. [CrossRef]
15. Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified gravity and cosmology. Phys. Rept. 2012, 513, 1. [CrossRef]
16. Nojiri, S.I.; Odintsov, S.D. Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Methods

Mod. Phys. 2007, 4, 115. [CrossRef]
17. Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f (R, T) gravity. Phys. Rev. D 2011, 84, 024020. [CrossRef]
18. Nojiri, S.; Odintsov, S.D. Modified Gauss–Bonnet theory as gravitational alternative for dark energy. Phys. Rev. D 2005, 74, 086005.

[CrossRef]
19. Nunes, R.C. Structure formation in f (T) gravity and a solution for H0 tension. J. Cosmol. Astropart. Phys. 2018, 2018, 052.

[CrossRef]
20. Odintsov, S.D.; Sáez-Chillón Gómez, D.; Sharov, G.S. Analyzing the H0 tension in f (R) gravity. Nucl. Phys. B 2021, 966, 115377.

[CrossRef]
21. Nunes, R.C.; Bonilla, A.; Pan, S.; Saridakis, E.N. Observational Constraints on f (T) gravity from varying fundamental constants.

Eur. Phys. J. C 2016, 77, 230. [CrossRef]
22. Nunes, R.C.; Pan, S.; Saridakis, E.N.; Abreu, E.M.C. New observational constraints on f (R) gravity from cosmic chronometers. J.

Cosmol. Astropart. Phys. 2017, 1701, 5. [CrossRef]
23. Anagnostopoulos, F.K.; Basilakos, S.; Saridakis, E.N. Observational constraints on Myrzakulov gravity. arXiv 2020, arXiv:2012.06524.
24. Anagnostopoulos, F.K.; Basilakos, S.; Saridakis, E.N. Bayesian analysis of f (T) gravity using f σ8 data. Phys. Rev. D 2019, 100, 083517.

[CrossRef]
25. Khyllep, W.; Paliathanasis, A.; Dutta, J. Cosmological solutions and growth index of matter perturbations in f (Q) gravity. arXiv

2021, arXiv:2103.08372.
26. Moreira, A.R.P.; Silva, J.E.G.; Almeida, C.A.S. Thick brane in f (T, B) gravity. Phys. Rev. D 2021, 103, 064046. [CrossRef]
27. Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified gravity theories on a nutshell: inflation, bounce and late-time evolution.

Phys. Rept. 2017, 692, 1. [CrossRef]
28. Odintsov, S.D.; Oikonomou, V.K.; Fronimos, F.P. Rectifying Einstein-Gauss-Bonnet inflation in view of GW170817. Nucl. Phys. B

2020, 958, 115135. [CrossRef]
29. Odintsov, S.D.; Oikonomou, V.K. Swampland implications of GW170817-compatible Einstein-Gauss-Bonnet gravity. Phys. Lett. B

2020, 805, 135437. [CrossRef]
30. Myrzakulov, R. FRW Cosmology in F(R,T) gravity. Eur. Phys. J. C 2012, 72, 1. [CrossRef]
31. Bahamonde, S.; Bohmer, C.G.; Wright, M. Modified teleparallel theories of gravity. Phys. Rev. D 2015, 92, 104042. [CrossRef]
32. Farrugia, G.; Said, J.L.; Finch, A. Gravitoelectromagnetism, solar system tests, and weak-field solutions in f (T, B) gravity with

observational constraints. Universe 2020, 6, 34. [CrossRef]
33. Caruana, M.; Farrugia, G.; Said, J.L. Cosmological bouncing solutions in f (T, B) gravity. Eur. Phys. J. C 2020, 80, 640. [CrossRef]
34. Bahamonde, S.; Gaskis, V.; Kiorpelidi, S.; Koivisto, T.; Said, J.L. Cosmological perturbations in modified teleparallel gravity

models: Boundary term extension. Eur. Phys. J. C 2021, 81, 53. [CrossRef]
35. Escamilla-Rivera, C.; Said, J.L. Cosmological viable models in f (T, B) theory as solutions to the H0 tension. Eur. Phys. J. C

2020, 80, 677.
36. Paliathanasis, A. Cosmological evolution and exact solutions in a fourth-order theory of gravity. Phys. Rev. D 2017, 95, 064062.

[CrossRef]
37. Paliathanasis, A. De Sitter and scaling solutions in a higher-order modified teleparallel theory. J. Cosmol. Astropart. Phys. 2017,

1708, 027. [CrossRef]
38. Karpathopoulos, L.; Basilakos, S.; Leon, G.; Paliathanasis, A.; Tsamparlis, M. Cartan symmetries and global dynamical systems

analysis in a higher-order modified teleparallel theory. Gen. Rel. Gravit. 2018, 50, 79. [CrossRef]

http://dx.doi.org/10.1088/0067-0049/180/2/330
http://dx.doi.org/10.1143/PTP.46.776
http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://dx.doi.org/10.1016/0370-2693(88)90110-4
http://dx.doi.org/10.1093/mnras/150.1.1
http://dx.doi.org/10.1103/RevModPhys.82.451
http://dx.doi.org/10.1016/j.physrep.2011.04.001
http://dx.doi.org/10.1103/PhysRevD.19.3524
http://dx.doi.org/10.1103/PhysRevD.79.124019
http://dx.doi.org/10.1016/j.physrep.2012.01.001
http://dx.doi.org/10.1142/S0219887807001928
http://dx.doi.org/10.1103/PhysRevD.84.024020
http://dx.doi.org/10.1103/PhysRevD.74.086005
http://dx.doi.org/10.1088/1475-7516/2018/05/052
http://dx.doi.org/10.1016/j.nuclphysb.2021.115377
http://dx.doi.org/10.1140/epjc/s10052-017-4798-5
http://dx.doi.org/10.1088/1475-7516/2017/01/005
http://dx.doi.org/10.1103/PhysRevD.100.083517
http://dx.doi.org/10.1103/PhysRevD.103.064046
http://dx.doi.org/10.1016/j.physrep.2017.06.001
http://dx.doi.org/10.1016/j.nuclphysb.2020.115135
http://dx.doi.org/10.1016/j.physletb.2020.135437
http://dx.doi.org/10.1140/epjc/s10052-012-2203-y
http://dx.doi.org/10.1103/PhysRevD.92.104042
http://dx.doi.org/10.3390/universe6020034
http://dx.doi.org/10.1140/epjc/s10052-020-8204-3
http://dx.doi.org/10.1140/epjc/s10052-021-08833-2
http://dx.doi.org/10.1103/PhysRevD.95.064062
http://dx.doi.org/10.1088/1475-7516/2017/08/027
http://dx.doi.org/10.1007/s10714-018-2400-6


Universe 2021, 7, 150 13 of 13

39. De Witt, B.S. Quantum Theory of Gravity. I. The Canonical Theory. Phys. Rev. 1967, 160, 1113. [CrossRef]
40. Vakili, B. Noether symmetric f (R) quantum cosmology and its classical correlations. Phys. Lett. B 2008, 669, 211. [CrossRef]
41. Vázquez-Báez, V.; Ramírez, C. Quantum Cosmology of Quadratic Theories with a FRW Metric. Adv. Math. Phys. 2017, 2017

1056514
42. Alonso-Serrano, A.; Bouhmadi-Lopez, M.; Martin-Moruno, P. f (R) quantum cosmology: Avoiding the big rip. Phys. Rev. D 2018,

98, 104004. [CrossRef]
43. Zampeli, A.; Pailas, T.; Terzis, P.A.; Christodoulakis, T. Conditional symmetries in axisymmetric quantum cosmologies with scalar

fields and the fate of the classical singularities. J. Cosmol. Astropart. Phys. 2016, 1605, 066. [CrossRef]
44. Paliathanasis, A. Similarity solutions for the Wheeler–DeWitt equation in f (R)-cosmology. Eur. Phys. J. C 2019, 79, 1031.

[CrossRef]
45. Paliathanasis, A. Quantum potentiality in Inhomogeneous Cosmology. Universe 2021, 7, 52. [CrossRef]
46. Paliathanais, A. Dust fluid component from Lie symmetries in Scalar field Cosmology. Mod. Phys. Lett. A 2017, 32, 1750206.

[CrossRef]
47. Peres, A. Critique of the Wheeler-DeWitt Equation, On Einstein’s Path; Harvey, A., Ed.; Springer: New York, NY, USA, 1999.
48. Maluf, J.W. Hamiltonian formulation of the teleparallel description of general relativity. J. Math. Phys. 1994, 35, 335. [CrossRef]
49. Arcos, H.I.; Pereira, J.G. Torsion Gravity: A Reappraisal. Int. J. Mod. Phys. D 2004, 13, 2193. [CrossRef]
50. Ryan, M.P.; Shepley, L.C. Homogeneous Relativistic Cosmologies; Princeton Series in Physics, 59; Princeton University Press:

Princeton, NJ, USA 1975
51. Bluman, G.W.; Kumei, S. Symmetries of Differential Equations; Springer: New York, NY, USA, 1989.
52. Olver, P.J. Applications of Lie Groups to Differential Equations; Springer: New York, NY, USA, 2000.
53. Paliathanasis, A.; Tsamparlis, M. The geometric origin of Lie point symmetries of the Schrödinger and the Klein–Gordon

equations. Int. J. Geom. Methods Mod. Phys. 2014, 11, 1450037. [CrossRef]
54. Bialynicki-Birula, I.; Cieplak, M.; Kaminski, J. Theory of Quanta; Oxford University Press: Oxford, UK, 1992.
55. Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. I. Phys. Rev. 1952, 85, 166.

[CrossRef]
56. Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. II. Phys. Rev. 1952, 85, 180.

[CrossRef]

http://dx.doi.org/10.1103/PhysRev.160.1113
http://dx.doi.org/10.1016/j.physletb.2008.09.058
http://dx.doi.org/10.1103/PhysRevD.98.104004
http://dx.doi.org/10.1088/1475-7516/2016/05/066
http://dx.doi.org/10.1140/epjc/s10052-019-7553-2
http://dx.doi.org/10.3390/universe7030052
http://dx.doi.org/10.1142/S0217732317502066
http://dx.doi.org/10.1063/1.530774
http://dx.doi.org/10.1142/S0218271804006462
http://dx.doi.org/10.1142/S0219887814500376
http://dx.doi.org/10.1103/PhysRev.85.166
http://dx.doi.org/10.1103/PhysRev.85.180

	Introduction
	f( T,B)  Cosmology
	The f( T,B) =T+F( B)  Theory

	Wheeler-DeWitt Equation
	Quantum Operators
	Potential Function VI( ) 
	Potential Function VII( ) 

	Semi-Classical Limit
	Classical Limit
	Potential Function VI( ) 
	Potential Function VI( ) 
	Quantum Potentiality
	Potential Function VI( ) 
	Potential Function VII( ) 

	Conclusions
	References

