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Abstract: We investigate the Casimir interaction between two dielectric spheres immersed in an
electrolyte solution. Since ionized solutions typically correspond to a plasma frequency much smaller
than kBT/h̄ at room temperature, only the contribution of the zeroth Matsubara frequency is affected
by ionic screening. We follow the electrostatic fluctuational approach and derive the zero-frequency
contribution from the linear Poisson-Boltzmann (Debye-Hückel) equation for the geometry of two
spherical surfaces of arbitrary radii. We show that a contribution from monopole fluctuations, which
is reminiscent of the Kirkwood-Shumaker interaction, arises from the exclusion of ionic charge in
the volume occupied by the spheres. Alongside the contribution from dipole fluctuations, such
monopolar term provides the leading-order Casimir energy for very small spheres. Finally, we also
investigate the large sphere limit and the conditions for validity of the proximity force (Derjaguin)
approximation. Altogether, our results represent the first step towards a full scattering approach
to the screening of the Casimir interaction between spheres that takes into account the nonlocal
response of the electrolyte solution.

Keywords: Casimir effect; electrolytes; sphere-sphere geometry; ionic screening; monopole fluctuations

1. Introduction

Since the seminal results of H. B. G. Casimir [1] and E. M. Lifshitz [2] on the role
of quantum (and thermal) fluctuations in the interaction of uncharged bodies, the whole
field of what is now known as Casimir physics has evolved from a remarkable theoretical
phenomenon to an extensive and multidisciplinary field [3–6]. On the theoretical front,
great advances in computational power, numerical methods [7–10], and analytical tech-
niques [11–16] led to the exploration of many different geometries, such as spheres [17–20],
cylinders [21,22], gratings [23–27], etc, and also of a vast landscape of materials, from
“simple” dielectrics and conductors [2] to magneto-optical materials [28–30], spatially dis-
persive media [31–35], anisotropic media [36–38], superconductors [39,40], phase-changing
materials [41,42], and many more. Moreover, the progress has been equally intense on
the experimental side, with a first wave by the end of the sixties [43,44] that saw quite
precise measurements for dielectrics. A second wave almost thirty years later [45–50] was
able to probe larger distances and non-trivial geometries, establishing important results
for conductors.

Notwithstanding that impressive track record, it could be said that there is at least
one aspect of Casimir physics that has been somewhat forgotten amid all that activity:
the presence of electrolytes between the bodies when considering the interaction across a
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polar liquid. Despite the enormous literature on the electrostatic force between two charged
bodies screened due to ions in the solution (see, for instance, Reference [51,52]), the case of
uncharged objects was not investigated as thoroughly. To our knowledge, the first accounts
of fluctuation forces with electrolytes were presented in Reference [53–56], where the case
of parallel planar surfaces is addressed. More recently, several contributions and results
were collected in Reference [57]. Recently, a new formalism based on an extension of the
scattering approach to include longitudinal channels was proposed [58], but again dealing
only with the planar symmetry.

The main goal of this paper is to extend the known results for parallel planes to the
sphere-sphere geometry, which is the most relevant one for applications in colloids [51]. We
compute the contribution of positive Matsubara frequencies by neglecting the ionic effect on
the electromagnetic response [58] and expanding the scattering formula in the plane-wave
basis as described in Reference [59]. In contrast to the scattering approach of Reference [58],
we analyze the zero-frequency contribution separately in terms of thermal electrostatic
fluctuations [57,60] as described by the linear Poisson-Boltzmann equation [61,62]. For
large spheres, we test the validity of the proximity force approximation (PFA), also known
as Derjaguin approximation, and evaluate numerically the corresponding correction. In
the opposite limit of small spheres, the interaction is dominated by monopole and dipole
contributions, the former being reminiscent of the Kirkwood-Shumaker effect [63–65].

This work is organized as follows: In Section 2, we present the formalism required to
calculate the dispersive interaction between two spheres immersed in an ionic solution.
Section 3 is dedicated to the presentation of our main results and to a discussion of the role
of monopole fluctuations. Finally, concluding remarks are presented in Section 4.

2. Two Spheres Immersed in an Electrolyte
2.1. Basic Formalism

Our system consists of two solid spheres of radii R1 and R2, with permittivities ε1 and
ε2, respectively, separated by a surface-to-surface distance a, so that the distance between
both centers is L = a + R1 + R2 along the z axis; see Figure 1. The spheres are immersed in
an electrolyte solution with a permittivity ε3 and bulk ionic concentration c0. Moreover,
the whole system is in thermal equilibrium at a temperature T.

Figure 1. Description of the geometry with two solid spheres of radii R1 and R2 separated by
a center-to-center distance L along the z-axis. We also indicate the surface-to-surface distance
a = L− (R1 + R2). A generic point can be described using either sphere center: r1 (r2) is a vector
from the center of the sphere 1 (2) to the point.

The Casimir free energy is given by [3,57]

Fcas(a) =
kBT

2
log D(iξ0) + kBT

∞

∑
n=1

logD(iξn),

= F 0
cas(a, λD) +Fn≥1

cas (a)

(1)
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where kB is the Boltzmann constant, and ξn is the nth Matsubara frequency, given by
ξn = 2πnkBT/h̄. The quantities D(x) andD(x), to be defined later, are useful determinants
that are connected to the (complex) mode structure of the system [15,16,66–69] for zero and
finite frequencies, respectively.

The fact that the solid spheres are immersed in an electrolyte solution substantially
complicates the problem, as the dissolved ions introduce spatial dispersion [54]. For
realistic values of ion concentrations (and masses), however, the characteristic frequencies
of the ionic individual and collective motions are much smaller than even the first nonzero
Matsubara frequency ξ1 [57]. As a consequence, one can show that the effect of the ions on
the positive-frequency determinant D(iξn) is negligible [58]. Therefore, we shall assume
that only the zero-frequency determinant D(iξ0) term in (1) “feels” the presence of the ions,
while the n ≥ 1 terms may be obtained by solving the scattering problem for a spatially
local medium.

2.2. The n = 0 Contribution

For the zero-frequency contribution, we follow the electrostatic fluctuational ap-
proach [55–57] and derive the Casimir free energy from the solutions of the Laplace and
linear Poisson-Boltzmann equations for the geometry of two spheres with no sources.
Given that we have only charge fluctuations on the spheres, the expectation value of the
potential is going to satisfy e2〈ψ2〉 ≤ (kBT)2 almost everywhere within the electrolyte,
which is just the condition for linearization [52]. When following the scattering approach
for spatially-dispersive media, an additional contribution arises from transverse magnetic
modes in the zero-frequency limit [58]. Experimental evidence for such contribution was
recently reported [70]. Here, however, in order to calculate the n = 0 contribution, we
take the electrostatic limit from the start. Therefore, such additional contribution does
not appear. In other words, we generalize the standard approach of Refs. [56,57] to the
sphere-sphere geometry.

As mentioned in the previous section, our main task is to determine the mode structure
of the system. Such undertaking is necessary due to the fact that, as we are dealing with
thermal charge fluctuations, the potential may also fluctuate into all possible modes. In
that spirit, we solve the Laplace equation for electric potential ψ(r)

∇2ψ(r) = 0, (2)

where we used the fact that there are no free electric charges inside the spheres (i.e., the
spheres are dielectric). Outside the spheres, in the electrolyte solution, the potential satisfies
the linearized Poisson-Boltzmann equation [51]

∇2ψ(r) = κ2
Dψ(r), (3)

where

κD = λ−1
D =

√
2c0q2

ε3kBT
(4)

is the inverse of the Debye length λD, which is a measure of the diffuse double-layer
thickness [51], and q is the absolute value of the charge of the ions.

In terms of a spherical coordinate system concentric to sphere 1, the solution of the
Laplace equation inside sphere 1 is

ψ(r1, θ1, φ1) =
∞

∑
`=0

`

∑
m=−`

c`mr`1Pm
` (cos θ1)e−imφ1 r1 < R1, (5)

and, similarly, inside sphere 2, we have
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ψ(r2, θ2, φ2) =
∞

∑
`=0

`

∑
m=−`

d`mr`2Pm
` (cos θ2)e−imφ2 r2 < R2, (6)

where the lengths r1 and r2 and the angles θ1 and θ2 are indicated in Figure 1. The
coefficients c`m and d`m are determined by the boundary conditions at the spherical surfaces.
We choose the line that connects the 2 centers as the z axis, so φ1 = φ2 = φ and Pm

` are the
associated Legendre polynomials [71].

Outside the spheres, we have to solve the linear Poisson-Boltzmann equation (3). It is
also separable in spherical coordinates, and we write the solution ψ(r) for the sphere-sphere
geometry as the superposition of contributions ψ1(r), ψ2(r) coming from each sphere (This
is based on the linearity of the Poisson-Boltzmann equation. However, this does not mean
that ψ1 (ψ2) may be understood as the potential of the sphere 1(2) in the absence of the
other (although such interpretation would hold if κDL� 1), as it is evidenced by the fact
that all coefficients a`m, b`m, c`m, d`m depend on the boundary conditions imposed by the
two spheres.)

ψ(r) = ψ1(r1, θ1, φ1) + ψ2(r2, θ2, φ2)

=
∞

∑
`=0

`

∑
m=−`

[
a`mk`(κDr1)Pm

` (cos θ1)e−imφ + b`mk`(κDr2)Pm
` (cos θ2)e−imφ

]
,

(7)

where k`(x) is the modified spherical Bessel function of the second kind [71], and a`m
and b`m are coefficients to be determined. Despite its relative simplicity, expression (7)
is not convenient as it makes reference to two different (but interdependent) coordinate
systems. In order to write the solution (7) in terms of a single coordinate system, we use an
important spherical addition theorem [62] and arrive at

ψ(r1, θ1, φ) =
∞

∑
`=0

`

∑
m=−`

e−imφ

[
a`mk`(κDr1)Pm

` (cos θ1)

+ b`m

∞

∑
n=m

(2n + 1)
(n−m)!
(n + m)!

Um
`n(κDL)in(κDr1)Pm

n (cos θ1)

]
,

(8)

ψ(r2, θ2, φ) =
∞

∑
`=0

`

∑
m=−`

e−imφ

[
a`m

∞

∑
n=m

(2n + 1)
(n−m)!
(n + m)!

Um
`n(κDL)in(κDr2)Pm

n (cos θ2)]

+ b`mk`(κDr2)Pm
` (cos θ2)

]
,

(9)

where in(x) is the modified spherical Bessel function of the first kind [71], and Um
ln(c) is

given by (Note that Um
ln was derived just for spherical Bessel functions in Reference [62].),

and it differs from our formula for modified Bessel functions by the pre-factor (−1)ν.

Um
`n(c) =

(
2
c

)m `−m

∑
ν=0

Γ(`− ν + 1
2 )Γ(n− ν + 1

2 )Γ(m + ν + 1
2 )

Γ(`+ n−m− ν + 3
2 )Γ(m + 1

2 )π

× (`+ n− ν)!(`+ n−m− 2ν + 1
2 )

(`−m− ν)!(n−m− ν)!ν!
k`+n−m−2ν(c).

(10)

Here, Γ(x) denotes the gamma function [71].
In order to determine the mode structure of the problem, we still have to apply the

boundary conditions on both spherical surfaces. The continuity of the potential

ψ(rs, θs)|R−s = ψ(rs, θs)|R+
s

, (11)

leads us to two equations, where s = 1, 2. Combining Equations (5) and (8) for sphere 1,
and Equations (6) and (9) for sphere 2, while using the orthogonality of associated Legendre
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polynomials, we can decompose Equation (11) into matrix equations for each azimuthal
number (Translations between the sphere centers preserve the azimuthal number m due to
rotational symmetry around the z-axis.) m

S1 · c = K1 · a +B1m · b, (12)

S2 · d = K2 · b +B2m · a, (13)

where the column vector a contains the coefficients a`m with ` = m, m+ 1, m+ 2, ... for fixed
m and likewise for the column vectors b, c, and d. The matrices appearing in Equations (12)
and (13) are given by

(Ss)`n = R`
sδn` , (Ks)`n = kn(κDRs)δn`

(Bsm)`n = (2n + 1)
(n−m)!
(n + m)!

Um
`n(κDL) in(κDRs).

(14)

The continuity of the electric displacement radial component

εs
∂ψ

∂r

∣∣∣∣
R−s

= ε3
∂ψ

∂r

∣∣∣∣
R+

s

(15)

also leads us to matrix equations

S
′
1 · c = K

′
1 · a +B

′
1m · b, (16)

S
′
2 · d = K

′
2 · b +B

′
2m · a, (17)

The matrices appearing above are defined by

(S′s)`n = εs`R`−1
s δn` , (K′s)`n = ε3κDk′n(κDRs)δn`

(B′sm)`n = ε3κD(2n + 1)
(n−m)!
(n + m)!

Um
`n(κDL) i′n(κDRs), .

(18)

where the prime on Bessel functions indicates differentiation with respect to the argument.
For each m, Equations (12), (13), (16), and (17) form a homogeneous (infinite) system,

as it could be anticipated given that there are no external sources (in particular, the spheres
are not charged). As such, nontrivial solutions are possible if and only if the determinants
of the coefficient matrices vanish, leading us to the condition

det[1−R1TmR2Tm] = 0, (m ∈ Z), (19)

where 1 is the identity matrix, and the scattering and propagation matrices, Rs and Tm,
respectively, are given by

(Rs)`n =

ε3
εs

κDRsi′n(κDRs)− ` in(κDRs)
ε3
εs

κDRsk′n(κDRs)− ` kn(κDRs)
δ`n , (20)

and

(Tm)`n = (2n + 1)
(n−m)!
(n + m)!

Um
`n(κDL). (21)

The full structure of solutions for this system is then determined by

∞

∏
m=−∞

det[1−R1TmR2Tm] = 0, (m ∈ Z). (22)

In other words, we see that Equation (22) characterizes the normal modes of the setup.
This is auspicious because, according to the prescription outlined in Reference [56,57,66],
that is precisely what we need in order to compute the zero-frequency contribution to the
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Casimir energy: the function D(iξ0) introduced in Equation (1) is to be identified with the
l.h.s of (22). At this point, it is worth emphasizing that we are not solving the normal-mode
problem per se, we just need the equation that defines such modes. Therefore, we find

F 0
cas(a, λD) =

kBT
2

log D(iξ0)

=
kBT

2

∞

∑
m=−∞

log det[1−R1TmR2Tm].
(23)

2.3. The n ≥ 1 Contributions

As indicated in the end of Sec. 2.1, the contributions to the Casimir free energy coming
from finite Matsubara frequencies are to be obtained from the scattering approach [15,16]
by neglecting the presence of the ions. For two spheres, the Casimir free energy can be
found from Equation (1) with

D(iξn) = det(1−M(iξn)), (24)

where the round-trip operator is defined as

M = T12R2T21R1 . (25)

Here,Rs denotes the reflection operator at sphere s = 1, 2 with the coordinate system
being centered at the respective sphere, and T21 stands for the translation operator from
the center of sphere 1 to center of sphere 2, and vice versa for T12.

Note that, because of the determinant in (24), we are free to choose a basis for the
electromagnetic modes in which the round-trip operator and its constituents are to be
expanded. Here, we follow the plane-wave numerical approach presented in Reference
[59], as it shows far better convergence rates as compared to the commonly employed
approach based on spherical multipoles [18,72]. In the following, we outline this plane-
wave numerical approach for the geometry of two spheres.

2.3.1. Plane-Wave Representation

Within the angular spectrum representation, we denote the plane-wave basis elements
by the kets |k, φ, p〉 with the wavevector component perpendicular to the z-axis k, the
propagation direction relative to the z-axis φ = ± and p = TM, TE for transverse magnetic
and transverse electric polarizations, respectively. As the frequency is conserved through
the round trip, we suppress it in our notation.

While the round-trip operator is expressed as an infinite but discrete matrix when ex-
panded in the multipolar basis, the round-trip operator is a continuous matrix when using
plane-waves. Formally, the round-trip operator is then described as an integral operator:

M|k,−, p〉 = ∑
p′

∫ dk′

(2π)2 fM(k′, p′; k, p) |k′,−, p′〉 , (26)

with the scalar kernel function fM.
The kernel function of the round-trip operator fM can be expressed in terms of the

kernel functions of its constituent operators. The translation operators are diagonal in the
plane-wave basis with kernel functions

fT21(k
′, p′; k, p) = fT12(k

′, p′; k, p) = (2π)2e−κLδp,p′δ(k− k′), (27)

where

κ =
√

K2 + k2, (28)

with the imaginary wave number K =
√

ε3ξn/c and the speed of light in vacuum c. The
kernel function of the round-trip operator can then be expressed as
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fM(k′, p′; k, p) = e−κ′L ∑
p′′

∫ dk′′

(2π)2 fR2(k
′, p′; k′′, p′′)e−κ′′L fR1(k

′′, p′′; k, p) . (29)

with κ′ and κ′′ being defined as in (28). The summation and integration over the double
primed variables (29) take all intermediate scattering channels between the two spheres
into account.

The kernel function of the reflection operators for the spheres is given by [73,74]

fRs(k
′, TM; k, TM) =

2π

Kκ′
(AS2 + BS1)

fRs(k
′, TE; k, TE) =

2π

Kκ′
(AS1 + BS2)

fRs(k
′, TM; k, TE) = − 2π

Kκ′
(CsS1 + DsS2)

fRs(k
′, TE; k, TM) =

2π

Kκ′
(CsS2 + DsS1),

(30)

with the plane-wave Mie scattering amplitudes [75]

S1 =
∞

∑
`=1

2`+ 1
`(`+ 1)

[a`(iKRs)π`(cos(Θ)) + b`(iKRs)τ`(cos(Θ))]

S2 =
∞

∑
`=1

2`+ 1
`(`+ 1)

[a`(iKRs)τ`(cos(Θ)) + b`(iKRs)π`(cos(Θ))] ,
(31)

which depend on the electromagnetic response of the homogeneous spheres through the
electric and magnetic Mie coefficients a` and b`, respectively [75]. The angular functions π`

and τ` appearing in (31) are defined as [75]

π`(z) = P′`(z)

τ`(z) = −(1− z2)P′′` (z) + zP′`(z),
(32)

where P`(z) denotes a Legendre polynomial [71]. The angular functions only depend on
the scattering angle Θ, which is expressed as

cos Θ = −k · k′ + κκ′

K2 . (33)

The functions A, B, Cs, and Ds in (30) describe a rotation from the polarization basis
defined through the scattering plane to the TE-TM polarization basis. They are functions of
the incident and scattered wave vectors and can be expressed as [73]

A =
K4 cos(∆ϕ)− [kk′ cos(∆ϕ)− κκ′][kk′ − κκ′ cos(∆ϕ)]

K4 − [kk′ cos(∆ϕ)− κκ′]2
,

B = − K2kk′ sin2(∆ϕ)

K4 − [kk′ cos(∆ϕ)− κκ′]2
,

Cs = (−1)sK sin(∆ϕ)
kk′κ cos(∆ϕ) + k2κ′

K4 − [kk′ cos(∆ϕ)− κκ′]2
,

Ds = (−1)s+1K sin(∆ϕ)
kk′κ′ cos(∆ϕ) + k′2κ

K4 − [kk′ cos(∆ϕ)− κκ′]2
,

(34)

where we have employed polar coordinates k = (k, ϕ) and k′ = (k′, ϕ′), and ∆ϕ = ϕ′ − ϕ.
Note that the signs in the functions Cs and Ds for sphere s reflect the orientation of the
z-axis. They are different for the two spheres as the plane-wave propagation direction with
respect to the z-axis changes from φ = − to φ′ = + upon reflection on sphere 1, and vice
versa for sphere 2.
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2.3.2. Numerical Application

For a numerical evaluation of (24), a discretization of the continuous wave vectors
is required. In order to exploit the cylindrical symmetry of the problem, we employ
polar coordinates k = (k, ϕ). The two integrals over radial and angular components
of the transverse wave vector k′ in (26) can then be discretized using one-dimensional
quadrature rules. Denoting the quadrature nodes and weights for the radial and angular
components as (ki′ , wi′) for i′ = 1, . . . , N′ and (ϕj′ , vj′) for j′ = 1, . . . , M′, respectively, we
can express (26) in discretized form as

M|ki, ϕj,−, p〉 = ∑
p′=TM,TE

N′

∑
i′=1

M′

∑
j′=1

ki′wi′vj′

(2π)2 fM(ki′ , ϕj′ , p′; ki, ϕj, p) |ki′ , ϕj′ ,−, p′〉 (35)

for i = 1, . . . , N′, j = 1, . . . , M′ and p = TE, TM. Consequently, the discretized matrix
elements of the round-trip operator read [76]

〈ki′ϕj′ ,−, p′|M|ki, ϕj,−, p〉 =
ki′wi′vj′

(2π)2 fM(ki′ , ϕj′ , p′; ki, ϕj, p) . (36)

Applying the same discretization procedure to the integral appearing in (29), the
threefold block matrix (36) can be expressed as the product of block matrices

〈ki′ , ϕj′ ,−, p′|M|ki, ϕj,−, p〉 = ∑
p′′=TM,TE

N′′

∑
i′′=1

M′′

∑
j′′=1

(X2)i′ ,j′ ,p′ ;i′′ ,j′′ ,p′′(X1)i′′ ,j′′ ,p′′ ;i,j,p, (37)

with

(Xs)i′ ,j′ ,p′ ;i,j,p =
ki′wi′vj′

(2π)2 exp
(
−L
√

K2 + k2
i′

)
fRs(ki′ , ϕj′ , p′; ki, ϕj, p) (38)

describing the reflection on sphere s followed by a translation to the other sphere. Note
that the discretization orders for the radial components of the wave vectors N′ and N′′ are
not required to be the same. Thus, theXs are in general rectangular matrices. As we will
discuss below, in order to exploit the cylindrical symmetry of the problem, it will, however,
be required that M′ = M′′ for the angular discretization orders.

The Casimir energy can now be numerically computed by replacing the round-trip
operator in (24) with the corresponding finite matrix (37). While, in principle, one is free to
choose quadrature rules, we found those specified in the following particularly suited for
the problem at hand [59].

For the radial component, we employ the Fourier-Chebyshev quadrature rule intro-
duced in Reference [77]. With

ti =
πi

N′ + 1
, (39)

the quadrature rule is specified by its nodes

ki = b cot2(ti/2) (40)

and weights

wi =
8b sin(ti)

[1− cos(ti)]2
1

N′ + 1

N′

∑
j=1

j odd

sin(jti)

j
(41)

for i = 1, . . . , N′. An optimal choice for the free parameter b can boost the convergence of
the computation. For dimensional reasons, the transverse wave vector and, thus, b should
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scale like the inverse surface-to-surface distance 1/a. In fact, the choice b = 1/a already
yields a fast convergence rate as has been demonstrated in Reference [59].

For the angular component of the transverse wave vectors, we employ the trapezoidal
quadrature rule. Its nodes and weights are defined by ϕj = 2π j/M′ and vj = 2π/M′,
respectively, for j = 1, . . . , M′. While, for arbitrary functions, the trapezoidal rule is not
efficient, it is exponentially convergent for periodic functions appearing here.

Moreover, the trapezoidal rule allows us to further exploit the cylindrical symmetry
of the problem. Note that, due to the cylindrical symmetry, the kernel function of the
reflection operator on the spheres (30), and, thus, also the kernel function of the round-
trip operator (29), depend only on the difference ∆ϕ = ϕ′ − ϕ of angular components.
Using the trapezoidal rule, the discretized matrix elements (36) then only depend on the
difference of indices j′ − j. A square block matrix of this form is known as circulant block
matrix. It is well-known that a circulant block matrix can be block diagonalized using a
discrete Fourier transform. If we choose M′ = M′′ for the angular discretization orders,
the discretized round-trip operator (37) can be expressed as a product of block-diagonal
matrices. In this block-diagonal form, the determinant (24) factorizes, thus reducing the
computational complexity of the problem.

In fact, the indices labeling the diagonal blocks after the discrete Fourier transform can then
be identified with the angular indices m, known from the spherical multipole representation,
which denote the axial component of the electromagnetic field angular momentum. Particularly
at short distances, the plane-wave basis is advantageous with respect to the spherical multipole
basis because the required size of the block matrices is considerably smaller as the following
estimate demonstrates. The size of the diagonal blocks of X2 and X1 appearing in (37) is
determined by the radial quadrature orders N′ and N′′ in the plane-wave representation. In
particular, they are of shape 2N′ × 2N′′ and 2N′′ × 2N′, respectively, where the factor of 2 is
due to the two polarization components. It can be shown that, in order to maintain a certain
numerical error for short separations a� R1, R2, the discretization orders need to scale as N′ ∼√

Reff/a and N′′ ∼
√
(R1 + R2)/a with the effective radius Reff = R1R2/(R1 + R2) [59].

On the other hand, within the spherical multipole representation, the block matrix sizes are
determined by the highest multipole index `max included in the calculation, which scales
linearly in R1/a and R2/a [72,78,79].

3. Results and Discussion
3.1. Numerical Considerations

By symmetry, the contribution of the m-th term in Equation (23) does not depend on
the sign of m, which allows one to replace (23) by a sum over non-negative values only. In
the spherical-wave basis, it turns out that the round-trip operator in the form R1TmR2Tm
is ill-conditioned with exponentially increasing and decreasing matrix elements in the off-
diagonal corners. For numerical purposes, it has proven advantageous to use an equivalent
symmetrized form of the round-trip operator instead which leads to a diagonally dominant
matrix [9,10]. Equation (23) then reads

F 0
cas(a, λD) = kBT

∞

∑
m=0

′
log det

[
1−

√
R1TmR2Tm

√
R1

]
. (42)

Taking the square root of the reflection operator at sphere 1 does not present any difficulties,
particularly in the spherical-wave basis, where its matrix representation is diagonal. The
primed sum in (42) indicates that the m = 0 term is multiplied by 1/2.

The matrices in the previous equation have in principle infinitely many compo-
nents, so we need an effective truncation strategy. The size of the matrices appearing
in Equation (42) is directly related to the highest multipole order `max ∼ Rs/a required for
convergence [72,78,79]. The dimension of the matrix corresponding to the (m + 1)-th term
in (42) is `max − `min, where `min = m, and the sum over m is truncated at `max.
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3.2. The Screening Effect

For the numerical calculations, we choose either two polystyrene (PS) or silica (SiO2)
spheres immersed in an aqueous electrolyte solution. In all numerical examples, we assume
R1 = R2 (= 1µm in the examples with PS) but our formalism also applies to the geometry
with different radii. We take εPS(0) = 2.37, εSiO2(0) = 3.91, and εH2O(0) = 78.70 for the
static relative permitivities of PS, silica and water, respectively. For finite frequencies, we
use a Drude-Lorentz model of N oscillators

ε(iξ) = 1 +
N

∑
i=1

Ci

1 + ξ2/ω2
i

, (43)

with data for the parameters Ci and ωi taken from Reference [49] for both PS and water.
Finally, we assume that the ions are monovalent (q ≈ 1.6× 10−19 C is the elementary
charge) and that T = 293 K.

We calculate the Casimir force by taking the derivative of the Casimir free energy

Fcas(a, λD) = −
∂Fcas

∂a
(44)

and show the variation of the Casimir energy and force with the distance a in Figure 2a,b,
respectively, for different ionic concentrations. The curves confirm the rather intuitive
behavior that, as we enhance the ion concentration, the force decreases due to the progres-
sive screening of the zeroth frequency contribution. We also show (squares) the results
for vanishing salt concentration (λD → ∞), which coincides with the standard Casimir
calculation disregarding the effect of ions. Note, however, that the Debye length is the-
oretically limited to ∼ 1µm due to the spontaneous dissociation of the water molecule
itself [51], and actual reported values of λD are typically much smaller than that, even
when no salt is added to the sample (see, for instance, Reference [80]). We are now in
a good position to critically assess how accurate are [59] two widely used limits: (i) no
screening (λD → ∞), where the zeroth term comes from the “standard” spherical Casimir
calculation [16,72], and (ii) complete screening, where the zeroth contribution is simply
neglected. The latter case is well approximated, for the distance interval shown in Figure 2,
by the case λD = 3 nm (triangles).

We plot the relative contribution of the zeroth frequency term to the total result, for both
the Casimir energy and the Casimir force in Figure 2c,d, respectively. We see that, when
unscreened, the relative contribution of F0

cas is always larger than 50% from 10 nm onwards.
This is a consequence of the low contrast between the permittivities of polystyrene and water
for finite Matsubara frequencies (For metallic spheres the relative zeroth frequency contribution
is much lower, less than 5% for short distances.) and tells us that an assessment of the screening
is quantitatively very important. As we increase the ion concentration, the zeroth contribution
gets more and more screened, but, even for a ≈ 2λD, i.e., with considerable screening by the
ions, and λD = 100 nm (circles), it still contributes ∼50% of the total force. It is true that the
absolute values for the force are rather small in this range, but they are still within reach of
measurements using optical tweezers [70,81–85].
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Figure 2. Variation with the surface-to-surface distance of the (a) Casimir free energy, (b) Casimir
force, (c) relative zero frequency contribution to the free energy, and (d) relative zero frequency
contribution to the force. We consider two PS spheres of radius 1µm.

3.3. Zero-Frequency Contribution for Very Small Spheres.

In this subsection, we derive a simple analytical result for very small spheres, R1, R2 �
L, as a limit of the general result (23). We focus here on the zero-frequency contribution,
which is the one affected by screening. For that purpose, it is convenient to use the well
known relation log det M = tr log M, valid for a generic matrix M, to write

F 0
cas ≈

kBT
2

∞

∑
m=−∞

tr[R1TmR2Tm]

≈ kBT
2

1

∑
m=−1

tr[R1TmR2Tm].

(45)

The sequence of approximations is consistent with the fact that we retain only the
leading-order terms on R1R2 in the summation, which in this case turn out to be∼ (R1R2)

3.
The explicit result is

F 0
cas = −

kBTκ6
D

2
e−2κD L

[
1

9κ2
DL2

R3
1R3

2 −
(1 + κDL)2

3κ4
DL4

(α1R3
2 + α2R3

1)

+ (6 + 12κDL + 10κ2
DL2 + 4κ3

DL3 + κ4
DL4)

α1α2

(κDL)6

]
,

(46)

where

αs =
(εs − ε3)

(εs + 2ε3)
R3

s (47)

is the electric polarizability of sphere s. The third parcel in (46) reproduces exactly a
result by Mahanty and Ninham [56] for fluctuating dipoles in an electrolyte solution,
but we also obtain extra terms even at the lowest order in R1R2. These terms have an
extremely suggestive form and, as we shall see in the following subsection, it is very
reasonable to associate them to monopole-monopole and monopole-dipole fluctuation
interactions [57]. Moreover, such interpretation in terms of multipoles is certainly consistent
with Figure 3, where we depict the Casimir free energy between two identical silica spheres
for different Debye lengths. One can clearly see that the small radii limit establishes itself
at 2R . λD, which is reasonable: when the object is much smaller than the diffuse layer of
ions surrounding it, its shape is unimportant; therefore, the first multipole contributions
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should dominate the interaction. On the other hand, when the object’s dimensions are
comparable to its screening region, the latter is deformed, and finite size effects become
noticeable, which is why the solid lines depart from the dashed ones at R ≈ λD/2.
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Figure 3. Zero-frequency contribution to the Casimir energy for two silica spheres of radius R as a
function of R/L for a fixed L = 1µm and different Debye lengths: numerical (solid) and small-sphere
approximation (46) (dashed).

3.4. Charge Fluctuations

The results of the previous section can be alternatively deduced by an independent
approach which we provide in this section. It serves both as a consistency check of
Equation (46) and for providing physical insights for the monopole fluctuation term.
Again, we assume the small-size limit (R1, R2 � L) and analyze the static contribution,
which is the one sensitive to the ionic binding. Under these assumptions, we may take
our spheres to be point dipoles, which are induced by the electric field evaluated at their
positions [86]

ds = 4πε3αsE(rs) ,

where s = 1, 2 refers to the sphere in question, and αs is the static electric polarizability
of sphere s given by (47). However, the static contribution to the dispersive force is not
solely due to correlations between the dipole fluctuations, but additional effects of the ions
must be included. The linearization of the Boltzmann factor required for the derivation of
the linear Poisson-Boltzmann equation implies that, at any point, r inside the electrolyte
solution, there is a density charge given by

ρ(r) = −κ2
Dε3ψ(r) . (48)

A small sphere of radius Rs placed at position rs excludes a charge given by (The dipole
moment of the excluded volume is∇ρ(rs) ·

∫
sphere r′d3r′, which vanishes for a sphere. Thus,

the leading correction to the monopole term comes from the quadrupole contribution,
which we can neglect to order R3

s .) qexc ≈ −(4πR3
s /3)ρ(rs), since the potential is approxi-

mately constant in a region of size Rs � L. From a large distance, this excluded volume
appears as a charge of the opposite sign which we shall write as qs = Csψ(rs), where

Cs =
4πR3

s
3

κ2
Dε3 (49)

plays the role of a capacitance. Physically, the charge is fluctuating along with fluctuations
in the electric potential at the position of the sphere. This fluctuating monopole yields an
important contribution to the dispersive force and is essential in order to reproduce and
understand Equation (46).

For a system composed of two small spheres and with the assumptions presented in
the previous paragraph, the electric potential satisfies the equation
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(∇2 − κ2
D)ψ(r) = −

2

∑
s=1

ψ(r)
ε3

Csδ(r− rs) +
ds · ∇δ(r− rs)

ε3
, (50)

where the second term represents the charge density associated to a point dipole [87]
located at rs. Equation (50) can be solved with the aid of its Green function, yielding

ψ(r) = −
2

∑
s=1

CsG(r, rs)ψ(rs)

ε3
+ 4παsE(rs) · ∇G(r, rs) , (51)

where

G(r, r′) =
e−κD |r−r′ |

4π|r− r′| . (52)

Since the ith component of the electric field is given by −∂iψ, we obtain

Ei(r) =
2

∑
s=1

Cs∂iG(r, rs)ψ(rs)

ε3
− 4παsEj(rs)∂i∂jG(r, rs) . (53)

We may evaluate expressions (51) and (53) at r1 and r2, thus obtaining 8 linear equa-
tions relating the potentials and the fields at those points. This system of equations can be
cast in terms of a 8× 8 matrix. Let us work in the basis u = [ψ(r1), E(r1), ψ(r2), E(r2)]. Ne-
glecting self interactions, which do not contribute to the interaction between the spheres (a
rigorous justification can be found in Ref. [56]), we obtain a block diagonal matrix equation

u = M u =

(
0 A2(r1, r2)

A1(r2, r1) 0

)
u , (54)

with A being the 4× 4 matrix

As(r, r′) =
(−(Cs/ε3)G(r, r′) 4παs(∇G(r, r′))T

(Cs/ε3)∇G(r, r′) −4παs∂j∂kG(r, r′)

)
. (55)

The free energy is given by [56]

F 0
cas =

kBT
2

tr log[1−M] ≈ − kBT
4

trM2 = − kBT
2

trA2(r1, r2)A1(r2, r1) . (56)

Substituting Equation (55) into (56), we obtain

F 0
cas = −

kBT
2ε2

3

{
C1C2G(r1, r2)G(r2, r1) + 4πε3(C1α2 + C2α1)∇G(r1, r2) · ∇G(r2, r1)+

+ (4πε3)
2α1α2tr

[
∂i∂jG(r1, r2)∂j∂kG(r2, r1)

]}
.

(57)

This expression has a direct interpretation. The first term represents, as we demonstrate
below, the monopole-monopole interaction. Mathematically, this term accounts for the
correlation between the potential generated by one monopole at the position of the other,
and vice versa. Analogously, the last term constitutes the dipole-dipole interaction and
is described by the correlation between the electric field generated by one dipole at the
position of the other, and vice versa. The additional terms represent monopole-dipole
contributions, i.e., the correlation between the electrostatic potential generated by one of
the dipoles at the position of the other monopole, and vice versa, and the the correlation
between the electric field generated by one of the monopoles at the position of the other
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dipole, and vice versa. Substituting Equation (52) into Equation (57), we obtain for the first
term the monopole-monopole contribution given by

Fmon−mon = − kBT
2ε2

3

C1C2 e−2κD L

(4πL)2 , (58)

since |r1 − r2| = L. Using Equation (49), we reproduce the first term given in Equation (46).
From Equation (52), we find

∇G(r1, r2) = −
e−κL(r1 − r2)(1 + κDL)

4πL3 = −∇G(r2, r1) . (59)

Substituting these equations in Equation (57), we obtain the monopole-dipole contribution

Fmon−d =
kBT
2ε3

(C1α2 + C2α1)(1 + κDL)2 e−2κD L

4πL4 . (60)

Employing again Equation (49), we reproduce the dipole-monopole term given in Equation (46).
Finally, choosing the z axis parallel to the direction connecting the spheres, we obtain

∂j∂iG(r1, r2) = −
e−κD L

4πL3

(1 + κDL) 0 0
0 (1 + κDL) 0
0 0 −(κ2

DL2 + 2κDL + 2)

. (61)

Substituting this result back into Equation (57), we obtain the dipole-dipole contribution

Fd−d = − kBT
2

(6 + 12κDL + 10κ2
DL2 + 4κ3

DL3 + κ4
DL4)e−2κD L α1α2

L6 , (62)

in agreement with Equation (46).
An interesting feature of these results is that, for positive polarizabilities, the monopole-

dipole interaction weakens the attraction between the spheres. A simple physical picture
can explain this. In order to minimize the energy, the correlations between the fluctuating
dipoles favor dipole orientations that lead to attraction. If the dipoles are perpendicular to
the line connecting the spheres, then the dipoles should be anti-parallel, as indicated in
Figure 4a.

Figure 4. Attractive electrostatic interaction between two fluctuating dipoles in an electrolyte solution
for two configurations: (a) Dipoles perpendicular to the line connecting them and (b) Dipoles parallel
to the line connecting them. In situation (a), the electrostatic potential generated by each dipole does
not induce a charge, while, in situation (b), it does, with the signs indicated in the figure.

From Equation (48), we see that the charge induced by each dipole is proportional
to the electric potential they generate at the center of the other sphere. A point dipole d
produces a potential at a point P that is proportional to d · r̂, where r̂ is the unit vector
corresponding to the position r of the point P. Therefore, when the dipoles are perpendicu-
lar to the line connecting the spheres, they do not induce any charge. On the other hand,
when the dipoles are parallel to the line connecting the spheres, the energetically favored
configuration is the one where the dipoles are parallel to each other. This orientation
is the one that yields the largest induced monopole induced on the spheres for a fixed



Universe 2021, 7, 156 15 of 21

distance, since the charge is proportional to the potential. As illustrated in Figure 4b, in
this configuration, we induce charges of opposite sign in each sphere, thus yielding an
attractive monopole-monopole correlation, as expected. However, the interaction of the
charge induced in one sphere with the dipole induced on the other sphere is repulsive.
Even though we should average over all orientations, this argument shows that situations
close to the one depicted in Figure 4b are the dominant ones for effects associated with
the monopole fluctuations. Hence, the monopole-dipole interaction is repulsive and, thus,
weakens the overall attraction between the spheres. On the other hand, if the spheres’
polarizability is negative (that is, if their permittivities are smaller that of the electrolyte
in between), the argument is reversed and the monopole-dipole interaction enhances the
spheres’ attraction. Since the potential generated by each dipole changes sign in compari-
son to the case of positive polarizability, the signs of the induced charges must be reversed
in comparison to Figure 4b.

There is, however, yet more to be uncovered. By substituting the expression for κD (4)
in the first term of (46), we get

Fmon−mon = −
(

c0q2 8π

3
R3

1

)(
c0q2 8π

3
R3

2

)
e−2κD L

32π2ε2
3(kBT)L2

, (63)

which has precisely the form of the Kirkwood-Shumaker interaction between two proteins
undergoing charge fluctuations [63–65] (accounting for the difference in systems of units
employed) if one identifies

8π

3
c0q2R3

s = 〈∆Q2
s 〉 s = 1, 2 , (64)

where ∆Qs is the fluctuation of charge at the s-th particle. This result is interesting because
it provides a nice analogy between a more familiar example of monopole fluctuations—the
exchange of protons between proteins and the surrounding solution—and our setup, where
such intermittent monopoles arise due to the fluctuations of the electric potential and the
“room” created by the excluded volume. We can verify the relation (64) by noting that
the average energy associated with the monopole of particle s is 〈∆Q2

s 〉/2Cs = kBT/2 by
virtue of the equipartition theorem. Combining this result with Equations (4) and (49), we
obtain a third derivation of the expression (64) for the monopole fluctuations.

As an additional remark, we note that Equation (63) is reminiscent of the orienta-
tion/Keesom interaction between dipoles [52]

FKeesom ∼ −
〈p2

1〉〈p2
2〉

(kBT)L6 , (65)

where 〈p2
s 〉 is the second moment of the s-th dipole. This observation is noteworthy because

it unveils a pattern that should always be present when fluctuating quantities of vanishing
(linear) mean interact in such a way as to have their interaction energy much smaller than
kBT. For the sake of illustration, let us say that we have two fluctuating particles that have
an instantaneous interaction energy of U12. By averaging over the appropriate ensemble,
we get

F12 = −kBT log〈e−U12/kBT〉 ≈ −kBT log

[
1− 〈U12〉

kBT
+
〈U2

12〉
2(kBT)2

]
≈ −〈U

2
12〉

2kBT
, (66)

where we used the assumptions that 〈U12〉 = 0 and U12 � kBT. Even though Keesom con-
sidered randomly oriented permanent dipoles in contrast to our situation of no permanent
multipoles, it can now be easily understood why expressions (65) and (63) are so similar.
U12 just needs to be replaced by either the monopole-monopole interaction (q1q2/L) or
dipole-dipole interaction (p1 · p2/L3).
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Last but not least, we should point out that, due to the presence of a monopolar term
in (46), the small radii limit of F 0

cas has a contribution that is completely independent of the
material properties of the interacting objects. In other words: provided that the distance
between the objects is not so large as to have the n = 0 term screened by the ions, our
results indicate that a significant contribution to the dispersive force between two small
particles of any kind is solely determined by their size and the ionic concentration in the
electrolyte, which could lead to interesting experimental prospects.

3.5. Very Large Spheres and Comparison with PFA

We now discuss the opposite limit of large radii and compare our results with the
widely employed proximity force approximation (PFA), also known as Derjaguin ap-
proximation [88], which effectively describes the interacting (smooth) surfaces by tiny
contiguous planes [89]. The PFA holds as a limit when the spheres’ radii are much larger
than the surface separation [73], i.e.,

a
Rs
� 1 , s = 1, 2. (67)

The free energy between two spheres in the PFA is given by

FPFA(a) =
2πReff

A

∫ ∞

a
dlFpl-pl(l), (68)

where Reff = R1R2/(R1 + R2), and Fpl-pl(a) is the interaction energy between two parallel
planar surfaces [57].
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Figure 5. Relative discrepancy between the PFA and the exact result as a function of the Debye length
for the total free energy Fcas (red squares) and the zero-frequency contribution F0

cas (blue dots). The
horizontal dashed line indicates the discrepancy when considering positive frequencies only, which
do not depend on λD. We consider two PS spheres of radius 1µm separated by a distance of 20 nm.

In Figure 5, we plot the relative discrepancy between the PFA and the exact result as a
function of the Debye length λD for two PS spheres with R1 = R2 = 1µm separated by a
distance a = 20 nm. More specifically, the red squares represent the relative discrepancy
between the exact and PFA free energies

δ =
Fcas −FPFA

Fcas
, (69)

while the blue dots show the zeroth frequency discrepancy δ0, for which only the zeroth
Matsubara contributions are taken in (69). A similar comparison was carried out in Ref. [59]
in the cases of complete screening (λD → 0) and no screening (λD → ∞). The former
corresponds to the value δ = 0.047 indicated as a dashed line. We see a monotonic
growth of δ for the total free energy as the screening decreases, which we attribute to (i) an
increase of the relative contribution of the zeroth Matsubara frequency, for which the PFA
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is generally less accurate (In the case of no screening δ0 = 0.34 for the parameters used in
Figure 5); and (ii) to the overall increase of δ0 as function of λD. The latter behavior can be
expected because PFA assumes that the interaction between the “effective plates” decays
sufficiently rapidly [89], and the screening cuts off the interaction exponentially. Therefore,
the lower is λD (and the stronger is the screening), the lower is the discrepancy.

For the variation of δ0 with decreasing Debye length, Figure 5 shows a sudden breaking
of the monotonic trend at λD ≈ a = 20 nm, indicating a nontrivial interplay between the
two scales, and then a sharp drop as the Debye length gets below 15 nm. The latter may
be understood along the same lines of the previous paragraph, as the interaction range
gets substantially smaller than the separation gap and then the PFA is expected to work
increasingly better for the zeroth frequency contribution [89]. That a different behavior is
displayed by the red squares for the discrepancy of the total free energy is not surprising:
the contribution of the zeroth frequency term to the total free energy becomes quite small
at that range—for instance, for a Debye length of 8 nm, the zeroth frequency contribution
is 2% of the total force —, so the variation with λD becomes negligible.

4. Conclusions

We have considered the Casimir interaction between two dielectric spherical parti-
cles immersed in aqueous solution. As the distance rises, screening by ions in solution
increasingly suppresses the Matsubara zero-frequency thermal contribution, which would
otherwise be the dominant contribution at distances & 0.1µm. We have derived a general
representation for the zero-frequency contribution by analyzing multipolar fluctuations as
governed by the linear Poisson-Boltzmann equation in the electrolyte region.

In the limit of very small spheres, we have re-obtained the screened interaction
between fluctuating dipoles of Ref. [56]. However, two additional contributions turn out to
also be of order (R1R2)

3. They arise from monopole fluctuations associated to the volume
of electrolyte solution excluded by each sphere. The monopole-monopole term depends on
the volume of the particles only and not on their dielectric constants. The monopole-dipole
contribution tends to reduce the attraction when the particles’ dielectric constant is larger
than the external one. As a verification and for the sake of physical insight, we have
developed an alternative derivation based on the cross correlations between monopole and
dipole moments.

When considering the opposite limit of large spheres, we were able make contact with
the known result for parallel planar surfaces [55–57] with the help of the proximity force
(Derjaguin) approximation [88,89]. We have provided a detailed comparison between such
widely-employed approximation and our multipolar results obtained from exact solutions
of the linear Poisson-Boltzmann equation for the sphere-sphere geometry. As expected, for
a given geometric aspect ratio a/Rs, the approximation becomes increasingly accurate as
screening is enhanced by adding salt to the solution.

The electrostatic fluctuational approach we have followed should hold for moderately
short distances a . λD and allows one to recover the ion-free case in the limit λD → ∞.
For very short distances, one could expect deviations as the mean-field approximation
behind the linear Poisson-Boltzmann equation breaks down [90]. However, in this case, the
zero-frequency contribution is generally less important, and then so is the ionic screening
of the Casimir interaction. On the other hand, for longer distances, a > λD, the Casimir
effect in electrolyte media can be cast in terms of the scattering approach by taking into
account the spatially non-local response of the movable ions in the bulk approximation [54].
For parallel planar surfaces, the resulting zero-frequency contribution contains not only
the result obtained from the electrostatic fluctuational approach but also an additional
term arising from transverse magnetic modes [58]. A similar result is expected for the
spherical geometry, and a derivation is currently under way. A more general theory, valid
for arbitrary values of a/λD and describing the crossover region a ∼ λD, will require
an implementation of the scattering approach beyond the bulk approximation for the
non-local response of the electrolyte solution, possibly along the lines of Ref. [53].
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