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Abstract: Real Clifford algebras for arbitrary numbers of space and time dimensions as well as
their representations in terms of spinors are reviewed and discussed. The Clifford algebras are
classified in terms of isomorphic matrix algebras of real, complex or quaternionic type. Spinors
are defined as elements of minimal or quasi-minimal left ideals within the Clifford algebra and
as representations of the pin and spin groups. Two types of Dirac adjoint spinors are introduced
carefully. The relationship between mathematical structures and applications to describe relativistic
fermions is emphasized throughout.
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1. Introduction

Clifford algebra plays an important role for understanding physical theories of rela-
tivistic fermions. In the physics literature they are typically discussed for a given number of
dimensions in terms of a concrete matrix realization [1–11]. In this formulation, spinors are
in general complex although additional “reality constraints” are sometimes imposed, e.g.,
to describe Majorana fermions in d = 1 + 3 dimensions. One also must specify additional
relationships for time and space reversal transformations as well as different conjugations
in spinor space such as charge conjugation. Although this approach is well suited for many
applications, it is not as systematic as one may wish. A matrix representation must be
developed for every combination of space and time dimensions and finding the right real-
ization of discrete symmetries is a kind of art. Other expositions focus more on geometry,
but are also restricted to four dimensions [12].

On the other side, in the mathematical literature, a more systematic approach to
Clifford algebras has been developed, see e.g., refs. [13–24]. This allows an understanding
and classification of real Clifford algebras for r time and d− r space dimensions in rather
general terms. Moreover, the spin group, which is so important to physics, also representa-
tions of the larger “pin” group are being discussed. Because the latter is a double cover
of the full indefinite orthogonal group O(r, d− r,R), it also includes reflections of single
coordinates and therefore time and space reversal.

With the present article we aim at bridging between the mathematical literature and lit-
erature about applications in physics, specifically for relativistic fermions. We will develop
the theory of real Clifford algebras with indefinite but non-degenerate symmetric metric in
a systematic but concise way and provide the material to describe spinor representations
for relativistic fermions. The present paper concentrates entirely on real Clifford algebras,
i.e., the algebra that arises if only the original generators, their various products and linear
superpositions thereof with real coefficients are allowed. The complexified version of this
(with complex linear superpositions allowed) is actually of a somewhat simpler structure
and more often discussed in the physics literature. Restrictions can then be imposed in
addition, specifically in the form of real or quaternionic structures on a complex vector
space, to describe (variations of) Majorana fermions. We plan to address complex Clifford
algebras in a future study but find it natural to start with the more restricted real case.
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For more clarity, in the present work we will follow the mathematical tradition to
separate the Clifford algebra somewhat from its concrete matrix representation. There
is, however, in any case a rather close connection, because matrix algebras serve not
only as representations but can also be used to classify Clifford algebras. We will also
make the effort so discuss spinors somewhat independent of the matrix representation.
Algebraically, spinor spaces can in fact be introduced as (minimal or quasi-minimal) left
and right ideals within the Clifford algebra [25]. Even though it will be some effort to
introduce the necessary algebraic notions, this is an effort that pays off eventually because
it leads to more clarity on the classification of spinor spaces. Specifically, one finds spinor
spaces as real vector spaces, as complex vector spaces, or as quaternionic vector spaces. In
particular, the quaternionic spaces come somewhat as a surprise from a physicist’s point of
view but arise unavoidably for certain combinations of d and r, as will become clear.

For a consistent description of spinor spaces for arbitrary numbers of time and space
dimensions, a rather important role is played by the so-called Clifford structure map ς. For
even number of dimensions d, this structure map is just an element of the Clifford algebra
itself and can be taken to be the product of all time-like and space-like generators. For
odd number of dimensions d, the situations is more complex and the structure map is not
an element of the Clifford algebra itself. As we will point out, the structure map plays
an important role in defining a consistent action of the pin group on arbitrary elements
of the Clifford algebra and in particular on spinor representations as left and right ideals.
Although the present paper is to a large extend of review character, it is mainly in this
context that some discussions given here go beyond the previously available literature.

2. Real, Indefinite Orthogonal Groups

We concentrate on real coordinates xµ and consider d spacetime dimensions divided
into r time and (d− r) space dimensions. Technically, we mean by this that there is a real,
indefinite but non-degenerate metric, which by a convenient choice of coordinates can
be brought to the form ηµν = diag(−1, . . . ,−1,+1, . . . ,+1). The first r entries are −1 for
time-like coordinates followed by (d− r) entries +1 for space coordinates. We label the
indices µ of coordinates xµ and the metric such that µ = 1− r, . . . , 0 are time indices and
µ = 1, . . . , d− r are spatial indices.1

The spacetime symmetry group (including rotations, boosts and reflections but with-
out translations) is then the one of the indefinite orthogonal group O(r, d− r,R). The group
elements of O(r, d− r,R) are real d× d matrices Λµ

ν, defined through the relationship

Λρ
µηρσΛσ

ν = ηµν, or ΛTηΛ = η. (1)

In other words, these transformations are such that the metric is left invariant.
Rotation Group O(d, R). Let us first discuss the simplest and definite case r = 0

(or, essentially equivalent, d = r). In this case, there are two disconnected components
of the group O(d,R) with det(Λ) = ±1. The elements close to the unit element Λ = 1

have det(Λ) = 1 and form the group SO(d,R). They can be combined with reflections
to construct other elements of the group O(d,R). For d odd one has a full reflection
Λ = −1with det(Λ) = −1. This transformation commutes with all other elements. One
has therefore the structure O(d,R) = Z2 × SO(d,R). For d even this is not possible, and
reflections with det(Λ) = −1 do not commute with all elements of SO(d). In any case, the
topology of O(d,R) has two disconnected parts with det(Λ) = ±1.

Generalized Lorentz group O(r,d − r,R). Now we assume r > 0 and (d− r) > 0.
Again, there are two disconnected parts with det(Λ) = ±1. The elements that are con-
nected to Λ = 1 have det(Λ) = 1. Reflections along the coordinate axis can be written as
Λ = diag(P, Q) and can have det(P) = ±1, det(Q) = ±1 with det(Λ) = det(P)det(Q).
Accordingly, there are now four disconnected components of the group O(r, d− r,R). For
d odd one can write again O(r, d− r,R) = Z2 × SO(r, d− r,R) where the latter has only
two disconnected components. Depending on whether the number of time dimensions r
or the number of space dimensions (d− r) is odd, these two topologically disconnected
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components are connected by time reflections or space reflections, respectively. For d even,
the group is not of a simple product structure but still has four disconnected components
in the real case. We denote the component topologically connected to the unit transforma-
tion by SO↑(r, d− r,R). Table 1 illustrates the topological structure of O(r, d− r,R) and
decomposes it into four sectors I, II, III and IV.

Please note that two subsequent transformations out of a single sector always leads
to I. The structure is the one of the finite group Z2 × Z2. In other words, O(r, d −
r,R)/SO↑(r, d− r,R) ∼= Z2 × Z2.

Table 1. Topologically disconnected components I, II, III, and IV of the indefinite orthogonal
group O(r, d− r,R). The other sectors can be written as elements of I combined with reflections
Λ = diag(P, Q), as described in the text. In the complexified group O(r, d− r,C) region I and IV are
connected, as well as II and III, but the two sectors with det(Λ) = ±1 remain disconnected from each
other.

det(Q) = +1 det(Q) = −1

det(P) = +1 I
det(Λ) = +1

II
det(Λ) = −1

det(P) = −1 III
det(Λ) = −1

IV
det(Λ) = +1

Space and time reflections. For d− r even, space reversion (i.e., the reflection along all
time-like coordinate axis) P does not connect different topologically disconnected elements
of the group but for d − r odd this is the case. Similarly, when r is even, simple time
reversal T does not connect different components2, but for r odd, they do. Combined
transformations PT = −1 connect different components for d odd or for d even with r
and d− r odd. In Table 2 we show the action of P and T in different dimensions.

Table 2. Action of space reflections P and simple time reflections T for different dimensions and
signatures of the generalized Lorentz group O(r, d− r,R).

(d − r) even (d − r) odd

r even d even
P ∈ I, T ∈ I, PT ∈ I

d odd
P ∈ II, T ∈ I, PT ∈ II

r odd d odd
P ∈ I, T ∈ III, PT ∈ III

d even
P ∈ II, T ∈ III, PT ∈ IV

Cartan-Dieudonné theorem. By virtue of the Cartan-Dieudonné theorem one can
compose all finite orthogonal transformations or elements of O(r, d− r,R) by a number
(actually smaller or equal to d) of reflections along certain directions. We do not prove
this interesting statement here, but just state it for later use. A proof can be found e.g., in
refs. [13,18].

Lie Algebra. The connected subgroup SO↑(r, d− r,R) may be discussed in terms of
the Lie algebra. Infinitesimal transformations are of the form

Λµ
ν = δ

µ
ν + δω

µ
ν. (2)

For δωµν = ηµρδω
ρ

ν the condition (1) implies anti-symmetry

δωµν = −δωνµ. (3)

Representations of the Lorentz group with can be written in infinitesimal form as

U(Λ) = 1+
i
2

δωµν Mµν, (4)
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and finite transformations as corresponding exponentiation. The generators are antisym-
metric, Mµν = −Mνµ, and their Lie bracket is

[Mµν, Mρσ] = i(ηµρ Mνσ − ηµσ Mνρ − ηνρ Mµσ + ηνσ Mµρ). (5)

The fundamental representation (2) has the generators

(Mµν
F )α

β = −i(ηµαδν
β − ηναδ

µ
β). (6)

3. Real Clifford Algebras

Let us now introduce a real Clifford algebra C l(r, d− r,R) by the following characteri-
zation. We take γµ to be the generators of an associative algebra3 overR satisfying

γµγν + γνγµ = 2ηµν
1, (7)

where 1 is the unit element in the algebra and ηµν = diag(−1, . . . ,−1,+1, . . . ,+1) is the
(inverse) metric as introduced above. The algebra C l(r, d− r,R) is then formed by arbitrary
products of the generators γµ and real linear combinations thereof.

Please note that the generators γµ are introduced here independent of a specific
representation. We will later construct specific representations in terms of matrices. As a
side remark let us state here that the operators θµ + ηµα ∂

∂θα acting on a Grassmann algebra
would form one such representation.

Sorted products and vector space. The elements of C l(r, d− r,R) form a real vector
space spanned by the unit element 1 and the sorted products

γµ1µ2···µp = γµ1 γµ2 . . . γµp , (8)

with µ1 < µ2 < . . . < µp. More generally, we take the symbol γµ1µ2···µp to be antisymmetric
under the permutation of any pair of neighboring indices and to vanish accordingly when
two indices are equal.

Dimension of Clifford algebra. Each generator can be present or absent in a sorted
product, so the dimension of the Clifford algebra as a real vector space is 2d. (It could in
principle be smaller if not all these elements are linearly independent. This case, which
can specifically arise for d odd and r− (d− r) = 3 mod 4 is usually excluded as a “non-
universal” Clifford algebra. Universal Clifford algebras have then dimension 2d.)

Covectors. The Clifford algebra contains in particular a copy of the dual vector space,
or space of one-forms, with elements of the form

v = vµγµ. (9)

2-Covectors and p-covectors. One also has a copy of the space of two-forms, or
2-covectors, with elements of the form

w = ∑
µν

1
2

wµν(γ
µγν − γνγµ) = ∑

µ<ν

wµνγµν. (10)

Please note that one has here wµν = −wνµ. In a similar way, also p-forms or p-
covectors

u = ∑
µ1<···<µp

uµ1···µp γµ1···µp , (11)

with uµ1···µp fully antisymmetric, are embedded in the algebra. The entire exterior algebra
is incorporated in this way, in terms of combinations of generators in different directions.
In fact, there is an isomorphism with the identification

γµ1···µp ∼= dxµ1 ∧ dxµ2 ∧ . . . ∧ dxµp . (12)



Universe 2021, 7, 168 5 of 34

However, note that γµγµ = ηµµ while dxµ ∧ dxµ = 0. We will use this notation
to write

1
2
(γµγν − γνγµ) = γµ ∧ γν = γµν. (13)

Modified summation convention. In expressions involving γµ1···µp or the wedge
product such as γµ ∧ γν we use a modified summation convention where a restriction is
imposed as above, such that e.g.,

wµνγµν = ∑
µ<ν

wµνγµν = wµνγµ ∧ γν = ∑
µ<ν

wµνγµ ∧ γν, (14)

and
uµ1···µp γµ1···µp = ∑

µ1<···<µp

uµ1···µp γµ1···µp . (15)

Decomposition into p-covectors. We use the notation 〈v〉p for the p-covector part of
a Clifford algebra element v. An arbitrary element of the algebra can be written as

v =v(0)1+ vµγµ + vµ1µ2 γµ1µ2 + . . . + v1−r···d−rγ1−r···d−r

=〈v〉0 + 〈v〉1 + 〈v〉2 + . . . + 〈v〉d.
(16)

Indeed, this corresponds to 1+ d+ d(d− 1)/2+ . . .+ d+ 1 = 2d linearly independent
terms (for universal Clifford algebras).

Clifford product. The Clifford product of two (covector) elements u = uµγµ and
v = vνγν is given by

uv =
1
2
(uv− vu) +

1
2
(uv + vu) = uµvνγµν + uµvνηµν = u ∧ v + u · v. (17)

This can be easily generalized to more general elements of the algebra, see e.g.,
refs. [22,24].

Clifford parity, grade involution and even subalgebra. One can define an internal parity G
in the Clifford algebra C l(r, d− r,R) such thatG(γµ) = −γµ andG(〈v〉p) = (−1)p〈v〉p. It splits
the vector space C l(r, d− r,R) into two vector spaces, C l+(r, d− r,R) and C l−(r, d− r,R),
containing even and odd elements, respectively. One of them, namely C l+(r, d− r,R) containing
only even elements is in fact a subalgebra.

Acting on an element of the algebra, Clifford parity is also known as grade involution
and one has

G(v) = 〈v〉0 − 〈v〉1 + 〈v〉2 − . . . + (−1)d〈v〉d. (18)

Grade involution is an automorphism is the sense that

G(uv) = G(u)G(v). (19)

Product of all generators. One element of C l(r, d− r,R) plays a distinguished role,
the product of all generators (sometimes called “volume element”)

γ̂ = γ(1−r)(2−r)...0...(d−r) = γ1−rγ2−r · · · γ0γ1 · · · γd−r. (20)

One can also write this as an expression where the order of generators is reversed,

γ̂ = (−1)d(d−1)/2γd−r · · · γ1γ0 · · · γ1−r. (21)
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Please note that to go from Equation (20) to (21) one needs to permute the first gamma
matrix d− 1 times and so on, and the last two matrices once. This makes

(d− 1) + (d− 2) + . . . + 1 = d(d− 1)/2 (22)

permutations and corresponding signs. Moreover, one can write

d(d− 1)/2 mod 2 = (d + 4)(d + 4− 1)/2 mod 2 = [d/2] mod 2,

where [d/2] is the integer part of d/2.
One finds thus

γ̂2 = (−1)[d/2]−r
1 = (−1)[((d−r)−r)/2]

1. (23)

Please note that this depends only on the difference between the number of space and
time directions (d− r)− r mod 4. Specifically, one has γ̂2 = 1 for r− (d− r) = 0, 3 mod 4
and γ̂2 = −1 for r− (d− r) = 1, 2 mod 4.

The d-dimensional analogue of γ5 can be defined by

γ̄ = (−i)[((d−r)−r)/2]γ̂, (24)

such that γ̄2 = 1. For d = 4 and r = 1 this agrees with the standard definition. Please
note that γ̂ is an element of the real Clifford algebra overR while this is the case for γ̄ only
when r− (d− r) = 0 mod 4.

If d is even, γ̂ anti-commutes with the generators γµ and therefore with the elements
of C l−(r, d− r,R) while it commutes with the elements of C l+(r, d− r,R). Instead, if d is
odd, γ̂ commutes with all the generators and therefore all elements of the Clifford algebra
C l(r, d− r,R).

Center of the algebra. The center of the algebra, i.e., the set of elements which
commutes with all other elements of C l(r, d− r,R) contains only real multiples of the unit
element 1 for d even. Instead, if d is odd, the center is spanned by 1 and γ̂.

Reversion. In addition to grade involution G there is another natural involution R
where one reverses the order of all generators, for example R(γµγν) = γνγµ = −γµγν

for µ 6= ν etc. For a p-covector one has R(〈v〉p) = (−1)p(p−1)/2〈v〉p and for an arbitrary
element of the Clifford algebra

R(v) = 〈v〉0 + 〈v〉1 − 〈v〉2 + . . . + (−1)d(d−1)/2〈v〉d. (25)

Reversion is an anti-automorphism in the sense that

R(uv) = R(v)R(u). (26)

This is an immediate consequence of changing the order of generators.
Clifford conjugation. Clifford conjugation C is the combination of grade involution

G and reversion R,
C(v) = R(G(v)) = G(R(v)). (27)

Specifically, for some element of the Clifford algebra,

C(v) = 〈v〉0 − 〈v〉1 − 〈v〉2 + . . . + (−1)d(d+1)/2〈v〉d. (28)

Again, this is an anti-automorphism such that

C(uv) = C(v)C(u). (29)

Grade involution, reversion and Clifford conjugation will be useful to define dif-
ferent involutions not only in the Clifford algebra and its representations, but also for
associated spinors.
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The structure map in the Clifford algebra. One may ask whether grade involution
can be realized as anR-linear map ς on the Clifford algebra such that for a ∈ C l(r, d− r,R)
one has

G(a) = ς a ς−1. (30)

Specifically, this needs ςγµς−1 = −γµ. Please note that G(G(a)) = a and one can
rescale ς such that ς2 = ±1. One cannot demand ς2 = 1 in all cases, see below. In any case,
this structure map ς is unique only up to a sign within a real Clifford algebra.

For d even, γ̂ as defined in (20) anti-commutes with all generators γµ and one can
set ς = γ̂ or ς = −γ̂. The structure map ς is here actually itself part of the Clifford
algebra, ς ∈ C l(r, d− r,R). Please note that ς2 = γ̂2 = 1 for r− (d− r) = 0, 4 mod 8 but
ς2 = γ̂2 = −1 for r− (d− r) = 2, 6 mod 8.

For d odd, γ̂ commutes with all generators and is part of C l−(r, d − r,R). In fact,
every element of C l−(r, d− r,R) can be written in the form of a product of an even element
with γ̂ and one has C l(r, d − r,R) = C l+(r, d − r,R) ⊕ C l+(r, d − r,R)γ̂. The structure
map ς corresponds to the map γ̂ → −γ̂. In this case, ς is not itself an element of the
Clifford algebra.

Let us now distinguish two cases. In the first case one has r− (d− r) = 1, 5 mod 8
and γ̂2 = −1. Here γ̂ defines a complex structure, typically γ̂ = ±i1. One must take
the structure map ς to be complex conjugation with respect to this complex structure. In
addition, one may add an overall sign.

In the other case r − (d− r) = 3, 7 mod 8 and γ̂2 = 1. The Clifford algebra is now
reducible. Usually γ̂ acts on a direct sum of two algebras A⊕ B as (1,−1). The structure
map interchanges the elements of the two summands, a ⊕ b → b ⊕ a. Alternatively,
a⊗ b→ −b⊗ a works, as well.

In summary, depending on the dimension d and the signature r, the grade involution
G can be realized as a linear map which may (up to a sign) either be given by the product of
all generators γ̂ (for d even), complex conjugation, or the interchange of the two summands
when the Clifford algebra has the structure of a direct sum (for d odd).

4. Pin and Spin Groups

There is a very close relationship between the orthogonal group O(r, d− r,R) and
the so-called pin group Pin(r, d− r,R) as well as between the special orthogonal group
SO(r, d− r,R) and the spin group Spin(r, d− r,R) on the other side. We will now discuss
this correspondence. Please note that Clifford algebra elements are in general not invertible.
To define groups, one must concentrate on those elements a for which a−1 exists.

Reflections along a vector. We start by considering reflections along a specific covector

direction uµ. One may define a projector orthogonal to this direction as δ ν
µ −

uµuν

u·u and the

projector in the direction of uµ is obviously uµuν

u·u . A transformation that reflects along the
direction uµ is accordingly given by

R ν
µ = δ ν

µ − 2
uµuν

u · u . (31)

When acting on some vector vν and after contracting with Clifford algebra generators
one finds

Rv = γµR ν
µ vν = v− 2 u · v

u · u u = v− vu + uv
u · u u = −uvu−1 = G(u)vu−1, (32)

where u and v are covector elements of the Clifford algebra. We also used u−1 = u/(u ·
u) and the grade involution G(u) = −u for a covector. We have thus constructed a
representation of reflections along some axis in the Clifford algebra. By virtue of the
Cartan-Dieudonné theorem one can actually compose all orthogonal transformations by
several reflections, so this is all we need.
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Please note that for a pure covector v = vµγµ one has R(v)v = −C(v)v = v · v ∈
R. Additionally, for products of several pure covectors v = v1 · · · vN one has R(v)v =
±C(v)v ∈ R. Reflections along space-like directions can moreover be normalized to
R(v)v = −C(v)v = v · v = +1 and reflections along time-like directions to R(v)v =
−C(v)v = v · v = −1. Products of several normalized reflections v = v1 · · · vN satisfy then
R(v)v = ±1 and C(v)v = ±1.

Clifford-Lipschitz group. We first consider the so-called Clifford-Lipschitz group
Γ(r, d− r,R) defined by

Γ(r, d− r,R) =
{

a ∈ C l(r, d− r,R) | G(a)va−1 ∈ V∗, for all v = vµγµ ∈ V∗
}

(33)

We use here the grade involution G(a) and the above corresponds to the so-called
twisted adjoint representation. Because this is a linear transformation one must be able to
write G(a)γµa−1 = Mµ

νγν with some matrices Mµ
ν. Moreover, taking the grade involution

of this expression gives aγµG(a)−1 = Mµ
νγν. We show now that Mµ

ν is orthogonal,

Mµ
ν Mρ

σ2ηνσ = Mµ
ν Mρ

σ(γ
νγσ + γσγν) = aγµG(a−1a)γρa−1 + aγρG(a−1a)γµa−1 = 2ηµρ. (34)

As a consequence of the Cartan-Dieudonné theorem, all orthogonal transformations
are actually in Γ(r, d − r,R). This shows that there is a very close connection to the
orthogonal group. Please note that the correspondence in the above form works for any
element of O(r, d− r,R).

Moreover, if one restricts to even elements,

Γ+(r, d− r,R) = Γ(r, d− r,R) ∩ C l+(r, d− r,R), (35)

one obtains a subgroup that contains all elements of the special orthogonal group SO(r, d− r,R).
To define this restricted group, one does not need the twisted adjoint representation as
above but could equivalently use the adjoint representation ava−1.

Note, however, that the Clifford-Lipschitz group is in a certain sense larger than the
orthogonal group, because group elements a and a′ = λa that differ by a factor 0 6= λ ∈ R
correspond to the same transformation Mµ

ν. This can be remedied by working with a
normalized set of group elements.

Pin group. The so-called pin group is defined as

Pin(r, d− r) = {a ∈ Γ(r, d− r,R) | R(a)a = ±1,C(a)a = ±1}. (36)

It contains the elements of the Clifford-Lipschitz group, but they are now normalized.
Please note that single reflections along a vector, and therefore products of such reflections,
can be normalized in this way. By virtue of the Cartan-Dieudonné theorem this covers
all orthogonal transformations or elements of O(r, d − r,R). The degeneracy is now
finite in the sense that only two elements +a and −a correspond to the same orthogonal
transformation. One says that the pin group Pin(r, d− r,R) is the double coverage of the
orthogonal group O(r, d− r,R).

Please note that all elements of the pin group have a definite Clifford parity, G(a) = ±a.
It is convenient to introduce the Clifford grade parity g(a) through

g(a) =

{
0 for G(a) = +a,
1 for G(a) = −a.

(37)

One can then write G(a) = (−1)g(a)a for any a ∈ Pin(r, d− r,R). With this notation,
the action of an element of the pin group on a covector v ∈ V∗ can now be written
alternatively as

v→ G(a)va−1 = a(−1)g(a)va−1. (38)
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Interestingly, this can now be easily generalized to an arbitrary product of generators.
A product of an odd number of generators receives a sign, while a product of an even
number of generators does not. For an arbitrary element of the Clifford algebra b ∈
C l(r, d− r,R) one can write the transformation behavior under the pin group as

b→ aGg(a)(b) a−1 = a ςg(a) b (ς−1)g(a) a−1. (39)

We use here Gn = G for n odd and Gn = 1 for n even. In the last equation we have
used the structure map (30). Equation (39) will be particularly useful also in the context
of spinors.

Restricted pin groups. One can define a subgroups of the pin group by

Pin↑(r, d− r,R) = {a ∈ Γ(r, d− r,R) | R(a)a = +1}. (40)

This corresponds to the subgroup of the orthogonal transformations that do not change
the orientation among the temporal coordinates because single reflections along time-like
directions are excluded. Similarly,

Pin+(r, d− r,R) = {a ∈ Γ(r, d− r,R) | C(a)a = +1}, (41)

corresponds to the subgroup that does not change orientation among the spatial coordinates [24].
The action of these restricted pin groups on arbitrary elements of the Clifford algebra is of
the form (39).

Spin group. The spin group is obtained by restricting to even elements of the
Clifford algebra,

Spin(r, d− r) = {a ∈ Γ+(r, d− r,R) | R(a)a = C(a)a = ±1}. (42)

This group is the double coverage of SO(r, d− r,R). One can further restrict to

Spin↑(r, d− r) = {a ∈ Γ+(r, d− r,R) | R(a)a = C(a)a = +1}, (43)

which is now the double coverage of SO↑(r, d− r,R).
Please note that the elements of the spin group have obviously all even Clifford parity.

In this sense the transformation law for an arbitrary element of the Clifford algebra is now
also simpler than (39) and corresponds to the adjoint representation

b→ a b a−1. (44)

Lie algebra. The subgroup Spin↑(r, d− r) connected to the unit transformation can be
discussed in terms of its Lie algebra. Infinitesimal orthogonal transformations are specified
in (2), the corresponding commutation relationships are given in (5) and the fundamental
representation is given in (6). The commutation relationships (5) are also satisfied by the
following generators in the Clifford algebra

Mµν
S = − i

4
[γµ, γν]. (45)

Exponentiation leads to a finite group element

L = exp
[

i
2

ωµν Mµν
S

]
. (46)

Please note that rotations by 2π correspond to L = −1. This shows that the spin
group and SO↑(r, d − r,R) are not isomorphic. One says that Spin↑(r, d − r,R) is the
double cover of SO↑(r, d − r,R). Please note that [γ̂, Mµν

S ] = 0. For d even where γ̂ is
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non-trivial, one can therefore decompose the spin algebra generators Mµν
S into left-handed

and right-handed parts.
Interestingly, one can understand the Pin group (36) as consisting of transformations

that are unitary or anti-unitary in the sense of R(a)a = ±1 and C(a)a = ±1. This becomes
stepwise restricted to the restricted spin group (43) which contains only transformations
that are unitary in both senses.

Non-orthogonal transformations. One may ask whether also non-orthogonal trans-
formations of spacetime can be realized as transformations in the Clifford algebra. Specif-
ically, transformations of the type (2) correspond to orthogonal transformations for an-
tisymmetric δωµν = −δωνµ, while a symmetric part δωµν = δωνµ would describe a
non-orthogonal transformation that also modifies the metric. One can convince oneself that
such transformations can not be easily implemented in the Clifford algebra in the sense that
one would find a transformation behavior for the generators which then becomes general-
ized to other elements of the Clifford algebra by expressing them in terms of the generators.
What one could do is to decompose the elements of the Clifford algebra into p-covectors as
in Equation (16) and then to transform each element individually as a p-form.

In practice one circumvents this problem. Fermions are either described in flat carte-
sian coordinates (Minkowski space), or when this is not possible, for example in curved
space one works with the tetrad (or vielbein) formalism and the spin connection, see e.g.,
refs. [12,17].

5. Space and Time Reversal

Now that we have found a direct correspondence between the orthogonal group
O(r, d− r,R) and the Clifford group Pin(r, d− r,R), let us construct in particular space
and time reversal transformations. The time reversal transformation we consider here is
the so-called simple time reversal, in contrast to Wigner’s time reversal which is realized as
an anti-unitary transformation.

Time reversal T . Simple time reversal is the reflection of all time-like coordinates and
can be implemented by the product of all time-like generators

β = γ1−r · · · γ0. (47)

Please note that β2 = ±1 depending on the number of time dimensions r. With these
definitions one has the time reversal transformation in the twisted adjoint representation

G(β)γµβ−1 =

{
−γµ for (γµ)2 = −1 (µ time-like)
+γµ for (γµ)2 = +1 (µ space-like)

(48)

Please note that as transformation on the real Clifford algebra, β is unique up to a sign.
Note also that one has G(β) = β for r even but G(β) = −β for r odd.

For products of generators, the twisted adjoint presentation employed here has the
consequence that elements of the odd and even sub algebra transform differently. More
specific, for a+ ∈ C l+(r, d− r,R) one has the time reversal

βa+β−1, (49)

while for a− ∈ C l−(r, d− r,R) one has the time reversal

G(β)a−β−1. (50)

For r even this difference disappears because G(β) = β but for r odd there is an
additional minus sign in (50) compared to (49).

Using the representation of the pin group in Equation (39) one can summarize these
transformation laws for time reversal for any a ∈ C l(r, d− r,R) as

a→ T (a) = βGr(a)β−1 = βςra(ς−1)rβ−1, (51)
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where Gr = G for r odd and Gr = 1 for r even. One may check that T (T (a)) = a such that
T is an involution. Note, however, that (βςr)2 = ±1.

Space reversal P . Space reversal can be realized similarly by the product of all
space-like generators

α = γ1 · · · γd−r. (52)

Please note that α2 = ±1, depending on the number of space dimensions d− r. Space
reversal of generators is realized as

G(α)γµα−1 =

{
+γµ for (γµ)2 = −1 (µ time-like)
−γµ for (γµ)2 = +1 (µ space-like).

(53)

Again, as a transformation in the real Clifford algebra, α is unique up to a sign. One
has G(α) = α for (d− r) even while G(α) = −α for (d− r) odd.

Again, there is more generally a difference between even and odd elements of the
Clifford algebra, and one finds for a ∈ C l(r, d− r,R) the space reversal transformation

a→ P(a) = αGd−r(a)α−1 = αςd−ra(ς−1)d−rα−1, (54)

where Gd−r = G for d− r odd and Gd−r = 1 for d− r even. One may check that P(P(a)) =
a such that P is an involution and (αςd−r)2 = ±1.

Let us note here that a combination of time reversal and space reversal corresponds
to a reflection of all generators γµ → −γµ. This is in fact precisely the grade involution
G = T P . One can also see this from the explicit realizations (51) and (54) with the side
information that βα = γ̂ and that ς = ±γ̂ for d even and that γ̂ commutes with all
generators when d is odd. In short

T (P(a)) = P(T (a)) = ςaς−1. (55)

6. More Involutions

We have already discussed three important involutions on the real Clifford algebra,
namely grade involution G, reversion R and Clifford conjugation C. In addition to this,
we have the discrete transformations of (simple) time reversal T and space reversal P . In
the present section we discuss further involution operations that are useful for physics
applications in practice.

6.1. Hermitian Conjugation

One may define another involution on the Clifford algebra. In the matrix represen-
tations we will consider below this corresponds to Hermitian conjugate, so we use the
notation H here.

Let us define the “Hermitian conjugate” of a generator such that

H(γµ) =

{
+γµ for (γµ)2 = +1,
−γµ for (γµ)2 = −1.

(56)

Please note that generators in time-like directions are anti-Hermitian in this sense,
while those of space-like directions are Hermitian. One may now extend this in a natural
way to products of generators by requesting

H(AB) = H(B)H(A). (57)

In this sense, H is an anti-automorphism.
One has then for products of generators similar to for the generators themselves

H(γµ1···µp) =

{
+γµ1···µp for (γµ1···µp)2 = +1,
−γµ1···µp for (γµ1···µp)2 = −1.

(58)
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One could also write this as H(γ) = γ3.
Moreover, the definition (56) has the interesting consequence H(γµ)γµ = 1 and

therefore the generators and any sequence of generators

A = γµ1 · · · γµn , (59)

are unitary in the sense H(A)A = 1.
Hermitian conjugate of structure map. In the following we will also need the Her-

mitian conjugate of the structure map ς defined in (30). For d even, this is easily found,
because ς = ±γ̂ is itself part of the Clifford algebra. Moreover, as a product of generators
we have H(γ̂)γ̂ = 1 and therefore

H(ς) = ς−1. (60)

For d odd this is more involved because ς is not an element of the Clifford algebra.
However, one can consistently extend the definitions such that (60) holds also there. The
consistency of this setting can be checked in concrete matrix representations of the odd-
dimensional Clifford algebras.

Relation of Hermitian conjugation H to other involutions. Let us relate the involu-
tion H to the involutions discussed previously. In particular, for a single generator, it can be
directly related to time reversal and space reversal,

H(γµ) = G(β)R(γµ)β−1 = G(α)C(γµ)α−1. (61)

We have employed here the reverse R and Clifford conjugate C which are also anti-
automorphisms. One can then extend this to arbitrary elements of the Clifford algebra
a ∈ C l(r, d− r,R) as

H(a) = βςr−1C(a)(ς−1)r−1β−1 = βςrR(a)(ς−1)rβ−1

= αςd−rC(a)(ς−1)d−rα−1 = αςd−r+1R(a)(ς−1)d−r+1α−1,
(62)

where we have used the structure map (30).

6.2. Dirac Adjoints

We define now two more involutions on the Clifford algebra which are in fact rather
useful for applications to relativistic fermions. They are not independent of the involutions
introduced previously, though.

First Dirac adjoint. We define the first Dirac adjoint for a ∈ C l(r, d − r,R) as the
combination of Hermitian conjugation and space reversal,

D1(a) = P−1(H(a)) = (ς−1)d−rα−1 H(a) αςd−r. (63)

Please note that this is an anti-automorphism in the sense that D1(ab) = D1(b)D1(a).
Generators transform like D1(γ

µ) = −γµ. This, or inspection of (62) shows that the first
Dirac adjoint agrees in fact with the Clifford conjugate,

D1(a) = C(a). (64)

Please note that in Minkowski space where d = 4 and r = 1 one has ς = ±γ̂ = ±βα
and

D1(a) = β−1H(a)β = (γ0)−1H(a)γ0. (65)

Second Dirac adjoint. Similarly, a second Dirac adjoint for an element of the Clifford
algebra a ∈ C l(r, d − r,R) as the combination of Hermitian conjugation and a space
reversal,

D2(a) = T −1(H(a)) = (ς−1)rβ−1 H(a) βςr. (66)
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Again, this is an anti-automorphism. Generators transform now as D1(γ
µ) = γµ which

shows that the second Dirac adjoint is in fact the reverse,

D1(a) = R(a). (67)

7. Matrix Representations and Classification

Here we will construct and discuss concrete representations for the Clifford alge-
bra C l(r, d− r,R) as a matrix algebra over R. This will naturally lead to real, complex
and quaternionic structures that can be used to construct spinors for Majorana fermions
and generalizations.

The representation discussed in the present section is particularly useful to make
real, complex and quaternionic structures explicit. In addition to discussing the Clifford
algebras C l(r, d− r,R), we will also discuss the possibilities for idempotents, which are
elements p ∈ C l(r, d− r,R) such that p2 = p. This will be beneficial for our later discussion
of spinors as elements of (minimal) left ideals. To prepare this discussion we first review
the concept of idempotents.

7.1. Idempotents

Idempotent or projector. A non-zero element of a Clifford algebra p ∈ C l is called an
idempotent or a projector if p2 = p. Obviously, this implies also pN = p.

There is always the trivial idempotent p = 1. If the algebra C l is isomorphic to a division
algebra, such asR, C orH, then the unique idempotent is the identity 1. However, this is
oftentimes not the case.

Orthogonal or annihilating idempotents. Two projectors or idempotents are called
orthogonal or annihilating if p1 p2 = p2 p1 = 0.

Primitive or minimal idempotents. A projector or idempotent p is said to be primitive
or minimal if it cannot be written as the sum of two orthogonal idempotents p 6= p1 + p2
where p2

1 = p1, p2
2 = p2 and p1 p2 = p2 p1 = 0. For a matrix algebra, the projector to a

single coordinate (pi)jk = δjiδki would be an example for a primitive idempotent.
Quasi-minimal idempotent. We will also introduce the notion of a quasi-minimal

idempotent. It occurs for spaces that are in fact a direct sum denoted by A⊕ B with elements
a ⊕ b or simply (a, b), where the structure map ς interchanges these two summands,
(a, b) → (b, a) (up to a possible overall sign). A minimal idempotent pm is necessarily
non-zero only in one of these two summands and therefore not mapped to itself by the
structure map ς. From such a minimal idempotent one can obtain a quasi-minimal idempotent
pq = pm + ςpm which is then by construction mapped to itself by the Clifford structure
map ς. It is arguably a minimal idempotent with this property.

Division ring from primitive idempotent. For a primitive projector or idempotent p,
the subset of the Clifford algebra p C l p is in fact a division ring and it is isomorphic toR,
C orH, see e.g., ref. [24] for a proof.

7.2. Real Clifford Algebra Representations Up to Two Dimensions

We now construct matrix representations for the real Clifford algebras C l(r, d− r,R).
We start from the low-dimensional cases which we discuss explicitly. This will also form a
basis for an inductive construction of higher-dimensional cases in terms of tensor products.

One dimension d = 1+ 0. The Clifford algebra C l(1, 0,R) has one single generator γ0

with (γ0)2 = −1. The elements of the algebra are of the form a1+ bγ0 with a, b ∈ R. One
may define a complex structure (a kind of complex conjugation) as γ0 → −γ0. This shows
that there is an isomorphism C l(1, 0) ∼= C. In fact, one could simply take γ0 = i. Grade
involution G and Clifford conjugation C correspond to complex conjugation γ0 → −γ0 or
i→ −i, while reversion R has no effect here.

Because it must fulfill p2 = p, there is only the trivial idempotent in the algebra
C l(1, 0,R), namely the unit element p = 1.
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One dimension d = 0 + 1. The Clifford algebra C l(0, 1,R) has one generator γ1 with
(γ1)2 = 1. The elements are of the form a1+ bγ1. One might represent the algebra by
two-dimensional diagonal matrices

a1+ bγ1 =

(
a + b 0

0 a− b

)
. (68)

This shows that there is an isomorphism to the algebra of diagonal two-by-two
matrices, C l(0, 1,R) ∼= R⊕R. One may also write the elements as

a1+ bγ1 = a(1, 1) + b(1,−1) = (a + b, a− b). (69)

This representation is reducible. There are smaller, irreducible representations, or
“non-universal” algebras, where γ̂ = 1 or γ̂ = −1 and they are isomorphic to R. Grade
involution G and Clifford conjugation C interchange the two copies of R in the sense
(a + b, a− b)→ (a− b, a + b), while reversion R has no effect.

The algebra C l(0, 1,R) has the non-trivial idempotents (1+ γ1)/2 and (1− γ1)/2
corresponding to (1, 0) and (0, 1) respectively. These two are minimal idempotents, while
the trivial idempotent 1 = (1, 1) is non-minimal (but in fact quasi-minimal according to
the definition in Section 7.1).

We note in particular that the algebras C l(1, 0,R) and C l(0, 1,R) are not isomorphic.
In both cases, the subalgebra of even elements C l+ is generated by 1 only, and simply given
byR. On the even subalgebra, grade involution G, Clifford conjugation C and reversion R
all have no effect.

Two dimensions d = 1 + 1. We now move to two dimensions and start with
C l(1, 1,R). We need two anti-commuting generators γ0 and γ1 with −(γ0)2 = (γ1)2 = 1.
A possible choice in terms of real matrices is

γ0 = −iσ2 =

(
0 −1
1 0

)
, γ1 = σ1 =

(
0 1
1 0

)
. (70)

Besides these and 1, the fourth linearly independent element of the algebra is given by

γ̂ = γ0γ1 = −σ3 =

(
−1 0
0 1

)
. (71)

Please note that these matrices form a basis for the real vector space, and associative
algebra, of real two-by-two matrices Mat(2,R). In other words, there is an isomorphism
C l(1, 1,R) ∼= Mat(2,R).

This Clifford algebra has a rather large class of non-trivial idempotents. In fact, any
p = (1+ aγ0 + bγ1 + cγ̂)/2 with −a2 + b2 + c2 = 1 fulfills the requirements and is also
minimal. Particularly simple choices are the canonical idempotents (1± γ̂)/2.

The subalgebra of even elements C l+(1, 1,R) is generated by the diagonal matrices 1
and γ̂ where γ̂2 = 1. One has therefore C l+(1, 1,R) ∼= C l(0, 1,R) ∼= R⊕R.

Two dimensions d = 0 + 2. Now let us consider the Euclidean case C l(0, 2,R). We
can take the generators

γ1 = σ1 =

(
0 1
1 0

)
, γ2 = σ3 =

(
1 0
0 −1

)
. (72)

The fourth linearly independent element is

γ̂ = γ1γ2 = −iσ2 =

(
0 −1
1 0

)
. (73)

Please note that again these matrices form a basis for the real two-by-two matrices
and thus there is an isomorphism C l(0, 2,R) ∼= Mat(2,R).
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Again, there is a rather large set of non-trivial idempotents. Any combination p =
(1 + aγ1 + bγ2 + cγ̂) with a2 + b2 − c2 = 1 fulfills p2 = p and they are also minimal.
Particularly simple are the canonical choices (1± γ2)/2.

The subalgebra of even elements C l+(0, 2,R) is now generated by γ̂ = −iσ2 which
squares to (γ̂)2 = −1. It constitutes a complex structure and one has the isomorphism
between algebras C l+(0, 2,R) ∼= C l(1, 0,R) ∼= C.

Two dimensions d = 2 + 0. Finally, we consider C l(2, 0,R). We need now two
generators that square to minus one, (γ−1)2 = (γ0)2 = −1, so that they both constitute
complex structures, and they should anti-commute. This is not possible within the real
two-by-two matrices anymore. A possible choice is

γ−1 = −iσ1 =

(
0 −i
−i 0

)
, γ0 = −iσ2 =

(
0 −1
1 0

)
. (74)

The fourth linearly independent element is

γ̂ = γ−1γ0 = −iσ3 =

(
−i 0
0 i

)
. (75)

Please note that it also squares to minus one, (γ̂)2 = −1. In this case, there is now an iso-
morphism to the quaternion algebraHwith the identification (1, i, j, k) ∼= (1,−iσ1,−iσ2,−iσ3) ∼=
(1, γ−1, γ0, γ̂). In other words, C l(2, 0,R) ∼= H. Clifford conjugation C corresponds here to
the quaternion conjugate (1, i, j, k)→ (1,−i,−j,−k) or Hermitian conjugation A→ A† in
the above matrix realization.

One may check directly that there is no non-trivial idempotent within the real Clifford
algebra C l(2, 0,R). This follows also from the isometry withH which is a division algebra.
(Please note that if complex coefficients were allowed, this statement would change and
(1± iγ̂)/2 would be examples for non-trivial and minimal idempotents.)

The even elements are generated by γ̂ with γ̂2 = −1, which is also a complex structure
such that C l+(2, 0,R) ∼= C l(1, 0,R) ∼= C.

7.3. Inductive Construction of Real Algebra Representations for d > 2

Based on the Clifford algebras for d ≤ 2 we construct now the higher-dimensional
cases in terms of an iterative tensor product construction.

Inductive construction. From the one- and two-dimensional Clifford algebras one
can construct all other cases by the following relationships

(i) C l(d, 0,R)⊗ C l(0, 2,R) ∼= C l(0, d + 2,R)

(ii) C l(0, d,R)⊗ C l(2, 0,R) ∼= C l(d + 2, 0,R)

(iii) C l(r, d− r,R)⊗ C l(1, 1,R) ∼= C l(r + 1, d− r + 1,R)

(76)

To see this, assume that the generators γ
µ

(d,0) of C l(d, 0,R) and γ
µ

(0,2) of C l(0, 2,R) are
given. One can then set (recall that for the tensor product of algebras (a1 ⊗ b1)(a2 ⊗ b2) =
a1a2 ⊗ b1b2)

γ
µ

(0,d+2) =

γ
µ−d
(d,0) ⊗ γ1

(0,2)γ
2
(0,2) for 1 ≤ µ ≤ d

1(d,0) ⊗ γ
µ−d
(0,2) for d + 1 ≤ µ ≤ d + 2.

(77)

In a similar way, if one takes γ
µ

(0,d) and γ
µ

(2,0) as given, one can set

γ
µ

(d+2,0) =

γ
µ+d+2
(0,d) ⊗ γ−1

(2,0)γ
0
(2,0) for − d− 1 ≤ µ ≤ −2

1(0,d) ⊗ γ
µ

(2,0) for − 1 ≤ µ ≤ 0.
(78)
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Finally, if the generators γ
µ

(r,d−r) and γ
µ

(1,1) are given one can set

γ
µ

(r+1,d−r+1) =


γ

µ+1
(r,d−r) ⊗ γ0

(1,1)γ
1
(1,1) for − r ≤ µ ≤ −1

1(r,d−r) ⊗ γ0
(1,1) for µ = 0

γ
µ

(r,d−r) ⊗ γ0
(1,1)γ

1
(1,1) for 1 ≤ µ ≤ d− r

1(r,d−r) ⊗ γ1
(1,1) for µ = d− r + 1.

(79)

Starting from C l(1, 0,R), C l(0, 1,R), C l(2, 0,R) and C l(0, 2,R) one can use relation-
ships (i) and (ii) in (76) to construct the purely time-like and purely space-like Clifford
algebras C l(d, 0,R) and C l(0, d,R). Using then also relationship (iii) one can obtain the
mixed cases.

It is sometimes convenient to change the order of the tensor product to construct a
concrete matrix representation. We will do so deliberately.

Please note that the representation above is not at all unique. One could change
the order of the gamma matrices and one can start from different representations of the
low-dimensional algebras. We will not use this construction for a concrete realization but
for a qualitative classification of Clifford algebras.

To find (minimal) idempotents from the iterative construction (76) one can choose
such idempotents in each of the tensor product factors.

Classification of Clifford algebras. From (76) one sees that a step of the type (iii)
which goes up in r and d− r simultaneously, and therefore does not change r− (d− r),
makes the dimension of the representation a factor 2 larger but does not change the
qualitative structure.

In particular if one takes C l(1, 1,R) ∼= Mat(2,R) as a starting point, one finds that
the Clifford algebras C l(p, p,R) are isomorphic to the real matrices of dimension N = 2p.
Similarly, taking C l(1, 0,R) ∼= C as a starting point shows that the Clifford algebras
C l(1 + p, p,R) are isomorphic to Mat(2p,C). In this way, one can continue, and one finds
the following classification.

C l(p, p,R) ∼= Mat(2p,R)

C l(1 + p, p,R) ∼= Mat(2p,C)

C l(p, 1 + p,R) ∼= Mat(2p,R)⊕Mat(2p,R)

C l(2 + p, p,R) ∼= Mat(2p,H)

C l(p, 2 + p,R) ∼= Mat(2p+1,R)

C l(3 + p, p,R) ∼= Mat(2p,H)⊕Mat(2p,H)

C l(p, 3 + p,R) ∼= Mat(2p+1,C)

C l(4 + p, p,R) ∼= Mat(2p+1,H).

(80)

These relationships can be extended using the mod 8 periodicity in signature r− (d− r)
but keeping the dimension d fixed, for example

C l(p, 4 + p,R) ∼= C l(4 + p, p,R) ∼= Mat(2p+1,H) (81)

or
C l(p, 5 + p,R) ∼= C l(3 + 1 + p, 1 + p,R) ∼= Mat(2p+1,H)⊕Mat(2p+1,H). (82)

In this sense, the above classification is actually complete. Table 3 summarizes the
classification of real Clifford algebras.
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Table 3. Classification of real Clifford algebras C l(r, d− r,R) in terms of isomorphic real, complex or
quaternionic matrix algebras.

r − (d − r) mod 8 Isomorphic Matrix Algebra Dimension

0, 6 Mat(N,R) N = 2d/2

2, 4 Mat(N,H) N = 2(d−2)/2

1, 5 Mat(N,C) N = 2(d−1)/2

3 Mat(N/2,H)⊕Mat(N/2,H) N = 2(d−1)/2

7 Mat(N/2,R)⊕Mat(N/2,R) N = 2(d+1)/2

Even Clifford sub algebra. It is also interesting to investigate the structure of the
even subalgebra C l+(r, d− r,R). Let us first establish an isomorphism to the full Clifford
algebra of lower dimension,

C l+(r, d− r,R) ∼= C l(r− 1, d− r,R) for r ≥ 1,

C l+(r, d− r,R) ∼= C l(d− r− 1, s,R) for d− r ≥ 1.
(83)

To see this, consider first r > 1 and take γ1−r · · · γd−r to be the generators of C l(r, d− r,R).
One may take γ1−rγµ with 2 − r ≤ µ ≤ d − r as generators for the even subalgebra
C l+(r, d− r,R). At the same time, they are generators of C l(r− 1, d− r,R). In a similar
way also the second line in (83) can be understood. From Table 3 one obtains immediately
a similar classification of even subalgebras in Table 4.

Please note that it follows from (83) that one has for the even subalgebras

C l+(r, d− r,R) ∼= C l+(d− r, r,R). (84)

In fact, from (83) this follows only for r, d − r ≥ 1 but holds in fact also beyond
this restriction.

The even subalgebra C l+(r, d − r,R) has one generator less and its generators are
different from the ones of the full algebra. Accordingly, also the matrices γ̂ defined in (20)
as well as β and α defined in (47) and (52) are different. Nevertheless, these objects are still
well defined and can be used for a classification of C l+(r, d− r,R), very similar to for the
original algebra. Because the generators of the even subalgebra can be taken as products of
one particular generator γ1−r with all others, one can take the structure map in the even
subalgebra ςeven to be the reversal of the one particular direction γ1−r → −γ1−r.

Even Clifford subalgebra for d = 1 + 3. Because of the importance for applications
in physics, it is appropriate to discuss the reduction to the even subalgebra in more detail
on the example of Minkowski space d = 1 + 3. For the full Clifford algebra C l(1, 3,R) of
Minkowski space one has β = γ0, α = γ1γ2γ3 and γ̂ = γ0γ1γ2γ3. For the even subalgebra
C l+(1, 3,R) ∼= C l(0, 3,R) ∼= Mat(2,C) one has three “space-like” generators γ0γ1, γ0γ2

and γ0γ3 and accordingly βeven = 1, αeven = γ̂even = γ̂ = γ0γ1γ2γ3. The structure map
is given by ς = ±γ̂ in the full algebra, and γ̂ commutes with all elements of the even
subalgebra and squares to minus one, γ̂2 = −1. It provides a complex structure for the
even subalgebra. The structure map in the even subalgebra ςeven corresponds (possibly up
to an overall sign) to complex conjugation with respect to this complex structure. It is also
implemented by the reversal γ0 → −γ0.

Even Clifford subalgebra for d = 0 + 4. Let us also discuss the reduction to the even
subalgebra for Euclidean space d = 0 + 4. For the full Clifford algebra C l(0, 4,R) one has
β = 1 and α = γ̂ = γ1γ2γ3γ4. For the even subalgebra C l+(0, 4,R) ∼= C l(3, 0,R) ∼= H⊕H
one has three “time-like” generators γ1γ2, γ1γ3 and γ1γ4 and accordingly βeven = γ̂even =
−γ̂ and αeven = 1. The structure map is given by ς = ±γ̂ in the full algebra, and γ̂
commutes with all elements of the even subalgebra and squares to one, γ̂2 = 1. The
subalgebra has now the form of a direct sum a⊕ b with γ̂ = ±1 on the two summands.
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The structure map in the even subalgebra ςeven corresponds (possibly up to an overall sign)
to the interchange of the two direct summands a⊕ b→ ±b⊕ a. It can be implemented as
the reversal γ1 → −γ1.

Table 4. Classification of even subalgebras of real Clifford algebras C l+(r, d − r,R) in terms of
isomorphic real, complex or quaternionic matrix algebras.

r − (d − r) mod 8 Isomorphic Matrix Algebra Dimension

1, 7 Mat(N,R) N = 2(d−1)/2

3, 5 Mat(N,H) N = 2(d−3)/2

2, 6 Mat(N,C) N = 2(d−2)/2

4 Mat(N/2,H)⊕Mat(N/2,H) N = 2(d−2)/2

0 Mat(N/2,R)⊕Mat(N/2,R) N = 2d/2

7.4. Canonical Idempotents

The inductive construction in the previous subsection has shown that the real Clif-
ford algebras C l(r, d− r,R) can be constructed as different tensor products of the basis
elements C l(0, 2,R) ∼= C l(1, 1,R) ∼= Mat(2,R), C l(0, 1,R) ∼= R⊕R, C l(1, 0,R) ∼= C and
C l(2, 0,R) ∼= H.

One can construct canonical idempotents by choosing in each tensor product factor
Mat(2,R) one out of p± = (1± σ3)/2 and for each tensor product factor R⊕R one out
of p+ = (1, 0) and p− = (0, 1). For the remaining factors C and H one needs to choose
the trivial idempotent 1. In this way, one obtains a canonical set of commuting and non-
annihilating idempotents. Please note that all these idempotents are Hermitian in the sense
of the definitions (56) and (57).

We note that while this construction has been made with a view on the particular
representation of the generators as a tensor product, it is not bound to this presentation.
Because they correspond to a certain combination of generators, the above idempotents can
be constructed in any representation and will also be automatically Hermitian, H(p) = p.

Set of commuting and non-annihilating idempotents. For a Clifford algebra with
isomorphic R, C orHmatrix representation of dimension N = 2K one has K non-trivial
idempotents p1, . . . , pK that are mutually commuting and non-annihilating. In the con-
struction of the isomorphic matrix algebra as a tensor product (in Equation (76)), they
correspond to canonical idempotents p± = (1± σ3)/2 on the different levels of the tensor
product construction. For a Clifford algebra that is isomorphic to a direct sum A⊕ B of
such matrix algebras, there is also an additional idempotent p+ = (1, 0) or p− = (0, 1) that
is commuting and non-annihilating with all other idempotents.

Canonical minimal idempotent. We can pick one canonical idempotent for each
matrix product factor, e.g., (1+ σ3)/2 for each tensor product factor Mat(2,R) and either
(1, 0) or (0, 1) for a factor R⊕R. This leads us to a canonical minimal idempotent p. In
the canonical matrix representation as a tensor product it corresponds to a projector to a
single coordinate direction. The canonical minimal idempotent is in particular Hermitian
in the sense that p = H(p). Such a Hermitian minimal idempotent will be useful for the
construction of spinor spaces further below.

Complete set of canonical idempotents and matrix representation. By taking all
kind of combinations of p(j)

± in the different tensor product factors, we obtain a set of canoni-
cal minimal idempotents p1, . . . , pN in the Clifford algebra that are orthogonal/annihilating
and sum up to the unit element, p1 + . . . + pN = 1. Such a set corresponds to a set of pro-
jectors to the different coordinates in the space of the tensor product matrix representation.
A matrix element Mjk ∈ R,C,H corresponding to an element a of the Clifford algebra
would be essentially given by Mjk = pjapk, see ref. [24] for a more detailed discussion.



Universe 2021, 7, 168 19 of 34

7.5. Some Examples Up to Five Dimensions

To gain some experience and intuition we will now discuss low-dimensional real
Clifford algebras in more explicit terms.

Three dimensions d = 0 + 3. For three spatial dimensions one has according to the
construction above

C l(0, 3,R) ∼= C l(1, 0,R)⊗ C l(0, 2,R) ∼= C⊗Mat(2,R) = Mat(2,C). (85)

The generators are given by

γ1 = i⊗
(

0 −1
1 0

)
= σ2, γ2 = 1⊗

(
0 1
1 0

)
= σ1, γ3 = 1⊗

(
1 0
0 −1

)
= σ3. (86)

The product of all generators is given by γ̂ = γ1γ2γ3 = −i1.
Minimal idempotents are given by 1 in the tensor product factor C l(1, 0,R) ∼= C times

a convenient minimal idempotent in C l(0, 2,R) ∼= Mat(2,R). For example, (1± γ3)/2 are
simple choices.

Three dimensions d = 3 + 0. In contrast, for three temporal dimensions one finds

C l(3, 0,R) ∼= C l(0, 1,R)⊗ C l(2, 0,R) ∼= (R⊕R)⊗H = H⊕H. (87)

Now the construction leads to

γ−2 =γ1
(0,1) ⊗

(
−i 0
0 i

)
= −i(1,−1)⊗ σ3,

γ−1 =1(0,1) ⊗
(

0 −i
−i 0

)
= −i(1, 1)⊗ σ1,

γ0 =1(0,1) ⊗
(

0 −1
1 0

)
= −i(1, 1)⊗ σ2.

(88)

The product of all three generators is now

γ̂ = γ−2γ−1γ0 = −γ1
(0,1) = (−1, 1)⊗ 1. (89)

In this case, one can choose minimal idempotents in the factor C l(0, 1,R) ∼= R⊕R
as either (1, 0) or (0, 1) while the only possibility in the factor C l(2, 0,R) ∼= H is the trivial
idempotent 1. In summary, the minimal idempotents are (1, 0)⊗ 1 and (0, 1)⊗ 1 while
(1, 1)⊗ 1 is a non-minimal idempotent.

Four dimensions d = 0 + 4 and d = 4 + 0. For the case of four space dimensions
one finds

C l(0, 4,R) ∼= C l(2, 0,R)⊗ C l(0, 2,R) ∼= H⊗Mat(2,R) = Mat(2,H). (90)

The result is similar for four time directions,

C l(4, 0,R) ∼= C l(0, 2,R)⊗ C l(2, 0,R) ∼= Mat(2,R)⊗H = Mat(2,H). (91)

This is actually an example of a more general relationship, there is a periodicity mod 8
in the signature r− (d− r).

As an important case for physics applications, let us discuss the Euclidean algebra
C l(0, 4,R) in more detail. A matrix representation of generators can be chosen as

γ1 =

(
−i

i

)
, γ2 =

(
−j

j

)
, γ3 =

(
1

1

)
, γ4 =

(
1
−1

)
. (92)
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where the entries are H valued. Indeed, all these matrices square to unity and they anti-
commute. The product of generators is given by

γ̂ = γ1γ2γ3γ4 =

(
k

−k

)
. (93)

Idempotents can be chosen freely in the tensor product factor C l(0, 2,R) ∼= Mat(2,R),
for example (1± σ3)/2, while for C l(2, 0,R) ∼= H one has only the trivial idempotent 1.
There is in particular the primitive idempotent

(1+ γ4)/2 =

(
1

0

)
. (94)

Four dimensions d = 1 + 3. From the general classification given above one finds

C l(1, 3,R) ∼= C l(1, 1,R)⊗ C l(0, 2,R) ∼= Mat(2,R)⊗Mat(2,R) ∼= Mat(4,R). (95)

Because this is the most important case for applications in physics (Minkowski space)
we also discuss a concrete matrix representation. One may take as generators for example
the set

γ0 =


−1

−1
1

1

, γ1 =


−1

−1
1

1

, γ2 =


−1

1
1
−1

, γ3 =


1

1
1

1

. (96)

In this representation one has

γ̂ = γ0123 = γ0γ1γ2γ3 =


1

−1
−1

1

. (97)

Idempotents can be chosen freely for both tensor product factors C l(1, 1,R) ∼= Mat(2,R)
and C l(0, 2,R) ∼= Mat(2,R). Some examples are

1
2
(1− γ0γ3) =


1

1
0

0

,
1
2
(1− γ2) =


1

0
0

1

,
1
2
(1− γ0γ3)

1
2
(1− γ2) =


1

0
0

0

. (98)

The last idempotent is primitive.
Four dimensions d = 3+ 1. This is a space with three time directions and one space di-

rection or Minkowski space with an alternative choice of metric. Let us emphasize here that
C l(1, 3,R) and C l(3, 1,R) are in fact not equivalent. Now the general construction gives

C l(3, 1,R) ∼= C l(1, 1,R)⊗ C l(2, 0,R) ∼= Mat(2,R)⊗H ∼= Mat(2,H). (99)

Here one can work for example with the representation of generators

γ−2 =

(
−i

i

)
, γ−1 =

(
−j

j

)
, γ0 =

(
−1

1

)
, γ1 =

(
1

1

)
. (100)

where the entries areH valued. The product of generators gives

γ̂ = γ−2γ−1γ0γ1 =

(
−k

k

)
. (101)
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The tensor product factor C l(1, 1,R) ∼= Mat(2,R) has non-trivial idempotents, for
example (1± σ3)/2. In contrast for C l(2, 0,R) ∼= H one has only the trivial choice 1. A
primitive idempotent for C l(3, 1,R) is for example

(1− γ0γ1)/2 =

(
1

0

)
. (102)

Four dimensions d = 2 + 2. Finally, for two time and two space dimensions, the
general classification given above yields

C l(2, 2,R) ∼= C l(1, 1,R)⊗ C l(1, 1,R) ∼= Mat(2,R)⊗Mat(2,R) ∼= Mat(4,R). (103)

Idempotents can now again be freely chosen in both tensor product factors.
Five dimensions. We also mention briefly the isomorphisms in five dimensions.

One has

C l(0, 5,R) ∼= C l(0, 1,R)⊗ C l(2, 0,R)⊗ C l(0, 2,R) ∼= Mat(2,H)⊕Mat(2,H),

C l(1, 4,R) ∼= C l(1, 0,R)⊗ C l(0, 2,R)⊗ C l(1, 1,R) ∼= Mat(4,C),

C l(2, 3,R) ∼= C l(0, 1,R)⊗ C l(1, 1,R)⊗ C l(1, 1,R) ∼= Mat(4,R)⊕Mat(4,R),

C l(3, 2,R) ∼= C l(1, 0,R)⊗ C l(1, 1,R)⊗ C l(1, 1,R) ∼= Mat(4,C),

C l(4, 1,R) ∼= C l(0, 1,R)⊗ C l(2, 0,R)⊗ C l(1, 1,R) ∼= Mat(2,H)⊕Mat(2,H),

C l(5, 0,R) ∼= C l(1, 0,R)⊗ C l(0, 2,R)⊗ C l(2, 0,R) ∼= Mat(4,C).

(104)

It should now be clear how (minimal) idempotents for these cases can be constructed.

8. Spinors

Spinors are traditionally defined as quantities that transform with the spin group (or
the larger pin group) in some matrix representation. There exists a more algebraic charac-
terization in terms of left and right ideals of a Clifford algebra or one of the groups [22,24]
which is then actually formally independent of a particular matrix representation. This
construction will be reviewed here after some algebraic preliminaries. The connection to
the matrix representation will also become clear.

8.1. Spinor Spaces as Minimal or Quasi-Minimal Ideals

For the following, the relevant Clifford algebra could be the full real algebra C l(r, d− r,R)
or the even subalgebra C l+(r, d− r,R). The construction could also be based on a complex
Clifford algebra. In the following we will keep this somewhat open and just refer to some
Clifford algebra C l.

Ideals. A subset L of the Clifford algebra C l is called left ideal of C l if for all a ∈ C l and
ψ ∈ L one has

aψ ∈ L. (105)

In an analogous way, a subset R is called right ideal of C l if for all a ∈ C l and χ ∈ R
one has

χa ∈ R. (106)

Finally, a subset I of the Clifford algebra C l is called bilateral ideal or simply ideal of C l
if for all a, b ∈ C l and Ψ ∈ I one has

aΨb ∈ I . (107)

All these ideals are vector spaces.
For a matrix algebra, an example of a left ideal are matrices with only one or several

columns non-vanishing, e.g.,

M =

(
a1 0
a2 0

)
. (108)
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The subset of matrices of this form is mapped to itself under matrix multiplication. In
a similar way, a matrix with only one non-vanishing row is an example of a right ideal.

Minimal ideal. A minimal ideal is an ideal that does not contain any non-trivial
subideals, i.e., the only subideals are the zero element and the ideal itself. The matrix set in
(108) is an example for a minimal left ideal.

In passing we note that minimal ideals are also useful for a decomposition of repre-
sentations of Clifford algebra into irreducibles:

Regular representation of Clifford algebra. The Clifford algebra C l has a representa-
tion in terms of maps (endomorphisms) on itself. To every element a ∈ C l one can associate
the map L(a) such that for X ∈ C l one has

L(a)X = aX. (109)

Obviously L(ab) = L(a)L(b). This is called the regular representation. One may also
define R(a) such that

R(a)X = Xa. (110)

In this case, R(ab) = R(b)R(a), so this is a representation of the reversed or opposed algebra.
Decomposition into irreducibles. One can decompose any representation of a Clifford

algebra into sums of irreducible representations which are then by definition minimal ideals.
The definition of spinors we will use further below is based on minimal left or right

ideals. There is a particularly convenient method to construct such minimal ideals in terms
of idempotents.

Ideal from projector or idempotent. Given a projector or idempotent p one can define
a left ideal L of the Clifford algebra C l as the set of elements ap with a ∈ C l. In other
words, L = C l p. In a similar way, a right ideal is given by R = p C l. If the projector or
idempotent is primitive, the resulting ideal is a minimal ideal. This is arguably the simplest
way to construct a minimal ideal.

We now define spinor spaces in terms of ideal. It is sometimes convenient to work
with spinors as featuring irreducible representations of the algebra, in which case the
corresponding spinor space is a minimal ideal, but it is also sometimes convenient to relax
this and to work in reducible spinor spaces corresponding to non-minimal ideals.

Space of column spinors as (minimal) left ideal. One may define the space r of
column spinors (with the name referring to the matrix representation) of the Clifford
algebra C l as a (minimal) left ideal C l p where p is a (primitive) canonical idempotent. By
taking a canonical idempotent we make sure that p is Hermitian, p = H(p). It is clear that
the space r constitutes a representation of the Clifford algebra C l. Moreover, one can multiply
these spinors from the right by elements of the division ring p C l p without leaving the
spinor space r.

Space of row spinors as a (minimal) right ideal. In a very similar way one can define
the space of row spinors as corresponding to a (minimal) right ideal p′C l where p′ is again
a (primitive) idempotent. Such row spinors can be multiplied from the left by elements of
the division ring p′ C l p′. Moreover, for canonical idempotent p we can take p′ = H(p) = p,
such that the division rings p′ C l p′ and p C l p actually agree.

Transformations in spinor space: adjoint (naive) implementation. In our formula-
tion, spinors are themselves part of the Clifford algebra and could therefore also transform
under various maps within the Clifford algebra such as e.g., grade involution. Some care is
needed here, however, as will be discussed below. We first discuss a naive implementation
and subsequently a more proper one.

To a given spinor ψ out of a (minimal) left ideal r = C l p one may define various
involutions or other transformations as for any element of the Clifford algebra. For example,
the grade involution of ψ could be defined by G(ψ) = ςψς−1. It would be part of the left
ideal C l G(p) featuring a regular representation of the Clifford algebra C l. It is important
to note, however, that in general G(p) = ςpς−1 6= p such that the left ideals C l G(p) and
C l p do not agree. In other words, this leads to the problem that a spinor ψ and its grade
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involution G(ψ) are not in the same spinor space. The problem appears also for other
transformations, such as the action of the pin group. In the following we discuss how this
problem can be solved so that spinors and transformed spinors are elements of the same
left ideal.

Transformations in spinor space: regular (proper) implementation. To circumvent
the problem described above, one must work with a different implementation of transfor-
mations for spinors. As an exemplary and rather important map in the Clifford algebra
let us consider again the grade involution G. In terms of the structure map (30), one can
decompose grade involution into a left and a right action, G(a) = ςaς−1. If one takes only
the left action to transform the spinor ψ it has a chance to be part of the same left ideal.
Specifically, for a given spinor ψ ∈ S = C l p, we use instead of grade involution the left
action of the structure map and set

G(ψ) = ςψ. (111)

For a spinor ψ = ap with a ∈ C l and primitive idempotent p we have now

ςψ = ςaς−1ςp = G(a)ςp (112)

This shows that in the cases where the structure map is itself part of the Clifford
algebra, ς ∈ C l or when ςp = p, the spinor spaces or left ideals C lp and ςC lp actually agree.

Let us recall here that ς as defined through Equation (30) and ς2 = ±1 is unique
only up to a sign. Accordingly, also the transformation on a spinor (111) is only unique
up to a sign. However, no ambiguity arises for expressions that involve an even number
of spinors.

One might be tempted to demand a transformation behavior similar to (111) also for
row spinors χ ∈ pC l. If they would transform under the right action of the structure map
like G(χ) = χς−1 we would find that a product of a row and a column spinor is invariant
G(χψ) = χψ. In other words, such products would always be part of the even subalgebra.
It turns out that this is in general too restrictive. We will later connect row spinors through
certain conjugation relationships with column spinors. They inherit their transformation
behavior under the structure map or other transformations in a natural way through these
relationships.

Minimal spinor spaces. For d even, the structure map ς = ±γ̂ is itself part of the
Clifford algebra so that ςC l p = C l p is guaranteed. In other words, a spinor ψ and its grade
involution ςψ are indeed in the same space.

For d odd, the situation is slightly more complicated. As discussed below (30), for
r− (d− r) = 1, 5 mod 8, the structure map is a complex conjugation. Because p2 = p, an
idempotent must be real and is therefore unchanged by this complex conjugation. In other
words, ςp = p and therefore ςC l p = C l p so that again a spinor and its grade involution
live in the same space.

In contrast, for r− (d− r) = 3, 7 mod 8, the algebra has the structure of a direct sum
A⊕ B; it is reducible. The structure map interchanges the two summands. If now p is
a minimal or primitive idempotent which generates a minimal left ideal, it can only be
non-zero in one of these two summands. In other words, a primitive idempotent would
contain a tensor product factor (1, 0) or (0, 1). In this case, ςp 6= p and a spinor ψ ∈ C l p
and its grade involute ςψ ∈ C l ς p are not in the same space. One could also formulate
this as the statement that for r− (d− r) = 3, 7 mod 8 a minimal left ideal is annihilated by
grade involution G or the structure map ς.

Quasi-minimal spinor spaces. However, p can also be reducible and contain a tensor
product factor (1, 1). In that case ςp = p and spinors and their grade involutes live
indeed in the same space, C l p = C l ς p. Such non-minimal spinor spaces are reducible
in the sense of standard representation theory of Clifford algebras. However, they are
nevertheless minimal in the sense that they are the smallest possible spinor space that
features a non-trivial representation of the entire Clifford algebra and is not annihilated by
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grade involution G. We will call such representations quasi-minimal. They are generated by
quasi-minimal idempotents as they have been defined in Section 7.1.

Time-reversed and space-reversed spinors. A similar construction works also for the
time reversal and space reversal. We define, based on (51) for a given spinor ψ ∈ C l p the
time-reversed spinor

T (ψ) = βςrψ. (113)

Please note that for a real Clifford algebra β (similar to ς) is defined uniquely only up
to a sign. In a similar way we define based on (54) the space-reversed spinor as

P(ψ) = αςd−rψ. (114)

Again, this is unique up to a sign for a real Clifford algebra.
We note here that for d odd, one of the transformations (113) or (114) includes a

structure map ς. To be not annihilated by time or space reversal transformations when
r− (d− r) = 3, 7 mod 8 one needs the primitive idempotent p that generates the spinor
space as a left ideal to contain a tensor product factor (1, 1) and to be accordingly non-
minimal. However, it can be quasi-minimal in the sense defined above. On the other side,
spinors as part of a minimal left ideal are necessarily annihilated by either time reversal or
space reversal, i.e., they are not invariant under one of these discrete symmetries.

Action of pin group on spinors. Let us recall that the action of the pin group on a
general element of the Clifford algebra can be written as in Equation (39). One may now
ask how one can define the action of pin group elements on spinors such that spinor spaces
are invariant. A subtlety arises here from the fact that even after normalization, pin group
elements are actually only unique up to a sign. Indeed, the transformation (39) is the same
when a→ −a. If the pin group element a can be continuously deformed to the unit element
1 one can fix its sign, but more generally, there is no possibility to do this.

Related to this is the following problem. Based on Equation (39) one may define the
action of the pin group on a spinor as

ψ→ aςg(a)ψ. (115)

Performing two such transformations gives

ψ→ bςg(b)aςg(a)ψ = (−1)g(a)·g(b)(ba)ςg(ba)ψ. (116)

This shows that (115) is in fact only a representation of the pin group up to the overall
sign. In other words, it is a proper representation when ψ and −ψ are identified. In
practice, the sign ambiguity is not very severe. Physical observables are actually spinor
bilinears of some type and if both spinors are transformed consistently, the overall sign
drops out again.

Action of spin group on spinors. The action of the spin group on a column spinor is
obtained by specializing Equation (115) to even elements a ∈ Spin(r, d− r,R) = Pin(r, d−
r,R) ∩ C l+(r, d− r,R),

ψ→ aψ. (117)

Please note that in contrast to the pin group, no sign ambiguity appears here.
Remark on quaternionic spinors. The fact that quaternion-valued spinors are neces-

sary in certain dimensions if one works in the framework of a real Clifford algebra may
come as a surprise. Let us discuss the simplest incarnation of such spinors for the algebra
C l(2, 0,R) in more detail here. A matrix representation has been given in (74) and (75) and
in that representation every element of the Clifford algebra can be written as

a1+ bγ−1 + cγ0 + dγ̂ =

(
a− id, −ib− c
−ib + c, a + id

)
. (118)
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One observes that these are complex two-by-two matrices. In the traditional approach
one would work with spinors as column vectors with two complex entries. However, one
can write every such column vector as(

a− id
c− ib

)
=

(
a− id, −ib− c
−ib + c, a + id

)(
1
0

)
. (119)

In other words, one has here not only a map from the Clifford algebra to its spinor
representation but also a map from the spinor back to the entire Clifford algebra element.
This shows in which sense the spinors can here actually be understood as elements of the
Clifford algebra C l(2, 0,R) ∼= H itself and do not form a non-trivial ideal.

Quaternionic structure and symplectic Majorana spinors. Seen as a complex vector
space, the spinors ψ in (119) have a quaternionic structure. This is an anti-linear map J
such that

J(λψ) = λ∗ J(ψ), for λ ∈ C, (120)

and with J(J(ψ)) = −ψ. Concretely, this map J is here given for example by complex
conjugation together with multiplication by the antisymmetric, real matrix γ0 in (74).

If one can now somehow define another map K on the space of spinors (typically
using additional structure such as a flavor index or possibly employing the reversal of a
coordinate [26]) with the property KK∗ = −1 one can define symplectic Majorana spinors by
the condition

KJψ = ±ψ. (121)

This is consistent in the sense that KJKJ = KK∗ J2 = (−1)2 = 1. With the condition
(121) the number of real dimensions is typically reduced by a factor 2. We emphasize again
that additional structure is needed for this construction.

8.2. Conjugate Spinors

Conjugate or adjoint spinors. To a given space of column spinors C l p generated by
the (minimal or primitive) canonical idempotent p one can relate a spaces of row spinors
or conjugate spinors in several ways. In fact, p C l, C(p) C l and R(p) C l would be examples
for such row spinor spaces. The question arises here of what is the most useful starting
point for this construction, or in other words, what is the most convenient way to associate
a row spinor to a given column spinor as elements of the Clifford algebra. We note here in
particular that a notion of transpose is not directly available in the Clifford algebra. We
do have the notion of the Hermitian conjugate, Equation (62) available within the Clifford
algebra, and this provides indeed the most useful starting point.

Let us associate to a given spinor space S = C l p generated by the (minimal or
primitive) canonical idempotent p the space of conjugate spinors H(S) = H(p)C l = p C l.
We have used here that a canonical idempotent is Hermitian, H(p) = p. This is now a
(minimal) right ideal, generated by the idempotent H(p) = p. Moreover, one can in fact
associate to every spinor ψ = ap its Hermitian conjugate spinor

ψ† = H(ψ) = pH(a). (122)

The conjugate spinor space H(S) is also invariant under multiplication from the left
by elements of the division algebra pC lp which is isomorphic toR, C orH.

Dirac adjoint spinors. On this basis we define now various other row spinors. The
first Dirac adjoint can be defined as

D1(ψ) = H(ψ)αςd−r = αςd−rC(ψ). (123)

In a similar way, the second Dirac adjoint is given by

D2(ψ) = H(ψ)βςr = βςrR(ψ). (124)
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We have employed here only the right action part of the transformations (63) and (66),
respectively. This makes sure that H(ψ), D1(ψ) and D2(ψ) are indeed part of the same row
spinor space or right ideal H(S).

Please note that one can relate the first and second Dirac adjoint as

D2(ψ) = D1(ψ)ς
−(d−r)α−1βςr. (125)

In particular, for d odd this relationship includes a power of the structure map ς. For
the complex Clifford algebras that occur when r− (d− r) = 1, 5 mod 8, the structure map
ς contains a complex conjugation and the two Dirac adjoints are in this sense complex
conjugates of each other. For r− (d− r) = 3, 7 mod 8 the structure map interchanges the
two summands in the reducible tensor product factor of the Clifford algebra. In contrast to
this, when d is even, the first and second Dirac adjoint differ simply by a factor within the
Clifford algebra, namely ±γ̂. (In fact, this agrees with the structure map when d is even.)
We see here that one of the two “Dirac adjoint spinors” could in fact have been called a
“Majorana adjoint spinor”.

As an example, in d = 4 dimensions one has in Minkowski space with r = 1 and ς = γ̂
that D1(ψ) = ψ†γ0 (the standard Dirac adjoint in Minkowski space) and D2(ψ) = −ψ†γ0γ̂.
In contrast, for the Euclidean case r = 0 one finds D1(ψ) = ψ†γ̂ and D2(ψ) = ψ†. We
have used here the transformations in the full algebra C l(1, 3,R). In this sense ψ is a
representation of the pin group or a pinor. There is a similar definition of Dirac adjoints
in the even subalgebra C l+(1, 3,R) ∼= C l(3, 0,R). In that case ψ is a representation of the
spin group or a proper spinor. In that case, D1(ψ) and D2(ψ) would differ essentially by a
complex conjugation, see the discussion at the end of Section 7.3.

Action of pin group on Dirac adjoint spinors. Using the transformation law (115)
in the definitions (123) and (124) one finds the transformation behavior of the two Dirac
adjoints under the pin group a ∈ Pin(r, d− r,R),

D1(ψ)→ D1(aςg(a)ψ) = (−1)(d−r)g(a) D1(ψ) (ς
−1)g(a) C(a),

D2(ψ)→ D2(aςg(a)ψ) = (−1)rg(a) D2(ψ) (ς
−1)g(a) R(a).

(126)

This rather general transformation behavior can now be specialized, for example to
even elements of the spin group a with g(a) = 0. The transformation behavior becomes for
a ∈ Spin(r, d− r,R) simply

D1(ψ)→ D1(aψ) = D1(ψ)C(a),

D2(ψ)→ D2(aψ) = D2(ψ)R(a).
(127)

Please note that for the even elements in the spin group one has C(a) = R(a). One can
also specialize to the discrete transformations of time and space reversal.

Time and space reversals of Dirac adjoint spinors. One can work out how the first
and second Dirac adjoint spinors (123) and (124) transform under time and space reversal
by taking the corresponding Dirac adjoints of the time and space-reversed spinors in eqs.
(113) and (114). One can in fact consider this as a special case of (126). One finds for
time reversal

D1(T (ψ)) = D1(βςrψ) = (−1)(d−r)rD1(ψ)(ς
−1)rC(β) = (−1)(d−r)rD1(ψ)(ς

−1)rβ−1,

D2(T (ψ)) = D2(βςrψ) = (−1)rD2(ψ)(ς
−1)rR(β) = D2(ψ)(ς

−1)rβ−1,
(128)

and similar for space reversal,

D1(P(ψ)) = D1(αςd−rψ) = (−1)(d−r)D1(ψ)(ς
−1)d−rC(α) = D1(ψ)(ς

−1)d−rα−1,

D2(P(ψ)) = D2(αςd−rψ) = (−1)r(d−r)D2(ψ)(ς
−1)d−rR(α) = (−1)r(d−r)D2(ψ)(ς

−1)d−rα−1.
(129)
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Spinor inner product. For a given column spinor ψ ∈ S = C l p and row spinors
χ ∈ H(S) = p C l we can consider the product

χψ ∈ p C l p. (130)

As stated in Section 7.1, the subset p C l p is in fact a division ring and isomorphic to
R, C orHwhen p is an idempotent. Whichever of these three cases appears is of course
directly linked to the matrix algebra isomorphic to C l.

First and second inner product of column spinors. On this basis, we can define two
inner products of column spinors ψ, ϕ ∈ S = C l p. They are given by

D1(ϕ)ψ = H(ϕ)αςd−rψ = αςd−rC(ϕ)ψ, (131)

and
D2(ϕ)ψ = H(ϕ)βςrψ = βςrR(ϕ)ψ, (132)

respectively, and are both part of p C l p. Let us emphasize again that these inner products
of spinors in a real Clifford algebra are not necessarily real but in general either an element
of the real numbersR, the complex numbers C, or the quaternionsH.

It is immediately clear that the two inner products (131) and (132) are invariant under
the action (117) of the restricted spin group (43). In fact, for ψ→ aψ and ϕ→ aϕ we have

C(ϕ)ψ→ C(ϕ)C(a)aψ = C(ϕ)ψ, R(ϕ)ψ→ R(ϕ)R(a)aψ = R(ϕ)ψ, (133)

as a consequence of Equation (43).

8.3. Pinors

We discuss now spinor spaces that feature non-trivial representations of the entire (i.e.,
not only even) real Clifford algebra C l(r, d− r,R). Because they feature a representation of
the pin group Pin(r, d− r,R), such spinors are sometimes called pinors.

We take the spinor space S to be a minimal or quasi-minimal left ideal C l(r, d− r,R)p
where p is a minimal or quasi-minimal idempotent. As we have remarked above, a minimal
left ideal is necessarily annihilated by the structure map ς when r− (d− r) = 3, 7 mod 8
and in that case it is sometimes useful to work with a quasi-minimal left ideal instead.

In the following we go through the different cases where the real Clifford algebra
is isomorphic to different matrix algebras. For this discussion it is useful to keep the
classification in Table 3 in mind. To have a complete characterization for future reference
we accept that the discussion in this and the subsequent subsection is partly repetitive.

8.3.1. Cases with r− (d− r) = 0, 6 mod 8

Examples in up to six dimensions are d = 0 + 2, d = 1 + 1, d = 1 + 3 (Minkowski
space), d = 2 + 2, d = 2 + 4, d = 3 + 3, d = 6 + 0.

Here the real Clifford algebra C l(r, d − r,R) is isomorphic to a real matrix algebra
Mat(N,R) with N = 2d/2 dimensions. Accordingly, column pinors are isomorphic to a
column vector with 2d/2 real entries.

The Clifford structure map is given by ς = ±γ̂ where the “volume element” γ̂ as
defined in (20) and the elements for time reversal β (defined in (47)) and space reversal
α (defined in (52)) can all be represented by real matrices. Both the time-reversed pinor
defined in (113) and the space-reversed pinor defined in (113) are part of the original pinor
space S.

The two Dirac adjoints of a column pinor as defined in (123) and (124) are now isomor-
phic to real row vectors with 2d/2 entries. They differ essentially by a factor γ̂.

Column and row pinors can be multiplied with real numbers to yield another such
pinor. The spinor inner products defined in (131) and (132) yield both real numbers.

Relativistic fermions described by these pinors correspond to Majorana fermions.
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8.3.2. Cases with r− (d− r) = 2, 4 mod 8

Examples in up to six dimensions are d = 2+ 0, d = 0+ 4 (Euclidean space), d = 3+ 1
(Minkowski space with “mainly minus” metric), d = 4 + 0, d = 0 + 6, d = 1 + 5, d = 4 + 2,
d = 5 + 1.

Here the real Clifford algebra C l(r, d − r,R) is isomorphic to a quaternionic matrix
algebra Mat(N,H) with N = 2(d−2)/2 dimensions. Accordingly, column pinors are iso-
morphic to a column vector with 2(d−2)/2 quaternionic entries. Please note that this cor-
responds to a real dimension 2(d+2)/2 which is a factor 2 more than for the real case
r− (d− r) = 0, 6 mod 8 with the same dimension d.

The Clifford structure map is given by ς = ±γ̂ where the “volume element” γ̂ as
defined in (20) and the elements for time reversal β (defined in (47)) and space reversal
α (defined in (52)) can all be represented by quaternionic valued matrices. Both the time-
reversed pinor defined in (113) and the space-reversed pinor defined in (113) are part of
the original pinor space S.

The two Dirac adjoints of a column pinor as defined in (123) and (124) are now iso-
morphic to quaternionic row vectors with 2(d−2)/2 entries. They differ essentially by a
factor γ̂.

Column and row pinors can be multiplied with quaternions (column pinors from the
right, row pinors from the left) to yield another such pinor. The spinor inner products
defined in (131) and (132) yield an element of the quaternionsH.

Relativistic fermions described by these pinors correspond to quaternionic fermions and
allow the definition of symplectic Majorana fermions with some additional structure (see
Equation (121)).

8.3.3. Cases with r− (d− r) = 1, 5 mod 8

Examples in up to five dimensions are d = 1 + 0, d = 0 + 3, d = 2 + 1, d = 1 + 4,
d = 3 + 2, d = 5 + 0.

Here the real Clifford algebra C l(r, d− r,R) is isomorphic to a complex matrix algebra
Mat(N,C) with N = 2(d−1)/2 dimensions. Accordingly, column pinors are isomorphic to a
column vector with 2(d−1)/2 complex entries.

The Clifford structure map ς is given (up to an overall sign) by complex conjugation.
The “volume element” γ̂ as defined in (20) and the elements for time reversal β (defined
in (47)) and space reversal α (defined in (52)) can all be represented by complex matrices.
However, either time or space reversal also encompasses a complex conjugation ς. Both
the time-reversed pinor defined in (113) and the space-reversed pinor defined in (113) are
part of the original pinor space S.

The two Dirac adjoints of a column pinor as defined in (123) and (124) are now
isomorphic to complex row vectors with 2(d−1)/2 entries. They differ essentially by a
complex conjugation.

Column and row pinors can be multiplied with complex numbers to yield another such
pinor. The spinor inner products defined in (131) and (132) yield both complex numbers.

Relativistic fermions described by these pinors correspond to complex Dirac fermions.

8.3.4. Cases with r− (d− r) = 3 mod 8

Examples in up to five dimensions are d = 3 + 0, d = 0 + 5, d = 4 + 1.
Here the real Clifford algebra C l(r, d− r,R) is isomorphic to a direct sum of quaternionic

matrix algebras Mat(N/2,H)⊕Mat(N/2,H) with N = 2(d−1)/2. Column pinors can be
either part of a minimal ideal, in which case they are isomorphic to a column vector that is
non-zero in only one of the direct summands. In that case they have 2(d−3)/2 quaternionic
entries corresponding to 2(d+1)/2 real dimensions. Alternatively, they can be part of a quasi-
minimal ideal and are then isomorphic to a direct sum of two column vectors which has
entries in both direct summands. In that case they together comprise 2(d−1)/2 quaternionic
entries corresponding to 2(d+3)/2 real dimensions.
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The Clifford structure map ς is given (up to an overall sign) by the interchange to the
two direct summands. The “volume element” γ̂ as defined in (20) and the elements for time
reversal β (defined in (47)) and space reversal α (defined in (52)) can all be represented by
quaternionic matrices in the direct sum of algebras. However, either time or space reversal
also encompass an interchange of the two direct summands ς. Accordingly, when the
pinor space S is a minimum ideal, the corresponding pinors are taken out of this space by
either time reversal or space reversal and therefore break these symmetries in this sense. In
contrast, when the pinor space is quasi-minimal, the time and space-reversed pinors are
part of the original pinor space.

The two Dirac adjoints of a column pinor as defined in (123) and (124) are in the
minimal case isomorphic to quaternionic row vectors with 2(d−3)/2 entries. Because they
differ by a power of the structure map ς, they are in fact part of the two different direct
summands. In the quasi-minimal case, the two Dirac adjoints are isomorphic to quaternionic
row vectors with 2(d−1)/2 entries.

Column and row pinors can be multiplied with quaternions (column pinors from the
right, row pinors from the left) to yield another such pinor. The spinor inner products
defined in (131) and (132) yield an element of the quaternionsH.

Relativistic fermions described by these pinors correspond to minimal or quasi-minimal
quaternionic fermions and allow the definition of minimal or quasi-minimal symplectic Majorana
fermions with some additional structure (see Equation (121)).

8.3.5. Cases with r− (d− r) = 7 mod 8

Examples in up to five dimensions are d = 0 + 1, d = 1 + 2, d = 2 + 3.
Here the real Clifford algebra C l(r, d− r,R) is isomorphic to a direct sum of real matrix

algebras Mat(N/2,R)⊕Mat(N/2,R) with N = 2(d+1)/2. Column pinors can be either
part of a minimal ideal, in which case they are isomorphic to a column vector that is
non-zero in only one of the direct summands. In that case they have 2(d−1)/2 real entries.
Alternatively, they can be part of a quasi-minimal ideal and are then isomorphic to a direct
sum of two column vectors which has entries in both direct summands. In that case they
together comprise 2(d+1)/2 real entries.

The Clifford structure map ς is given (up to an overall sign) by the interchange to the
two direct summands. The “volume element” γ̂ as defined in (20) and the elements for
time reversal β (defined in (47)) and space reversal α (defined in (52)) can all be represented
by real matrices in the direct sum of algebras. However, either time or space reversal also
encompass an interchange of the two direct summands ς. Accordingly, when the pinor
space S is a minimum ideal, the corresponding pinors are taken out of this space by either
time reversal or space reversal and therefore break these symmetries in this sense. In
contrast, when the pinor space is quasi-minimal, the time and space-reversed pinors are
part of the original pinor space.

The two Dirac adjoints of a column pinor as defined in (123) and (124) are in the
minimal case isomorphic to real row vectors with 2(d−1)/2 entries. Because they differ by a
power of the structure map ς, they are in fact part of the two different direct summands.
In the quasi-minimal case, the two Dirac adjoints are isomorphic to real row vectors with
2(d+1)/2 entries.

Column and row pinors can be multiplied with real numbers to yield another such
pinor. The spinor inner products defined in (131) and (132) yield a real number.

Relativistic fermions described by these pinors correspond to minimal or quasi-minimal
Majorana fermions.

8.4. Proper Spinors

Let us now also discuss spinor spaces that feature non-trivial representations of the
even real Clifford subalgebra C l+(r, d− r,R). These spaces feature only a representation of
the spin group Spin(r, d− r,R) (but not of the pin group), such that its elements are called
proper spinors.
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We take the spinor space S to be a minimal or quasi-minimal left ideal C l+(r, d− r,R)p
where p is a minimal or quasi-minimal idempotent (of the even subalgebra), see the discussion
in Section 7.

In the following we go through the different cases where the real Clifford algebra
is isomorphic to different matrix algebras. For this discussion it is useful to keep the
classification of even subalgebras in Table 4 in mind.

8.4.1. Cases with r− (d− r) = 2, 6 mod 8

Examples in up to six dimensions are d = 0 + 2, d = 2 + 0, d = 1 + 3 (Minkowski
space), d = 3 + 1, d = 0 + 6, d = 2 + 4, d = 4 + 2, d = 6 + 0.

Here the real, even Clifford subalgebra C l+(r, d− r,R) is isomorphic to a real, full
Clifford algebra C l(r′, d′ − r′,R) with d′ = d − 1 and r′ − (d′ − r′) = 1, 5 mod 8. The
latter is isomorphic to a complex matrix algebra Mat(N,C) with N = 2(d−2)/2. Accordingly,
column spinors as representations of the even subalgebra are isomorphic to a column vector
with 2(d−2)/2 complex entries corresponding to 2d/2 real dimensions. Interestingly, this real
dimension is for r− (d− r) = 6 mod 8 as large as the corresponding pinor real dimension
(see Section 8.3.1) and for r− (d− r) = 2 mod 8 a factor 2 smaller (see Section 8.3.2).

Please note that the structure map in the full Clifford algebra ς = ±γ̂ commutes with
all elements of the even subalgebra C l+(r, d− r,R) and that γ̂2 = −1. For irreducible rep-
resentations it must be proportional to the unit matrix. One can understand γ̂ as a complex
structure and in fact there are two in-equivalent, complex conjugate representations where
γ̂ = +i1 and γ̂ = −i1. The Clifford structure map ς of the even subalgebra C l+(r, d− r,R)
is a complex conjugation with respect to this complex structure.

The two Dirac adjoints of a column spinor as defined in (123) and (124) are now
isomorphic to complex row vectors with 2(d−2)/2 entries. They differ essentially by a power
of the structure map ς, which is a complex conjugation.

Column and row spinors can be multiplied with complex numbers to yield an-
other such spinor. The spinor inner products defined in (131) and (132) yield both
complex numbers.

Relativistic fermions described by these spinors correspond to complex Weyl fermions.

8.4.2. Cases with r− (d− r) = 4 mod 8

Examples in up to six dimensions are d = 0+ 4 (Euclidean space), d = 4+ 0, d = 1+ 5,
d = 5 + 1.

Here the real, even Clifford subalgebra C l+(r, d− r,R) is isomorphic to a real, full
Clifford algebra C l(r′, d′ − r′,R) with d′ = d− 1 and r′ − (d′ − r′) = 3 mod 8. The latter is
isomorphic to a quaternionic direct sum matrix algebra Mat(N/2,H)⊕Mat(N/2,H) with
N = 2(d−2)/2. Accordingly, column spinors as representations of the even subalgebra are
isomorphic to a direct sum of two column vectors with together 2(d−2)/2 quaternionic entries
corresponding to 2(d+2)/2 real dimensions. This real dimension is as large as the one of the
corresponding pinor representation (see Section 8.3.2). On the other side, an irreducible
spinor as part of a minimal ideal is non-zero in only one of these summands and has only
2(d−4)/2 quaternionic entries corresponding to 2d/2 real dimensions. This is then a factor 2
smaller than the corresponding pinor representation.

Please note that the structure map in the full Clifford algebra ς = ±γ̂ commutes
with all elements of the even subalgebra C l+(r, d− r,R) and that γ̂2 = 1. For irreducible
representations it must be proportional to the unit matrix. There are two in-equivalent
representations where γ̂ = +1 and γ̂ = −1 corresponding to the two direct summands of
the even subalgebra C l+(r, d− r,R). The Clifford structure map ς of the even subalgebra
C l+(r, d− r,R) interchanges these two summands, a⊕ b→ ±b⊕ a.

The two Dirac adjoints of a column spinor as defined in (123) and (124) are now
isomorphic to quaternionic row vectors (in the irreducible case) or direct sums thereof.
They differ essentially by a power of the structure map ς, which interchanges the two
direct summands.
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Column and row spinors can be multiplied with quaternions (column spinors from
the right, row spinors from the left) to yield another such spinor. The spinor inner products
defined in (131) and (132) yield both an element of the quaternionsH.

Relativistic fermions described by these spinors might be called to quaternionic Weyl
fermions and one may define symplectic Majorana-Weyl fermions with some additional struc-
ture (see Equation (121)).

8.4.3. Cases with r− (d− r) = 0 mod 8

Examples in up to six dimensions are d = 1 + 1, d = 2 + 2, d = 3 + 3.
Here the real, even Clifford subalgebra C l+(r, d− r,R) is isomorphic to a real, full

Clifford algebra C l(r′, d′ − r′,R) with d′ = d − 1 and r′ − (d′ − r′) = 7 mod 8. The lat-
ter is isomorphic to a real direct sum matrix algebra Mat(N/2,R) ⊕Mat(N/2,R) with
N = 2(d+1)/2. Accordingly, column spinors as representations of the even subalgebra
are isomorphic to a direct sum of two column vectors with together 2d/2 real entries.
This real dimension is as large as the one of the corresponding pinor representation (see
Section 8.3.1). On the other side, an irreducible spinor as part of a minimal ideal is non-zero
in only one of these summands and has only 2(d−2)/2 real entries. This is then a factor 2
smaller than the corresponding pinor representation.

Please note that the structure map in the full Clifford algebra ς = ±γ̂ commutes
with all elements of the even subalgebra C l+(r, d− r,R) and that γ̂2 = 1. For irreducible
representations it must be proportional to the unit matrix. There are two in-equivalent
representations where γ̂ = +1 and γ̂ = −1 corresponding to the two direct summands of
the even subalgebra C l+(r, d− r,R). The Clifford structure map ς of the even subalgebra
C l+(r, d− r,R) interchanges these two summands, a⊕ b→ ±b⊕ a.

The two Dirac adjoints of a column spinor as defined in (123) and (124) are now
isomorphic to real row vectors (in the irreducible case) or direct sums thereof. They differ
essentially by a power of the structure map ς, which interchanges the two direct summands.

Column and row spinors can be multiplied with real numbers to yield another such
spinor. The spinor inner products defined in (131) and (132) yield both a real number.

Relativistic fermions described by these spinors are Majorana-Weyl fermions.

8.4.4. Cases with r− (d− r) = 1, 7 mod 8

Examples in up to five dimensions are d = 1 + 0, d = 0 + 1, d = 1 + 2, d = 2 + 1,
d = 2 + 3, d = 3 + 2.

Here the real, even Clifford subalgebra C l+(r, d− r,R) is isomorphic to a real, full
Clifford algebra C l(r′, d′ − r′,R) with d′ = d − 1 and r′ − (d′ − r′) = 0, 6 mod 8. The
latter is isomorphic to a real matrix algebra Mat(N,R) with N = 2(d−1)/2. Accordingly,
column spinors as representations of the even subalgebra are isomorphic to column vectors
with 2(d−1)/2 real entries. This real dimension is a factor 2 smaller than the one of the
corresponding pinor representation (see Section 8.3.3) for r − (d− r) = 1 mod 8 and as
large as an irreducible pinor representation for r− (d− r) = 7 mod 8. The transition from
the pinor to the spinor representation reduces for r− (d− r) = 1 mod 8 a complex to a real
representation and for r− (d− r) = 7 mod 8 a direct sum of two real representations to an
irreducible real representation.

The Clifford structure map ς of the even subalgebra C l+(r, d− r,R) is now given by
the product of all generators and is actually an element of the even Clifford algebra itself.
The two Dirac adjoints of a column spinor as defined in (123) and (124) are now isomorphic
to real row vectors. They differ essentially by a power of the structure map.

Column and row spinors can be multiplied with real numbers to yield another such
spinor. The spinor inner products defined in (131) and (132) yield both a real number.

In odd dimensions there is now chiral symmetry and therefore no Weyl fermions.
Relativistic fermions described by these spinors may be called Majorana fermions.
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8.4.5. Cases with r− (d− r) = 3, 5 mod 8

Examples in up to five dimensions are d = 0 + 3, d = 3 + 0, d = 0 + 5, d = 1 + 4,
d = 4 + 1, d = 5 + 0.

Here the real, even Clifford subalgebra C l+(r, d− r,R) is isomorphic to a real, full
Clifford algebra C l(r′, d′ − r′,R) with d′ = d− 1 and r′ − (d′ − r′) = 2, 4 mod 8. The latter
is isomorphic to a quaternionic matrix algebra Mat(N,R) with N = 2(d−3)/2.

Accordingly, column spinors as representations of the even subalgebra are isomor-
phic to column vectors with 2(d−3)/2 quaternionic entries corresponding to 2(d+1)/2 real
dimensions. This real dimension is as large as the one of the corresponding pinor repre-
sentations (see Sections 8.3.3 and 8.3.4). In other words, in this case there if no reduction
in the number of real degrees of freedom occurring in the transition from the pinor to the
spinor representation.

The Clifford structure map ς of the even subalgebra C l+(r, d− r,R) is now given by
the product of all generators and is actually an element of the even Clifford algebra itself.
The two Dirac adjoints of a column spinor as defined in (123) and (124) are now isomorphic
to quaternionic row vectors. They differ essentially by a power of the structure map.

Column and row spinors can be multiplied with quaternions (column spinors from
the right, row spinors from the left) to yield another such spinor. The spinor inner products
defined in (131) and (132) yield both an element of the quaternionsH.

In odd dimensions there is now chiral symmetry and therefore no Weyl fermions.
Relativistic fermions described by these spinors may be called quaternionic fermions and
allow the construction of symplectic Majorana fermions with some additional structure (see
Equation (121)).

9. Conclusions

We have discussed here real Clifford algebras as well as their representations in
terms of pinors and proper spinors from an algebraic perspective with the goal to put the
description of relativistic fermions in various dimensions on a common basis. Independent
of a concrete matrix representation, pinor spaces have been introduced as minimal or quasi-
minimal left and right ideals within the full Clifford algebra C l(r, d− r,R). They feature in
particular a non-trivial representation of the pin group which is a double coverage of the
indefinite orthogonal group O(r, d− r,R). Besides generalized Lorentz transformations
that can be obtained continuously from the unit element, this group features also discrete
transformations such as time and space reversal. In a similar way, proper spinor spaces
have been introduced as minimal or quasi-minimal left and right ideals within the even
subalgebra C l+(r, d− r,R). They feature naturally a representation of the spin group as a
double coverage of SO(r, d− r,R).

An advantage of the present approach is that it provides a unified treatment of
Clifford algebras and corresponding spinors in all combinations of time dimensions r
and space dimensions d− r. An important role is played by the Clifford structure map
ς as defined in Equation (30). For example, the action of the pin group on an arbitrary
element of the Clifford algebra has been formulated in Equation (39) in terms of powers
of the structure map. This form was in fact crucial to define the action of the pin group
on pinors, Equation (115) such that the transformed pinor stays within the corresponding
quasi-minimal left ideal. This concerns in a similar form also different versions of conjugate
spinors and our treatment is here refining and extending the available literature.

Another important ingredient of our construction was the definition of an “Hermitian
conjugation” as an involution within the Clifford algebra, see (56). This allowed to define
column spinors and row spinors based on the same minimal (or quasi-minimal) canonical
idempotent p and to define two Dirac adjoints in Equations (123) and (124) in a rather
general way. The latter differ essentially by a power of the structure map and depending on
d and r, one of these “Dirac adjoints” is traditionally known as the “Majorana adjoint”. It is
also nice to see how the Clifford conjugate C(a) and the reverse R(a) of a pin group element
a appear naturally in the general transformation behavior of the Dirac adjoints under the
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pin group, Equation (126). Together with the analysis of the pin group in Section 4, one
can now easily determine how spinors and their inner products transform under various
discrete spacetime symmetries.

An interesting general lesson from studying real Clifford algebras is that spinors spaces
are either real, complex or quaternionic vector spaces and that also inner products between
spinors yield either real, complex or quaternionic numbers. This is interesting because such
products directly enter the Lagrangian or action that defines the physical theory as well as
effective actions, correlation functions and so on. Of course, another important ingredient
to construct possible theories in the form of actions is the anti-commuting Grassmann
nature of fermionic fields, which has not been discussed here.

In the future it might be interesting to build up on the discussion presented here in
various ways. An important step will be to investigate the analytic continuation between
spaces with equal number of dimensions d but different signature r− (d− r) [26–30]. In
fact, this needs as a first step a complexification of the entire Clifford algebra. It is very
interesting from a physics point of view to connect spaces with different signature because
Clifford algebras and spinors change their properties. For example, many analytical and
numerical investigations of quantum field theories are done in Euclidean space with four
space-like dimensions, which should be seen as an analytic continuation of Minkowski
space with one time-like and three space-like dimensions. There is also the possibility
to use a similar analytic continuation to a space with two time-like and two space-like
dimensions. From the discussion in Section 8.4.3 it follows that this space features real
Majorana-Weyl spinors, in contrast to the d = 0+ 4-dimensional Euclidean space discussed
in Section 8.4.2 where spinors are quaternionic. The real spinors may have advantages for
numerical and some analytical investigations. The d = 2 + 2-dimensional space has also
the feature that the invariant momentum combination p2 can be negative and positive, so
that real time properties can be studied.

Similar considerations can be done also in higher or lower-dimensional spaces based
on the information given in Section 8. An interesting problem where this can find applica-
tions is the notoriously difficult regularization of chiral gauge theories (like the electroweak
standard model) and the investigation of gauge anomalies. It has been suggested that this
problem could be solved by first working in spaces with higher dimension and then using
compactification, see [31] and references therein.

The characterization of Clifford algebras and spinor spaces independent of a concrete
matrix representation might also directly be useful for calculations with relativistic fermions
on a formal level. It is possible to work directly with algebraic rules, which may have
advantages for example in schemes based on computer algebra.

Another interesting goal for the future would be the extension of the spinor helicity
formalism (for reviews see refs. [32–34], for a recent extension to massive theories and arbi-
trary spin ref. [35]) to other dimensions and signatures. Again, the information presented
here should be very useful to that end.
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Notes

1. We are using here conventions such that the Minkowski space metric has signature (−,+,+,+). One may alternatively
use conventions where time coordinates have positive and space coordinates negative entries in the metric.

2. By a simple time reflection we mean a discrete transformation that reverses the direction of all time coordinates but
does not include a complex conjugation of all complex numbers i→ −i as it would be the case for Wigner’s anti-unitary
time reversal in quantum mechanics.

3. An associative algebra is an algebraic structure with compatible operations of addition, multiplication (assumed to
be associative), and a scalar multiplication by elements in some field, hereR.
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