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Abstract: The likelihood ratio for a continuous gravitational wave signal is viewed geometrically
as a function of the orientation of two vectors; one representing the optimal signal-to-noise ratio,
and the other representing the maximised likelihood ratio or F -statistic. Analytic marginalisation
over the angle between the vectors yields a marginalised likelihood ratio, which is a function of the
F -statistic. Further analytic marginalisation over the optimal signal-to-noise ratio is explored using
different choices of prior. Monte-Carlo simulations show that the marginalised likelihood ratios
had identical detection power to the F -statistic. This approach demonstrates a route to viewing the
F -statistic in a Bayesian context, while retaining the advantages of its efficient computation.

Keywords: continuous gravitational waves; data analysis; matched filter; Bayesian inference;
marginal likelihood; analytic marginalization

1. Introduction

Continuous gravitational waves are, at best, weak signals relative to the sensitivity of
current-generation interferometric detectors [1–3]. Searches of data from the LIGO and Virgo
observatories, most recently from their second [4–20] and third observing runs [21,22], have
yet to make a first detection. Theoretical modelling of rapidly-rotating, non-axisymmetric
neutron stars—the most likely source of continuous waves—predict a wide range of pos-
sible signal strengths [23–30]. Optimally-sensitive data analysis techniques are, therefore,
important.

Given an assumed signal model—a quasisinusoid that evolves with the rotation
frequency of the neutron star, and is modulated by the relative motion between the star and
an Earth-based detector—a matched filter can be constructed to achieve maximum detection
power, in the Neyman–Pearson [31] sense of maximising the probability of detection (true
positive) at a given probability of false alarm (false positive). Furthermore, as first shown
in [32], the matched filter likelihood ratio can be analytically maximised over four amplitude
parameters A1,A2,A3,A4, resulting in the well-known F -statistic.

The Bayesian approach to signal detection and parameter inference has become central
to gravitational-wave astronomy, e.g., [33]. It was recognised in [34,35] that maximisation
over signal parameters can bias detection statistics: from the Bayesian viewpoint, maximi-
sation implicitly assumes prior probabilities for the maximised parameters, which may not
be physically motivated.

In [36], the F -statistic is shown to possess such a bias due to analytic maximisation
over the four amplitude parameters. The A1,A2,A3,A4 are functions of four physical
parameters of the continuous wave signal model: the overall signal strength h0; the incli-
nation ι and polarisation ψ angles, which orient the neutron star rotation axis relative to
the observer; and the signal phase φ0 at some reference time. Given no prior knowledge of
the orientation of the neutron star, or the signal phase, one would assume uniform priors
on cos ι, ψ, and φ0; and the absence of detections of continuous waves to date is consistent
with a choice of prior on h0, which prefers weaker signals to stronger ones. The F -statistic,
however, implicitly adopts priors which prefer stronger signals (i.e., larger h0) compared to

Universe 2021, 7, 174. https://doi.org/10.3390/universe7060174 https://www.mdpi.com/journal/universe

https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0002-4394-7179
https://doi.org/10.3390/universe7060174
https://doi.org/10.3390/universe7060174
https://doi.org/10.3390/universe7060174
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/universe7060174
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe7060174?type=check_update&version=1


Universe 2021, 7, 174 2 of 14

weaker ones. It is also biased in favour of linearly polarised signals where cos ι ∼ 0 (i.e., the
neutron star is viewed “edge-on” with the rotation axis at right angles to the line of sight)
compared to circularly polarised signals where | cos ι| = 1 (i.e., the neutron star is viewed
“face-on” with the rotation axis parallel to the line of sight).

By instead marginalising the likelihood ratio over h0, cos ι, ψ, and φ0 with physically-
motivated priors, [36] introduced the B-statistic, a Bayesian alternative to the F -statistic.
Monte-Carlo simulations were performed to estimate the receiver–operator curve, which
plots the probability of detection against the probability of false alarm. The B-statistic
was found to be a more powerful detection statistic than the F -statistic, assuming a signal
population where the distributions of cos ι, ψ, and φ0 are consistent with the B-statistic
priors [35].

A practical downside of the B-statistic is that, to date, a convenient analytic expression
for the marginalised likelihood ratio has not been found, and therefore the marginalisation
must be performed by numerical integration. This puts the B-statistic at a disadvantage
with respect to the F -statistic, for which computationally efficient implementations ex-
ist [32,37–39]. Past work has sought to address this issue though transformation of the
amplitude parameters to new coordinate systems, and approximations to the marginalisa-
tion integrals in various limits [40–43].

This paper presents an alternative route to marginalising the likelihood ratio for
continuous gravitational wave searches. A geometric view of the likelihood ratio is pre-
sented in Section 2, which permits analytic marginalisation over its parameters in Section 3.
Receiver–operator curves for the marginalised likelihood ratio are presented in Section 4,
and a discussion in Section 5 concludes the paper.

2. Geometric View of the Likelihood Ratio

Gravitational waves detectors measure strain—the differential displacement between
test particles due to a passing gravitational wave. The strain due to a continuous wave
signal may be written as [32]

h(t,A, p) = ~A ·~h(t, p) , (1)

where ~A ∈ R4 is a vector of the amplitude parameters, and~h(t, p) ∈ R4 is a vector of time-
dependent basis functions.1 Additional parameters p of~h encode the phase modulation
of the continuous wave signal: these typically include Taylor coefficients of the evolution
of the gravitational wave frequency, the position of the neutron star in the sky, and if
necessary the parameters of the orbit of the neutron star around a companion.

The likelihood ratio for continuous waves arises from considering two hypotheses:
that the data x(t) consist only of Gaussian stationary noise, with single-sided power
spectral density S ; or that the data additionally contain a signal specified by Equation (1).
The log-likelihood ratio between the two hypotheses is then [32,44]

ln Λ(x;A, p) = ~A · ~X(x; p)− 1
2
~A ·M · ~A . (2)

A search for a continuous wave is performed by repeated computation of Equation (2) for
different choices of p, corresponding to different choices of signal hypothesis. Typically, a
fixed set of p, called a template bank, is constructed in such a way as to ensure any signal
in x(t) matches at least one of the signal hypotheses with low loss in signal-to-noise ratio,
typically . 30% [45]. A metric on the parameter space of p is often used in constructing
template banks [44,46–48].

The elements of the vector ~X(x; p) ∈ R4 in Equation (2) are inner products (nor-
malised by S) of the data x(t) with the basis functions~h(t, p). The elements of the matrix
M ∈ R4 ⊗R4 are inner products of the~h(t, p) with each other. The typical time-span of
data searched for continuous waves (days to years) far exceeds the time-scale of oscillations
in ~h(t, p) due to the gravitational wave frequency (∼1–103 Hz); as a result, some inner
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products between the~h(t, p) quickly average to zero. The remaining non-zero elements of
M are [32,49,50]

M =
1
2


A C 0 E
C B −E 0
0 −E A C
E 0 C B

 . (3)

The element E = 0 under the assumption that the gravitational wavelength is much larger
than the size of the detector; this holds for terrestrial gravitational-wave interferometers,
though not for proposed space-based detectors [49,50]. The elements A, B, and C can be
expressed as inner products between two functions a(t, p) and b(t, p), which are related
to the response of the gravitational wave detector to the two fundamental polarisations—
“plus” and “cross”—of gravitational waves in general relativity.

The matrix M is symmetric and positive definite [32]. It follows that its four leading
principal minors D1, D2, D3, and D4 are all strictly positive:

D1 = det
1
2
(

A
)
=

1
2

A > 0 , (4a)

D2 = det
1
2

(
A C
C B

)
=

1
4
(AB− C2) > 0 , (4b)

D3 = det
1
2

A C 0
C B −E
0 −E A

 =
1
8

A(AB− C2 − E2) > 0 , (4c)

D4 = detM =
1
16

(AB− C2 − E2)2 > 0 . (4d)

It also follows that M possesses a Cholesky decomposition: a lower triangular matrix
N ∈ R4 ⊗R4 such that M = NN T, where N T is the transpose of N . The elements of
N are given in terms of the elements of M and the leading principal minors D2 and D3:

N =


√

A/2 0 0 0
C/
√

2A
√

2D2/A 0 0
0 −E/

√
8D2/A

√
D3/D2 0

E/
√

2A −CE/
√

8AD2 C
√

D3/(A2D2) 2
√

D3/A2

 . (5)

Define the vectors

~b = N T · ~A =


(A1 A +A2C +A4E)/

√
2A

(4A2D2 −A3 AE−A4CE)/
√

8AD2
(A3 +A4(C/A))

√
D3/D2

(2A4
√

D3)/A

 , (6)

~y(x; p) = N−1 · ~X(x; p) =


X1
√

2/A
(AX2 − CX1)/

√
2AD2

((4D2X3 + AEX2 − CEX1)/(4D3))
√

D3/D2
(AX4 − CX3 − EX1)/(2

√
D3)

 . (7)

The log-likelihood ratio of Equation (2) can then be re-expressed as

ln Λ(x;A, p) =~b ·~y(x; p)− 1
2
‖~b‖2 , (8)

where ‖~b‖2 ≡ ~b ·~b defines the vector norm. The lengths of the vectors ~b and ~y(x; p)
are related to two well-known quantities. The length of~b is proportional to the optimal
signal-to-noise ratio of the matched filter (cf. [44], Equation (24)):

2‖~b‖2 ≡ ρ2 = A(A2
1 +A2

3)+ B(A2
2 +A2

4)+ 2C(A1A2 +A3A4)+ 2E(A1A4−A2A3) . (9)
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The length of ~y(x; p) is proportional to the F -statistic2 (cf. [44], Equation (19)):

1
2
‖~y‖2 ≡ F =

A(X2
2 + X2

4) + B(X2
1 + X2

3)− 2C(X1X2 + X3X4)− 2E(X1X4 − X2X3)

AB− C2 − E2 . (10)

Let

κ =
~b ·~y(x; p)
‖~b‖‖~y‖

(11)

be the cosine of the angle between~b and ~y(x; p). The substitution of Equations (9)–(11) into
Equation (8) gives

ln Λ(x; ρ, κ,F ) = ρκ
√
F − 1

4
ρ2 . (12)

As shown in Figure 1, the log-likelihood ratio may be viewed geometrically as a func-
tion of the relative orientation of two vectors. One vector, ~y(x; p), is a function of the data
x(t), and represents the matched filter; the other vector,~b, represents the expected signal-
to-noise ratio. Maximisation of the log-likelihood ratio with respect to ~A is equivalent to
aligning~b and ~y(x; p): maximising Equation (12) with respect to ρ gives

max
ρ

ln Λ(x; ρ, κ,F ) = Fκ2 at ρ = 2κ
√
F , (13)

and Equations (12) and (13) are maximised when κ = 1, i.e., when~b and~y(x; p) are parallel:

max
ρ,κ

ln Λ(x; ρ, κ,F ) = F . (14)

3. Analytic Marginalisation of the Likelihood Ratio

Instead of maximising the likelihood ratio with respect to κ and ρ, one could marginalise
over these parameters with suitable priors. Marginalisation over κ is performed in
Section 3.1, followed by marginalisation over ρ, considering different choices of prior,
in Section 3.2.

O

R4

‖~b‖ = ρ/
√
2

~b

‖~y‖ =
√
2F

~y(x; p)

cos
−1 κ

Figure 1. Schematic of the vectors ~b (Equation (6)) and ~y(x; p) (Equation (7)), their lengths
(Equations (9) and (10)), and the cosine κ of the angle between them (Equation (11)).

3.1. Marginalisation over κ

In the absence of a deeper understanding of the relationship between~b and ~y(x; p), it
is not unreasonable to adopt a prior on κ that assumes no preferred orientation between
the two vectors. The prior on κ is then given by the distribution of ~u ·~v, where ~u ∈ R4 and
~v ∈ R4 are unit vectors uniformly distributed on the 3-sphere S3 ⊂ R4.

By invoking spherical symmetry, one can, without a loss of generality, fix one vector,
say ~u = (1, 0, 0, 0). The problem then reduces to finding the distribution of ~u ·~v = v1. It is
well known [51] that a vector uniformly distributed on the (d− 1)-sphere Sd−1 ⊂ Rd may
be found by generating a vector~z ∈ Rd whose elements are independent standard normal
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variates, then normalising~z to unit length. Applying this procedure to ~v, the square of its
first element is, therefore,

v2
1 =

z2
1

z2
1 + z2

2 + z2
3 + z2

4
. (15)

The distributions of z2
1 and z2

2 + z2
3 + z2

4 are chi-squared distributions with 1 and 3 degrees
of freedom, respectively. It follows that the distribution of κ2 ∼ v2

1 is a beta distribution
with the parameters α = 1/2, β = 3/2:

p(κ2) =
2
√

1− κ2

π|κ| , 0 ≤ κ2 ≤ 1 . (16)

To find the distribution of κ, perform a change of variables and expand the range of the
distribution to [−1, 1]:

p(κ) = p(κ2)

∣∣∣∣d(κ2)

dκ

∣∣∣∣ = 4
√

1− κ2

π
, −1 ≤ κ ≤ 0 or 0 ≤ κ ≤ 1 ; (17)

=
2
√

1− κ2

π
, −1 ≤ κ ≤ 1 . (18)

Marginalisation of the likelihood ratio, in the form of Equation (12), over κ with the
prior of Equation (18) gives the analytic expression

Λ(x; ρ,F ) =
∫ 1

−1
dκ p(κ)Λ(x; ρ, κ,F )

=
2

ρ
√
F

I1(ρ
√
F )e−ρ2/4 ,

(19)

where In is the modified Bessel function of the first kind of order n. This function of ρ and
F is plotted in Figure 2. When ρ is fixed, Λ(x; ρ,F ) is a monotonically increasing function
of F . When F is fixed, Λ(x; ρ,F ) monotonically decreases as a function of ρ for F ≤ 2, but
achieves a local maximum at some ρ > 0 for F > 2.

3.2. Marginalisation over ρ

The marginalised likelihood ratio of Equation (19) may be further analytically marginalised
over ρ, depending on its choice of prior. For example, the choice of a uniform (improper)
prior on ρ,

punif.(ρ) = 1 , (20)

leads to

Λunif.(x;F ) =
∫ ∞

0
dρ punif.(ρ)Λ(x; ρ,F )

=
√

π

[
I0

(F
2

)
− I1

(F
2

)]
eF/2 .

(21)

This is a strictly increasing function of F , and is plotted in Figures 3 and 4.



Universe 2021, 7, 174 6 of 14

Figure 2. The likelihood ratio marginalised over κ (Equation (19)). Top: as a function of F for fixed
values of ρ. Bottom: as a function of ρ for fixed values of F .

Another possible choice is an exponential prior on ρ:

pexp.(ρ) =
2

ρ0
√

π
e−(ρ/ρ0)

2
, (22)

with parameter ρ0. This choice of prior is consistent with the assumption that the signal-to-
noise ratio of continuous wave signals is weak, with the most likely value at ρ = 0, and
most values at ρ . ρ0. Figure 3 plots the exponential priors for choices of the parameter ρ0;
larger values of ρ0 lower the peak at ρ = 0 and flatten out the distribution. Marginalisation
of Equation (19) with the exponential prior on ρ results in

Λexp.(x;F , ρ0) =
∫ ∞

0
dρ pexp.(ρ)Λ(x; ρ,F )

=
2√

4 + ρ2
0

[
I0

(
ρ2

0F
8 + 2ρ2

0

)
− I1

(
ρ2

0F
8 + 2ρ2

0

)]
eρ2

0F/(8+2ρ2
0) .

(23)

This is a strictly increasing function of F and ρ0 and it is plotted alongside Λunif.(x;F ) in
Figure 3.
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Figure 3. Top: the exponential prior on ρ (Equation (22)) as a function of ρ, for choices of the
parameter ρ0. Bottom: the likelihood ratio marginalised over κ and ρ as a function of F , with the
exponential prior on ρ (Equation (23)) for choices of ρ0, and with the uniform prior (Equation (21)).

As a third example choice of prior on ρ, consider the function

ppeak.(ρ) =
ρ

ρ2
c

e−(ρ/ρc)2/2 , (24)

with parameter ρc. This function is plotted in Figure 3 for choices of ρc; it has a peaked
shape, with the maximum occurring at ρ = ρc. This choice of prior is consistent with
the assumption that the signal-to-noise ratio of continuous wave signals has some pre-
ferred value around ρ ≈ ρc, as might be expected if neutron stars possess a minimum
ellipticity [29]. Marginalisation of Equation (19) with this peaked prior on ρ leads to

Λpeak.(x;F , ρc) =
∫ ∞

0
dρ ppeak.(ρ)Λ(x; ρ,F )

=
2

ρ2
cF
[
eρ2

cF/(2+ρ2
c ) − 1

]
.

(25)

This is a strictly increasing function of F and ρc and is plotted alongside Λunif.(x;F ) in
Figure 4.
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Figure 4. Top: the peaked prior on ρ (Equation (24)) as a function of ρ, for choices of the parameter
ρc. Bottom: the likelihood ratio marginalised over κ and ρ as a function of F , with the peaked prior
on ρ (Equation (25)) for choices of ρc, and with the uniform prior (Equation (21)).

Figure 5 plots the likelihood ratios Λexp.(x;F , ρ0) and Λpeak.(x;F , ρc) marginalised
over κ and ρ with the exponential and peaked priors, respectively, as functions of the priors’
respective parameters ρ0 and ρc. The likelihoods are evaluated at F = 2, the expectation
value of F assuming no signal is present. The behaviour of the likelihood ratios at F = 2
gives some indication of which hypothesis is favoured in the absence of evidence for a
signal. Both likelihood ratios favour the noise hypothesis (Λ < 1) for strictly positive
parameter values. The limiting behaviour at zero parameter values are:

lim
ρ0→0

pexp.(ρ) = 0 , lim
ρ0→0

Λexp.(x;F = 2, ρ0) = 1 ; (26)

lim
ρc→0

ppeak.(ρ) = 0 , lim
ρc→0

Λpeak.(x;F = 2, ρc) = 1 . (27)

Figure 5. The likelihood ratios marginalised over κ and ρ with the exponential (Equation (23)) and
peaked (Equation (25)) priors, as functions of the priors’ respective parameters ρ0 and ρc, at fixed
F = 2.
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4. Receiver–Operator Curves

In Section 3.2, all three likelihood ratios marginalised over ρ (Equations (21), (23) and (25))
were found to be strictly increasing functions of F . This implies that each marginalised
likelihood ratio will have the same detection power as the F -statistic.

Detection power is most commonly determined by Monte-Carlo simulations of the
detection statistic (e.g., F ), in both the absence and presence of a signal. First, a set
of random values of F is generated, assuming no signal is present. A threshold F? is
determined that gives a chosen false alarm probability, pf.a.: the fraction of simulated trials
where F|no signal < F?. Then, a second set of random values of F is generated, this time
assuming the presence of a signal. Finally, the detection probability pdet. is determined:
the fraction of simulated trials where F|signal > F?. The receiver–operator curve is the
function pdet.

(
F?(pf.a.)

)
. The most powerful detection statistic is that which gives the

largest pdet. at a given pf.a..
If g(F ) is a strictly increasing function of F , then, by definition, F|no signal < F?

implies g(F )|no signal < g(F?), and F|signal > F? implies g(F )|signal > g(F?). Hence, by
applying g(·) to all simulated values of F , the transformed threshold g(F?) will yield
the same false alarm and detection probabilities, and therefore g(F ) will have the same
detection power as F .

To confirm, receiver–operator curves are computed for the F -statistic, B-statistic, and
the likelihood ratio Λunif.(x;F ) marginalised over κ and ρ with the uniform prior on ρ.
Following [36], the elements of M are fixed at A = 0.154, B = 0.234, C = −0.0104, and
E = 0, and four signal populations are chosen:

(i) fixed ρ = 4, cos ι = 0 (i.e., the neutron star is viewed “edge-on”), ψ = 0;
(ii) fixed ρ = 4, cos ι = 0.99 3 (i.e., the neutron star is viewed “face-on”), ψ = 0;
(iii) fixed ρ = 4, randomly drawn cos ι ∈ [−1, 1], ψ ∈ [−π/4, π/4]; and
(iv) fixed h0

√
T/S = 10, randomly drawn cos ι ∈ [−1, 1], ψ ∈ [−π/4, π/4];

where T = 25 hours. For all signal populations, φ0 was randomly chosen from [0, 2π].
For the no-signal population, and for each of the signal populations, 105 random values
of F and B were generated using the program lalapps_synthesizeBstatMC from the
software package LALSuite [52]; values of Λunif.(x;F ) were then computed from F using
Equation (21).

Figure 6 shows receiver–operator curves for the four signal populations listed above.
The curves for the F -statistic and B-statistic reproduce Figures 2 and 3 of [36]. The curves
for Λunif.(x;F ) overlay the corresponding curves for F , confirming that Λunif.(x;F ) has
identical detection power to the F -statistic. Receiver–operator curves for Λexp.(x;F , ρ0),
and Λpeak.(x;F , ρc) were computed, for various choices of ρ0 and ρc, respectively, and
were found to be identical to the curve for Λunif.(x;F ).

Figure 7 compares the distribution of κ computed from the Monte-Carlo samples using
Equation (11) with the assumed prior of Equation (18). The Monte-Carlo distribution is a
good fit to the prior for cos ι = 0, and a poor fit for cos ι ∼ 1; for the two signal populations
where cos ι was randomly drawn, the fit is intermediate between the two extremes. This
suggests that the initial choice of prior on κ, which assumed no preferred orientation
between the vectors~b and ~y(x; p), is biased in favour of linearly polarised signals. This is
consistent with Λunif.(x;F ) being of equivalent detection power to the F -statistic, which,
as noted in [36], is also biased in favour of linearly polarised signals.



Universe 2021, 7, 174 10 of 14

Figure 6. Receiver–operator curves for the F -statistic, B-statistic, and the likelihood ratio marginalised over κ and ρ with
the uniform prior on ρ (Equation (21)), for four signal populations (see text). The curves for Λunif.(x;F ) overlay those for F .

Figure 7. Distribution of κ computed from the Monte-Carlo samples compared to the assumed prior (Equation (18)), for
four signal populations (see text). For plotting purposes, the Monte-Carlo curves are smoothed with a Gaussian kernel.
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5. Discussion

This paper presents an alternative approach (cf. [40–43]) to analytically marginalising
the likelihood ratio used in continuous wave searches. Marginalised likelihood ratios
were derived assuming a prior on κ, and for example priors on ρ. The expressions for the
marginalised likelihood ratios are in analytic form, involving only exponential and Bessel
functions. Receiver–operator curves show that the marginalised likelihood ratios have the
same detection power as the F -statistic, being strictly increasing functions of F .

The marginalised likelihood ratios fail to capture the additional detection power of the
B-statistic for signal populations with randomly drawn cos ι. That said, as shown in [36]
and reproduced in Figure 6, the advantage of the B-statistic over the F -statistic appears to
be slight. A slightly higher detection probability, from using using the B-statistic instead
of the F -statistic, corresponds to slightly smaller h0 at which continuous waves can be
detected at a given confidence 1− pdet..

This small difference, however, could well be relatively insignificant; for example, it
could be within the error in h0 due to the calibration uncertainty of gravitational wave
detectors [53]. Computationally efficient implementations of detection statistics, as exist
for the F -statistic, are essential for wide-parameter-space, computationally-costly searches.
To date, the advantage of the B-statistic in terms of detection power have not outweighed
its disadvantage in terms of computational efficiency, and no wide-parameter-space search
for continuous wave has been performed by computing the B-statistic directly.

It should also be noted that the B-statistic, as presented in [36], assumes a particular
emission model for continuous waves: the triaxial model, where the neutron star radiates
at twice its rotation frequency, and the amplitudes of the “plus” and “cross” polarisations
are given by h0(1 + cos2 ι)/2 and h0 cos ι, respectively. In the absence of a continuous wave
detection, however, one cannot be certain whether this is the correct emission model. Con-
tinuous wave radiation at other frequencies [54–56] are modelled by different expressions
for the “plus” and “cross” polarisations in terms of h0, cos ι, and other parameters.

It is possible that the detection power of the marginalised likelihood ratios could be
improved by a different choice of prior on κ. As seen in Figure 7, the prior initially assumed
in Section 3.1 is not necessarily a good fit, depending on the distribution of cos ι. If a simple
analytic expression for the distribution of κ computed from the Monte-Carlo samples could
be determined—either from first principles, or simply as an empirical fit—it is possible
that the likelihood ratio marginalised over κ could still be expressed analytically.

In marginalising the likelihood ratio over the parameters κ and ρ, it was assumed
that the priors on these variables, p(κ) and p(ρ), were independent. Figure 7, however,
shows that the prior on κ should be a function of cos ι, and since ρ also depends on cos ι,
a joint prior p(κ, ρ) might be needed in order to increase the detection power beyond
the F -statistic. It is unclear, however, whether a simple but physically motivated joint
prior could be found that still permits analytic marginalisation of the likelihood ratio. A
joint prior would also make it more difficult to change the prior on ρ, should one wish to
consider different models for the population of continuous wave signals.

Even if the parameterisation of the likelihood ratio in terms of κ, ρ, and F does
not prove a fruitful route to obtaining an analytic expression for the B-statistic, it could
nevertheless provide a useful method of incorporating the F -statistic into a Bayesian
framework. The marginalised likelihood ratios presented in Section 3 are readily computed,
as they are a function only of the F -statistic and well-known special functions. These are
able to harness the computational efficiency of existing implementations of the F -statistic,
while permitting an assumption of a prior on ρ that is more physically reasonable than
the prior implicit in the F -statistic, which is biased toward stronger signals [36]. More
physically reasonable priors on ρ than the examples explored here, such as the Fermi–Dirac
prior of [57], could be amenable to analytic marginalisation through this approach.

An example of where a Bayesian treatment of the F -statistic could be interesting
is inferring properties of the population of Galactic neutron stars. While methods have
been proposed for inferring properties from an ensemble of known pulsars [58,59], a
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similar framework does not yet exist for wide-parameter-space searches. Traditionally,
such searches have computed an upper limit on h0 satisfying the following property: given
a false alarm probability (typically 1%, taking into account the trials factor of the search),
and assuming a population of signals with constant h0 (and other parameters chosen at
random from physical priors), a high fraction of the signal population (typically 90–95%)
would have been detected. It is not expected, however, that the population of Galactic
neutron stars are all radiating gravitational waves at the same h0, and it is not clear what
may be inferred from the upper limit on h0.

Perhaps, instead, a framework could be developed to compute posteriors on the
parameters of an assumed model for the distribution of h0; for example, assuming the
exponential prior of ρ of Equation (22), and inferring the posterior on its parameter ρc from
a wide-parameter-space search. The approach to marginalisation of the likelihood ratio
presented in this paper might provide a route toward constructing this framework.
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Notes
1 The dot product α · β henceforth denotes the contraction of the last index of the tensor α with the first index of the

tensor β.
2 It is common in the literature to quote values of twice the F -statistic, i.e., 2F . This convention is not followed in this

paper, however.
3 This choice of cos ι follows that of [36].
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