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Abstract: We study spherically symmetric spacetimes in Einstein-aether theory in three different
coordinate systems, the isotropic, Painlevè-Gullstrand, and Schwarzschild coordinates, in which
the aether is always comoving, and present both time-dependent and time-independent exact
vacuum solutions. In particular, in the isotropic coordinates we find a class of exact static solutions
characterized by a single parameter c14 in closed forms, which satisfies all the current observational
constraints of the theory, and reduces to the Schwarzschild vacuum black hole solution in the
decoupling limit (c14 = 0). However, as long as c14 6= 0, a marginally trapped throat with a finite
non-zero radius always exists, and on one side of it the spacetime is asymptotically flat, while
on the other side the spacetime becomes singular within a finite proper distance from the throat,
although the geometric area is infinitely large at the singularity. Moreover, the singularity is a strong
and spacetime curvature singularity, at which both of the Ricci and Kretschmann scalars become
infinitely large.

Keywords: Einstein-aether theory; spherical symmetry; exact solution; singularities; black holes;
cosmological models

PACS: 04.50.Kd; 04.70.Bw; 04.40.Dg; 97.10.Kc; 97.60.Lf

1. Introduction

Recently, there has been growing interest in exploring the possibility of violations
of the Lorentz invariance (LI), and the development of new theories which feature LI-
violating effects. Although divergences introduced by LI in quantum field theories help
to motivate these explorations, LI-violations in the matter sector are tightly constrained
by experiments [1–3]. On the other hand, in the gravitational sector, such experimental
constraints are still rather weaker [4,5], and leave rooms for the development of theories
that break LI, especially in the case where the breaking is at very high energies, such as in
the very early Universe. In particular, if the quantization of spacetimes is a necessary feature
of a full theory of gravity, then LI must be an emergent property of low energy physics
rather than a fundamental symmetry, as it is a continuous symmetry and cannot exist in
a discretized spacetime. Examples of theories which violate LI include Einstein-aether
theory [6,7] and Hořava gravity [8–10].

Einstein-aether theory (sometimes shortened as æ-theory) is a vector-tensor theory
that breaks LI by coupling a unit time-like vector field to the metric at every point in
spacetime. It is the most general vector-tensor theory in the sense: (1) a metric theory,
(2) generally covariant, (3) the aether field is unity and time-like, and (4) the field equations
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are the second-order differential equations in terms of not only the metric but also the
aether field. It was shown [11,12] that æ-theory can be considered as the low-energy limit
of the non-projectable Hořava gravity [13,14]. The theory contains three different species of
gravitons, scalar (spin-0), vector (spin-1), and tensor (spin-2), and each of them in principle
travels at speeds not necessarily the same as the speed of light [15]. However, to avoid
the existence of the vacuum gravi-Čerenkov radiation by matter, such as cosmic rays,
each of them cannot be less than the speed of light [16]. Furthermore, the gravitational
wave, GW170817, observed by the LIGO/Virgo collaboration [17], and the event of the
gamma-ray burst GRB 170817A [18], provides a severe constraint on the speed of the spin-2
mode, −3× 10−15 < cT − 1 < 7× 10−16. Nevertheless, by properly choosing the coupling
constants of the theory, it was shown that the theory is self-consistent (such as free of
ghosts and instabilities) [7], and all the observational constraints carried out so far are
satisfied [19].

In this paper, we study spherically symmetric vacuum solutions of Einstein-aether
theory, both time-dependent and time-independent, by paying particular attention on
exact solutions, solutions given analytically in closed and explicit forms. We shall study
such solutions in three different sets of coordinate systems, namely, t he isotropic, Painlevè-
Gullstrand, and Schwarzschild coordinates, and present several exact solutions in closed forms.
In all of these studies, we assume that the aether is at rest in the chosen coordinate system.

It should be noted that spherically symmetric vacuum spacetimes in æ-theory have
been studied extensively in the past couple of years both analytically [20–34] and numeri-
cally [35–40]. In particular, it was shown that they can be also formed from gravitational
collapse [41]. Unfortunately, in these studies, the parameter space of the coupling constants
of the theory has all been ruled out by current observations [19]. (The only exception
is the solutions obtained by taking the limit c13 → 0 from the ones with c14 = 0 first
found in [21] in the vacuum case, and later generalized to the charged cases [24–27], where
cij ≡ ci + cj, and ci (i = 1, 2, 3, 4) are the four dimensionless coupling constants of æ-
theory. It is remarkable to note that such obtained solutions are the charged Schwarzschild
(Reissner–Nordstrom) solutions. Therefore, in these limiting cases, the aether field has no
contributions to the spacetime geometry, and can be considered either as a test field [42],
or a real time-like vector field but having no contributions to the spacetime curvature [43].
It is equally remarkable that the aether field remains time-like in the whole spacetime
even inside the black holes [42,43].) Lately, spherically symmetric BH solutions that satisfy
all the observational constraints were studied numerically in [43] and various black hole
solutions were found. It was also shown that not only killing horizons but also a dynamical
version of the universal horizons can be formed from the gravitational collapse of real-
istic matter even for the coupling constants of the theory satisfying all the observational
constraints [44].

Note that, due to the fact that the speeds of the spin-0 and spin-1 gravitons can, in
principle, be arbitrarily large, the boundaries of black holes in æ-theory are no longer the
locations of the killing horizons, but the ones of the universal horizons, which are one-way
membranes for particles moving with any speeds, including the speeds that are arbitrarily
large. Universal horizons were first proposed in [38] (See also [39]), and recently have been
extensively studied in [45–60] (For a recent review, see [10]).

The rest of the paper is organized as follows: In Section 2 we present a brief review
of æ-theory, while in Sections 3–5, we consider both static and time-dependent spher-
ically symmetric vacuum spacetimes of æ-theory in the isotropic, Painlevè-Gullstrand,
and Schwarzschild coordinate systems, respectively, and find various exact solutions in
closed forms, and some of which were found before but were written for the first time in
closed forms. The paper is ended in Section 6, in which we summarize our main results
and present some concluding remarks. There exists also an appendix, Appendix A, in
which we present the Einstein-aether field equations in each of the three different sets of
coordinate systems.
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2. Einstein-Aether Theory

In this paper, we consider only vacuum solutions of the Einstein- aether theory [6,7],

S =
1

16πG

∫
dx4√−g(R+ Læ), (1)

whereR is the Ricci scalar and the aether Lagrangian is given by,

Læ = −Mab
mn DaumDbun + λ(gabuaub + 1), (2)

where a, b = 0, 1, 2, 3, D denotes the covariant derivative with respect to the metric gab,
and λ is the Lagrangian multiplier, which insures that the aether is time-like and has a
fixed norm over the whole spacetime. The tensor Mab

mn is defined as

Mab
mn = c1gabgmn + c2δa

mδb
n + c3δa

nδb
m − c4uaubgmn, (3)

where ci (i = 1, 2, 3, 4) are dimensionless coupling constants, as mentioned previously.
Note that the above theory was first studied by Gasperini using the tetrad formal-

ism [61]. On the other hand, setting c1 = −1/2, c13 = c2 = c4 = 0, the theory reduces to
the bumblebee model, first proposed by Kostelecký and Samuel (KS) [62], when the KS
vector field is restricted to time-like and unity. Later, the bumblebee model was extended
to the case c1 = (α− β)/2, c2 = ξ, c3 = ξ − α/2, c4 = 0, where α, β and ξ are three inde-
pendent coupling constants, and, in general, the BS vector field has a vacuum expectation
value, which can be time-like, null or space-like [63].

Then, the variation of the above action with respect to gab yields

Gab = Tæ
ab , (4)

where Gab ≡ Rab − 1
2 gabR, and

Tæ
ab ≡ − 1√−g

λ(
√−g(Læ))

λgab = Dc

[
Jc
(a ub) + J(ab)uc − u(b J c

a)

]
+c1

[
(Dauc)(Dbuc)− (Dcua)(Dcub)

]
+ c4aaab + λuaub − 1

2 gab Jd
c Dduc,

(5)

where Ja
b and aa are defined by

Ja
b = Mac

bd Dcud, aa = ubDbua. (6)

In addition, the variation of the action with respect to ua yields the aether
field equations,

Æa =
1√−g

λ(
√−gLæ)

λua = Dα Jα
µ + c4aαDµuα + λuµ = 0, (7)

while its variation with respect to λ gives,

uaua = −1. (8)

From Equations (7) and (8) we find that

λ = ubDa Jab + c4a2. (9)

As mentioned above, the theory in general allows three different species of gravitons,
spin-0, spin-1, and spin-2, and each of them move in principle with different speeds, given,
respectively, by [15],

c2
S = c123(2−c14)

c14(1−c13)(2+c13+3c2)
,

c2
V = 2c1−c13(2c1−c13)

2c14(1−c13)
,

c2
T = 1

1−c13
,

(10)
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where cij ≡ ci + cj, cijk ≡ ci + cj + ck, and cS,V,T represent the speeds of the spin-0, spin-1,
and spin-2 gravitons, respectively.

The most recent observational constraints on the coupling constants ci, in light of the
LIGO/Virgo gravitational wave detection GW170817 [17] and its concurrent gamma-ray
burst GRB170817A [18], were found in [19], together with the self-consistent conditions,
such as the absence of ghosts and instability [7]. Depending on the values of c14, the con-
straints can be divided into three different bands, and are given, respectively, by [19],

(i) 0 ≤ c14 ≤ 2× 10−7 : c14 ≤ c2 ≤ 0.095, (11)

(ii) 2× 10−7 ≤ c14 ≤ 2× 10−6 : c14 ≤ c2 ≤ 0.095,

− 10−7 ≤ c14(c14 + 2c2c14 − c2)

c2(2− c14)
≤ 10−7, (12)

(iii) 2× 10−6 ≤ c14 ≤ 2.5× 10−5 : 0 ≤ c2 − c14 ≤ c2 × 10−7. (13)

Therefore, each of the three parameters, c2, c14 and c13 are restricted, respectively,
to the ranges,

0 < c2 . 0.095, (14)

0 < c14 . 2.5× 10−5, (15)

| c13 | . 10× 10−15. (16)

3. Spherically Symmetric Spacetimes in Isotropic Coordinates
3.1. Spherically Symmetric Spacetimes

The general form for a spherically-symmetric metric can be written as,

ds2 = gABdxAdxB + R2dΩ2 = −N 2dt2 + B2(dr +N rdt)2 + R2dΩ2, (17)

where N , B, N r, and R are functions of t and r only, xµ = (t, r, θ, φ), and dΩ2 ≡ dθ2 +
sin2 θdφ2. This metric clearly is invariant under the coordinate transformations,

t = f (t̄, r̄), r = g(t̄, r̄), (18)

where f and g are arbitrary functions of their indicated arguments. By properly choosing
these functions, we are able to fix two of the four arbitrary functions N , B, N r, and R.

In this section, we shall use the gauge freedom (18) to set,

grr = R(t, r), gtr = 0, (19)

so that the metric (17) takes the form,

ds2 = −e2µ(r,t)dt2 + e2ν(t,r)dσ2, (20)

where dσ2 is the spatial part of the metric, defined as,

dσ2 ≡ dr2 + r2
(

dθ2 + sin θ2dφ2
)

. (21)

Then, the comoving aether1 is given by

ua = e−µδa
t . (22)

To write down the field equations, we find convenient first to introduce the constant α
and the function Σ as,

α2 ≡ 3
(

1 +
3c2 + c13

2

)
, (23)
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Σ ≡ 3ν̇2 + 2ν̈− 2µ̇ν̇. (24)

Then, the non-vanishing equation for the aether dynamics is,

0 = (3c2 + c13 + c14)µ
′ν̇ + c14µ̇′ − βν̇′, (25)

where β ≡ 3c2 + c13. The non-vanishing components of Gµν and Tæ
µν are given by

Equations (A4)–(A11), from which we find that currently there are four non-trivial equa-
tions, given, respectively, by the tt, tr, rr, θθ components,

α2ν̇2e2ν = e2µ

[
c14

(
µ′2

2
+ µ′ν′ + µ′′ + 2

µ′

r

)
+ ν′2 + 2ν′′ + 4

ν′

r

]
, (26)

c14(µ̇′ + µ′ν̇) = 2(µ′ν̇− ν̇′), (27)

α2

3
e2νΣ = e2µ

[
ν′2 + 2µ′ν′ +

2
r
(µ′ + ν′) + c14

µ′2

2

]
, (28)

α2

3
e2νΣ = e2µ

[
µ′2 + µ′′ + ν′′ +

µ′ + ν′

r
− c14

µ′2

2

]
. (29)

3.2. Time-Independent Solutions

With no time-dependence, the five equations are reduced to three. Then, from the tt
and θθ equations, we find

0 = f ′′ + f ′2 +
3
r

f ′, (30)

where
f ≡ µ + ν. (31)

To solve Equation (30) we first divide both sides of the equation by f ′ and then
integrate it, leading to,

ln (L0 f ′) = − f − 3 ln
(

r
r0

)
, (32)

where L0 and r0 are the integration constants with dimensions of length. Equation (32) has
the general solutions,

f = ln

(
f0

(
1−

r2
0

r2

))
, (33)

where f0 ≡ r0/2L0 is a dimensionless constant. Next we subtract the rr equation from the
tt one, leading to,

2ν′′ + 2
ν′

r
= (2− c14)µ

′ν′ + (2− 2c14)
µ′

r
− c14µ′′. (34)

Now, from the θθ equation, we find,

2ν′′ + 2
ν′

r
= −2µ′2 − 2µ′′ − 2

µ′

r
+ c14µ′2. (35)

The combination of Equations (34) and (35) yields,

0 = (c14 − 2)
[

µ′2 + µ′′ − 2
µ′

r
+ µ′ν′

]
. (36)
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Note that the observational constraints lead to Equation (15), from which we can see
that c14 − 2 6= 0 always holds. Therefore, the above equation yields,

0 = µ′2 + µ′′ + 2
µ′

r
+ µ′ν′, (37)

which has the solution,

f = − ln
(

f0r0q
µ′r2

)
, (38)

where q is an arbitrary dimensionless constant. Then, combining Equations (33) and (38),
we find,

µ′ =
r0q

r2 − r2
0

, (39)

which yields,

µ =
q
2

ln
(

U0
r− r0

r + r0

)
, (40)

where U0 is a dimensionless constant. We can now solve for ν by using Equations (33) and (40),
and find,

ν = ln

 f0

U0

(
1−

r2
0

r2

)(
r + r0

r− r0

) q
2

. (41)

These solutions for µ and ν solve the field equations exactly provided that q is given by,

q ≡ 2

√
2

2− c14
. (42)

Since 0 ≤ c14 ≤ 2.5× 10−5, we find that

2 ≤ q . 2
(

1 + 1.25× 10−5
)

. (43)

So, the spacetime is given by,

ds2 =
f 2
0

U2
0

{
−

U2+q
0
f 2
0

(
r− r0

r + r0

)q
dt2 +

(
1−

r2
0

r2

)2(
r + r0

r− r0

)q
dσ2

}
. (44)

Rescaling t, we can set the factor U2+q
0 / f 2

0 = 1, so the above metric takes the form
ds2 =

(
f 2
0 /U2

0
)
ds̄2. Since ds2 and ds̄2 are conformally related by a constant, the spacetimes

described by them have the same properties. Therefore, without loss of the generality, we
can always set f0 = U0 = 1.

On the other hand, to see the meaning of r0, let us consider the Schwarzschild metric
in the isotropic coordinates, which is given by,

ds2 = −
(

1− m
2r

1 + m
2r

)2

dt2 +
(

1 +
m
2r

)4
d2σ, (45)

where d2σ ≡ dr2 + r2d2Ω, as noticed previously. In the c14 → 0 limit, q → 2, so the
spacetime given by Equation (44) does indeed reduce to the isotropic Schwarzschild
solution given by Equation (45), provided that

f0 = 1, U0 = 1, r0 =
m
2

, (46)
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for which the metric (44) takes the form,

ds2 = −
(

1− m
2r

1 + m
2r

)q

dt2 +

(
1− m2

4r2

)2(1 + m
2r

1− m
2r

)q

d2σ,

(47)

where q is given by Equation (42) and r ≥ m/2 (which is also true for the Schwarzschild
solution in the isotropic coordinates).

The spacetime given by Equation (47) has curvature singularities at r = m
2 and at r = 0.

Both are curvature singularities as can be seen by considering the Ricci scalar. However
this is easier to see in a coordinate system similar to the Schwarzschild form. Consider the
coordinate transformation:

r̄ = r
(

1 +
m
2r

)2
, (48)

upon which the metric becomes

ds2 = −
(

1− 2m
r̄

)q/2
dt2 +

(
1− 2m

r̄

)−q/2
dr̄2 +

(
1− 2m

r̄

)1−q/2
r̄2dΩ2. (49)

Then, the Ricci scalar is given by,

R =
m2(4− q2)

2r̄4

(
1− 2m

r̄

) q
2−2

, (50)

and the Kretschmann scalar is given by

K ≡ RabcdRabcd =
m2

4r̄4

(
1− 2m

r̄

)q−4
(ar̄2 + br̄ + d), (51)

where

a = 48q2, b = −32mq(q2 + 3q + 2), d = m2(2 + q)2(7q2 + 4q + 12). (52)

Obviously both the Ricci and Kretschmann scalars have curvature singularities at
the origin, and upon carefully taking the limit when r̄ approaches 2m we see that there
are curvature singularities at r̄ = 2m as well. When c14 is set to zero they reduce to the
correct values for the Schwarzschild solution’s Ricci and Kretschmann scalars (expressed
in the Schwarzschild coordinates). As can be seen from Equation (49) the area of a sphere
centered on the origin is given by,

A = 4πr̄2
(

r̄
r̄− 2m

)q/2−1
. (53)

When c14 = 0 we have q = 2, and then r̄ becomes the areal radial coordinate and
a sphere with coordinate radius r̄ = 2m has the area 4πr̄2 as expected. However, when
c14 6= 0, we have q ≥ 2, and the area of a sphere is well defined only for r̄ ≥ 2m [cf.
Equation (43)], and becomes infinitely large at both r̄ = 2m and r̄ = ∞. This shows that
while the spacetime of Equations (47) and (49) approach the Schwarzschild solution as
c14 approaches zero, the approach is not completely continuous. In particular, as long as
c14 6= 0, the areal radius always reaches a minimum at,

r̄min = 2m
(

2 + q
4

)
≥ 2m, (54)

which serves as a throat and smoothly connects the two regions, r̄ ∈ (2m, r̄min] and
r̄ ∈ [r̄min, ∞), as shown schematically in Figure 1, where the point r̄ = r̄min defined by
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Equation (48) denotes the location of the throat. The spacetime is asymptotically flat as
r̄ → ∞, and the proper radial distance from the throat to r̄ = ∞ is infinitely large (so is the
geometric area A). However, despite the fact that A also becomes infinitely large at r̄ = 2m,
the proper radial distance between the throat and r̄ = 2m is finite,

L ≡
∣∣∣∣∣
∫ r̄

r̄min

(
r̄

r̄− 2m

)q/4
dr̄

∣∣∣∣∣ =
{

∞, r̄ → ∞,
finite, r̄ → 2m.

(55)

It should be noted that the proper radial distance between the throat and the singular-
ity r̄ = 2m becomes infinite for 3/2 < c14 < 2 [20], for which we have q > 4. However, this
violates the observational constraints given by Equation (43).

To see the nature of the curvature singularity located at r̄ = 2m, let us consider the
expansions of null geodesics [64]. Let the metric of Equation (49) be written as,

ds2 = −uaub + sasb + mab, (56)

where ua is given by Equation (22), sa = eνδr
a and mab is the 2-dimensional metric induced

on a closed, 2-dimensional, space-like hypersurface (which is conformal to the 2-sphere
metric). Then, let the outgoing or ingoing null geodesics have the tangent vectors k±a ,
given by,

k±a =
1√
2
(ua ± sa), (57)

we find that the expansions of outgoing/ingoing null geodesics are given by

Θ± ≡ mab∇ak±b = ±
√

2
(
1− 2m

r̄
)q/4

r̄(r̄− 2m)
(r̄− r̄min), (58)

which all vanish at r̄min. However, across the throat the outgoing or ingoing null geodesics
exchange their roles, so that Θ+Θ− < 0 holds in both sides of the throat. As an immediate
result, no trapped regions exist, and the throat is only marginally trapped [65].

It should be noted that Eling and Jacobson studied the static aether case in the
Schwarzschild coordinates, and found the general solutions (but given implicitly) [20],
as to be shown explicitly in Section 5. Therefore, the above solutions must be the same
ones. In addition, they also found that the minimal 2-sphere, r̄ = r̄min, does not sit at a
killing horizon, and that the singularity at r̄ = 2m is actually a null singularity [cf. [20],
Figure 2]. In addition, these solutions with c123 6= 0 are stable against small spherically
symmetric perturbations [7,66].
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−

A

0

2m
r
−

min r

Figure 1. The geometric area A of the 2-dimensional spheres t, r̄ = Constant vs the radial coordinate
r̄ for the spacetime described by the metric (49) with c14 6= 0, where A is given by Equation (53).
The point r̄ = r̄min defined by Equations (48) and (54) is the minimal surface for the area A—the
throat. The area A becomes infinitely large at both r̄ = 2m and r̄ = ∞, and the spacetime is singular
at r̄ = 2m, but asymptotically flat as r̄ → ∞.

3.3. Time-Dependent Solutions

If we consider solutions such that eµ and eν are separable in t and r, then we seek
solutions of the form,

µ(r, t) = µ0(r) + µ1(t), (59)

ν(r, t) = ν0(r) + ν1(t), (60)

so that all mixed-partial derivatives of µ and ν are zero. However, redefining the time
coordinate t by t′,

t′ ≡
∫

e2µ1(t)dt, (61)

we can see that, without loss of generality, we can set µ1 = 0, and look for solutions of the
form,

µ(r, t) = µ0(r), (62)

ν(r, t) = ν0(r) + ν1(t). (63)

If ν̇ = 0 then the equations of motion reduce to the static case, so we assume that
ν̇ 6= 0. In this case, the tr and aether equations reduce to,

c14µ′ν̇ = 2µ′ν̇, (64)

c14µ′ν̇ = −βµ′ν̇. (65)

Thus, there are three possibilities,

(i) c14 = 2 = −β; (ii) ν̇ = 0; (iii) µ′ = 0, (66)
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where Case (i) is excluded by observations and Case (ii) is the static case, just studied in
the last subsection. Therefore, in the following we shall need only to consider the last case,
µ′ = 0.

When µ′ = 0, the three relevant equations are the ones of the tt, rr, and θθ components,
given by,

α2ν̇1
2e2ν1 = e2µ0−2ν0

(
ν′20 + 2ν′′0 + 4

ν′0
r

)
, (67)

α2e2ν1

(
ν̇1

2 +
2
3

ν̈1

)
= e2µ0−2ν0

(
ν′20 + 2

ν′0
r

)
, (68)

α2e2ν1

(
ν̇1

2 +
2
3

ν̈1

)
= e2µ0−2ν0

(
ν′′0 +

ν′0
r

)
. (69)

Note that for each equation, the left-hand side is t-dependent and the right-hand side
is r-dependent, thus both sides must be equal to the same constant. Setting

K2
0 ≡ α2e2ν1 ν̇1

2, (70)

K2
1 ≡ α2e2ν1

(
ν̇1

2 +
2
3

ν̈1

)
, (71)

from Equations (68) and (69) we have

ν′′0 = ν′20 +
ν′0
r

, (72)

and, thus, it can be shown that K2
0 = K2

1/3. Equation (72) has the general solution,

ν0(r) = ln

(
r1

r2 − r2
0

)
, (73)

where r1 and r0 are integration constants. Next we solve for ν1(t) using Equation (70),

e2ν1 α2ν̇1
2 = K2

0, (74)

which has the solution,

ν1(t) = ln
[

K0

α
(t− t0)

]
, (75)

where t0 is an integration constant, and K0 6= 0. It is straightforward to show that the
solutions given by Equations (73)–(75) solve the field Equations (67)–(69) provided that,

K2
0r2

1
α

= 12r2
0e2µ0 . (76)

Then, the final solutions for µ(t, r) and ν(t, r) can be expressed as,

µ(t, r) = µ0, (77)

ν(t, r) = ln

[√
12
α

r0(t− t0)

r2 − r2
0

]
+ µ0. (78)

Then, using the gauge freedom t̄ = at + b, where a and b are constants, we can always
set t0 = µ0 = 0, so that the metric takes the form,

ds2 = −dt2 +
12r2

0t2

α(r2 − r2
0)

2

(
dr2 + r2d2Ω

)
. (79)
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It can be shown that the spacetime described by the above metric is conformally flat,
that is, the Weyl tensor vanishes identically, and the spacetime is singular at t = 0, as can
be seen from the Ricci and Kretschmann scalars, which are now given by,

R = −3β

t2 , K =
1
t4

(
4
3

α2 − 8α + 12
)

, (80)

where β = 3c2 + c13, as defined previously.
To study this solution further, let us consider the energy conditions. We define a

time-like vector field tα in the (t, r)-plane,

tα = Aδα
t + Bδα

r , A2 = v2 + B2e2ν, (81)

from which we find that tαtα = −v2, where v is an arbitrary non-vanishing real function of
xα. A stress-energy tensor that obeys the weak energy condition ensures that all observers
following time-like trajectories will see only positive energy density [65], that is,

Tæ
αβtαtβ ≥ 0. (82)

However, for the spacetime of Equation (79) we have,

Tæ
αβtαtβ = −3β

[
6B2r2

0
α(r2 − r2

0)
2
+

v2

2t2

]
, (83)

which is always non-positive. Thus, the aether field in the current case always violates the
weak energy condition.

A stress-energy tensor that obeys the strong energy condition ensures that gravity will
always be attractive, which is equivalent to require [65],

Tæ
αβtαtβ − 1

2
Tætαtα ≥ 0. (84)

Again, in the current case, the above condition is violated, as now we have,

Tæ
αβtαtβ − 1

2
Tætαtα = −

18B2βr2
0

α(r2 − r2
0)

2
< 0. (85)

In addition, the above spacetime actually belongs to the Friedmann universe. To show
this, we first introduce two new variables η and R via the relations,

t = eγr0(η−η0), r̄2 =
r2

(r2 − r2
0)

2
, (86)

where η0 is a constant and γ =
√

12/α. It can be seen that R ≡ ar̄ is the areal radius. Then,
in terms of η and r̄, the above metric takes the form,

ds2 = a(η)2

(
−dη2 +

dr̄2

1 + 4r2
0R2

+ r̄2dΩ2

)
, (87)

where
a(η) = γr0 exp (γr0(η − η0)). (88)

Remember that r0 was an integration constant, and from Equations (75) and (76) we
see that we cannot set r0 to zero. If we set r2

0 = 1/4 then the metric of Equation (87)
would be the traditional form for an FLRW metric of constant negative curvature (k = −1).
A solution equivalent to this was also found in [30].
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4. Spherically Symmetric Spacetimes in Painlevè-Gullstrand Coordinates

In this section, using the gauge freedom (18), we choose the gauge

grr = 1, R(t, r) = r, (89)

so the metric takes the Painlevè-Gullstrand (PG) form,

ds2 = −e2µ(t,r)dt2 + 2eν(t,r)drdt + dr2 + r2dΩ2. (90)

For this metric we only consider time-independent solutions, and assume that the
aether is comoving, ua = e−µδa

t . So, the aether is aligned with the time-like killing vector
of the metric, which is itself hypersurface-orthorgonal. To simplify the field equations, we
first define the quantity λ,

λ ≡ e2µ + e2ν. (91)

Then, for static spacetimes, µ = µ(r), ν = ν(r), we find that the non-vanishing components
of Gµν and Tæ

µν are given by Equations (A14)–(A21). The aether dynamical equations are
identically zero for any µ and ν, and the remaining field equations are the ones given by
the (tt, rr, θθ) components,

e4µ−2ν
[
c14(2r2µ′′ + 4rµ′ + r2µ′2)

]
+ e2µ

[
c14(2r2µ′′ + 4rµ′ + r2µ′2 + 2r2µ′(µ′ − ν′))

+4r(µ′ − ν′)
]
− 2λ = 0, (92)

e2µ
[
c14(4rµ′ + 2r2µ′′ − r2µ′2)− 8rµ′

]
e2ν
[
c14(4rµ′ + 2r2µ′′ + 2r2µ′(µ′ − ν′))− 4rν′

]
− e4µ−2ν

[
4rµ′ + c14r2µ′2

]
+ 2λ = 0, (93)

λ
[
(c14 − 2)r2µ′2 − 2r2µ′′ − 2rµ′

]
+ e2ν

[
2rν′(1 + rµ′)− 2rµ′ − 2r2µ′2

]
= 0. (94)

As can be shown from Equations (A14)–(A21), the Einstein-aether equations require that

λ 6= 0, (95)

although this is not evident from the field equations. Therefore, as we proceed we must
reject outright any solution that violates Equation (95).

Our strategy is to first solve the tt equation for ν′. The result is

ν′ =
−2e4ν + c14(4rµ′ + r2µ′2 + 2r2µ′′)e4µ

2re2µ+2ν(2 + c14rµ′)
+

e2µ+2ν(c14(rµ′(4 + 3rµ′) + 2r2µ′′))

2re2µ+2ν(2 + c14rµ′)

+
e2µ+2ν(4rµ′ − 2)

2re2µ+2ν(2 + c14rµ′)
. (96)

Note that in deriving the above expression, we assume that

rµ′ 6= − 2
c14

. (97)

When 2 + c14rµ′ = 0, the solutions are different. Therefore, let us pause here for a while,
and first consider the case 2 + c14rµ′ = 0.

1. 2 + c14rµ′ = 0

In this case from the tt equation we find,

µ =
2

c14
ln
( r0

r

)
, (98)



Universe 2021, 7, 272 13 of 24

where r0 is the integration constant. By substituting this into the rr equation we find,

(4− c14)e4ν + 2
( r0

r

) 8
c14 = (c14 − 6)e2ν

( r0

r

) 4
c14 , (99)

which has two solutions, but one does not satisfy Equation (95), so we must reject it. Then,
we have,

e2ν =
2

c14 − 4

( r0

r

) 4
c14 . (100)

Upon substituting Equations (98) and (100) into the tt and θθ field equations, we find that

c14 = 2. (101)

Unfortunately this leads the solution of Equation (100) to violate Equation (95). It is also
unphysical, as it strongly violates the constraints (15), so in the case 2 + c14rµ′ = 0 no
physically acceptable solutions exist.

2. 2 + c14rµ′ 6= 0

This is the case in which Equation (96) holds. We substitute the value for ν′ from this
equation into the rr equation and solve for e2ν. The result is,

e2ν = e2µ
(

2rµ′ +
c14

2
r2µ′2

)
. (102)

We can substitute this value into Equation (96), and then obtain the expressions for
both ν′ and e2ν in terms of µ and its derivatives. In particular, we find,

ν′ =
c14µ′′(2 + rµ′(4 + c14rµ′))

µ′(2 + c14rµ′)(4 + c14rµ′)
+

4(c14 − 1) + c14rµ′(2 + rµ′)(4 + c14rµ′)

r(2 + c14rµ′)(4 + c14rµ′)
. (103)

Substituting it into either the tt or rr equation, we find,

(c14 − 2)
(

4µ′ + 4rµ′2 + c14r2µ′3 + 2rµ′′
)[

8 + 2(8 + c14)rµ′ + 8c14r2µ′2 + c2
14r3µ′3

]
= 0. (104)

Therefore, there exist three possibilities,

0 = c14 − 2, (105)

0 = 8 + 2(8 + c14)rµ′ + 8c14r2µ′2 + c2
14r3µ′3, (106)

0 = 4µ′ + 4rµ′2 + c14r2µ′3 + 2rµ′′. (107)

The case of Equation (105) is not only unphysical but also violates the constraint (96).
Therefore, in the following we only need to consider the last two cases.

Let us first consider Equation (106), which can be written in the form,

0 = ( f − β0)( f − β1)( f − β2), (108)

where now f ≡ rµ′, and

β0 = − 4
c14

, β1 = −2 +
√

4− 2c14

c14
, β2 =

−2 +
√

4− 2c14

c14
. (109)

Generically, the solution to each case is of the form,

µ = ln
(

r
r0

)βi

, e2µ =

(
r
r0

)2βi

, (110)
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where βi is any of the ones given in Equation (109). When we insert Equation (110) into
Equation (102) we find that,

e2ν =
1
2

βi(4 + c14βi)

(
r
r0

)2βi

. (111)

Since any solution in which e2ν = 0 is equivalent to the Minkowski metric, we ignore
the case of β0, as this would make e2ν = 0, as can be seen from Equation (111). If we insert
the others βi into Equation (111), then we have,

e2ν = −
(

r
r0

)2βi

. (112)

Unfortunately this violates the constraint of Equation (96), so we must reject it, and as-
sume that Equation (106) does not hold. This brings us to Equation (107), which we rewrite
it as,

0 = 4rµ′4r2µ′2 + c14r3µ′3 + 2r2µ′′. (113)

From f ≡ rµ′ we find,
r2µ′′ = r f ′ − f , (114)

and, thus, we can rewrite Equation (113) as

f ′ = − f
r

(
1 + 2 f +

c14

2
f 2
)

. (115)

However, this is precisely the same equation as for the static case in the Schwarzschild
coordinates, given by Equation (26) of [20]. Then, we can find the corresponding solutions
by proceeding exactly in the same way as performed in [20]. In particular, the solution for
µ is given by,

µ( f ) = ln

( f0
1− f / f−
1− f / f+

) f+ f−
f+− f−

, (116)

where

f± =
−1±

√
1− α

α
, (117)

and f = f (r) is given implicitly via the relation,

r0

r
=

(
f

f − f−

)(
f − f−
f − f+

) 1
2(1+ f+)

. (118)

Considering the fact that the coordinate transformations,

t̄ = t + g(r), (119)

can bring the PG metric to the Schwarzschild one by properly choosing the function g(r),
we find that in such coordinate systems we have gtt = gt̄t̄. So, the above solutions should
be the ones found in [20], but written in the PG coordinates.

5. Spacetimes in the Schwarzschild Coordinates

The Schwarzschild coordinates correspond to the choice,

gtr = 0, R(t, r) = r, (120)

for which the metric takes the form,

ds2 = −e2µ(t,r)dt2 + e2ν(t,r)dr2 + r2d2Ω, (121)
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and the comoving aether vector field takes the form, ua = e−µδa
t . For the sake of the

simplicity, we first define the quantities,

Q ≡ µ′2

2
− µ′ν′ + µ′′, (122)

H ≡ ν̇2

2
− µ̇ν̇ + ν̈. (123)

Then, the non-vanishing equation for the aether dynamics is,

0 = (2c13 − (c2 + c13 − c14)rµ′)ν̇ + r(c123ν̇′ − c14µ̇′). (124)

The non-vanishing Einstein-aether vacuum equations Gab = Tæ
ab are the (tt, tr, rr, θθ)

components, given, respectively, by,

0 = e2µ

[
c14Q + 2c14

µ′

r
− 2ν′

r
+

1
r2

]
− e2ν c123

2
ν̇2 − e2(µ+ν)

r2 , (125)

0 = c14(µ̇′ − µ′ν̇)− 2ν̇

r
, (126)

0 = e2ν[c123H] +
e2ν+2µ

r2 − e2µ

[
2µ′

r
+

1
r2 +

c14

2
µ′2
]

, (127)

0 = e2µ

[
µ′2

2
(c14 − 1) +

ν′ − µ′

r
−Q

]
+ e2ν

[
ν̇2

2
(1− c13) + (c2 + 1)H

]
. (128)

5.1. Time-Independent Solutions

The static solution was already found in [20] but with different (though equivalent)
parameterizations of the metric. In the static case, all time-derivatives go to zero and the
(tt, rr, θθ) equations become,

e2ν

r2 = c14Q + 2c14
µ′

r
− 2

ν′

r
+

1
r2 , (129)

e2ν

r2 = c14
µ′2

2
+ 2

µ′

r
+

1
r2 , (130)

0 =
µ′2

2
(c14 − 1) + c14µ′′ − c14µ′ν′. (131)

Subtracting the rr equation from the tt one, we find,

2
ν′

r
= c14µ′′ − c14µ′ν′ + 2

µ′

r
(c14 − 1). (132)

On the other hand, from the θθ equation we obtain,

2
ν′

r
= 2µ′′ + µ′2(2− c14) + 2

µ′

r
− 2µ′ν′, (133)

which, together with Equation (132) yields,

ν′ =
µ′′

µ′
+ µ′ +

2
r

. (134)

We can rewrite the θθ equation as,

ν′
(

1
r
+ µ′

)
=

β

2
µ′2 +

µ′

r
+ µ′′. (135)
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Inserting our expression (134) into this equation and after simplification, we find

r2µ′′ + 2rµ′ + 2r2µ′2 +
c14

2
r3µ′3 = 0, (136)

which is equivalent to Equation (26) of [20], provided that we make the following substitu-
tions,

c14 → c1, µ→ A
2

. (137)

We can solve this using an equivalent process as that given in [20]. In particular,
setting f = rµ′, we find that Equation (136) becomes

d f
dr

= − f
r

(
1 + 2 f + α f 2

)
, (138)

but now with α ≡ c14/2. From the chain role, dµ
dr = dµ

d f
d f
dr , and the definition of f we find

dµ

d f
= − 1

1 + 2 f + α f 2 . (139)

Using the partial fraction decomposition we can solve the above equation, and find

µ( f ) = ln

( f0
1− f / f−
1− f / f+

) f+ f−
f+− f−

, (140)

where f0 is an integration constant whose square is unity. The equivalent equation in [20]
is Equation (34), and this solution matches it exactly, bearing in mind that,

f± =
−1±

√
1− α

α
. (141)

Then we can solve Equation (138) and find,

r0

r
=

(
f

f − f−

)(
f − f−
f − f+

) 1
2(1+ f+)

, (142)

which is equivalent to Equation (35) of [20].
Note that, when c14 = 2, instead of Equation (140) now we have

µ( f ) = ln

[(
f0

f + f+
f + f−

) 1
f−− f+

]
, (143)

where now f± are defined by

f± =
3
4
±
√

41
4

, (144)

and instead of Equation (142) we have

r0

r
= f

2
f+ f−

(
( f − f+)1/ f+

( f − f−)1/ f−

) 2
f+− f−

. (145)

However, as shown above, this solution is physically not acceptable.
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5.2. Time-Dependent Solutions

If we consider solutions, such that eµ and eν are separable in t and r, then we seek
solutions of the forms of Equations (62) and (63). In this case, the tr and aether equations
reduce to,

2
r
= −c14µ′, (146)

2c13

r
= µ′(c14 − c123). (147)

We now consider separately the cases c13 = 0 and c13 6= 0.

1. c13 = 0

By Equation (146) we must have

c14 6= 0, µ′ 6= 0. (148)

Then, from Equation (147) we have,

c2 = c14, (149)

for which Equation (146) yields,

µ = ln
(

U0

rα

)
, α ≡ 2

c2
, (150)

where U0 is an arbitrary constant. Then, the tt, rr, θθ Equations (125), (127) and (128) become

U2
0

r2α+2 (α− 1) = e2ν

[
ν̇2

α
+

U2
0

r2α+2

]
, (151)

U2
0

r2α+2 (α− 1) = e2ν

[
− 2

α
ν̈− ν̇2

α
−

U2
0

r2α+2

]
, (152)

U2
0

r2α+2 (α− 1)
(
rν′ + α

)
= e2ν

[
2
α

ν̈ +
ν̇2

α
+ ν̈ + ν̇2

]
. (153)

By combining the tt and rr equations we find

ν̇1(t)2 + ν̈1(t)
α

= −
U2

0
r2α+2 , (154)

where we have explicitly written the expressions for ν̇ in terms of ν1(t) to emphasize the
t-dependence. Since the left-hand side (LHS) is purely t-dependent, and the right-hand
side (RHS) is purely r-dependent, then both sides must be equal to some constant. Since
U0 6= 0, the only way to ensure that the RHS of Equation (154) is constant is to set,

α = −1, (155)

for which Equation (154) reduces to

ν̇2 + ν̈ = U2
0 . (156)

By using Equation (156) with either the tt or rr equation, we arrive at

2U2
0 = e2ν1

(
ν̇2

1 −U2
0

)
, (157)
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which yields,
ν1(t) = ln

{√
2 sinh[U0(t0 ± t)]

}
, (158)

where t0 is an arbitrary constant. On the other hand, from Equation (153) we find

e2ν
(

ν̇2 −U2
0

)
= 2U2

0(1− rν′). (159)

Comparing this to Equation (157), we find ν0(r) = const., so that

ν(t, r) = ln
{√

2 sinh[U0(t0 ± t)] + V0

}
, (160)

where V0 is a constant. Equations (150) and (160) satisfy all of the field equations, provided
that V0 = 0, with no other constraints on the remaining arbitrary constants. Thus, for the
case c13 = 0, the solution is

µ(r) = ln (U0r),

ν(t, r) = ln
[√

2 sinh(U0(t0 ± t))
]
. (161)

However, using the gauge freedom for the choice of t, we can always set U0 = 1 and
t0 = 0, so the metric finally takes the form,

ds2 = −r2dt2 + 2 sinh2(t)dr2 + r2d2Ω. (162)

Unfortunately, this solution is also excluded by the current observations, as
Equations (149), (150), and (155) imply that

c14 = c2 = −2. (163)

2. c13 6= 0

In this case we combine the tt and rr equations, and find

c123(ν̇1
2 + ν̈1) = −

2U2
0

r2α+2 . (164)

Substituting it into the tt equation, and then subtracting it from the θθ equation, we
find obtain,

2U2
0rν′0(r)e

−2ν0(r) = e2ν1(t)
[

2c13

1 + c13
U2

0

]
. (165)

The right-hand is always different from zero, so the above equation holds only when
ν1 = const. Then, from Equation (164) we find that the integration constant U0 must vanish.
As a result, Equation (165) becomes an identity (0 = 0). It can be shown that the rest of the
Einstein-aether field equations will give the static solutions presented in the last subsection.

6. Conclusions

With the increasing interest of Einstein-aether theory in the recent years, in this paper
we have studied spherically symmetric both static and time-dependent spacetimes in this
theory, and found several exact solutions in closed forms. Such studies were carried out
in three different coordinate systems: the isotropic, Painlevè-Gullstrand, and Schwarzschild
coordinates, and in each of them exact solutions are found.
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In particular, in the isotropic coordinates we have found a class of exact static solutions
in closed forms, given by Equation (47), i.e.,

ds2 = −
(

1− m
2r

1 + m
2r

)q

dt2 +

(
1 + m

2r
)q+2(

1 + m
2r
)q−2

[
dr2 + r2

(
d2θ + sin2 θd2φ

)]
, (166)

where

q ≡ 2
(

2
2− c14

)1/2
. (167)

Clearly, when c14 = 0, the above solution reduces to the Schwarzschild vacuum black
hole solution but written in the isotropic coordinates, and the spacetime is free of spacetime
curvature singularities at r = m/2 [67].

However, as long as c14 6= 0 but satisfies the observational constraint (15), i.e.,

0 < c14 ≤ 2.5× 10−5, (168)

the corresponding spacetime has several remarkable features:

• A minimal surface with non-zero area always exists at r̄ = r̄min, given explicitly by
Equation (54), the so-called throat of the spacetime. It smoothly connects two regions,
r̄ ∈ (2m, r̄min] and r̄ ∈ [r̄min, ∞), as schematically shown by Figure 1.

• The Kretschmann scalar always diverges at r̄ = 2m as long as c14 6= 0, so a spacetime
curvature singularity always appears. Despite the fact A(r̄ = 2m) = ∞, the proper
radial distance between the throat and the singularity is always finite and non-zero
[cf. Equation (55)].

• In the region r̄ ∈ [r̄min, ∞), the spacetime is asymptotically flat as r̄ → ∞, and the
proper radial distance between the throat and the spatial infinity r̄ = ∞ is always
infinitely large, so is the geometric area, A(r̄ = ∞) = ∞.

• The throat is only marginally trapped, as now Θ+Θ− vanishes precisely only at the
throat, r̄ = r̄min, while away from it, we always have Θ+Θ− < 0, as shown explicitly
by Equation (58), where Θ± denote the expansions of the outgoing or ingoing null
geodesic congruences.

With these remarkable features, it would be very interesting to consider other proper-
ties of the solution, including its stability against non-spherical perturbations and consis-
tency with solar system tests [68] and the observations of the shadows of black holes [29].
In particular, in general relativity, in order to have a throat that connects two un-trapped
regions, exotic matter (for example, the one that violates energy conditions) is often re-
quested, which indicates some kind of instabilities [69]. In the present case, although such
a kind of matter is provided by the aether field, it would be very interesting to show the
stability of the throat against perturbations, especially against the non-spherical ones.

It would also be important to study the corresponding solutions in the context of
the UV completion of the Einstein-aether theory, i.e., the non-projectable Hořava gravity.
In particular it is intriguing to see whether and how the naked singularity present in the
case of q 6= 2 could be resolved or hidden behind a universal horizon.

In addition, to simplify mathematically the problems involved, in this paper we have
considered only the cases in which the aether field is always comoving with the chosen
coordinate systems. In general, the aether field can have radial motions, as long as it is
time-like. It would be very interesting, if exact solutions with closed forms can be found in
this case, too.
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Appendix A. Gµν and Tæ
µν in different Coordinate Systems

In this appendix, we shall present the non-vanishing components of the Einstein
tensor Gµν and the effective energy-momentum tensor Tæ

µν in three different coordinate
systems. In all of them, the aether is assumed to be comoving with the coordinate systems,
so we always have

uµ = ±(−gtt)
−1/2λ

µ
t , (A1)

where the “+” sign means the aether field is moving along dt increasing direction, while the
“−” sign corresponds to the case in which the aether field is moving along dt decreasing
direction. From Equations (5) and (7), we can see that Tæ

µν is independent of these choices,
while and Æ switches its sign. Clearly, these choices do not affect the field Equations (4)
and (7). With these in mind, let us consider the three different coordinate systems.

Appendix A.1. Isotropic Coordinates

Choosing the gauge (19), the metric takes the form,

ds2 = −e2µ(r,t)dt2 + e2ν(t,r)
(

dr2 + r2d2Ω
)

, (A2)

where d2Ω ≡ dθ2 + sin θ2dφ2. Introducing the quantity,

Σ = 3ν̇2 + 2ν̈− 2µ̇ν̇, (A3)

we find that the non-zero and independent components of the Einstein tensor are,

G00 = 3ν̇2 − e2µ−2ν

(
ν′2 + 2ν′′ + 4

ν′

r

)
, (A4)

G01 = 2µ′ν̇− 2ν̇′, (A5)

G11 = ν′2 + 2µ′ν′ +
2
r
(µ′ + ν′)− Σe−2µ+2ν, (A6)

G22 = r2
(

µ′2 + µ′′ + ν′′ +
µ′ + ν′

r
− Σe−2µ+2ν

)
, (A7)

and the non-zero and independent components of the aether stress-energy tensor are,

Tæ
00 = e2µ−2ν

[
c14

(µ′2

2
+ µ′ν′ + µ′′ + 2

µ′

r

)]
− 3

2
βν̇2, (A8)

Tæ
01 = c14

(
µ̇′ + µ′ν̇

)
, (A9)

Tæ
11 =

β

2
Σe−2µ+2ν − c14

2
µ′2, (A10)

Tæ
22 = r2

(
Tæ

11 + c14µ′2
)

, (A11)

where β ≡ 3c2 + c13.
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Appendix A.2. Painlevè-Gullstrand Coordinates

Choosing the gauge (89), and considering only the static spacetimes, we find that the
metric takes the Painlevè-Gullstrand (PG) form,

ds2 = −e2µ(r)dt2 + 2eν(r)drdt + dr2 + r2dΩ2. (A12)

Setting
λ = e2µ + e2ν, (A13)

we find that the non-zero components of the Einstein tensor are,

G00 =
1

λ2r2

[
e4µ+2ν

(
1− 2r

(
µ′ + ν′

))
+ e2µ+4ν

]
, (A14)

G01 =
1

λ2r2

[
e2µ+3ν

(
−1 + 2r

(
µ′ − ν′

))
− e5ν

]
, (A15)

G11 =
1

λ2r2

[
e2µ+2ν

(
4rµ′ − 1

)
+ 2e4µrµ′ + e4ν

(
2rν′ − 1

)]
, (A16)

G22 =
1

λ2r2

[
e4µ
(

rµ′ + r2µ′2 + r2µ′′
)
+ e2µ+2ν

(
r
(
1 + rµ′

)(
2µ′ − ν′

)
+ r2µ′′

)]
, (A17)

while the non-zero components of the aether stress-energy tensor are,

Tæ
00 =

c14
2λ2r2

[
e6µ
(

4µ′ + rµ′2 + 2rµ′′
)
+ e4µ+2ν

(
4µ′ + 3rµ′2 − 2rµ′ν′ + 2rµ′′

)]
, (A18)

Tæ
01 =

c14
2λ2r2

[
e2µ+3ν

(
4µ′ + 3rµ′2 + 2rµ′′ − 2rµ′ν′

)
− e4µ+ν

(
4µ′ + rµ′2 + 2rµ′ν′

)]
, (A19)

Tæ
11 =

c14
2λ2r2

[
e4ν
(

2µ′ + rµ′2 + rµ′′
)
+ e2µ+2ν

(
4µ′ − rµ′2 + 2rµ′ν′

)
− 4e4µrµ′2

]
, (A20)

Tæ
22 =

c14e2µr2µ′2

2λ
. (A21)

Appendix A.3. Schwarzschild Coordinates

The Schwarzschild coordinates correspond to the choice (120), for which the metric
takes the form,

ds2 = −e2µ(t,r)dt2 + e2ν(t,r)dr2 + r2d2Ω. (A22)

We also define the quantities,

Q =
µ′2

2
− µ′ν′ + µ′′, (A23)

H =
ν̇2

2
− µ̇ν̇ + ν̈. (A24)

Then, the non-zero components of the Einstein tensor are,

G00 =
1
r2 e2(µ−ν)

(
e2ν + 2rν′ − 1

)
, (A25)

G01 =
2ν̇

r
, (A26)

G11 =
1
r2

(
1− e2ν + 2rµ′

)
, (A27)

G22 = r2

{
e−2ν

[
Q +

(
µ′2

2
− ν′ − µ′

r

)]
− e−2µ

(
H +

ν̇2

2

)}
, (A28)
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and the non-zero components of the aether stress-energy tensor are,

Tæ
00 = e2µ−2νc14

(
Q +

2µ′

r

)
− c123

2
ν̇2, (A29)

Tæ
01 = c14

(
µ̇′ − µ′ν̇

)
, (A30)

Tæ
11 = c123He−2µ+2ν − c14

2
µ′2, (A31)

Tæ
22 = r2

[
e−2µ

(
c2H − c13

2
ν̇2
)
− c14

2
e−2νµ′2

]
. (A32)

Note
1 Here “comoving aether” means that the aether field is at rest in the chosen coordinates, so it has only the time-like component,

while its spatial components vanish identically, i.e., ui = 0 (i = 1, 2, 3). When the spacetime is static, it aligns with the time-like
killing vector, ξµ = δ

µ
t .
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