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Abstract: In this review article, the study of the development of relativistic cosmology and the
introduction of inflation in it as an exponentially expanding early phase of the universe is carried
out. We study the properties of the standard cosmological model developed in the framework of
relativistic cosmology and the geometric structure of spacetime connected coherently with it. The
geometric properties of space and spacetime ingrained into the standard model of cosmology are
investigated in addition. The big bang model of the beginning of the universe is based on the standard
model which succumbed to failure in explaining the flatness and the large-scale homogeneity of the
universe as demonstrated by observational evidence. These cosmological problems were resolved
by introducing a brief acceleratedly expanding phase in the very early universe known as inflation.
The cosmic inflation by setting the initial conditions of the standard big bang model resolves these
problems of the theory. We discuss how the inflationary paradigm solves these problems by proposing
the fast expansion period in the early universe. Further inflation and dark energy in f (R) modified
gravity are also reviewed.

Keywords: spacetime; relativistic cosmology; big bang model; inflation; f (R)

1. Introduction

With the advent of general relativity in 1916, spacetime transformed itself into one of
the four fundamental interactions of the universe and the geometrical structure attached
to it was taken to demonstrate gravity in a dynamical way [1]. The force of gravity was
replaced by the curvature of spacetime that is mirrored through the geometric structure of
metric tensor gµν. The spacetime became an integral part of the universe and a dynamical
medium where the whole phenomenal universe exists. Any solution of the field equations
of general relativity entails a certain structural geometry of spacetime or just a spacetime
that represents a universe itself, therefore determining a solution of the field equations is
similar to coming across a specific model of the universe.

Cosmology studies the universe as a whole [2] encompassing its beginning in space-
time or as spacetime itself, its evolution, and its eventual ultimate fate. The history of
cosmology dates back to ancient Greeks, Indians, and Iranians with its roots at that time
in philosophy and religion. Before modern scientific cosmology emerges, it has been
nurtured in the womb of Ibrahamic religions especially Judaism, Christianity, and Islam.
Cosmology as modern science begins with the surfacing of general relativity when Einstein
first himself put it to use to formulate a cosmological model of the universe mathematically.
The model brought about a dynamic universe but was rendered to be static as there was
no cosmological evidence of its contraction or expansion at that time [3]. Einstein’s static
model was afterward proved to be inconsistent with cosmological observations and was
discarded; however, its formulation as the first mathematical model based on the field
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equations of general relativity laid the foundational stone for the inception of modern
relativistic cosmology as science.

Cosmology takes into account the largest scale of spacetime that is the causally con-
nected maximal patch of the cosmos from the perspective of its origin, evolution, and
futuristic eventual fate. It gives the universe a mathematical description as large as the
cosmological observational parameters reveal and allow consequently. The modern rela-
tivistic cosmology was established on general relativity which brought forth the big bang
model of the universe. The big bang model was marred with some inward problems
related to it, which were removed by introducing an exponentially expanding phase in
the early universe known as inflation. de Sitter presented a model of the universe devoid
of ordinary matter, however with the cosmological constant term retained. The geometry
of the model was proved to be accelerating [4]. The de Sitter universe corresponds to
the specific case related to one of the very early solutions of Einstein’s Field Equations
(EFE). The importance of the de Sitter model was not recognized until the introduction of
inflation in the late 20th century, as the actual universe must be considered as a local set
of perturbations in the geometry of de Sitter having validity at large. de Sitter geometry
represents Euclidean space with a metric that depends on time. It was found that the
inflation could be the de Sitter in general or quasi-de Sitter geometry which has an innate
impact on the evolution of the geometry of FLRW spacetimes. It further bears its relation
with the late-time accelerated expansion of the universe and to the dynamic geometry of
the spacetime intrinsically cohered with it. The paradigm of inflation, as it is propounded,
has a profound impact on the evolution of the universe as the geometry of spacetime. The
de Sitter universe represents the inflationary phase of the universe with slightly broken
time translational symmetry.

Alexander Friedmann predicted theoretically the universe to be dynamic, the one
which can expand, contract, or even be born out of a singularity [5]. George Lemaitre,
unaware of Friedmann’s work at that time, independently reached the same conclusion.
In 1931, he also proposed a theory of the primeval atom which came to be known later
on as the big bang theory by Fred Hoyle accidentally [6]. Edwin Hubble first proved the
existence of other galaxies besides the Milky Way and afterward in 1929 discovered based
on observational evidence that the universe is actually expanding [7]. This was actually
discovering what Friedmann already had predicted theoretically in 1922. In the late 1940s,
George Gamow (1904–1968) and his collaborators, Ralph Alpher (1921–2007) and Robert
Herman (1914–1997), independently worked on Lemaître’s hypothesis and transformed
it into a model of the early universe. They made supposition about the initial state of the
universe comprising of a very hot, compressed mixture of nucleons and photons, thereby
introducing the big bang model on the basis of comparatively strong evidences. They did
not associate a particular name with the early state of the universe. Based on this model
they were successful in calculating the amount of helium in the universe, but unfortunately,
there was no authentic observational evidence through which their calculations could be
compared [8].

The standard relativistic model of cosmology underpinning big bang theory could not
explain the global structure of the universe and the origin of matter in it. The distribution of
matter in it homogeneously on large scales and the spatial flatness also remained enigmatic.
The big bang model just made an assumption about these but could not solve them. In the
framework of effective field theory, the aspects of nonsingular cosmology were explored by
Yong Cai et al. It is shown that the effective field theory assists in having the clarification
about the origin of no-go-theorem and helps to resolve this theorem [9].

The inflationary era was proposed in the standard model of cosmology which pro-
pounds the big bang theory of the creation of the universe. Inflation solves the problems
encountered in the big bang cosmology. Gliner, in 1965, hypothesized an era of exponential
expansion for the universe earlier than any significant inflationary model surfaced [10]. It
was found that the scalar fields are dynamic in nature, and in 1972 it was proposed that
during phase transitions the energy density of the universe as a scalar field changes [11].
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Andrei Linde, in 1974, realized that scalar fields can play an important role in describing
the phases of the very early universe. He speculated that the energy density of a scalar
field can play the role of vacuum energy dubbed as a cosmological constant [12].

In 1978, Englert, Brout, and Gunzig [13] forwarded a proposal of “fireball” hypothesis
attempting to resolve the primordial singularity problem. They based their investigations
on the entropy contained in the universe and approached the issue of early evolution of
the universe by introducing particle production in it. They inquired deep down into it and
on the basis of their hypothesis inferred that a universe undergoing a quantum mechanical
effect would itself appear in a state of negative pressure and would be subject to a phase of
exponential expansion. A work was mentioned by Linde in his review article [14] where
he sought, in collaboration with Chibisov, to develop a cosmological model based upon the
facts known in connection with the scalar fields. Considering the supercooled vacuum as a
self-contained source for entropy, they tried to bring about the exponential expansion of
the universe to be concerned with it. They, however discovered instantly that the universe
becomes very inhomogeneous after the bubble wall collisions take place.

Slightly before Alan Guth’s original proposal of inflation surfaced, Alexei Starobinsky
in 1980 proposed a model of inflation on the base of a conformal anomaly in quantum
gravity. His proposal was presented in the framework of general relativity where slight
modification of the equations of general relativity in matter sector was proposed and
quantum corrections were employed to it in order to have a phase of the early universe.
Starobinsky’s model can be considered as the first model of inflation which is of semi-
realistic nature and evades from the graceful exit problem [15]. It was hardly concerned
with the problems of homogeneity and isotropy which occur in the relativistic cosmological
model of the big bang. His model, as he himself accentuated, can be considered the extreme
opposite of chaos in Misner’s model. The model is found to agree with cosmological
observations with slight deviations form recent measurements. Tensor perturbations that
represent gravitational waves have also been predicted in Starobinsky’s model with a
spectrum that is flat.

Alan Guth employed the dynamics of a scalar field and with a clear physical motiva-
tion presented an inflationary model [16] in 1981 on the base of supercooling theory during
the cosmic phase transitions where the universe expands in a supercooled false vacuum
state. A false vacuum is a metastable state containing a huge energy density without any
field or particle so that when the universe expands from this heavy nothingness state its
energy density does not change and empty space remains empty so that the inflation occurs
in false vacuum [17]. The duration of inflationary phase in Guth’s original scenario is
too short to resolve any problem, although was supposed to solve these problems and
consequently the universe becomes very inhomogeneous which leads to the graceful exit
problem [18,19]. The problem prevents the universe from evolving to later stages and is
inherently existing in the originally proposed version of Guth.

The graceful exit problem was addressed independently by Linde, Steinhard, and
Albrecht [20–25], where they introduced a phase of slow roll inflation at the end of the
normal inflationary phase inclusively known as new inflation. The resolution of the
problem was sought by constructing a new inflationary paradigm where the inflation can
have its inception either in an unstable state at the top of the effective potential or in the
state of false vacuum. In this scenario, the dynamics of the scalar field is such that it rolls
gradually down to the lowest of its effective potential. It is of great importance to note
that the shifting away of the scalar field from the false vacuum state to other later states
has remarkable consequences. When the scalar field rolls slowly towards its lowest so-
called slow roll inflation, the density perturbations are generated which seed the structure
formation of the universe [26–28]. The production of density perturbations during the
phase of slow roll inflation is inversely proportional to the motion of the scalar field [29,30].
The basic difference between the new inflationary scenario and that of the old one is that
the advantageous portion of the inflation in the new scenario, which is responsible for
the large scale homogeneity of the universe, does not take place in the false vacuum state,
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where the scalar field vanishes. This means that the new inflation could explain why our
universe was so large only if it was very large initially and contained many particles from
the very beginning.

The course of 20th century has presented many challenges to the standard cosmology.
In the framework of the standard model, in addition to inflation, another breakthrough
came forth in 1998 when the observation-based accelerated expansion of the universe was
discovered [31–33]. Before this discovery, however, it was thought that in the perspective of
all known forms of matter and energy that obey the strong energy condition ρ + 3p > 0, the
expansion of the universe would slow down with the passage of time. This was a natural
consequence of Friedmann equations that play a central role in the evolution of the universe.
From the acceleration equation ä

a = − 4πG
3 (ρ + 3p), the universe must be undergoing

deceleration characterized by deceleration parameter q0 = − aä
ȧ2 ; however, astoundingly

the value of q0 < 0 was observationally determined, meaning that the expansion of the
universe is accelerating rather to be decelerating. The discovery of accelerated expansion
has won Noble prize in 2011. To explain the cause of accelerated expansion an exotic
form of energy density was introduced hypothetically known usually as dark energy. The
present budget of the universe from the observational data is contributed by dark energy
70%, dark matter 25% and 5% ordinary baryon matter [34,35]. Dark energy is effective
on the largest scales of intra galaxies and does not affect gravitationally bound systems.
To explain the origin of dark energy, there is a large number of proposed models. Many
independent observations lend support to the existence of dark energy such as CMB, SN Ia,
BAO, etc. Today dark energy constitutes a very significant subject of relativistic cosmology
with observational data by providing information about its basic nature, for reviews see
in [36–38]. In this article, we study the standard model of cosmology by investigating
the geometric structure of spacetime related with it in the framework of general relativity.
Beginning with Euclidean space, we study spacetime in special and general theory of
relativity. We discuss problems encountered in the standard big bang cosmology, and the
inflationary solutions introduced into it, by proposing a phase of accelerated expansion in
the early universe. A discussion of f (R) modified gravity is also presented with discussion
of how inflation and dark energy can be described in its framework.

The layout of the paper is as follows. In Section 2, we discuss the structure of Eu-
clidean space beginning with the axioms of Euclidean geometry and the significant role
played by the Pythagoras theorem in its development. It has four subsections discussing
space, time, and spacetime in relativity and pre-relativity physics. Section 3 begins with
relativistic cosmology with a discussion on its underlying principles. The standard model
of cosmology is discussed in Section 4 with nine subsections about its geometric structure.
In Section 5, the derivation of Friedmann equations is carried out. Section 6 describes dif-
ferent aspects of embedding a geometrical object in a space of higher dimensions. It is has
four subsections. Section 7 presents the very first relativistic model developed by Einstein
himself. It has two subsections that discuss the instability of Einstein’s universe and de
Sitter’s empty universe model respectively. In Section 8, a discussion on conformal FLRW
line elements is presented in addition to the vacuum, radiation, and matter-dominated eras.
It has 12 subsections covering related topics. Section 9 with its four subsections is devoted
to the discussion of cosmological problems faced by the standard model. In Section 10, we
embark on inflation and discuss its dynamics. Section 11 describes how the proposal of
exponential expansion in the early universe solves the cosmological problems. ΛCDM and
f (R) are discussed in this section. In the last Section, we provide a summary of the paper.
Four indices are added in the end.

2. Euclidean Space

Euclidean geometry is established on a set of simple axioms and the definitions
derived from these axioms. These axioms were first stated by Euclid in about 300 B.C. [39].
A space at the level of mathematical abstraction is the set of points where each point
represents a specific position in it. When an abstract space is mapped onto a physical space,
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each point of it represents a physical location in it. Euclidean space is what entails on the
base of axioms of Euclidean geometry. Geometrically, a space can be described by reducing
it to a certain specification of the distance between each pair of its neighboring points. In
order to reduce all of the geometry of a space to a certain specification of the distance
between each pair of neighboring points we use the metric or line element which measures
the space and describes its nature. A line element specifies a certain geometry and its form
varies corresponding to different coordinate systems. Five basic postulate lie at the core of
Euclidean space and are the basis of standard laws of geometry:

1. Any two points can be joined by a straight line, i.e., the shortest distance between two
points is a straight line.

2. A straight line can be extended to any length.
3. A circle can be drawn with a given a line segment as radius and one end as center of

the circle.
4. All right angles are congruent.
5. Given a line and a point not on the line, it is possible to draw exactly one line through

the given point parallel to the line, i.e., parallel lines remain a constant distance apart.
Pythagoras theorem was known before Euclid and can also be derived from the five
postulates and is used to find distance between any two points in Euclidean space. A
mathematical space is an abstraction used to model the physical space of the universe.
The Euclidean space consists of geometric points and has three dimensions. Now
the Pythagorean theorem for a right triangle describes how to calculate the length of
hypotenuse when the lengths of other two sides namely base and altitude are given.
The length of hypotenuse gives distance between two points. Figure 1 below shows
Pythagoras theorem:

Figure 1. Pythagoras theorem: c2 = a2 + b2.

d2 = x2 + y2 (1)

Now, as the space can be described everywhere consisting of geometric points, we
can define mutual relation for every infinitesimally close three points of the space forming
a right triangle so that we can determine the element of distance between any two points
with the help of Pythagoras theorem. Using rectangular Cartesian coordinate system we
can express distance between two points in differential form as

dl2 = dx2 + dy2 (2)

The distance-measure by Pythagoras theorem in Equation (2) will be known as metric
or line element in two dimensions and defines Euclidean metric for two dimensional space.
The distance measured between two points by the metric in Equation (2) does not change
on rotating the coordinate system in which these two points are specified as Figure 2
manifests it:
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Figure 2. The rotation of two-dimensional rectangular coordinate system through angle θ.

(
x′

y′

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
(3)

or

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ
(4)

The distance between two points remains invariant which means that
dx′2 + dy′2 = dx2 + dy2 (5)

The Pythagorean theorem in three dimensions can be described as

d2 = x2 + y2 + z2 (6)

Three mutually perpendicular planes along three dimensions of the Cartesian coordi-
nate system divide it in 3-planes as is shown in Figure 3:

Figure 3. Three-dimensional rectangular Cartesian plane representing Euclidean space-three mutual
perpendicular planes.

Now, in reference to a coordinate system each point of this space will have three
coordinates (x, y, z) if we approach its structure through Cartesian scheme, i.e., in Cartesian
coordinates each point of it is represented by three coordinates which are the distances
measured starting from the origin of the coordinate axes along the corresponding axes,
i.e., x-axis, y-axis, and z-axis, respectively. These three axes stand for three dimensions of
space. We find the distance between two points with Cartesian coordinate for three points
separated infinitesimally

dl2 = dx2 + dy2 + dz2 (7)
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which gives the metric of three-dimensional space The distance between two points with
Cartesian coordinates (x, y, z) and (p, q, r) will be

ds2 = (x− p)2 + (y− q)2 + (z− r)2 (8)

The infinitesimal distance between any two points (x, y, z) and (x + dx, y + dy, z + dz)
can be had using the metric written above in Equation (7) in three dimensional Eu-
clidean space.

ds2 = [x− (x + dx)]2 + [y− (y + dy)]2 + [z− (z + dz)]2 (9)

ds2 = (−dx)2 + (−dy)2 + (−dz)2 = dx2 + dy2 + dz2 (10)

or in tensor form
ds2 = δµνdxµdxν (11)

where δµν is the Kronecker delta function representing a symmetric tensor of rank two and
can be expressed as a 3× 3 matrix form

δµν =

δ11 δ12 δ13
δ21 δ22 δ23
δ31 δ32 δ33

 =

1 0 0
0 1 0
0 0 1

 (12)

diagonal of
δµν = diag

[
δµν

]
= [+1,+1,+1] (13)

and trace of
δµν = ∑

µ=ν

[
δµν

]
= 1 + 1 + 1 = 3 (14)

therefore, δµν = diag(+1,+1 . . . . . . . . . . . . + 1) in Equation (13) defines an n-dimensional
Euclidean space.

Now Equation (11) can be expanded using Einstein summation convention

ds2 = δ1νdx1dxν + δ2νdx2dxν + δ3νdx3dxν (15)

ds2 =
(
δ11dx1dx1 + δ12dx1dx2 + δ13dx1dx3)

+
(
δ21dx2dx1 + δ22dx2dx2 + δ23dx2dx3)

+
(
δ31dx3dx1 + δ32dx3dx2 + δ33dx3dx3) (16)

ds2 =
(
(1)dx1dx1 + (0)dx1dx2 + (0)dx1dx3)

+
(
(0)dx2dx1 + (1)dx2dx2 + (0)dx2dx3)

+
(
(0)dx3dx1 + (0)dx3dx2 + (1)dx3dx3) (17)

ds2 =
(

dx1dx1 + 0 + 0
)
+
(

0 + dx2dx2 + 0
)
+
(

0 + 0 + dx3dx3
)

(18)

ds2 =
(

dx1dx1
)
+
(

dx2dx2
)
+
(

dx3dx3
)

(19)

ds2 =
(

dx1
)2

+
(

dx2
)2

+
(

dx3
)2

(20)

ds2 = dx2 + dy2 + dz2 (21)

Equation (21) can also be written in the form

ds · ds = dx · dx + dy · dy + dz · dz (22)

From Equation (22), we can see that the inner product in three dimensional Euclidean
space can be perfectly described, that is why three dimensional Euclidean space is an
example of a complete inner product space. An explanatory discussion of maximally
symmetric 3 space can be consulted in Appendix B.
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2.1. Newtonian Mechanics: The Structure of Space and Time

Space and time are absolute structures in classical physics and can be distinguished
from one another in an independent way. Newton’s Mechanics is based specifically on
three laws of motion, a law of gravitation and Galilean principle of relativity which are
inherently related with the properties of space and time. Newtonian space is a three-
dimensional extension around us which constitutes absolute space. Absolute space in
Newton’s own words is described as “Absolute space, in its own nature, without relation
to anything external remains always similar and immovable”, therefore space is rigid,
motionless, and can be viewed as colossally empty three-dimensional cubic or cuboidal
box where material objects reside and all physical phenomena take place. Newtonian space
has the properties of Euclidean pace where infinitesimal distance between any two points
is a straight line and if three points constitute a right angled triangle, then three sides are
related by Pythagoras theorem which ascribes to it the properties of a flat space. Sum of
angles in a triangle in such space is 180◦. Newtonian space is homogeneous and isotropic
which entails Newtonian Mechanics. Homogeneity implies translational invariance of the
properties of space which means that it has similar properties at every point contained in
it. The property of being homogeneous is called homogeneity that leads to the invariance
of physical laws performed in two or more coordinate systems. Newton’s 3rd law, law of
conservation of momentum and energy, etc. come out as a consequence of homogeneity of
space. It is also an isotropic that implies rotational invariance of the properties of space. It
means that it has similar properties in all directions and is therefore direction-independent.
Thus, isotropy implies homogeneity but the converse is not true. The absolute time has
been enunciated as follows “Absolute time, and mathematical time of itself and from its
own nature flows equably without relation to anything external, and is otherwise called
duration” such time exists independent of space and whatever dynamically happens in it
and flows uniformly in one direction. An interval of time possesses always unchanging
meaning for all times. This is presented figuratively in Figure 4 below:

Figure 4. Newtonian space.

According to Newtonian Mechanics, gravitation and relative motion do not affect
the rate at which time flows. From Newton’s 2nd law F = ma, the isotropy of time can
be viewed in case of a dynamic system that does not change from perpetrating transition
from +t to −t. This is because it does not incorporate the element of time explicitly which
implies that past and future are indistinguishable but this is paradoxical because time
is unidirectional and flows always from past to future. Two observers in two inertial
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frames of reference in relative motion and equipped with standard measuring clocks record
the spacetime coordinates of an event written as (t, x, y, z) and (t′, x′, y′, z′), respectively.
According to Galilean principle of relativity, the coordinate transformations are

x′ = x− vt

y′ = y

z′ = z

t′ = t

(23)

We can calculate the addition of velocities according to these transformations by
differentiating the spatial parts of Equation (23) with respect to time t, we have

dx′

dt
=

dx
dt
− v

dy′

dt
=

dy
dt

dz′

dt
=

dz
dt

(24)

As t = t′, we infer that dx′
dt = dx′

dt′ . Likewise, acceleration can also be differentiated
once again from Equation (24), which gives

d2x′

dt2 =
d2x
dt2

d2y′

dt2 =
d2y
dt2

d2z′

dt2 =
d2z
dt2

(25)

We can observe from Equation (25) that the accelerations in both frames are same.
The time-coordinate t′ of one inertial frame remains unaffected during transformation to
another inertial frame of reference in classical physics and does not depend on spatial
coordinates x, y, and z. The set of equations in Equation (23) are known as Galilean
transformations. The motion along y and z spatial dimensions remains unaffected and the
time coordinates in the two frames are equivalent which implies that time is absolute as
Newton believed meaning that for all the inertial observers the time interval between any
two events would be invariant. We notice that the two events having coordinates (t, x, y, z)
and (t′, x′, y′, z′), respectively, with differential of the distance as Euclidean spatial interval
described in Equation (21) as ds2 = dx2 + dy2 + dz2 and the time interval ∆t = t′ − t both
remain separately invariant under the Galilean transformations in Equation (23). This
fact makes us consider the nature of space and time as absolute entities in Newtonian
Mechanics. We identify the quantity ds2 as square of the distance between points of three-
dimensional Euclidean space and invariance of this differential of distance alludes to the
fact that it is geometrical structural property of the space itself in its own right. This
describes the geometry of space and time according to Newton’s views.

2.2. Special Theory of Relativity: The Structure of Spacetime

Special relativity is a theory of the structure of spacetime and in this way constitutes
a geometric theory [40]. The fields and particles grow over this spacetime structure and
relativistic mechanics is developed according to this structure which corresponds to the
postulates of special relativity. According to the Lorentz transformations implied by it,
space and time are not distinguishable quantities but constitute innately a single continuum
to be known as spacetime. One of the Einstein’s 1905 papers brought forward this theory
founded upon two postulates [41].
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1. The principle of special covariance.
2. The principle of invariance of the velocity of light (c). As the laws of physics remain

form-invariant, i.e., covariant according to a privileged class of observers known
as inertial frames. This is also called principle of relativity. These two principles
overthrew the pre-relativity notions of absolute space and absolute time proposing
instead relative concepts. In classical physics as we saw earlier the coordinates of two
observers are related by Galilean transformations, whereas according to the special
relativity, the coordinates in two frames are related using Lorentz transformations.

x′ =
x− vt√
1− v2

c2

y′ = y

z′ = z

t′ =
t− vx

c2√
1− v2

c2

(26)

Lorentz transformations contain all the geometric information about space and time,
and describe the structure of spacetime. Further, we can see that space and time
coordinates are absolute according to the Galilean transformations for two inertial
observers which move relative to each other and are connected through space and
time coordinates. Time coordinate has the same magnitude in pre-relativity physics;
however, according to the special relativity, which obeys Lorentz transformations, the
time coordinate in one coordinate system is connected to the time coordinate of the
second coordinate system through both time and space coordinates, which alludes to
the fact that space and time coordinates are now to be dealt on equal footings. It is
obvious from the Lorentz transformations that the time coordinates are not equivalent
in two frames, i.e., t 6= t′ rather t′ is innately cohered with both of the coordinates
of time and space t and x respectively. It means that time t′ of one coordinate frame
converts partially in space and partially in time coordinates. Therefore, t′ does not
remain independent but has partially coalesced with space coordinates losing its
absolute nature and the principle of relativity forbade us to locate a preferred frame
of reference ensuing that absolute notion of time disappears logically. This fact was
first perceived by Minkowski when he was recasting the special relativity in the
language of geometry. He has presented a very profound and significant geometrical
structure underlying special relativity. While delivering a lecture at the meeting of
the Göttingen Mathematical Society on 5 November 1907, he introduced the concept
of spacetime continuum whereby he asserted that independent space and time have
to doom away into mere shadows and only a union of the two can preserve an
independent reality. Minkowski viewed that the principle of special relativity can
be described by the metric −dt2 + dx2 + dy2 + dz2 on the four-dimensional space R4

which familiarized the concept of spacetime continuum and paved the way for the
formulation of general relativity. A Minkowski metric g on the linear space R4 is a
symmetric non-degenerate bilinear form with signature (−,+,+,+). It means that
there exists a basis {e0, e1, e2, e3} such that g

(
eµ, eν

)
= gµν where µ, ν ∈ {0, 1, 2, 3} and

gµν is expressed in the form

gµν =


g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33

 =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (27)

so that an we have orthonormal basis and can construct a system of coordinates of R4

as
(

x0, x1, x2, x3) such that at each point we can have e0 = ∂t and ∂xj where j = 1, 2, 3.
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Now, with respect to this coordinate system, we can write the metric tensor (0, 2)

in the form g = gµνdxµdxν = −dt2 +
3
∑
1

dxj or ds2 = −dt2 + dx2 + dy2 + dz2 The

negative sign with one time component term in the metric indicates that it is not
Euclidean space but represents a pseudo-Euclidean known as Minkowski space and
also guarantees that the speed of light is same in all inertial frames. An expanding
Minkowskian spacetime can be described in the form as written below which repre-
sents the simplest of all dynamic spacetimes ds2 = −dt2 + a2(t)

[
dx2 + dy2 + dz2]. It

was thought convenient on the dimensional grounds to introduce the coordinates in
the form

(
x0, x1, x2, x3) = (ct, x, y, z). Pythagoras theorem applied in Euclidean space

R3 of three spatial dimensions gives the distance of two points as an invariant as we
observed in previous section.

ds2 = +dx2 + dy2 + dz2 (28)

here ds the length element is a scalar quantity which means that in certain frame of
references all the observers will agree upon the length of the measured object. In 1905,
Einstein speculated that the measurement of the spacetime interval

ds2 = −dx2 − dy2 − dz2 + (cdt)2 = ηµνdxµdxν (29)

where

ηµν =


g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33

 =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 (30)

would not result in identical either in space or in time [42] for the observers in relative
uniform motion. However, Minkowski noted that the four-dimensional entity in
Equation (29) would remain invariant for all such observers. The basic significant idea
which Minkowski took notice of was that the spacetime interval remains invariant
for all the observers in uniform relative motion meaning that it is also a scalar upon
which they all will agree. The metric of Minkowski space which is homogenous and
isotropic is given by

gµν = ηµν = diag(−1,+1,+1,+1) (31)

thus the geometry of spacetime is flat in special relativity. It is notable here that it is
spacetime that is flat, however in classical mechanics, it is space rather than spacetime.
If the Minkowskian geometry of spacetime is required to be expanding, it can be
made so. However, in the framework of special relativity, it does not need to expand.
Figure 5 gives the structure of Minkowskian spacetime as a null cone structure. In the
Figure 6, it is shown how the dimension time is converted in as space.

gµν = ηµν = diag
(
−1, a2(t), a2(t), a2(t)

)
(32)
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Figure 5. A spacetime frame as null cone structure.

Figure 6. Structure of spacetime where one second of time along time axis equals 300,000 km along
the space axis.

2.3. General Theory of Relativity: The Structure of Spacetime

The essence of general relativity is that geometry is gravity which comes from Equiv-
alence principle. It models gravity into the dynamic structure of spacetime. In general
relativity, the structure of spacetime is described by a fundamental quantity called the
spacetime metric gµν or line element which gives the nature of the geometry of spacetime by
finding the distance between two infinitesimally neighboring points in it. The geometrical
structure of spacetime is incarnated [43] in two basic principles.

1. Principle of general covariance.
2. The spacetime continuum has, at each of its points, a quadratic structure of coordinate

differentials ds2 = g = gµνdxµdxν known as “square of the interval” between the two
points under consideration.

We consider a four-dimensional continuum every point of which is distinct from
the other with four coordinates-a quadruplet x1, x2, x3, x4 assigned consecutively to each
of them

x′1 = x′1(x1, x2, x3, x4)

x′2 = x′2(x1, x2, x3, x4)

x′3 = x′3(x1, x2, x3, x4)

x′4 = x′4(x1, x2, x3, x4)

(33)
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It is denoted by gµν. In matrix form with components, it is written as

gµν =


g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 a31 g32 g33

 (34)

The properties of spacetime that are intrinsically related to it, are completely deter-
mined by the spacetime metric. An example of the local curved spacetime around the Sun
in two dimensions is displayed in Figure 7:

Figure 7. Curved spacetime around the Sun-spacetime in general relativity.

A detailed discussion of space, time and spacetime is presented in Appendix A.

2.4. The Basics of General Relativity

It would be convenient to have a retrospective look into the basics of general relativity
whose role has been very fundamental to the modern cosmology. We briefly review the
structure of the theory specifically in connection with the geometrical structure of spacetime
in it. General relativity in its core describes that gravity is the geometry of four-dimensional
spacetime manifested through its curvature. It is a theory of spacetime and gravitation that
are the very basic components of the universe. Einstein’s journey towards general relativity
in order to introduce gravity in his previous theory sought the fascinating geometry of the
structure of spacetime, such that gravity as a field force disappeared and was assimilated
in the very geometric structure of spacetime. In constructing the framework of new theory,
Einstein was influenced and governed by Mach’s principle, which states that it is a priori
existence and distribution of matter which determines the geometry of spacetime, and
in the absence of it, there shall be no geometric structure of a spacetime in the universe.
Therefore, there will be no inertial properties in an, otherwise, empty universe. In general,
relativity gravitation and inertia are essentially indistinguishable. The metric tensor gµν

describes the effect of both combinedly, and it is arbitrary to ask which one contributes its
effect more and which less, therefore to call it with a single name is suitable either inertia
or gravitation [4]. In general relativity gravitation, inertia and the geometry of spacetime
are coalesced into a single entity represented by a symmetric tensor of second rank gµν

which owes its existence due to presence and distribution of matter which is represented
by an other symmetric tensor Tµν known as energy-momentum tensor. The metric tensor
gµν is the fundamental object of study in general relativity and takes into consideration
all the causal and geometrical structure of spacetime. General relativity underlies five
fundamental principles connotated by it implicitly or explicitly manner:



Universe 2021, 7, 276 14 of 89

1. Mach’s principle
2. principle of equivalence
3. principle of covariance
4. principle of minimal gravitational coupling
5. correspondence principle

In the light of the principle of general covariance, the theory requires that the laws
of physics might be formulated in a coordinate-independent style. The coordinate inde-
pendence requires the replacement of partial derivatives by covariant derivatives which
introduces connection coefficients Γλ

µν as the 2nd kind of Christoffel symbols. All the
geometric structure of spacetime is based on the existence of these connection coefficients.
The field equations of general relativity read as Gµν = 8πTµν, where Gµν = Rµν − 1

2 gµνR is
the Einstein tensor and is expressed in terms of Ricci tensor, metric tensor, and Ricci scalar,
and Tµν is energy momentum tensor. The spacetime continuum of general relativity is
postulated as a 4-dimensional Lorentzian manifold (M, g), where M denotes the Manifold
and g is metric defined over it. The geometry of a spacetime is encoded in its metric which
has a geodesic structure, though complex and frequently solved numerically for a specific
bunch of geodesics. These geodesics specify the physical properties of the geometry of
spacetime which are interpreted by drawing graphically in a certain spacelike volume.
Gravity is the geometry of spacetime itself which is described through its dynamic structure
in the framework of general relativity. The interaction between spacetime and the content it
contains which mutually form and the universe is the pith and marrow of general relativity.
Matter tells spacetime how to curve and spacetime tells the matter how to move. General
relativity thus transforms gravitation from being a force to being it a property of spacetime,
so that gravity does remain a force but curvature of the geometric structure of spacetime.
Einstein worked out a relation between matter–energy content of the universe and its
gravitating effects in the form of geometry of spacetime. He employed the language of
tensors to describe it. The invariant interval between two events separated infinitesimally
with coordinates (t, x, y, z) and (t + dt, x + dx, y + dy, z + dz) has been defined according
to special relativity

ds2 = ηµνdxµdxν (35)

Which defines a Lorentz invariant Minkowski flat spacetime whose geometry of
spacetime is encoded in ηµν. Under the change of coordinates ds2 remains invariant and
is spacelike for ds2 > 0, timelike for ds2 < 0 and light-like for ds2 = 0. Photon path is
described by ds = 0 and baryonic matter follows a path between two events for which∫

ds = 0 (36)

i.e., it generates stationary values and conforms to the shortest distance between two points
to be straight line which means that there are no external forces to set their path deviated.
General relativity was based on five principles incorporated in it explicitly or implicitly,
namely, equivalence principle, relativity principle, Mach’s principle, and Correspondence
principle. Tensors are geometric objects defined on a manifold M, which remain invariant
under the change of coordinates. It is composed of a set of quantities which are called its
components, therefore a it is the generalization of a vector which means that it has more
than three components. They represent mathematical entities which conform to certain
laws of transformations. The properties of components of a tensor do not depend on a
coordinate system which is used to describe the tensors. Transformation laws of a tensor
relate its components in two different coordinate systems. The mathematical representation
of a tensor is displayed through considering usually a bold face alphabetical letter like
A, B, T, P, etc. with an index or a set of indices in the form of superscripts or subscripts
or both in mixed form. These superscripts and subscripts in case of a tensor are called
contravariant and covariant indices. Contravariant indices of a tensor are used to give the
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meaning of a contravariant components of it like Aµ, Aµν, Aµνξ...... Covariant indices of a
tensor are used to signify the meaning of a contravariant components of it like Aµ, Aµν,
Aµνξ ...... The indices of both types namely contravariant and covariant are used to specify
the components of a mixed tensor like Aν

µ, Aν
µξ , Aνσ

µ , Aνσ...
µξυ.... A mixed tensor is a tensor

which has contravariant as well as covariant components. The number of indices appearing
in the symbol representing certain type of a tensor is known as its rank. The appearing
indices in the symbol representing a tensor can be contravariant or covariant or both type
of indices in it. The order of a tensor is the same thing as rank, only the name differs. The
number of components of a tensor is related with its rank or order and the dimensions
of the space in which the is being described. In an n-dimensional space, a tensor of rank,
say, k will have number of components equal to number of components of a tensor in
n-dimensional space is equivalent to nk = (number o f dimensions o f space)rank. However,
the spacetime of general relativity is pseudo-Riemannian having four dimensions, three
spatial and one temporal. Coordinate patches are necessarily considered to map whole
of the spacetime. Each point-event of a coordinate patch in the four-dimensional pseudo-
Riemannian spacetime is labeled by a general coordinate system, which conventionally runs
over 0, 1, 2, and 3, where 0 stands for time and the rest for space coordinates. An inertial or
otherwise frame of reference characterized by a coordinate system can be attached to every
point event of the spacetime and coordinate transformations between any two coordinate
systems can be found. These can be written as

A′µ =
∂xν

∂x′µ
Aν

B′µ =
∂x′µ

∂xν
Bν

A
′µ
ν =

∂x
′µ

∂xζ

∂xσ

∂x′ν
Aζ

σ

(37)

while switching to Riemannian geometry for non-Euclidean spaces ordinary partial differenti-
ation is generalized to covariant differentiation and is defined using a semi-colon; as

Bν;µ = ∂,µBν − Γσ
νµBσ

Bν
;µ = ∂,µBν + Γν

µσBσ (38)

where comma , denotes an ordinary partial differentiation with respect to the corresponding
variable and ; signifies covariant differentiation. In the covariant differentiation, indices
can also be raised or lowered with metric tensor, however the covariant differentiation of
it vanishes, i.e., gµν;α = 0. The interval between infinitesimally separated events xµ and
xµ + dxµ is given by

ds2 = gµνdxµdxν (39)

The corresponding contravariant tensor of gµν is given by gµν and they result in
Kronecker delta. Moreover, indices can be lowered or raised using the metric tensor in
either form as

gµνgµζ = δ
ζ
ν

gµνBν = Bµ

gµνBν = Bµ

(40)

In general relativity, all the geometry of curved spacetime is contained in the second-
rank symmetric tensor gµν known as fundamental or metric tensor and is the function
of four coordinates gµν = gµν(x0, x1, x2, x3) and gµν encodes all the information about
gravitational field induced by presence of matter. It governs the other matter as a response
mimicking the role of gravitational potential similar to that of Newtonian gravity so that
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the paths remain no more straight, and the action in Equation (36) determines the path of a
free particle known as geodesic

d2xµ

ds2 + Γµ
νζ

dxν

ds
dxζ

ds
= 0 (41)

where

Γµ
νζ = gµλΓνζλ =

1
2

gµλ

(
∂gνλ

∂xζ
+

∂gζλ

∂xν
+

∂gνζ

∂xλ

)
(42)

are the Christoffel symbols which through the geodesic equation specify the world lines of
free particles. The “acceleration due to gravity” in Newtonian gravitation law is described
by these symbols in Einstein’s picture of gravity as the geometric properties of spacetime
encoding the similar information. Locally these symbols vanish in the inertial frame of
reference in free fall and under coordinate transformation from xµ and x′µ do not constitute
components of a tensor and therefore do not represent a tensor.

Γ′σµν =
∂x′σ

∂xλ

∂xζ

∂x′µ
∂xρ

∂x′ν
Γλ

ζρ +
∂2xζ

∂x′µ∂x′ν
∂x′σ

∂xζ
(43)

The Riemann tensor is defined as

Rσ
µνλ =

∂

∂xν
Γσ

µλ −
∂

∂xλ
Γσ

µν + Γn
µλΓσ

nν − Γn
µνΓσ

nλ (44)

It has symmetry properties and satisfies the following Bianchi identity:

Rσ
µνλ;ζ + Rσ

µζν;λ + Rσ
µλζ;ν = 0 (45)

The Ricci tensor is obtained from Riemann tensor contracting

Rµν = gλσRσ
µνλ =

∂

∂xν
Γσ

µλ −
∂

∂xλ
Γσ

µν + Γn
µλΓσ

nν − Γn
µνΓσ

nλ (46)

Another expression of Ricci tensor is written in the form given below when determi-
nant of the metric tensor gµν is envisaged as a matrix and denoted by g

Rµν = Γλ
µν,λ −

(
ln
√
−g
)

,µν
+
(
ln
√
−g
)

,λΓλ
µν − Γλ

πµΓπ
λν (47)

The Ricci scalar or scalar curvature is described as

R = gµνRµν (48)

Contraction of the Bianchi Identity in Equation (45) gives

Rµν −
1
2

gµνR (49)

which is the Einstein tensor. Now we can write basic equations of general relativity

Rµν −
1
2

gµνR = 8πTµν (50)

or
Gµν = 8πTµν (51)

Gµν ∝ Tµν (52)

These are written with cosmological constant also. From Equation (52)

Gµν + Λgµν = 8πTµν (53)
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Energy-momentum tensor Tµν is the source term for the metric tensor gµν which for a
most general matter-energy fluid that is consistent with the assumption of homogeneity
and isotropy represents a perfect fluid and has the form

Tµν = (ρ + p)uµuν − pgµν (54)

where uµ = (1, 0, 0, 0) is the four velocity in a comoving frame of reference and

Tµν =


ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 (55)

3. Relativistic Cosmology

Relativistic cosmology was founded on three fundamental principles

1. Cosmological principle;
2. Weyl’s principle;
3. General relativity.

These are illustrated in the following subsections.

3.1. Cosmological Principle

The cosmological principle states that on sufficiently large scale, the universe is
homogenous and isotropic at any time. Therefore, it is the same for all observers and
has similar properties on larger scales. The principle is the generalization of Copernican
principle and almost all the standard cosmological models of the spacetime underpin it. It
has two forms:

(1) Cosmological principle with respect to spatial invariance
(2) Cosmological principle with respect to temporal invariance

In special invariance, we suppose the invariance of space with respect to translational
and rotational properties known as homogeneity and isotropy, respectively, and the prin-
ciple may be regarded as cosmological principle. Under both the invariant properties
the space remains isomorphic. A perfect cosmological principle incorporates temporal
homogeneity and isotropy which was employed by the steady state theory of the eter-
nal universe and was not supported by the observation and was disfavored. For a local
observer the principle might not be satisfied as the Earth and the solar system are not
homogeneous and isotropic since the matter clumps together to form objects like planets,
stars, galaxies with voids of vacuum-like in between them but on the larger scales of about
MP > 1000 Pc the universe obeys the cosmological principle. The uniformity of CMBR in all
directions (homogeneity and isotropy) provides the confirmatory proof of the cosmological
principle. It is the generalization of Copernican Principle which incorporates homogeneity
and isotropy. Homogeneity means location independence, i.e., all places in the universe
at galactic scales are indistinguishable. Isotropy gives direction independence, i.e., in
whatever direction we look in the universe it appears same. Certainly Isotropy connotes
homogeneity, but this not true vice versa. To better understand its geometric properties,
we begin with 1-dimensional spaces and revise to the four-dimensional spaces and then
observe how the four-dimensional spacetime geometrical properties can be understood in
this perspective. It is necessary to understand what we mean by embedding of a geometric
object in an n-dimensional space because of the reason FLRW metric incorporates example
of embedding three dimensional spaces in four dimensional spacetime. Figure 8 delineates
homogeneity and isotropy properties of space:
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Figure 8. An illustration of the cosmological principle. The figure describes how homogeneity and
isotropy of space are related.

3.2. Weyl’s Principle

Weyl’s principle helps us consider the universal stuff as consisting of a fluid, the
particles of which are constituted by galaxies. Therefore, what we name “the universe”
is just cosmic fluid. In the cosmological spacetime, the world lines of the fundamental
observers form a smooth bundle of time-like geodesics which would never meet except
in the past singularity from where the universe emerged or at the future singularity if it
would happen. The fundamental observers are those who comove with the cosmic fluid.
The world lines of galaxies as fluid particles are always and everywhere orthogonal to the
family of spatial hypersurfaces. The postulate was presented by Hermann Weyl (1885–1955)
in 1923 which is essentially about the nature of matter in the universe [44]. He regarded
the material content of the universe in the form of fluid whose constituent particles make a
substratum in the cosmic fluid.

It means that in the substratum of spacetime it allows us to consider the structure of
the universe as fluid. The Weyl principle introduces further symmetry in the structure of
spacetime described by the metric tensor by considering the galaxies as test particles and
postulates that the geodesics on which these galaxies move do not intersect. It states that
the world lines of galaxies considered as “test particles” form a 3-bundle of non-intersecting
geodesics orthogonal to a series of spacelike hypersurfaces. A simple illustration of the
Weyl’s principle is given in the Figure 9:

Figure 9. Illustration of the Weyl postulate.

3.3. General Relativity

General relativity provides the best existing theory of gravitation on cosmological
scales and models it structured into the geometric structure of spacetime. In Section 3, we
discussed its basic ingredients.

4. The Standard Model of Cosmology

The standard model in cosmology has been established on the most general homo-
geneous and isotropic spacetime. The standard model that propounds the hot big bang
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model of the universe is known as Friedmann–Lemaitre–Robertson–Walker (FLRW) line
element which reads as in the Cartesian coordinates

ds2 = −dt2 + dx2 + dy2 + dz2 (56)

and in the spherical coordinates, we have

ds2 = g = gµνdxµdxν = −dt2

+ a(t)2
(

1
1− kr2 dr2 + r2dθ2 + r2sin2θdφ2

) (57)

Or equivalently

ds2 =


g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33

 =


−1 0 0 0

0 a2(t)
1−kr2 0 0

0 0 a2(t)r2 0
0 0 0 a2(t)r2sin2θ

 (58)

The predictions for the quantitative behavior of the expanding universe is enunciated
suitably by the metric tensor and the scale factor as a function of time, i.e., a(t) describes
the scale of coordinate grid interrelating the coordinate distance with physical distance, i.e.,
in a smooth and homogeneously expanding universe.

4.1. Geometric Properties of the FLRW Line Element

From the line element in Equation (57)

ds2 = −dt2 + a(t)2
[

1
1− kr2 dr2 + r2dθ2 + r2sin2θdφ2

]
(59)

As time flows only in one direction and the space obeys cosmological principle,
therefore we are allowed to separate the metric in temporal and spatial parts. To understand
the four dimensional spacetime geometry of FLRW universe we begin with the geometry
of spatial part of the line element that is

a(t)2
(

1
1− kr2 dr2 + r2dθ2 + r2sin2θdφ2

)
(60)

This is the spatial part of the metric in Equation (59) and is characterized by the scale
factor a(t), which is the function of time and 2nd curvature of the space k. These are
obviously determined by the self-gravitating properties of the matter–energy content in
the universe. The spatial part of the metric incorporates cosmological principle implying
homogeneity and isotropy which provides the kinematics for the geometry of spacetime
while we will observe afterwards that Einstein equations provide the dynamics into it
through the scale factor a(t).

4.2. Comoving Coordinates and Peculiar Velocities

The coordinates (r, θ, φ) form the cosmological rest frame and are known as comoving
coordinates. They can be considered constant because the particles remain at rest in these
coordinates. Peculiar velocity is the motion of the particles with respect to comoving
coordinates. Peculiar velocities of the galaxies and supernovae are ignored in cosmology in
the expanding spacetime. As p(a) ∝ 1

a(t) , therefore momentum in expanding spacetime
is red-shifted and freely moving particles come to rest in comoving coordinates. Physical
distance between two points is calculated as thee scale factor a(t) times the coordinate
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distance. The expression without scale factor inside the bracket is the pure kinematical
statement of the geometry of spacetime

1
1− kr2 dr2 + r2dθ2 + r2sin2θdφ2 (61)

and represents the line element of the three-dimensional space with hidden symmetry of
being homogeneous and isotropic. It represents three geometries for three values of k.

4.3. The Geometry of Spherical World

For k = +1, the hypersurface is

1
1− r2 dr2 + r2dθ2 + r2sin2θdφ2 (62)

and represents a three dimensional sphere embedded in a four dimensional Euclidean
space. This space is finite and closed.

4.4. The Geometry of Hyperbolic World

For k = −1, the hypersurface is

1
1 + r2 dr2 + r2dθ2 + r2sin2θdφ2 (63)

and represents a three-dimensional hypersphere or hyperbola embedded in a four-dimensional
pseud-Euclidean space. This space is infinite and open.

4.5. The Geometry of Euclidean World

For k = 0, the hypersurface is

dr2 + r2dθ2 + r2sin2θdφ2 (64)

and represents a three-dimensional Euclidean flat space. This space is also infinite and
open. Now to determine Friedmann equations, we write first the components of the metric
tensor, since the metric is diagonal due to homogeneity and isotropy therefore we have
these diagonal components

g00 = gtt = −1

g11 = grr =
a2(t)

1− kr2

g22 = gθθ = a2(t)r2

g33 = gφφ = a2(t)r2sin2θ

(65)

Now, we turn to solve the FLRW metric and begins with finding Christoffel symbols
of 2nd kind or the affine connections which are given by

Γσ
µν = gσλΓµνλ =

1
2

gσλ

(
∂gµλ

∂xν
+

∂gνλ

∂xµ +
∂gµν

∂xλ

)
(66)

In four dimensions these will have (4)3 = 64 components. The four generalized cases
emerge in four dimensions for µ, ν, λ, and σ.

Case I: µ = ν = λ

Γµ
µµ =

1
2

∂

∂xµ log gµµ (67)
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In four dimensions
Γ0

00 Γ1
11

Γ2
22 Γ3

33
(68)

will emerge.
Case II: σ = µ, µ 6= ν

Γµ
µλ =

1
2

∂

∂xλ
log gµµ (69)

In four dimensions the following twelve cases

Γ0
01 Γ0

02 Γ0
03 Γ1

10
Γ1

12 Γ1
13 Γ2

20 Γ2
21

Γ2
23 Γ3

30 Γ3
31 Γ3

32

(70)

will emerge.
Case III: σ = µ, µ = λ

Γµ
λλ = − 1

2gµµ

∂gλλ

∂xµ (71)

In four dimensions the following twelve cases

Γ0
11 Γ0

22 Γ0
33 Γ1

00
Γ1

22 Γ1
33 Γ2

00 Γ2
11

Γ2
33 Γ3

00 Γ3
11 Γ3

22

(72)

will emerge.
Case IV: σ 6= µ 6= ν

Γσ
µν = gσλΓµνλ =

1
2

gσλ

(
∂gµλ

∂xν
+

∂gνλ

∂xµ +
∂gµν

∂xλ

)
= 0 (73)

In four dimensions the following twenty four cases:

Γ0
12 Γ0

21 Γ0
13 Γ0

31
Γ0

23 Γ0
32 Γ1

02 Γ1
20

Γ1
03 Γ1

30 Γ1
23 Γ1

32
Γ2

01 Γ2
10 Γ2

03 Γ2
30

Γ2
13 Γ2

31 Γ3
01 Γ3

10
Γ3

12 Γ3
21 Γ3

20 Γ3
02

(74)

emerge and vanish.

4.6. Non-Vanishing Christoffel Symbols

We determine the following non-vanishing Christoffel symbols of the 2nd kind with
the help of formula given in Equation (66) for the metric in Equation (57), which is the
metric of universe in standard cosmology.

Γ1
11 = kr

1−kr2

Γ1
10 = Γ1

01 = Γ2
20 = Γ2

02 = Γ3
30 = Γ3

03 = ȧ(t)
a(t)

Γ2
21 = Γ2

12 = Γ3
31 = Γ3

13 = 1
r

Γ3
32 = Γ3

23 = sin θ
cos θ

Γ0
11 = a(t)ȧ(t)

1−kr2

Γ0
22 = a(t)ȧ(t)r2

Γ0
33 = a(t)ȧ(t)r2sin2θ

Γ1
22 = −r

(
1− kr2)

Γ1
33 = −rsin2θ

(
1− kr2)

Γ2
33 = − sin θ cos θ

(75)
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4.7. Riemann Curvature Tensor

The Riemann curvature tensor Rσ
µνλ has (4)4 = 256 components in four dimensions

from which only twenty components can possibly be non-vanishing. The Riemann tensor
is given by

Rσ
µνλ =

∂

∂xν
Γσ

µλ −
∂

∂xλ
Γσ

µν + Γn
µλΓσ

nν − Γn
µνΓσ

nλ (76)

The possibly non-vanishing twenty components are given by

R0
110 R0

220 R0
330 R0

221
R0

331 R1
001 R1

221 R1
331

R1
332 R2

002 R2
112 R2

332
R2

021 R3
003 R3

113 R3
223

R3
031

(77)

The non-vanishing components are

R0
110 = − a(t)ä(t)

1−kr2

R0
101 = a(t)ä(t)

1−kr2

R1
010 = − ä(t)

a(t)

R1
001 = ä(t)

a(t)

R0
220 = −a(t)ä(t)r2

R0
202 = a(t)ä(t)r2

R2
020 = R3

030 = − ä(t)
a(t)

R2
002 = R3

003 = ä(t)
a(t)

R0
330 = −a(t)ä(t)r2sin2θ

R0
303 = a(t)ä(t)r2sin2θ

R1
221 = R3

223 = −r2(k + ȧ2(t)
)

R1
212 = R3

232 = r2(k + ȧ2(t)
)

R2
121 = R3

131 = k+ȧ2(t)
1−kr2

R2
112 = R3

113 = − k+ȧ2(t)
1−kr2

R1
331 = R2

332 = −r2sin2θ
(
k + ȧ2(t)

)
R1

313 = R2
323 = r2sin2θ

(
k + ȧ2(t)

)

(78)

4.8. Ricci Curvature Tensor and Ricci Scalar

Ricci tensor
(

Rµν

)
is obtained by contracting Riemann tensor Rσ

µνλ. We contract it by

placing λ = σ, so that Rσ
µνλ = Rλ

µνλ = Rµν In four dimensions it has (4)2 = 16 components:

R00 R11 R22 R33 R01
R10 R02 R20 R03 R30
R12 R21 R31 R13 R23
R32

(79)

The non-vanishing components are

R00 = 3 ä
a

R11 = − a(t)ä(t)+2k+2ȧ2

1−kr2

R22 = −r2(a(t)ä(t) + 2k + 2ȧ2)
R33 = −r2sin2θ

(
a(t)ä(t) + 2k + 2ȧ2) (80)

Ricci scalar (R) is obtained by contracting Ricci tensor

R = gµνRµν (81)
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Using double sums and simplifying in four dimensions, we have

R = g00R00 + g11R11 + g22R22 + g33R33 (82)

R = −6

[
ä(t)
a(t)

+

(
ȧ(t)
a(t)

)2

+
k

a2(t)

]
(83)

4.9. Einstein Tensor
(
Gµν

)
Einstein tensor is defined in terms of Ricci tensor Rµν, Ricci scalar R, and the metric

tensor gµν. It is expressed as

Gµν = Rµν −
1
2

gµνR (84)

In four dimensions it has (4)2 = 16, components. These are

G00 G11 G22 G33 G01
G10 G02 G20 G03 G30
G12 G21 G31 G13 G23
G32

(85)

The non-vanishing components are

G00 = −3
[( ȧ

a
)2

+ k
a2

]
G11 = g11

[
2 ä

a +
( ȧ

a
)2

+ k
a2

]
G22 = g22

[
2 ä

a +
( ȧ

a
)2

+ k
a2

]
G33 = g33

[
2 ä

a +
( ȧ

a
)2

+ k
a2

] (86)

In Equation (86), the spatial components of Einstein tensor can be written in a single
equation of tensorial nature.

Gµν = gµν

[
2

ä
a
+

(
ȧ
a

)2
+

k
a2

]
(87)

where µ = ν = 1, 2, 3, and mixed Einstein tensor can be found by gζνGµν = Gζ
µ

G0
0 = 3

[( ȧ
a
)2

+ k
a2

]
G1

1 = g11

[
2 ä

a +
( ȧ

a
)2

+ k
a2

]
G2

2 = g22

[
2 ä

a +
( ȧ

a
)2

+ k
a2

]
G3

3 = g33

[
2 ä

a +
( ȧ

a
)2

+ k
a2

] (88)

Now, we calculate the energy-momentum tensor of a perfect fluid in mixed form.
Cosmological principle and Weyl’s postulate imply the material content of the universe to
be regarded as perfect fluid [1–3].

gζνTµν = Tζ
µ =


T00 T01 T02 T03
T10 T11 T12 T13
T20 T21 T22 T23
T30 T31 T32 T33

 =


ρ 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p

 (89)

The non-vanishing components of energy-momentum tensor are

T0
0 = ρ T1

1 = −p
T2

2 = −p T3
3 = −p

(90)
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Putting the values of Einstein tensor Gµν and energy-momentum tensor Tµν from
Equations (88) and (89), respectively, in Einstein field equations

Gζ
µ = 8πTζ

µ (91)

3
[( ȧ

a
)2

+ k
a2

]
= 8πGρ

g11

[
2 ä

a +
( ȧ

a
)2

+ k
a2

]
= −8πGp

g22

[
2 ä

a +
( ȧ

a
)2

+ k
a2

]
= −8πGp

g33

[
2 ä

a +
( ȧ

a
)2

+ k
a2

]
= −8πGp

(92)

5. Derivation of Friedmann’s Equations

Now, using the Einstein field equations, we set to derive the Friedmann’s Equations
that describe the evolution of the universe by relating the large-scale geometrical character-
istics of spacetime to the large-scale distribution of matter–energy and momentum. From
Equation (92), we can write

3

[(
ȧ
a

)2
+

k
a2

]
= 8πGρ (93)

2
ä
a
+

(
ȧ
a

)2
+

k
a2 = −8πGp (94)

For other two components listed in Equation (92) the 2nd and 3rd components repeat,
therefore we will write only one time from the three components. From Equations (93) and (94)
we derive the Friedmann’s Equations and an equation for the conservation of matter.
Substituting Equation (93) in Equation (94) and performing simplification we get

ä
a
= −4πG

3
(ρ + 3p) (95)

and from Equation (93) which is the time-time component of the Einstein Equations.(
ȧ
a

)2
+

k
a2 =

8πG
3

ρ (96)

for
ȧ
a
= H (97)

which is Hubble parameter and gives expansion rate. The above Equation (96) can be
written as

H2 +
k
a2 =

8πG
3

ρ (98)

differentiating Equation (97) with respect to time ‘t’

∂tH = ∂t

(
ȧ
a

)
(99)

we obtain
Ḣ =

ä
a
− H2 (100)

which gives

Ḣ + H2 =
ä
a

(101)

Therefore, that Equation (95) takes the form in terms of Hubble parameter.

Ḣ + H2 = −4πG
3

(ρ + 3p) (102)
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we can also find
Ḣ = −4πG

3
(ρ + 3p)− H2 (103)

From Equation (98) H2 = 8πG
3 ρ with k = 0, for flat universe substituting it in

Equation (103) above

Ḣ = −4πG
3

(ρ + 3p)− 8πG
3

ρ (104)

which results in
∂tH = −4πG(ρ + p) (105)

Now, differentiating Equation (93) with respect to time after shifting the factor 3 on
the right side, we have

ȧ
a

[
2

ä
a
− 2
(

ȧ
a

)2
− 2

k
a2

]
=

8πG
3

ρ̇ (106)

subtracting now Equation (93) from Equation (94), we obtain

2
ä
a
− 2
(

ȧ
a

)2
− 2

k
a2 = −8πG(ρ + p) (107)

substituting Equation (107) in Equation (106), after simplification we have

ρ̇ + 3
ȧ
a
(ρ + p) = 0 (108)

Cosmological principle compels us to consider a fluid in which inhomogeneities will
be considered smoothed out and evolution of the universe shall be considered in the form
of perfect fluid characterized by energy density ρ and isotropic pressure p. Further we
consider that the pressure of the fluid depends only on the density neglecting its impact
on the volume and the temperature, i.e., p = p(ρ) which defines a barotropic fluid. In
addition, pressure and density bear a linear relationship

p ∝ ρ⇒ p = wρ (109)

where w = p
ρ is a dimensionless constant known as equation of state parameter. Substitut-

ing Equation (109) in Equation (108), we have another form of energy conservation for the
equation of state parameter w,

ρ̇

ρ
+ 3

ȧ
a
(1 + w) = 0 (110)

Now, Equations (95), (96), and (108) represent two Friedmann’s Equations, namely, ac-
celeration and evolution equations, and the equation of conservation, respectively. Accord-
ing to this equation, the evolution of all kinds of matter is determined by the conservation
of energy and momentum.

Friedmann Equations with Cosmological Constant Λ

We have to incorporate dark matter and dark energy in the matter–energy content
due to the significance of their role in current accelerated expansion and the present
Minkowskian flat geometry of the universe. Therefore, their role is however unavoidable
in the evolution of the universe. The solution of FLRW line element gives the Friedman’s
equations using Einstein field equations with cosmological constant Λ written usually in
the form

Gµν + Λgµν = 8πTµν (111)

and Friedmann’s equations with cosmological constant Λ can be worked out

ȧ2

a2 +
k
a2 =

8πG
3

ρ +
Λ
3

(112)
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ä
a
= −4πG

3
(ρ + 3p) +

Λ
3

(113)

The equation of energy conservation can also be calculated from these Friedman
equations in the presence of cosmological constant Λ. Multiplying Equation (112) with 3a2,
differentiating it with respect to time and then dividing by ȧ, we have

6ä = 8πGa
(

2ρ +
a
ȧ

ρ̇
)
+ 2Λa (114)

dividing Equation (114) by a.

6
ä
a
= 8πG

(
2ρ +

a
ȧ

ρ̇
)
+ 2Λ (115)

Substituting now the 2nd Friedman Equation from Equation (113) in it, we have

6
(
−4πG

3
(ρ + 3p) +

Λ
3

)
= 8πG

(
2ρ +

a
ȧ

ρ̇
)
+ 2Λ (116)

after simplification, we obtain

ρ̇ + 3
ȧ
a
(ρ + p) = 0 (117)

where ρ and p are contributed by all whatever exists and constitutes the universe.

6. A Geometric Object Embedded in an n-Dimensional Space

An object cannot be placed in a space whose dimensions are equal or less than the
object to be placed, rather the space must have larger number of dimensions in order to let
the object allow rest in it. The presence of an object in a space having larger dimensions
than the object is called embedding of it in that space.

6.1. Intrinsic Geometry

The properties of the geometry that we have access to, based on visualization of the
two dimensional beings are called intrinsic because two dimensional beings cannot observe
how surfaces are shaped in three or higher dimensional spaces.

6.2. Extrinsic Geometry

The properties of the geometry that we have access to, based on visualization of higher
dimensional creature are called extrinsic because higher-dimensional creature can observe
how surfaces are shaped in three- or higher-dimensional spaces. The geometrical properties
related to an object describing how it has been embedded in some higher dimensional space.
Extrinsic geometrical properties depend on how the bodies are placed in the space and how
they affect it. The geometry which comes into existence due to interaction between space
and the body placed in it describes the extrinsic properties. General relativity considers the
geometry of spacetime as the extrinsic property of an object and owes its existence due to
the body being present in it.

6.3. The Geometry of 2-Sphere Embedded in Three-Dimensional Space

We consider a three-dimensional Euclidean space where three dimensions namely
length, width, and height are represented by three coordinate axes, respectively, as we
know this space consists of points separate from time, and therefore we do not call its
points as events. We assign the triplet of three Cartesian coordinates (x, y, z) to each point
of it, where x, y, and z are measured along the three axes of it. The sketch of embedding
the geometry of 2-sphere in three dimensional space is drawn in Figure 10:
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Figure 10. The geometry of 2-sphere embedded in three dimensional Euclidean space.

The line element in this space is given by

ds2 = dx2 + dy2 + dz2 (118)

Considering now a sphere with its center at the origin of this coordinate system and
envisaging its radius to be a, the surface in Cartesian coordinates (x, y, z) where x, y, and z
are along the three axes of three-dimensional Euclidean space. The equation of sphere of
this sphere is

x2 + y2 + z2 = a2 (119)

Differentiating Equation (119) with respect to time

2x
dx
dt

+ 2x
dx
dt

+ 2x
dx
dt

= 0 (120)

Moreover, in differential form

2xdx + 2ydy + 2zdz = 0 (121)

Solving Equation (121) for dz, we have

dz = − xdx + ydy
z

(122)

Finding the value of z from Equation (119)

z =
√

a2 − (x2 + y2) (123)

Substituting in Equation (122)

dz = − xdx + ydy√
a2 − (x2 + y2)

(124)

The value of dz = − xdx+ydy

[a2−(x2+y2)]
1
2

comes up with a sort of constraint on dz which

despite of being displaced by infinitesimally small amounts dx and dy from an arbitrary
point on the surface of the sphere holds us on the surface of the sphere. Squaring dz in
Equation (124)

dz2 =
(xdx + ydy)2

a2 − (x2 + y2)
(125)
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Putting in Equation (118), the line element takes the form by substituting for dz2

ds2 = dx2 + dy2 +
(xdx + ydy)2

a2 − (x2 + y2)
(126)

The value of the line element in Equation (126) represents the line element for a sphere
in terms of Cartesian coordinates (x, y, z). We further observe that the line element in
Equation (126) has a coordinate singularity at a2 = x2 + y2 in correspondence with the
equator of the sphere and in relation to the point A, otherwise at the equator in the intrinsic
geometry of 2-sphere there exists no such physical situation. The embedding scenario
manifests how the coordinates (x, y) cover the whole surface of the sphere uniquely up
to this point A. The geometry of 2-sphere in these coordinates becomes geometrically
meaningful in three-dimensional Euclidean space. We can transform the line element in
Equation (126) above into spherical polar coordinates by taking

x = r sin θ cos φ
y = r sin θ sin φ

(127)

where we differentiate each of x and y with respect to θ and φ alternately to find

dx = sin θ cos φdr + r cos φ cos θdθ − r sin θ sin φdφ
dy = sin θ sin φdr + r sin φ cos θdθ + r sin θ cos φdφ

(128)

adding the values of x, y given in Equation (127) after taking square of both equations in it,
we get

x2 + y2 = r2sin2θ (129)

adding dx and dy in Equation (128) after taking square of both equations in it, we possess

dx2 + dy2 = (sin θdr + r cos θdθ)2 + r2sin2θdφ2 (130)

we find the expression

xdx + ydy = (sin θdr + r cos θdθ)(x cos φ + y sin φ)
−r sin θdφ(x sin φ− y cos φ)

(131)

squaring Equation (131), we have

(xdx + ydy)2 =

(
(sin θdr + r cos θdθ)(x cos φ + y sin φ)
−r sin θdφ(x sin φ− y cos φ)

)2

(132)

Now substituting Equations (129), (130), and (132) in Equation (126) and simplifying
to have the following form:

ds2 = dr2 + r2dθ2 + r2sin2θdφ2 (133)

The value of the line element in Equation (133) gives the line element for a sphere in
terms of Spherical polar coordinates (r, θ, φ). The line element in Equation (126) results in
an alternative form for

x = ξ cos φ
y = ξ sin φ

(134)

ds2 =
a2

a2 − ξ2)
dξ2 + ξ2dφ (135)

The line element in Equation (135) above gives us, in addition, freedom to choose an
arbitrary point on the surface of the sphere by ξ = 0 as the origin of the coordinate system.
This freedom connotes in it as a hidden symmetry. We can develop ξ and φ coordinate
curves on the surface of the sphere by generating a standard coordinate system (ξ, φ) on
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the tangent plane at the point A that projects vertically downward onto the surface of
the sphere. We further observe that the line element in Equation (135) has a coordinate
singularity at a = ξ in correspondence with the equator of the sphere in relation to the
point A, otherwise at the equator in the intrinsic geometry of 2-sphere there exists no shade
of occurrence of such situation. The embedding picture manifests how the coordinates
(ξ, φ) cover the whole surface of the sphere uniquely up to this point A. The geometry
of 2-sphere in these coordinates becomes geometrically meaningful in three dimensional
Euclidean space.

6.4. The Geometry of 3-Sphere Embedded in Four Dimensional Euclidean Space

Spaces with dimensions higher than three are now significant in mathematical sciences
to have proper description of the physical universe. We consider a four-dimensional
Euclidean space which can be considered mathematical extension of three-dimensional
Euclidean space. Minkowski used a four-dimensional spacetime to explain the phenomena
of the physical world as required by special relativity. The structure of Euclidean four-
dimensional space is simple as compared to the Minkowskian structure of spacetime.
Minkowskian four dimensional spacetime is pseudo-Euclidean space. In four-dimensional
Euclidean space, we assign the quadruplet of four Cartesian coordinates (x, y, z, w) to each
point of it, where x, y, z, and w are along the four axes of it. The line element in this space
is given by

ds2 = dx2 + dy2 + dz2 + dw2 (136)

Considering now a sphere with its center at the origin of this coordinate system with
radius a, the surface in Cartesian coordinates (x, y, z, w) where x, y, z and w are along the
four axes of four dimensional Euclidean space. The equation of the sphere reads as

x2 + y2 + z2 + w2 = a2 (137)

Differentiating Equation (137) with respect to time,

2x
dx
dt

+ 2y
dy
dt

+ 2z
dz
dt

+ 2w
dw
dt

= 0 (138)

And in differential form

2xdx + 2ydy + 2zdz + 2wdw = 0 (139)

Finding out the value of dw from Equation (138), we get

dw = − xdx + ydy + zdz
w

(140)

Now finding the value of w from Equation (137)

w =
√

a2 − (x2 + y2 + z2) (141)

Substituting in Equation (140), we obtain

dw = − xdx + ydy + zdz√
a2 − (x2 + y2 + z2)

(142)

The value of dw = − xdx+ydy+zdz

[a2−(x2+y2+z2)]
1
2

provides a sort of constraint on dw which, though

displaced by infinitesimally small amounts dx, dy, dz from an arbitrary point on the surface
of the sphere holds us stuck on the surface of the sphere. squaring Equation (142)

dw2 = − (xdx + ydy + zdz)2

a2 − (x2 + y2 + z2)
(143)
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substituting now in Equation (136), the line element takes the form for the value of dw2

ds2 = dx2 + dy2 + dz2 +
(xdx + ydy + zdz)2

a2 − (x2 + y2 + z2)
(144)

The value of the line element in Equation (144) gives the line element for a sphere
in terms of Cartesian coordinates (x, y, z, w), We further observe that the line elements in
Equation (144) has a coordinate singularity at a2 = x2 + y2 + z2 in correspondence with
the equator of the sphere relative to the point A; otherwise, at the equator in the intrinsic
geometry of the 3-sphere, there does not exist any situation like this. The embedding
picture manifests how the coordinates (x, y, z) cover the whole surface of the sphere
uniquely up to this point A. The geometry of 3-sphere in these coordinates becomes
geometrically meaningful in four dimensional Euclidean space. We transform the line
element in Equation (144) into spherical polar coordinates which are given below,

x = r sin θ cos φ
y = r sin θ sin φ
z = r cos θ

(145)

where we differentiate x, and y with respect to θ and with respect to φ each and differentiate
z with respect to θ only to find

dx = sin θ cos φdr + r cos φ cos θdθ − r sin θ sin φdφ
dy = sin θ sin φdr + r sin φ cos θdθ + r sin θ cos φdφ
dz = r cos θ

(146)

Adding x, y, and z in Equation (145) after taking square of all three equations in it
to obtain

x2 + y2 + z2 = r2 (147)

Adding now dx, dy, and dz in Equation (146) after taking square of all three equations
in it to have

dx2 + dy2 + dz2 = dr2 + r2dθ2 + r2sin2θdφ2 (148)

and the expression we calculate

xdx + ydy + zdz = (sin θdr + r cos θdθ)(x cos φ + y sin φ)
−r sin θdφ(x sin φ− y cos φ) + r cos θ(cos θdr− r sin θdθ)

(149)

Squaring Equation (149), we have

(xdx + ydy + zdz)2 =

 (sin θdr + r cos θdθ)(x cos φ + y sin φ)
−r sin θdφ(x sin φ− y cos φ)
+r cos θ(cos θdr− r sin θdθ)

2

(150)

Now, substituting Equations (147), (148), and (150) in Equation (144), after simplifica-
tion we get

ds2 =
a2

a2 − r2 dr2 + r2dθ2 + r2sin2θdφ2 (151)

It can further be expressed in the form

ds2 =
1(

1− r2

a2

)dr2 + r2dθ2 + r2sin2θdφ2 (152)
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It is important to note here that for a→ ∞ in the Equation (152) above. It reduces to
the metric of ordinary three-dimensional Euclidean space

ds2 = dr2 + r2dθ2 + r2sin2θdφ2 (153)

which we calculated in Equation (133). The metric in Equation (151) has a singularity
at r = a, which is just a coordinate singularity and has nothing to do with physical reality
of the sphere as we can observe. The line element in Equation (152) results in an alternative
form for

x = ξ cos φ
y = ξ sin φ

(154)

ds2 =
a2

(a2 − ξ2)
dξ2 + ξ2dφ (155)

The line element in Equation (155) gives us, in addition, freedom to choose an arbitrary
point on the surface of the sphere by ξ = 0 as the origin of the coordinate system. This
freedom is implied by it as a hidden symmetry in it. We can develop ξ and φ coordinate
curves on the surface of the sphere by generating a standard coordinate system (ξ, φ) on
the tangent plane at the point A that projects vertically downward onto the surface of
the sphere. We further observe that the line element in Equation (155) has a coordinate
singularity at a = ξ with respect to the equator of the sphere in relation with the point A,
otherwise at the equator in the intrinsic geometry of 2-sphere there exists no such situation.
The embedding picture manifests how the coordinates (ξ, φ) cover the whole surface of
the sphere uniquely up to the point A. The geometry of the 2-sphere in these coordinates
becomes geometrically meaningful in three dimensional Euclidean space.

7. Einstein’s Static Universe

Albert Einstein himself applied general relativity to the largest scale of spacetime [3]
and presented the very first relativistic model of the universe laying the foundations of
modern theoretical cosmology. The model was later on called as Einstein world or universe.
For this purpose, Einstein modified his field equations by proposing an inbuilt energy
density known as cosmological constant Λ in the geometrical structure of spacetime itself
that provides repulsive gravity to keep the universe from expanding

Gµν + Λgµν = 8πTµν (156)

Equation (156) when solved for the most homogeneous and isotropic geometry of
FLRW spacetime produces Friedmann equations as we derived earlier(

ȧ
a

)2
+

k
a2 =

8πG
3

ρ +
Λ
3

(157)

ä
a
= −4πG

3
(ρ + 3p) +

Λ
3

(158)

As for a static universe H = 0, which implies that ä
a = 0. Now a static universe

possesses cold matter which means it does not has pressure, i.e., p = 0, so Equations (157)
and (158) reduce to the form, respectively,

8πG
3

ρ +
Λ
3
− k

a2 = 0 (159)

and
− 4πG

3
ρ +

Λ
3

= 0 (160)
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From above Equation (160), we have

Λ = 4πGρ (161)

Substituting this value of Λ in Equation (159), and having the equation simplified, we
again get the value of Λ in terms of the curvature term k and the scalar factor a(t), that is

Λ =
k
a2 (162)

The line element for the static Einstein universe can be written now using FLRW
metric. From above Equation (162) for k = +1, we have a2(t) = Λ−1, substituting in
Equation (59), the static solution for closed universe becomes

ds2 = −dt2 + Λ−1
(

1
1− kr2 dr2 + r2dθ2 + r2sin2θdφ2

)
Using the Schwarzschild coordinates with the re-scale of radial coordinate and by

defining R = ra, we have

ds2 = −dt2 +
1

1−ΛR2 dR2 + R2dθ2 + R2sin2θdφ2

Case-I (empty universe)
substituting Λ = 0 in Equation (161) gives 4πGρ = 0 ⇒ ρ = 0 which implies that

k = 0 a Euclidean flat universe. It does not belong to Einstein static universe because it
is empty.

Case II (non-empty universe)
Einstein universe belongs to Λ 6= 0 and ρ 6= 0 implying that k > 0 which represents a

universe with hypersurface of Riemannian geometry. In Einstein’s universe ρ > 0, therefore
a positive cosmological constant Λ > 0 would be allowed which also implies k > 0.

7.1. Instability of Einstein’s Universe

Equation of energy conservation can be had from Equations (157) and (158) by multi-
plying Equation (158) with 3a2, differentiating it with respect to time and then dividing by
ȧ, we have

6ä = 8πGa
(

2ρ +
a
ȧ

ρ̇
)
+ 2Λa (163)

Dividing Equation (163) by a and substituting the 2nd Friedman Equation from
Equation (159) in it, we have

6
ä
a
= 8πG

(
2ρ +

a
ȧ

ρ̇
)
+ 2Λ (164)

6
(
−4πG

3
(ρ + 3p) +

Λ
3

)
= 8πG

(
2ρ +

a
ȧ

ρ̇
)
+ 2Λ (165)

after simplification, we get

ρ̇ + 3
ȧ
a
(ρ + p) = 0 (166)

For the cold matter universe p = 0, with this the resulting equation is a separable universe

ρ̇ + 3
ȧ
a

ρ = 0 (167)

∫
ρ̇

ρ
dt = −3

∫ ȧ
a

dt (168)

ln ρ = −3 ln a + ln Z (169)

ln ρ = ln a−3 + ln Z (170)
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ln ρ− ln a−3 = ln Z (171)

ln
ρ

a−3 = ln Z (172)

which gives
ρa3 = Z (173)

where Z is some positive constant of integration Z > 0

ρ =
Z
a3 (174)

Further, as the universe does not expand so that a(t) = a(t0) = a0, therefore replacing
a(t) with a0 in Equation (174)

ρ =
Z
a3

0
(175)

Substituting the value of ρ from Equation (176) in Equation (158) , i.e., 2nd Friedmann
Equation with p = 0, we obtain

ä
a
= −4πGZ

3a03 +
Λ
3

(176)

and substituting in Equation (161) gives

Λ = 4πGρ = 4πG
Z
a3

0
(177)

where 4πG Z
a3

0
> 0 since Z > 0, Now, we perturb the solution slightly with the follow-

ing perturbation

ε << 1 (178)

a(t) = a(t0) + ε(t)a(t0) = a0(1 + ε(t)) (179)

substituting this in Equation (175), we have

d2

dt2 (a0(1 + ε(t)))
a0(1 + ε(t))

= − 4πGZ

3(a0(1 + ε(t)))3 +
Λ
3

(180)

Or
d2

dt2 (a0(1 + ε(t))) = −4πGZ
3a2

0
(1 + ε(t))−2 +

Λ
3

a0(1 + ε(t)) (181)

Using the Maclaurin series expansion as ε << 1, and (1 + ε(t))−2 = 1− 2ε + O(ε2),
Now Equation (181) becomes by neglecting O(ε2) as ε << 1, so that

a0
d2ε

dt2 = −4πGZ
3a2

0
(1− 2ε(t)) +

Λ
3

a0(1 + ε(t)) + O(ε2) (182)

ε̈ = −4πGZ
3a3

0
+

8πGZ
3a3

0
ε +

Λ
3

ε +
Λ
3

=

(
8πGZ

3a3
0

+
Λ
3

)
ε +

Λ
3
− 4πGZ

3a3
0

(183)

Using the value of Λ = 4πGZ
a3

0
from Equation (177) in Equation (183), it can be expressed

in the form
d2ε

dt2 −Λε = 0 (184)
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As the cosmological constant is Λ > 0, the solution of above equation will read as

ε = P exp(
√

Λt) + Q exp(−
√

Λt) (185)

Due to existence of the 1st term in the above solution as positive and in the case of an
arbitrary perturbation considered initially, both of the constants P 6= 0, Q 6= 0 will help the
perturbation grow and it will not remain small which will imply that the static solution
is unstable, although P = 0 can be possible only for specialized initial conditions such as
singular one.

7.2. De Sitter Universe

In Einstein’s static model with positive cosmological constant when energy density of
the matter is removed de Sitter model results. The de Sitter model of the universe presented
in 1917 was proposed just after Einstein presented his static closed model of the universe.
Einstein resorting to the Mach’s principle was of the view that it is merely matter density in
universe that is the cause of inertia and gravitation. For checking the status of this Einstein’s
belief de Sitter posed the 2nd model of the universe devoid of matter density Tµν = 0,
however retaining the cosmological constant that is Gµν = gµνΛ. The de Sitter model is the
maximally symmetric solution of Einstein’s field equations with vanishing matter density.
The geometric theoretic structure of spacetime of the de Sitter model is comparatively more
complicated than that of Einstein’s model of the universe. The characteristic of the de Sitter
model is that it predicts redshift despite it contains neither matter density nor radiation.
We review de Sitter model using Fiedmann’s equations, however it is important to note
that these equations were worked out after the development of de Sitter model. We derived
Friedmann equations above in the presence of cosmological constant term Λ, which are(

ȧ
a

)2
+

k
a2 =

8πG
3

ρ +
Λ
3

(186)

ä
a
= −4πG

3
(ρ + 3p) +

Λ
3

(187)

de Sitter universe corresponds to ρ = 0, so that k(ρ) = 0, Equation (186) takes the form

ȧ
a
=

√
Λ
3

(188)

Integrating with respect to time

∫ ȧ(t)
a(t)

dt =

√
Λ
3

∫
dt (189)

a(t) = e
√

Λ
3 t (190)

From Equation (188), H = ȧ
a , so the Equation (190) can be expressed as

a(t) = eHt (191)

Which corresponds to the modified Einstein field equations

Gµν = −gµνΛ (192)

8. The Conformal FLRW Line Element

The metric in Equation (57) can be conformally recast by defining conformal time as

dτ =
dt

a(t)
(193)
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so that
dt = a(t)dτ (194)

After substituting Equation (194) in Equation (57) and simplifying, we get the line
element in the form

ds2 = −a(τ)2
[
−dτ2 −

(
1− kr2

)−1
dr2 − r2Ω2

]
(195)

Due to conformal time the scale factor a(τ) becomes a factor of spatial as well as
temporal components in the metric. Now, a function f (t) which depends upon time can be
differentiated as

ḟ (t) = f ′(τ)
a(τ)

f̈ (t) = f ′′(τ)
a2(τ)

− f ′(τ)
a2(τ)
H

(196)

where dot “.” and “,” represent derivatives with respect to cosmic and conformal times,
respectively, and H = a′(τ)

a(τ) . Now, replacing f (t) and its derivatives with a(t) both in
correspondence with cosmic time ‘t’ and conformal time ‘τ’

ȧ(t) =
a′(τ)
a(τ)

(197)

ä(t) =
a′′(τ)
a2(τ)

− H
2

a(τ)
(198)

and
H =

ȧ
a
=
H

a(τ)
(199)

Ḣ =
H′

a2(τ)
− H2

a2(τ)
(200)

Similarly

H2 =
8πGa2

3
ρ− k (201)

and
ρ′ + 3H(ρ + p) = 0 (202)

Now we solve the energy conservation equation From Equation (108)

ρ̇ + 3
ȧ
a
(ρ + p) = 0 (203)

in order to get the relation between energy density ρ, scale factor a and equation of state
parameter w = p

ρ we solve

ρ̇ = −3
ȧ
a
(ρ + p) = −3

ȧ
a

ρ

(
1 +

p
ρ

)
(204)

⇒ ρ̇

ρ
= −3

ȧ
a
(1 + w) (205)

where p
ρ = w. Integrating Equation (205)

∫ 1
ρ

dρ = −3(1 + w)
∫ 1

a
da (206)

which gives
ρ = a−3(1+w) (207)
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Now from 1st Friedmann equation, after simplification and doing integration, we find

a = t
2

3(1+w) (208)

For w = −1, 0, 1
3 , we find pressure, energy density and scale factor characterizing

the expansion of the universe which depicts three phases of the universe namely vacuum
dominated, radiation dominated and matter dominated, respectively.

8.1. Vacuum Domination (Λ-Dominated Era)

For w = −1
ρ = a−3(1+w) = a0 (209)

and
a = t

2
3(1−1) = t∞ (210)

8.2. Radiation Domination

For w = 1
3

ρ = a−3(1+ 1
3 ) = a−4 (211)

and

a = t
2

3(1+ 1
3 ) = t

1
2 (212)

8.3. Matter Domination

For w = 0
ρ = a−3(1+0) = a−3 (213)

and

a = t
2

3(1+0) = t
2
3 (214)

8.4. Critical Density (ρc) and Density Parameter (Ω)

Now from 1st Friedman Equation (112) with Λ = 0 and H = ∂t ln a, we relate the
curvature of spacetime k and the expansion characterized by the scale factor a(t) to the
energy density ρ(t) of the universe and find the expression for the critical density required
to keep the current rate of the expansion.

H2 =
8πG

3
ρ− k

a2 (215)

For critical density ρc the curvature of spacetime geometry k must vanish, so that
Equation (215) reduces to

H2 =
8πG

3
ρ (216)

where we obtain the expression for critical density

ρ = ρc =
3H2

8πG
(217)

From Equation (215) dividing both sides by H2 and rearranging

1 =
8πG
3H2 ρ− k

a2H2 =
ρ(

3H2

8πG

) − k
a2H2 (218)
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where 3H2

8πG = ρc, therefore Equation (218) becomes

1 =
ρ

ρc
− k

a2H2 = Ω− k
a2H2 (219)

⇒ Ω− 1 =
k

a2H2 (220)

where Ω = ρ
ρc

is the density parameter and we can predict in terms of it about the geometry
of universe. The local geometry of the universe is investigated by this parameter by
observing whether the relative density is smaller than unity, greater than or equal to it. In
the Figure 11 all three geometries are represented as the density parameter would allow:

Figure 11. The spherical geometry Ω0 > 1 and for hyperbolic geometry Ω0 < 1 and Ω0 = 1
represents flat geometry.

Equation (220) can also be derived from Equation (215) in an alternative style. Writing
Equation (215) by multiplying and dividing the 1st term on the right side with ρc

H2 =
8πGρ

3
ρc

ρc
− k

a2 (221)

Using the density parameter Ω = ρ
ρc

, in Equation (221) we can write

H2 =
8πG

3
ρcΩ− k

a2 (222)

Now, from the critical density expression in Equation (217),

⇒ 3
8πG = ρc

H2

⇒ 8πG
3 = H2

ρc

(223)

Substituting the 2nd part in Equation (223) in Equation (222) and using the density
parameter, we get

H2 = H2Ω− k
a2 (224)

which gives the following form similar to Equation (220)

Ω− 1 =
k

a2H2 (225)

Now
Ω =

ρ

ρc
(226)
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is considered decisive in describing the evolution of the universe. The present value of it is
denoted by Ω0 and it gives following three geometries of the universe

Ω0 > 1 (227)

a closed universe implying the universe with spherical geometry

Ω0 < 1 (228)

an open universe implying the universe with hyperbolic geometry and

Ω0 = 1 (229)

a flat universe implying the universe with Euclidean or Minkowskian geometry. The
present value of critical density can be calculated with present value of Hubble constant
H0, gravitational constant G and π.

ρc,0 =
3H2

0
8πG

= 3(73.8)2

8(3.14)(6.67×10−11)
= 1.1× 10−5h2

(230)

where the scaled Hubble parameter h is defined by H = 100 hkm s−1 Mpc−1 and
H−1 = 9.778 h−1 Gyr H−1 = 2998 h−1 Mpc.

8.5. Particle Horizon

When the scale factor a(t) is multiplied with the co-moving coordinates we get the
proper distance. In cosmology causality is one directional since we just receive photons
from the outer world that serves to be self-sufficient approach. The horizon or horizon
distance of the universe is defined as the maximum distance that light could have traveled
to our reference Earth as the time after the beginning of the universe when for the first time
it became exposed to electromagnetic radiation [45], thus horizon represents the causal
distance in the universe.

dH(t) = a(t)
∫ t

0

dt′

a(t′)
(231)

Such that dH(t) ∼ H−1(t) Particle horizon is defined to be the distance traveled by a
photon from the time of big bang up to a certain later time, t. Particle horizon puts limits
on communication from the deep inward past.

8.6. Event Horizon

An event horizon defines such a set of points from which light signals sent at some
given time will never be received by an observer in the future. It sets limits on the horizon
distance and on communication to the future so that as long as it exists, the size of the
causal patch of the universe will be finite.

8.7. Deceleration Parameter (q0)

A Taylor series is a series expansion of a function about a given point. We require
here a one dimensional Taylor series which is the expansion of a real function f (x) about a
point x = a and is given by

f (t) = f (x)|x=a = f (a) + f ′(a)(x− a) + f ′′(a)
2! (x− a)2

+ f ′′′(a)
3! (x− a)3 + · · ·+ f n(a)

n! (x− a)n + · · ·
(232)
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We take the function f (x) = a(t) which is scale factor and find its Taylor series
expansion about the present time t = t0

a(t) = a(t)|t=t0
= a(t0) + ȧ(t0)(t− t0) +

ä(t0)
2! (t− t0)

2

+ (t0)
3! (t− t0)

3 + · · ·+ an(t0)
n! (t− t0)

n + · · ·
(233)

dividing Equation (233) by a(t0) throughout, we have

a(t)
a(t0)

= a(t0)
a(t0)

+ ȧ(t0)
a(t0)

(t− t0) +
1
2

ä(t0)
a(t0)

(t− t0)
2

+ 1
6

(t0)
a(t0)

(t− t0)
3 + · · ·+ 1

n!
an(t0)
a(t0)

(t− t0)
n + · · ·

(234)

ignoring the higher terms we have the following remaining expression

a(t)
a(t0)

= 1 +
ȧ(t0)

a(t0)
(t− t0) +

1
2

ä(t0)

a(t0)
(t− t0)

2 (235)

multiplying and dividing now by ȧ(t) with 3rd term of Equation (235) on the right
hand side:

a(t)
a(t0)

= 1 +
ȧ(t0)

a(t0)
(t− t0) +

1
2

ȧ(t0)

a(t)
ä(t0)

ȧ(t0)
(t− t0)

2 (236)

Multiplying again the 3rd term on the right hand side of Equation (236) with ȧ(t0)
a(t0)

and

its reciprocal a(t0)
ȧ(t0)

, we have

a(t)
a(t0)

= 1 +
ȧ(t0)

a(t0)
(t− t0) +

1
2

(
ȧ(t0)

a(t0)
× a(t0)

ȧ(t0)

)
ȧ(t0)

a(t)
ä(t0)

ȧ(t0)
(t− t0)

2 (237)

Putting for ȧ(t0)
a(t0)

= H0, the present value of Hubble parameter and a(t0)ä(t0)

[ȧ(t0)]
2 = −q0,

Equation (237) reduces to the following:

a(t)
a(t0)

= 1 + H0(t− t0) +
1
2

H2
0(−q0)(t− t0)

2 (238)

where

q0 = − a(t0)ä(t0)

[ȧ(t0)]
2 = − ä(t0)

ȧ(t0)
H−1

0 = − ä(t0)

a(t0)
H−2

0 (239)

is called the deceleration parameter. It tells us that greater the value of q0, the faster will be
speed of deceleration. It can be further related with the acceleration equation

ä(t)
a(t)

= −4πG
3

(ρ + 3p) (240)

Putting Equation (240) in Equation (239)

q0 = −
(
−4πG

3
(ρ + 3p)

)
H−2

0 (241)

With p = 0 for a universe having matter domination and present energy density
ρ = ρ0 with dividing and multiplying by 2, we possess

q0 =
1
2

8πG
3H2

0
ρ0 (242)
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Now, as the critical density is given by ρc =
3H2

0
8πG from the 1st Friedmann equation.

Therefore Equation (242) takes the form

q0 =
1
2

(
1
ρc

)
ρ0 =

1
2

ρ0

ρc
=

1
2

Ω0 (243)

The measurement of deceleration parameter q0 determines how much bigger the
universe was in earlier times. The explorations of redshift measures of supernovae of Type
SNIa to measure the value of q0 has shown astoundingly that q0 < 0 at the present which
means that the expansion of the universe is accelerating rather than to be decelerating which
affirms that the concept of dark energy must be acknowledged. Accelerated expansion of
the universe corresponds to q0 < 0, whereas q0 > 0 corresponds decelerated expansion. It
is interesting to notice that for all of these components we have H > 0, i.e., an increasing
scale factor which gives the expansion rate of the universe. Moreover, to get a better
understanding of the properties of each species, it is useful to introduce the deceleration
parameter q0 as

q0 = − äȧ
ȧ2

= − ä
ȧ

a
ȧ

= − ä
ȧ H−1

(244)

such that for both matter-dominated or radiation-dominated universe the expansion is
decelerating. It is also interesting to notice that components with w < − 1

3 give an acceler-
ated expansion.

8.8. Friedmann Equations in Terms of Density Parameter

We found earlier Friedmann equations(
ȧ
a

)2
+

k
a2 =

8πG
3

ρ (245)

ä
a
= −4πG

3
(ρ + 3p) (246)

In Equation (245) in order to incorporate vacuum energy we can write energy density
as the sum of all energy components ρ = ρm + ρr + ρΛ such that the equation can be
written as

H2 =
8πG

3
(ρm + ρr + ρΛ)−

k
a2 (247)

where ȧ
a = H is the Hubble parameter, writing ρΛ as ρΛ = Λ = Λ

8πG and ρ = ρm + ρr which
further can be written as the contributing ingredients ρm = ρb + ρCDM and ρr = ργ + ρν,
also we found earlier the critical density to be 3H2

8πG = ρcd, which for the present value

can be expressed as ρc,0 =
3H2

0
8πG we find from it the value of 8πG =

3H2
0

ρcd,0
and substitute in

Equation (247) which comes to be

H2 = H2
0

(
ρm

ρc,0
+

ρr

ρc,0
+

ρΛ

ρc,0

)
− k

a2 (248)

or
H2 = H2

0(Ωm,0 + Ωr,0 + ΩΛ,0)−
k
a2 (249)

where
Ωm,0 =

ρm

ρc,0
, Ωr,0 =

ρr

ρc,0
, ΩΛ,0 =

ρΛ

ρc,0
(250)



Universe 2021, 7, 276 41 of 89

It might be suitable to write the curvature term k in terms of density parameter
k = Ωk,0 = ρk

ρc,0
, further the present value of the scale factor a(t) = 1 so that Equation (249)

takes the form
H2 = H2

0(Ωm,0 + Ωr,0 + ΩΛ,0)−Ωk,0 (251)

Now, for the present value of Hubble parameter, i.e., H = H0, Equation (251) can be
written for the curvature density parameter

Ωk,0 = H2
0(Ωm,0 + Ωr,0 + ΩΛ,0 − 1) (252)

Equation (249) can be written in general form, i.e., H 6= H0 and a 6= a0 = 1

H2 = H2
0(Ωm + Ωr + ΩΛ)−

Ωk
a2 (253)

Equation (253) can also be written for the present values of all the energy density
parameters

H2 = H2
0(Ωm,0 + Ωr,0 + ΩΛ,0)−

Ωk,0

a2 (254)

We know that energy density ρ for matter, radiation and vacuum domination eras
changes with the scale factor that characterizes the expansion of the universe according to

ρ ∝ a−3

ρ ∝ a−4

ρ ∝ a0
(255)

respectively. Thus, Equation (254) takes the following form using Equation (255):

H2 = H2
0

(
Ωm,0a−3 + Ωr,0a−4 + ΩΛ,0a0

)
−Ωk,0a−2 (256)

The Equation (256) represents Friedmann equation in terms of density parameters.
For a = a(t)

a(t0)
= 1

1+z , Equation (256) can be expressed in terms of redshift as follows

H2 = H2
0

(
Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + ΩΛ,0(1 + z)0

)
−Ωk,0(1 + z)2

(257)

We can discuss various models for the universe using Equation (256) for matter,
radiation, Λ and curvature-dominated eras.

For matter domination, Equation (256) with Ωm,0 = 1 and with the rest of terms
vanishing gives

a =
( 3

2 H0t
) 2

3

t = 2a
3
2

3H0

(258)

which gives an expanding universe with expansion rate inversely proportional to time, i.e.,
H = 2

3 t−1 and age of the universe would be t0 = 2
3 H−1

0 . Such model must be subject to
deceleration as the time goes on.

For radiation domination, Equation (256) with Ωr,0 = 1 and with the rest of terms
vanishing, gives

a =
√

2H0t
t = a2

2H0

(259)

which gives an expanding universe with expansion rate inversely proportional to time,
i.e., H = 1

2 t−1 and age of the universe would be t0 = 1
2 H−1

0 . The expansion is subject to
deceleration in this radiation-dominated era.
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For Λ domination, Equation (256) with ΩΛ,0 = 1 and the rest of terms vanishing gives

a = eH0t

t = ∞
(260)

which gives an exponentially expanding universe with expansion rate inversely propor-
tional to time, i.e., H = (ln a)t−1 and infinite age.

For k domination or the otherwise empty universe, Equation (256) with Ωk,0 = 1 and
with the rest of terms vanishing gives

a = H0t
t = ∞

(261)

which gives an expanding universe with expansion rate inversely proportional to the time,
i.e., “t”.

8.9. Cosmological Redshift

we considering the FLRW geometry

ds2 = −dt2 + a(t)2
[(

1− kr2
)−1

dr2 + r2dθ2 + r2sin2θdφ2
]

(262)

Note here that the coordinates (r, θ, φ) in the metric Equation (262) are comoving
spatial coordinates; therefore, galaxies which are considered as point particles constituting
the particles of cosmological fluid in cosmology remain at fixed coordinates and it is the
geometry of the spacetime that expands itself and is characterized by the scale factor
a(t) completely. Three intervals—spacelike, timelike and lightlike, or null—expressed
in the form ds2 > 0, ds2 < 0, or ds2 = 0, respectively. In the spacetime geometry light
propagates following the interval ds2 = 0 or ds = 0 which means that it does not travel
at all any distance through the spacetime. We consider a ray of light propagating along
the radius as all the points in space are equivalent at a given time from some zero value
radius to some certain value of it in later times. As the light ray travels radially therefore
only one spatial dimension is retained and the vanishing of time dimension follows from
ds = 0 and other two spatial dimensions vanish due to radial propagation of light therefore
dt = dθ = dφ = 0, then Equation (262) gives

0 = −dt2 + a(t)2
(

1− kr2
)−1

dr2 (263)

or
dt

a(t)
=

1√
(1− kr2)

dr (264)
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In order to calculate the total time elapsed from r = 0 to some certain later time value
r = r0, we shall integrate Equation (264) between emission and reception times te and
tr respectively. ∫ t=trec

t=temi

(
1

a(t)

)
dt =

∫ r=r0

r=0

(
1√

1− kr2

)
dr (265)

A ray of light, now, given off after a short interval of time dtemi so that time of emission
of light ray becomes temi + dtemi and accordingly we can have the time of reception to be
trec + dtrec from an integral of the same nature given in Equation (265) because of comoving
coordinates the galaxies remain at the same coordinates, so that

∫ t=trec

t=temi

(
1

a(t)

)
dt =

∫ t=trec+dtrec

t=temi+dtemi

(
1

a(t)

)
dt (266)

now ∫ t=temi+dtemi

t=temi

(
1

a(t)

)
dt =

∫ t=trec+dtrec

t=trec

(
1

a(t)

)
dt (267)

For deriving the redshift relation as the universe expands we use Figure 12 that is given
below:

Figure 12. Diagrammatic scheme for deriving redshift.

The slices are very narrow, so the area is just the area of a rectangle, i.e., width times
height, i.e.,

dtrec

a(trec)
=

dtemi
a(temi)

(268)

For an expanding universe
a(trec) > a(temi), (269)

it implies from Equation (268) dtrec > dtemi that as the universe expands the time interval
between two rays increases. We consider now successive crests or troughs of a single ray
instead of two rays as we did earlier so that wave length λ is directly proportional to the
time interval between two successive crests or troughs λ ∝ dt and dt ∝ a(t) and we have

λrec

λemi
=

a(trec)

a(temi)
(270)

We define now the redshift

1 + z ≡ a(trec)

a(temi)
(271)

8.10. Luminosity ((L)), Brightness, Luminosity Distance ((dL)) and Angular Diameter
Distance (dA)

We can deduce relations from the properties of electromagnetic radiation and the
quantities contained in FLRW line element. The velocity of electromagnetic waves is
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constant and finite. Light and electromagnetic radiation acts as cosmological messenger
and all the distances measured cosmologically are extracted from the properties of it. The
velocity of light being finite has to take time to reach us and universe might have expanded
significantly during this time.

8.11. Luminosity L

Luminosity is defined as the absolute measure of the electromagnetic power or energy
radiated per unit time by an astronomical object like star, galaxy or cluster of galaxies. It
is denoted by L and is measure in Joule per second

(
Js−1) which is also known as watts.

Usually luminosity is measured in terms of the luminosity of the sun denoted by L�.

8.12. Brightness

It refers to how bright an object appears to an observer and depends upon luminosity,
distance between the observer and the object and absorption of light along the path between
observer and the object.

8.13. Luminosity Distance ((dL))

We consider a point source S radiating electromagnetic light equally in all directions
spherically; the amount of light passing through elements of surface areas varies with the
distance of it from the light source.

Given below in Figure 13, the light of luminosity L is being radiated. We consider a
spherical hollow centered on the point source S as shown in the Figure 13 below The interior
of a hollow sphere gets illuminated thoroughly. As the radius of the sphere increases, the
surface area of the imagined hollow sphere also increases, such that a constant or absolute
measure of luminosity has to spread in expanding sphere illuminating it, i.e., as the radius
increases the constant luminosity has more and more surface area to illuminate which leads
to decrease in the observed brightness. If an observer at a distance equivalent to the radius
of sphere receives the electromagnetic radiation L per unit time and F be the energy flux
per unit time per unit area from the source or the point source, say O, then in Euclidean
geometry we will have

F =
L
A

=
L

4πr2 (272)

where F = Flux density of the illuminated sphere, L = luminosity, and A = area of the
illuminated sphere From Equation (272) for r = dL

F =
L

4πdL
2 (273)

which gives

dL =

√
L

4πF
(274)

Figure 13. A source S radiating electromagnetic energy.
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We next look how the luminosity distance is related with expansion of the universe.
In expanding sphere we might have its radius as the product of scale factor and the radius,
i.e., a(t)r = a(t)dL, so that the energy emitted gets diluted

4πr2 → 4π(a(t)r)2 (275)

and a photon loses energy as F ∝ a(te)
a(t0)

and redshift relation we have 1 + z = λ(t0)
λ(te)

= a(t0)
a(te)

which implies F ∝ a(te)
a(t0)

∝ 1
1+z Equation (273) becomes

F =
L

4π(a(t)r)2 (276)

further
a(te)

a(t0)
=

L

4π(a(t)dL)
2 (277)

If L is known for a source, it is known as standard candle. Supernovae type Ia were
used as standard candles for larger cosmic redshifts which led to accelerated expansion.

8.14. Angular Diameter Distance (dA)

It is the ratio of the proper distance measured when the light left the surface of an
object to the later measured distance by redshifting of light in some later time. Certainly
the redshift of light measured would be smaller measured at the time when the light left
the surface of the object to be measured in later times. The schematic diagram is shown in
Figure 14 for angular diameter distance:

Figure 14. Angular diameter distance.

It is defined in terms of objects physical distance known as proper distance and the
angular size of the object seen from the surface of earth. If size of the source be S and
angular size θ, then

θ =
S

DA
(278)

where DA is the angular diameter distance of the source. From FLRW line element for
photons dr2 ≈ dφ2 ≈ 0, we have

ds2 = a2(t)
(

r2dθ2
)

(279)

ds = DA = a(t)rdθ (280)

dθ =
DA

ra(t)
=

dA
ra(t)

(281)

9. Problems Faced by the Standard Model of Cosmology

From 1st Friedmann equation(
ȧ
a

)2
+

k
a2 =

8πG
3

ρ (282)
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we see that curvature k is negligible depending on observation and Ω ' 1 which means it
would have been created tuned finely in the very early universe. From 2nd Friedmann equation

ä
a
= −4πG

3
(ρ + 3p) (283)

we see that if (ρ + 3p) remains positive, the acceleration is negative which means that the
expansion of the universe will go on slowing down. Further, far flung parts of the universe
display the same properties as observation evidence despite the fact that they have not
been in causal contact with each other.

9.1. Monopole Problem

The problem is about the question of why do we not observe magnetic monopoles
in the universe today. It results from combining the big bang model with GUT in particle
physics, thus it is related to particle cosmology where during symmetry breaking phase
transitions are considered. In the very early universe, when the phase transitions are con-
sidered to occur, it is expected that these phase transitions will create magnetic monopoles
with enormous energy density which might dominate the total energy density of the uni-
verse. During symmetry breaking when phase transitions take place, these give rise to
flaws known to be as topological defects. GUT predict that during GUT phase transitions
these point-like topological defects are created which act as magnetic monopoles. It is
considered that the radiation and matter dominated eras could not take place as these
monopoles do not get diluted as they are supposed to be non-relativistic and their energy
density would decay like a−3 [46], but as we observe the universe evolved to the later eras
so question arises how this occurred which is at the heart of this problem.

9.2. Horizon Problem

On the basis of the standard big bang model it is difficult to understand the uniform
distribution of the temperature of CMB to 1 part in 105. The horizon problem is related
with the issue of the causal contact as it has been revealed by the uniform distribution of
temperature of the cosmic background radiation (CMB) across all parts of the universe. In
order to understand the problem we have to understand the horizon size and causal contact
or communication. At any instant of time horizon size is defined as the largest distance, i.e.,
maximal distance over which two events could be in causal with each other. Therefore it is
the maximum distance a photon could have traveled since the birth of the universe or since
the time when the universe became transparent. It can be found from the FLRW metric to
be ds2 = RH = c

∫ t
0

dt
a(t) which reveals the fact that size of the horizon depends upon the

history of the universe as it evolves through time. It is also called comoving horizon as
causal contact develops between two events and the universe is expanding so that they
are getting separated apart mutually. In the standard big bang theory the universe was
matter dominated at the time of last scattering (tls) so that the horizon distance at that time
can be approximated by the value dH(tls) = 2cH−1(tls). Now, the Hubble distance at the
time of last scattering was cH−1(tls) ≈ 0.2 Mpc and the horizon distance at last scattering
was dH(tls) ≈ 0.4 Mpc. Therefore, the points which were separated more than 0.4 Mpc
distance apart at the time of last scattering (tls) were not connected causally in the big
bang scenario. Further, angular diameter distance (dA) to the last scattering surface is
13 Mpc; therefore. points on the last scattering surface that were separated by a horizon
distance shall have angular separation θH = dH(tls)

dA
≈ 0.4 Mpc

13 Mpc ≈ 0.03 rad ≈ 20 as viewed

today from the Earth. It means that the points separated by an angle as small as ∼20 on
the last scattering surface were not in causal contact with each other when CMB emitted
with temperature fluctuations. However, we come to know that δT

T is as small as 10−5

on the scales with angular separation θH > 20. So here we state the problem that the
regions which were not connected through causal contact with each other at the time of
last scattering have similar properties homogeneously.



Universe 2021, 7, 276 47 of 89

9.3. Flatness Problem

When we consider Friedmann’s equations evolve in a universe where only radiation
and baryonic matter exist without vacuum energy density present there, then flatness
problem arises in such a universe [47]. From the 1st Friedmann Equation

H2 =
8πG

3
ρ− k

a2 (284)

1 =
8πG
3H2 ρ− k

a2H2 =
ρ(

3H2

8πG

) − k
a2H2 (285)

where 3H2

8πG = ρc, therefore Equation (285) becomes

1 =
ρ

ρc
− k

a2H2 = Ω− k
a2H2 (286)

⇒ Ω− 1 =
k

a2H2 (287)

so that the spatial curvature of the universe is related to the density parameter Ω through
Friedmann’s equation. Observational evidence shows that the universe is nearly flat
today, i.e., ρ = ρc, ⇒ Ω = ρ

ρc
≈ 1. This means that the value of Ω would have to be

very close to 1 at Planck era tpl . This means that the initial conditions of the universe
were tuned finely. Because of this, the flatness problem is also known as the fine-tuning
problem and the flatness problem arises because in a comoving volume the entropy remains
conserved. Further, from Equation (284) above, the energy density of the universe without
considerations of vacuum energy as is the case of big bang model is ρ = ρR + ρM and we
can also write

H2 =
8πG

3
(ρR + ρM)− k

a2 (288)

The term − k
a2 is clearly proportional to a−2, while the energy density terms ρR

and ρM fall off faster than scale factor a(t), i.e., ρR ∝ 1
a3(t) and ρM ∝ 1

a4(t) . This ratio(
k

a2(t)

)
( 8πG

3 (ρR+ρM))
=

(
k

a2(t)

)
(

ρ

3M2
pl

) then is much smaller than unity when the scale factor a(t) has

increased by a factor of 1030 since the Planck era.

9.4. Entropy Problem

The adiabatic expansion of the universe following the first law of thermodynamics is
related to the flatness problem [48] discussed above. Temperature plays a significant role
in the early universe because at early epochs the age and expansion rate H = ∂t ln a are
described in terms of it with the number of relativistic degrees of freedom. From the 1st
Friedmann’s equation we have the expression for density parameter Ω− 1 = k

a2(t)H2 and

expansion rate in radiation-dominated era in terms of temperature is H2
ρR
≈ 8πGT4 = T4

M2
pl

,

so that the density parameter expression becomes Ω − 1 =
kM2

pl
a2(t)T4 . Now the entropy

density is s ∼ T3 and the entropy per commoving volume S ∝ a3(t)s ∝ a3(t)T3 and we

have Ω − 1 =
kM2

pl

S
2
3 T2

. The entropy per co-moving volume S remains constant through-

out the evolution of the universe as the hypothesis of adiabaticity requires so that we

|Ω− 1|t=tpl
=

(1)M2
pl

S
2
3
U T2

pl

≈ 10−60. It comes clear that at early epochs the value of Ω− 1 is very

close to zero as the total entropy of the universe is very large.
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10. Introduction to Inflation

Inflation is the period of superluminally accelerated expansion of the universe taking
place sometime in the very early history of the universe. It is now a widely accepted
paradigm which is described as the monumental outgrowth gushing out during the tiniest
fraction of the first second between (10−36–10−32) s. Inflation maintains that just after the
occurrence of the big bang, exponential stretching of spacetime geometry took place, i.e.,
becoming twice in size again and again at least about (60–70) times over before slowing
down. Alexei Strobinsky approached the exponentially expanding phase in the early uni-
verse by modifying Einstein Field Equations whereas Alan Guth approached the scenario
in the realm of particle physics proposing a new picture of the time elapsed in the very
small fraction of the first second in the 1980. He suggested that the universe spent its
earliest moments growing exponentially faster than it does today. There is a large number
of inflation models in hand today but every model has its own limitations to draw the true
picture of what happened actually in the early universe.

As the theory of inflation is recognized today, it has myriad models describing infla-
tionary phase in the early universe. From among the heap of these competing models which
differ slightly from one to the other, no model can claim a complete and all-embracing
prospectus of what happened actually in the universe so that the fast expansion of or in
spacetime takes place. All the energy density that can be adhered to the early exponentially
expanding phase of the universe was in the very fabric of spacetime itself despite ti being
in the form of radiation or particles. The early accelerating phase can be now best described
with de Sitter model with slightly broken time symmetry. With the creation of spacetime
that purports to be the earliest patch of the universe that comes to being would be stretched
apart in an incredibly small time span of the order of a tiniest fraction of first second to
such a colossally larger size that its geometry and topology would be hardly indiscernible
from Euclidean geometry. It will logically ensue similar initial conditions for the energy
density to be dispersed at every point in the fabric of spacetime and the same will be the
condition of temperature in this early phase. That’s why the quantum fluctuations which
seed in later times the structure formation in the universe impart the uniform temperature
to all parts of the universe thereby resolving the homogeneity problem of the universe.
This is because all the quantum fluctuations which cause the observable universe were
once causally connected in the deep past of the universe. It might have attained a highest
temperature which was within or lesser than the limits of Planck scale (1019 GeV). The
energy scale mentioned earlier when the inflation comes to an end and transforms into the
uniform, very hot, largely dense that is a cooling and expanding state we ascribe to the
hot big bang. This will take place for a universe inflating from a lower entropy state to an
entropy state at higher level in the panorama of the hot big bang, where the entropy would
carry on to get larger as it happens in our observed universe. The point of time in the
earliest where the universe can be viewed approximately and hardly as classical is known
as the Planck Era. It is thought that prior to this era the universe might be described as
the hitherto unsuspected theory of certain quantum nature like quantum gravity etc. This
era corresponds to EP ∼ 1019 GeV > E > EGUT ∼ 1015 GeV and the energies, temperature
and times of particles are EP ∼ 1019 GeV, TP ∼ 1032 K, tP ∼ 10−43 s, respectively. Grand
unified theories describe that at high energies as described above the Electroweak and
strong force are unified into a single force and that these interactions bring the particles
present into thermal equilibrium Electroweak Era corresponds to phase transitions that
occur through spontaneous symmetry breaking (SSB) which can be characterized by the
acquisition of certain non-zero values by scalar parameters known as Higgs fields. Until
the Higgs field has zero values, symmetry remains observable and spontaneously breaks
at the moment the Higgs field becomes non-zero. The idea of phase transitions in the very
early universe suggests the existence of the scalar fields and provides the motivation for
considering their effect on the expansion of the universe.

The power spectrum of CMB is calculated by measuring the magnitude of temperature
variations versus the angular size of hot and cold spots. To understand the nature of CMB
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the spectrum of a perfect blackbody is given in Appendix C. During these measurements,
a series of peaks with different strengths and frequencies are determined which conforms
to the predictions of inflation theory which confirms that all sound waves were indeed
produced at the same moment by inflation. It is believed that inflation might have given
rise to sound waves-the waves traveling in the primordial vacuum-like medium with
different frequencies after the big bang at 10−35 s starting in phase and would have been
oscillating in radiation era for 380,000 years. Now, in the acoustic oscillations of the early
universe, these must be measurable as power spectrum similar to that of measuring the
sound spectrum of a musical instrument. The history of evolution of the universe to the
present epoch is sketched in Figure 15–17 show how the inflationary period is driven by
the inflaton field:

Figure 15. Inflationary universe.

Figure 16. History of the universe beginning with big bang and expanding with inflation.

Figure 17. How the scalar field drive inflationary era.
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10.1. Starobinsky R2-Inflation

Alexei Starobinsky proposed a cosmological inflationary phase of the universe shortly
before Alan Guth in 1980 working in the framework of general relativity. The model
is founded on the semiclassical Einstein field equations which provide a self-consistent
solution for an exponentially accelerating era [49]. Starobinsky modified the general
relativity to describe the behavior of very early universe undergoing an exponential period
by suggesting quantum corrections to the energy momentum tensor Tµν. The quantum
corrections are calculated by taking the expectation value of the energy momentum tensor.
Beginning with Einstein equations

Gµν = 8πTµν (289)

Rµν −
1
2

gµνR = −8π < Tµν > (290)

where < Tµν > represents the expectation value of the energy momentum tensor. The
expectation value of energy momentum tensor is the probabilistic value of a result or mea-
surement which is fundamentally rooted in all quantum mechanical systems. Intuitively, it
is the arithmetic mean of a large number of independent values of a variable under con-
sideration. The energy momentum tensor Tµν usually takes care of classical components
of the universe in the form of matter and radiation in the context of flat spacetime as the
parametric observations evidence in the recent data. In the case of curved spacetimes,
nonetheless Tµν might be vanishing gradually and < Tµν > must be imparted contributions
from quantum regime non-trivially. In the absence of classical components of the universe
in the form of matter and radiation, the curvature of spacetime from quantum fluctuations
of matter fields contribute to < Tµν > non-trivially which Starobinsky utilized. These
are known as quantum corrections to the energy-momentum tensor Tµν. The quantum
fluctuations of matter fields give non-trivial contributions to the expectation value of the
energy momentum tensor < Tµν > in the presence of cosmologically curved spacetime,
regardless, matter and radian do not exist in classical style. In the background we consider
FLRW spacetime

ds2 = −dt2 + a(t)2
((

1− kr2
)−1

dr2 + r2dθ2 + r2sin2θdφ2
)

(291)

The spatial part
(

1
1−kr2 dr2 + r2dθ2 + r2sin2θdφ2

)
of the metric represents the three

geometries depending on the values of k. For k = +1, it represents a spherical geometry
of 3-sphere which is finite, closed, and without boundary. For k = 0, it represents a
flat Euclidean geometry of 3-planes which is, in principle, infinite in extent, open, and
without boundary. k = −1, it represents a hyperbolic geometry of 3-hyperboloids which is
infinite, open and without boundary. In the presence of conformally-invariant, free and
massless fields, the quantum corrections adapt a simple form such that we can describe the
expectation value of energy momentum tensor as

< Tµν >= k1H(1)
µν + k2H(2)

µν (292)

where k1 and k2 are numerical coefficients in standard notation. In order to find < Tµν >

we have to compute these constants k1 and k2 and H(1)
µν and H(2)

µν . The coefficient k1 is

determined experimentally and can assume any value. The H(1)
µν is a tensor and is conserved

identically when expressed as the action given below and varied with respect to metric
tensor

√−g, i.e.,

H(1)
µν =

2√−g
δ

δgµν

∫ (
d4x
√
−g
)

R2 = 0 (293)



Universe 2021, 7, 276 51 of 89

and
H(2)

µν = 2R,µ,ν − 2gµνR,λ
,λ + 2RRµν −

1
2

gµνR2 (294)

The coefficient k2 of Hµν is defined uniquely in the following form

k2 =

(
N0 +

11
2

N1/2
+ 31N1

)
1

1440π2 (295)

where N0, N1/2
and N1 denote the number of quantum fields with the subscripts of all

three N’s 0, 1/2 and 1 representing spins of zero, half, and one respectively. In certain GUT
theories due to larger multiplier factor of N1, the value of k2 is majorly contributed by
vector fields. Now , Hµν is also a tensor and it does not conserve generally but conserves
only in those spacetimes which are conformally flat like FLRW spacetimes in particular
and cannot be obtained by varying a local action as in the case of Hµν. The Equation (292)
multiplying with 8πG to both sides can be written as

8πG < Tµν >= 8πGk1H(1)
µν + 8πGk2H(2)

µν (296)

or
8πG < Tµν >=

48πG
6

k1H(1)
µν + 8πGk2H(2)

µν (297)

Now, we introduce the following parameters for convenience

M =
√

1
48πGk1

H0 =
√

1
8πGk2

(298)

where both the parameters are positive i.e., H0 > 0 and M > 0. Now Equation (297) takes
the form

8πG < Tµν >=
1
6

M−2H(1)
µν + H−2

0 H(2)
µν (299)

Equation (299) can serve as the reasonable approximation in case of certain GUT
models for the limit R > µ2, where µ represents the unified energy scale. Conformally
invariant field equations usually describe the spinor and massless vector fields and con-
tribute to < Tµν > in the form of Equation (299). Further, if the number of matter fields is
sufficiently bigger, then the corrections to Einstein’s field equations due to gravitons can
also be ignored.

10.2. Trace Anomaly

The trace of expectation value of energy-momentum tensor < Tµν > does not vanish
rather it has a non-zero anomalous trace and this is what we call as trace anomaly. It
is, however, interesting to note here that the trace of energy-momentum tensor without
expectation value, i.e., Tµν, vanishes for all those classical fields which are conformally
invariant. Therefore, the trace of < Tµν > is given by

< Tν
ν >= M−2

pl

[
H−2

0

(
1
3

R2 − RνσRνσ

)
−M−2R;ν

;ν

]
(300)

The masses of the fields can be looked over in the limit of higher curvature, i.e., when
R � m2 and in the same limit it remains true for the case of asymptotically free gauge
theories where interactions between the fields become negligible. In de sitter space we
can have

Rµν =
1
4

Rgµν (301)
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where R is constant curvature term i.e., Ricci scalar. Substituting now Equations (300)
and (301) in Equation (290), we have R = 12H2

0 for non-trivial solution and the correspond-
ing de Sitter solutions come about for k = 0, +1, −1, respectively,

a(t) = a0etH0 (302)

a(t) =
1

H0
cosh(tH0) (303)

a(t) =
1

H0
sinh(tH0) (304)

Equation (302) corresponds to k = 0 and gives a flat universe, Equation (303) gives
a closed solution for k = +1, and the 3rd Equation (304) for k = −1 propounds the open
de Sitter model of the universe. These solutions are impelled completely by the quantum
corrections rendered to classical EFE and serve the purpose of inflationary epoch in the
very early universe. Starobinsky inflation corresponds to a potential parameterized in

terms of scalar field φ is V(φ) = 3
4

(
1− e−

√
2
3 φ
)2

.

10.3. Inflation and de Sitter Universe

In a very shorter period of time about 10−35 after spacetime came into being, the
inflationary era of accelerating superluminal expansion known to be de Sitter phase took
place. de Sitter phase removed all the wrinkles of curvature and warpage of spacetime so
that the universe is to be observed flat. It further smoothed out all energy density stuff
for the distribution of radiation and matter. One significant remnant as the traces of this
fast expansion remains there known later on to be cosmic background radiation. In de
Sitter universe there exists no ordinary matter, however, de Sitter retained cosmological
constant which represents vacuum energy smeared out into the structure of spacetime. We
can define the energy density of this non-relativistic matter

ρΛ =
Λ

8πG
(305)

As pΛ = −ρΛ which gives an exotic form of matter with negative pressure, that is
where the scale factor a(t) goes on increasing but ȧ(t) is decreasing. We write(

ȧ
a

)2
=

8πG
3

ρΛ −
k
a2 (306)

ä
a
= −4πG

3
(ρΛ + 3pΛ) (307)

and
ρ̇Λ + 3H(ρΛ + pΛ) = 0 (308)

From Equation (308) with ρ̇Λ = dρΛ
dt = 0 and pΛ

ρΛ
= w

3H(ρΛ + pΛ) = 0 (309)

or
3HρΛ(1 + w) = 0 (310)

Now from Equation (307) for pΛ
ρΛ

= w

ä
a
= −4πG

3
ρΛ(1 + 3w) (311)
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For w = −1, Equation (311) becomes

ä
a
= −4πG

3
ρΛ(1− 3) =

8πG
3

ρΛ (312)

or
d2a
dt2 −

8πG
3

ρΛa = 0 (313)

Equation (313) is the equation of a harmonic oscillator. From Equation (306) for
vanishing curvature, i.e., k = 0 where Λ dominates and ȧ

a = H

H2
Λ =

8πG
3

ρΛ (314)

Finding the value of ρΛ

ρΛ =
3H2

Λ
8πG

(315)

Substituting Equation (315) in Equation (313), and simplifying we have

d2a
dt2 −

8πG
3

(
3H2

Λ
8πG

)
a = 0 (316)

or
d2a
dt2 − 3H2

Λa = 0 (317)

We can write the solution of above Equation (317) as

a(t) = C1 exp(HΛt) + C2 exp(−HΛt) (318)

differentiating Equation (318) twice with respect to time ′t′

ȧ(t) = C1HΛ exp(HΛt)− C2HΛ exp(−HΛt) (319)

again
ä(t) = C1H2

Λ exp(HΛt) + C2H2
Λ exp(−HΛt) (320)

using Equation (318) in Equation (320), we can write

ä(t) = H2
Λ(C1 exp(HΛt) + C2 exp(−HΛt)) = H2

Λa(t) (321)

substituting the value of ρΛ from Equation (315) in Equation (306), we have(
ȧ
a

)2
=

8πG
3

(
3H2

Λ
8πG

)
− k

a2 = H2
Λ −

k
a2 (322)

simplifying Equation (322) gives
k = H2

Λa2 − ȧ2 (323)

substituting the values of a(t) and ȧ(t) from Equations (318) and (319) in above Equation (323)

k = H2
Λ(C1 exp(HΛt) + C2 exp(−HΛt))2

−(C1HΛ exp(HΛt)− C2HΛ exp(−HΛt))2 (324)

simplification gives
k = 4H2

ΛC1C2 (325)
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Equation (325) means that the curvature term k depends upon the constants of inte-
gration C1 and C2. For flat universe either C1 = 0 or C2 = 0. The solution in Equation (318)
becomes accordingly

a(t) = C2e−HΛt (326)

and
a(t) = C1eHΛt (327)

Further Einstein equations are given by

Gµν + Λgµν = 8πTµν (328)

where
Gµν = Rµν −

1
2

gµνR (329)

and the form of solution of these equations upon which big bang standard cosmology
is based, as worked out by Alexander Friedman (1922), George Lemaitre (1927), and
afterwards by Robertson and Walker (1935) independently on the base of cosmological
principle which put to use the homogeneity and isotropy, is

ds2 = −dt2 + a(t)2
((

1− kr2
)−1

dr2 + r2dθ2 + r2sin2θdφ2
)

(330)

where Ω2 = dθ2 + sin2θdφ2. The metric in Equation (330) is characterized by scale fac-
tor a(t) and the curvature of spacetime k which are obviously determined by the self-
gravitation of all the matter–energy content in the universe. We have incorporated dark
matter and dark energy in the matter–energy content because their role is not avoidable at
all in accelerated expansion and the present Minkowskian flat geometry of the universe.
The solution of this line element gives Friedman equations using Einstein field equations
that govern the time evolution of the universe and are given as

ȧ2

a2 +
k
a2 =

8πG
3

ρ +
Λ
3

(331)

and
ä
a
= −4πG

3
(ρ + 3p) +

Λ
3

(332)

The presence of cosmological term Λ in the above equations would be equivalent to
that of a fluid having an equation of state p = −ρ which is satisfied by

ρ + 3p > 0 (333)

Looking at the things classically, we may approach the classical period of exponential
expansion by using the first Friedmann equation by vanishing density ρ of radiation
and baryons and the entailing curvature k in Λ-dominated Era which corresponds to
equivalently having a fluid with p = −ρ, thus Equation (331) becomes

ȧ2

a2 +
(0)
a2 = 8πG

3 (0) + Λ
3

ȧ2

a2 = Λ
3

ȧ = da
dt =

√
Λ
3 a

da
a =

√
Λ
3 dt

(334)

after integrating and simplifying, we get

a = e
√

Λ
3 t (335)
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Equation (335) gives the exponential expansion of the scale factor. It describes the fact
that when the universe was dominated by cosmological constant Λ, the rate expansion
was much faster than the present day scenario. From Equation (332)

ä = −4πG
3

(ρ + 3p)a +
Λ
3

a (336)

Considering a closed volume with energy U = ρV = ρ 4π
3 a3 and now we see how

inflationary period is obtained in the perspective of particle physics where a negative
pressure is achieved for it to take place. Friedmann solved EFE with Λ = 0, so

ȧ2

a2 +
k
a2 =

8πG
3

ρ (337)

ä
a
= −4πG

3
(ρ + 3p) (338)

Equation (338) is known as acceleration equation. The inflationary period, as its
definition implies, is the acceleratingly expanding phase of the universe in a very small
fraction of first second, as the expansion is characterized by the scale factor a; therefore, we
have such an era as

ä > 0 (339)

thus Inflationary era
⇔ ä > 0 (340)

dividing both sides of Equation (317) by scale factor a

ä
a
> 0 (341)

which is LHS of Equations (338) and (341) imposes the condition on RHS of Equation (338)

− 4πG
3 (ρ + 3p) > 0

⇒ ρ + 3p < 0
⇒ p < − 1

3 ρ
⇒ ρ > −3p

(342)

For the inflation to occur and set the universe in an accelerating phase, we require
the matter to possess an equation of state with negative pressure. The possibility of this
negative pressure p which is less than negative of one-third of density is in perspective of
symmetry breaking in modern models of particle physics. From

ȧ2

a2 +
k
a2 =

8πG
3

ρ (343)

ȧ2 =
8πG

3
ρa2 − k (344)

For ä > o, the scale factor shall increase faster than a(t) ∝ t and the term 8πG
3 ρa2 shall

increase during this accelerated era such that the curvature term k will become negligibly
small and shall vanish. Inflationary era is also defined by considering the shrinking of
Hubble Sphere [43] due to its direct linkage to the horizon problem and because it provides
a fundamental role in producing of quantum fluctuations. Shrinking Hubble Sphere is
defined as

d
[
(aH)−1

]
dt

< 0 (345)
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d
[
(aH)−1

]
dt

=
d
[(

a ȧ
a
)−1
]

dt
=

d
[
(ȧ)−1

]
dt

= − ä
a2 (346)

− ä
a2 < 0 (347)

which will imply accelerated expansion

ä > 0 (348)

At t = 0, the scale factor a characterizing expansion of the universe comes out to be of
a specific value. In Equation (337), when ρ = ρφ is of very larger value and the scale factor
a dominates over the curvature term k, then we have(

ȧ
a

)2
= H2 =

8πG
3

ρφ (349)

a = a0eHt (350)

de Sitter line element is given by

ds2 = −dt2 + e2Ht
(

dx2 + dy2 + dz2
)

(351)

inflation has to terminate and H is constant, meaning that the de Sitter phase cannot give
perfect inflationary era, however for Ḣ

H2 , it would compensate. It would be interesting
here to note that Z. G. Lie and Y.S. Piao have shown that the universe we observe today
may have emerged from a de Sitter background without having the requirement of a large
tunneling in potential and with low energy scale [50].

10.4. The Conditions under Which the Inflation Occurs

Shrinking Hubble sphere has been considered as basic definition of inflationary era
due to its direct connection to the horizon problem and with mechanism of quantum
fluctuation generations [51]. differentiating the comoving Hubble radius (aH)−1 with
respect to time we find the acceleratedly expanding Hubble sphere

∂t(aH)−1 = − ä
ȧ2 (352)

We see that − ä
ȧ2 < 0, multiplying the inequality by −1 and simplifying, we have

ä > 0 (353)

which means that shrinking comoving Hubble sphere (aH)−1 points toward accelerated
expansion ä > 0. As Hubble sphere H remains nearly constant, in order to understand the
meaning of nearly constant we see how its slow roll variation takes place, so taking H as
variable

∂t

(
1

aH

)
= − ȧH + aḢ

(aH)2 = −1
a

(
1 +

Ḣ
H2

)
(354)

where Ḣ
H2 = −ε known as slow roll parameter. It can be inferred that Ḣ

H2 < 0 implies
shrinking Hubble sphere.

10.5. Slow Roll Inflation—The Dynamics of Scalar Field

Elementary particles in modern physics are represented by quantum fields and oscil-
lations of these fields are translated as particles. Scalar fields represent spin zero particles
in field theories and look like vacuum states because they have same quantum numbers
as vacuum. The matter with negative pressure ρ = −p represents physical vacuum-like
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state where the quantum fluctuations of all types of physical fields exist. These fluctuations
can be considered as waves of all possible wavelengths related with physical fields, i.e.,
wavy physical fields moving freely in all directions. The negative pressure violates the
strong energy condition which is necessary for the inflation to occur. To keep things simpler
a single scalar field namely inflaton φ = φ(x, t) is considered present in the very early
universe, as the value of the scalar field depends upon position x in space which assigns
potential energy to each field value. It is also dynamical due to being function of time t
and has kinetic energy as well, i.e., energy density ρ(φ) associated with the inflaton φ is
ρ(φ) = ρp + ρk. The ratio of the potential and kinetic energy terms of φ = φ(x, t), decides
the evolution of the universe. The Lagrangian of the scalar inflaton field φ is expressed as
the energy difference between its kinetic and potential terms, that is

L =
1
2

(
gµν∂2φ−V(φ)

)
(355)

It is assumed that the background of FLRW universe has been sourced by energy-
momentum associated with the inflaton that dominates the universe in the beginning. We
shall observe under what conditions this causes accelerated expansion of the FLRW universe.

S =
∫

d4x
√
−gL =

∫
d4x
√
−g
[

1
2

(
gµν∂2φ−V(φ)

)]
(356)

The energy-momentum tensor of the inflaton field is given as

Tµν = ∂µφ∂νφ− gµνL (357)

Tµν = ∂µφ∂νφ− gµν(L) (358)

which for µ = 0, ν = 0 results as

T00 =
1
2

φ̇2 +
1

2a2∇
2φ + V(φ) (359)

and for µ = ν = j

Tjj =
1
2

φ̇2 − 1
6a2∇

2φ−V(φ) (360)

The gradient term vanishes, in the otherwise condition, the pressure gained is much
less than the required value to impart impetus for inflation to take place, therefore we
obtain the following values for energy density and pressure

ρφ = T00 =
1
2

φ̇2 + V(φ) (361)

and
pφ = Tjj =

1
2

φ̇2 −V(φ) (362)

The condition V(φ) >> φ̇2 corresponds to the negative pressure condition ρφ = −pφ

which means that the potential (vacuum) energy of the inflaton derives inflation. Now
using Euler–Lagrange equations

∂µ δ(
√−gL)
δ∂µφ

− δ(
√−gL)

δφ
= 0 (363)

we can find equation for inflaton field that comes to be

φ̈ + 3
ȧ
a

φ̇− 1
a2(t)

∇2φ + V,φ(φ) = 0 (364)
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It can also be computed from the energy density and the pressure terms given in
Equations (361) and (362) respectively by substituting in equation of energy conservation

dρ

dt
+ 3H(ρ + p) = 0 (365)

Equation (365) in terms of inflation field φ

dρφ

dt
+ 3H

(
ρφ + pφ

)
= 0 (366)

By substituting Equations (361) and (362) in Equation (366), we have

d
(

1
2 φ̇2 + V(φ)

)
dt

+ 3H
(

1
2

φ̇2 + V(φ) +
1
2

φ̇2 −V(φ)

)
= 0 (367)

(
φ̈ + V′(φ) + 3Hφ̇

)
φ̇ = 0 (368)

φ̈ + V′(φ) + 3Hφ̇ = 0 (369)

where V′(φ) = dV(φ)
dφ and the term 3Hφ̇ is known as friction term and offers friction to

the inflaton field when it rolls down (φ̇) its potential during expansion of the universe
H = ȧ

a . Figures 18 and 19 manifest how the scalar field drives the universe evolution in the
beginning and how does it slow roll afterward respectively:

Figure 18. How the universe springs into being through a scalar field. Old Inflation: (a) The scalar
field is in stable false vacuum (b) It shows that the scalar field causes inflation through quantum
tunneling which comes to an end suddenly (c) Due to abrupt ending of inflation, energy is dissipated
without evolution of the universe or an empty universe results. New Inflation: (d) The scalar field
begins in right false vacuum (e) Despite quantum tunneling, the scalar field decays by slowly rolling
down towards its minimum hence the name slow roll inflation (f) The energy does not dissipate,
instead reheat occurs and the universe evolves to radiation and other phases.
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Figure 19. How inflation ends-slow roll inflation.

10.6. Conditions of the Slow Roll Inflation

According to the big bang model, that is, the currently accepted model, the universe is
about 14 billion years old. At the point of existence the curvature of spacetime was very
large or equivalently can be described in other words that space was largely warped and
curved where only quantum effects can prevail and the question of time to exist is likely
to become absurd. From this state how the very brief era of exponential expansion can
be had is fulfilled by assumption of scalar field which take the responsibility of such state
mentioned. We know from the 2nd Friedmann’s equation which is acceleration equation

ä
a
= −4πG

3
(
ρφ + 3pφ

)
(370)

For ä > 0
ρφ + 3pφ < 0⇒ pφ <

1
3

ρφ (371)

From Equations (361) and (362), substituting for pφ and ρφ in Equation (371)(
1
2

φ̇2 −V(φ)

)
< −1

3

(
1
2

φ̇2 + V(φ)

)
(372)

solving the inequality and keeping in mind that φ̇ is a squared term, we have

φ̇2 << V(φ) (373)

which means that the inflaton field is slowly rolling down its potential. Differentiating
Equation (373) with respect to time, we have

φ̈ <
1
2

V′(φ) (374)

Now from Equation (369), we obtain

φ̈ + V′(φ) = −3Hφ̇ (375)

We neglect the acceleration providing term φ̈ = d2φ
dt2 as the inflaton field has to roll now

slowly to escape from graceful exit problem in inflation i.e., it is decelerating, so we write

V′(φ) = −3Hφ̇ (376)
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plugging Equation (376) in Equation (374)

φ̈ <
1
2
(−3Hφ̇) (377)

On neglecting the constant factor, it gives

φ̈ << 3Hφ̇ (378)

differentiating now Equation (376) with respect to time,

3
(

Ḣφ̇ + Hφ̈
)
= −V′′(φ)φ̇ (379)

As H remains constant during inflation, therefore Ḣ vanishes and we have

φ̈ = −V′′(φ)φ̇
3H

(380)

Putting Equation (380) in Equation (378), we have

− V′′(φ)φ̇
3H

<< 3Hφ̇ (381)

It gives
V′′(φ) << H2 (382)

10.7. Parameters for the Slow Roll Inflation

Two slow roll parameters ε and η are defined in terms of Hubble parameter H as well
as potential V which quantify slow roll inflation.

εH = − Ḣ
H2 (383)

Using the relation a(t) ∝ e−N ⇒ N = ln a, it can also be expressed in the form

εH = −d(ln H)

dN
(384)

where N is the number of e-folds and 2nd is defined as

ηH = −1
2

Ḧ
ḢH

(385)

From 1st Friedmann equation(
ȧ
a

)2
− k

a2 =
8πG

3
ρ (386)

For ρ = ρφ and from Equation (361) ρφ = 1
2 φ̇2 +V(φ), as during inflation V(φ) >> φ̇2,

so that ρφ = V(φ) also curvature term k is negligibly small, so that
Equation (386) becomes

H2 =
8πG

3
V(φ) (387)

differentiating Equation (387) with respect to time and simplifying

Ḣ =
4πG
3H

V′(φ)(φ̇) (388)
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And from Equation (376) substituting in Equation (388), we have

Ḣ = −4πG
(

φ̇2
)

(389)

Substituting above in Equation (383), we have

εH = − Ḣ
H2 = −

−4πG
(
φ̇2)

H2 =
4πG
H2 φ̇2 (390)

Again from Equation (376), we have

φ̇ = −V′(φ)
3H

(391)

squaring

φ̇2 = −V′2(φ)
9H2 (392)

substituting in Equation (390)

εH =
4πG
H2

(
−V′2(φ)

9H2

)
=

4πGV′2(φ)

9(H2)
2 (393)

From Equation (387) putting for H2

εV =
4πGV′2(φ)

9
(

8πG
3 V(φ)

)2 =
1

16πG

(
V′(φ)
V(φ)

)2

=
M2

pl

2

(
V′(φ)
V(φ)

)2

(394)

ηH can also be expressed as

ηH = − φ̈

Hφ̇
(395)

ηV =
1

8πG

(
V′′(φ)
V(φ)

)
= M2

pl

(
V′′(φ)
V(φ)

)
(396)

From Equation (387) H2 = 8πG
3 V(φ), which gives 8πGV(φ) = 3H2 substituting above

in Equation (396), we have

ηV =
V′′(φ)
3H2 (397)

10.8. Number of e-Folds

It is usual practice to have the inflation quantified and the quantity which does this is
called number of e-fold denoted by N before the inflation ends. As the time goes by N goes
on decreasing and becomes zero when inflation ends. It is counted or measured backwards
in time from the end of inflation which means that N = 0 at the end of inflation grows to
maximal value towards the beginning of inflation. It measures the number of times the
space grows during inflationary period. The amount of e-folds necessarily required to
resolve the big bang problems of Horizon, Flatness, Monopole, Entropy, etc. is N ∼ 60–75
depending upon the different models and on the reasonable estimation of the observational
parameters. To find the number of e-folds between beginning and end of inflation we know
that during inflation the scale factor evolves as

a(t) = a(t0)eHt (398)

or
a(t) = a(t0)eH(t−ti) (399)
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The factor Ht constitute the number of e-folds denoted by N, i.e.,

N = Ht (400)

differentiating Equation (400) with respect to time

dN
dt

= H = ∂t ln a (401)

N =
∫ t f

ti

Hdt =
∫ t f

ti

ȧ
a

dt = ln
( at f

ati

)
(402)

Further, the relation between Hubble parameter H and the number of e-folds N can
be written. we have derived earlier the evolution equation for inflaton field that reads

φ̈ + 3Hφ̇ + V,φ = 0 (403)

During slow roll inflation φ̈ = 0, so that Equation (403) becomes

3Hφ̇ + V,φ = 0 (404)

3Hφ̇ = −V,φ (405)

Moreover, during slow roll the Friedmann’s 1st equation evolves as with k = 0 and
ρ = V(φ) + 1

2 φ̇2

H2 =
8πG

3

(
V(φ) +

1
2

φ̇2
)

(406)

During slow roll (φ̇)2
<< V(φ)and only φ̇ works, thus Equation (406) becomes

H2 =
8πG

3
V(φ) (407)

Dividing Equation (405) by Equation (407)

φ̇

H
= −

V,φ

8πGV(φ)
(408)

Now from Equation (400), we can write because t = t f − ti, so t =
∫ t f

ti
dt and with

dividing and multiplying by dφ

N = Ht =
∫ t f

ti

Hdt =
∫ t f

ti

H
dt
dφ

dφ (409)

where φ̇ = dφ
dt , Equation (409) takes the form

N =
∫ φ f

φi

H
φ̇

dφ (410)

Substituting from Equation (408) after inverting

N =
∫ φ f

φi

(
−8πGV(φ)

V,φ

)
dφ = −8πG

∫ φ f

φi

V(φ)

V,φ
dφ (411)

or

N = 8πG
∫ φi

φ f

V(φ)

V,φ
dφ (412)
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Thus number of e-folds can be found in terms of potential of the inflaton field. Further
slow roll parameter εH can be described in terms of number of e-fold N, we know

εH = − Ḣ
H2 = − 1

H2
dH
dt

= − 1
H2

dH
dN

dN
dt

(413)

εH = − 1
H2

d ln N
dt

(414)

11. Inflationary Solutions to the Big Bang Problems

Horizon, flatness, entropy, and monopole problems are initial value problems which
inflation solves in one go. Inflation explains why the observable universe is spatially flat,
isotropically homogeneous and so large in size.

11.1. Inflation and Horizon Problem

We consider that the inflation begins at a time (ti) and comes to an end at some time(
t f

)
and the expansion rate H = ∂t ln a, curvature term k and energy density of matter

and radiation ρ = ρM + ρR during inflation vanishes, we know that

a(t) = a(t)eHt = a(t)eH(t−ti) (415)

and
a(t) = a(t)eHt = a(t)eH(t f−t) (416)

We will find how long the inflation must sustain to resolve the horizon problem. We
can find the corresponding e-folding number N that is

N = Ht =
∫ t f

ti

Hdt (417)

As H = ȧ
a ,

N =
∫ t f

ti

ȧ
a

dt =
∫ t f

ti

da
a

(418)

N = ln a|t f
ti
= ln

(
a f − ai

)
(419)

or a f

ai
= eN (420)

or ai
a f

= e−N (421)

Now the horizon scale observed today H−1
0 was reduced during inflation to a value

of λH0(ti) which is smaller than the horizon length during inflation.

λH0(ti) = RH0

(
ati

at0

)
(422)

Dividing and multiplying Equation (422) by at f

λH0(ti) = RH0

(
ati

at0

×
at f

at f

)
(423)
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Now, from Equation (421) ai
a f

= e−N and using the relation between scale factor and

temperature during this phase a ∼ 1
T⇒ ai ∼ 1

Ti
and⇒ a f ∼ 1

Tf
so that we have

λH0(ti) = H−1
0

T0

Tf
e−N (424)

where RH0 = H−1
0 . Now λH0(ti) < H−1

I where H−1
I is the horizon length during inflation.

Therefore, Equation (424) can be expressed as

H−1
0

T0

Tf
e−N ≤ H−1

I (425)

H−1
0

H−1
I

T0

Tf
≤ eN (426)

or

eN ≥

(
T0
H0

)
( Tf

HI

) ⇒ N ≥ ln

(
T0
H0

)
( Tf

HI

) (427)

N ≥ ln
(

T0

H0

)
− ln

( Tf

HI

)
(428)

or

N ≈ 67 + ln

(
HI
Tf

)
(429)

N ≥ 70 (430)

11.2. Inflation and Flatness Problem

From 1st Friedmann equation,

H2 +
k
a2 =

8πG
3

ρ (431)

We found the density parameter expression

Ω− 1 =
k

H2a2(t)
(432)

during the inflationary period Hubble parameter giving expansion rate remains almost
constant so that Equation (432) is

Ω− 1 =
k

H2a2(t)
∝

1
a2(t)

(433)

We observed earlier that
|Ω− 1|t=tpl

≈ 10−60 (434)

which means that to have the value of the density parameter as observed today, i.e., Ω0 to
be of the order of unity, the initial value of Ω at the beginning of the radiation-dominated
era must be same as given in Equation (434) above, and from Equation (432), we can write
for the time at the beginning of inflationary era

|Ω− 1|t=ti
=

k
H2

I a2
i (t)

(435)
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and for the time when inflationary period comes to end

|Ω− 1|t=t f
=

k
H2

I a2
f (t)

(436)

Further, the beginning of the radiation-dominated era can be recognized with the
beginning of inflationary phase such that it is required

|Ω− 1|t=t f
= 10−60 (437)

dividing now Equation (436) by Equation (435)

|Ω− 1|t=t f

|Ω− 1|t=ti

=

k
H2

I a2
f (t)

k
H2

I a2
i (t)

=

(
a2

i (t)
a2

f (t)

)
(438)

We calculated ai
a f

= e−N , the above Equation (438) takes the form

|Ω− 1|t=t f

|Ω− 1|t=ti

=
(

e−N
)2

(439)

e−2N =
|Ω− 1|t=t f

|Ω− 1|t=ti

(440)

With taking |Ω− 1|t=ti
≈ 1,

N ≈ −1
2

ln |Ω− 1|t=t f
(441)

N ' 70 (442)

11.3. Inflation and Entropy Problem

The entropy problem can be resolved if a large amount of entropy is created in the
very early universe non-adiabatically [48,51] which is accomplished by inflationary era in
a finite time in the early history of the universe. Let the entropy at the end of inflation is S f
and in the beginning it was Si such that S f ∝ Si, then

S f = M3Si (443)

where M is the numerical factor with value M3 = 1010 ⇒ M = 1030. Now S f = SU . We
know that S ∼ (aT)3, so that we can write for

Si ∼ (aiTi)
3 (444)

and for
S f ∼

(
a f Tf

)3
(445)

where Ti and Tf are the measures of temperature at the beginning and end of the inflationary
period. dividing Equation (445) by Equation (444) we have

S f

Si
≈
( a f

ai

)3(Tf

Ti

)3

(446)

or ( a f

ai

)3
≈

S f

Si

(
Ti
Tf

)3

(447)
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a f

ai
≈
(S f

Si

)3 Ti
Tf

(448)

Now
a f
ai

= eN , and considering that at the beginning of inflationary phase the total
entropy of the universe was of the order 1, i.e., Si ∼ 1 and S f = SU , thus Equation (448)
takes the form

eN ≈ (SU)
3 Ti

Tf
(449)

N ≈ ln (SU)
3 Ti

Tf
(450)

N ∼ 70 (451)

therefore, entropy problem is resolved by inflationary period.

11.4. Inflation and Monopole Problem

In grand unified theories (GUT), the standard model SU(3)× SU(2)×U(1) in particle
physics emerges out of a simple symmetry group breaking. In these theories, heavy
particles of very high density are predicted to be created which are known as magnetic
monopoles. The cosmological monopoles prior to the period of inflation are considered to
take place and are allowed supposedly to exist. It means that inflation allows the existence
of magnetic monopoles, that is to say that as they are created earlier to era of inflation, these
magnetic monopoles are supposed to form in symmetry breaking during phase transitions
and where the inflationary era is considered to take place just after it. Inflation dilutes the
density of these magnetic monopoles nmp ∝ Nmp

a3 → 0 to the negligibly small size such that
these become so small to be detected today [52]. During inflation monopoles collapse in an
exponential way and their abundant presence falls to the level of being hardly detectable.

11.5. Inflation and Observations

Cosmological perturbations are an important relic of the inflation used to describe
the anisotropies of the cosmic microwave background (CMB) and structure evolution
and formation of the universe. The seeds of inhomogeneities, which represent all the
structure in the universe were produced during inflationary phase and were stretched to
the astronomical scales with the exponential expansion. These inhomogeneities are what
we see today as stars, galaxies, etc. in the form of baryonic matter. From the theory of linear
perturbations and from the relation δφ⇔ δgµν we know how to categorize FLRW metric
perturbations at the first order in the form of scalar, vector, and tensor perturbations of
spins 0, 1, and 2, respectively. A very important parameter which determines the properties
of the perturbations of the scalar field is power spectrum pφ(k). The scalar field power
spectrum at the time of horizon crossing comes out to be

pφ(k) =
(

H
2π

)2

k=aH
(452)

and the curvature power spectrum is calculated to be

pR(k) =
[(

H
φ̇

)
H
2π

]2

k=aH
(453)

and the power spectrum for tensor perturbations is given by

pT(k) = 64πG
(

H
2π

)2

k=aH
(454)
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The tensor-to-scalar ratio of the spectrum is defined in the following expression and is
found in terms of the first slow roll parameter:

r =
pT(k)
pR(k)

= 16εV (455)

We can now define scalar and tensor spectral indices as

ns − 1 =
d ln pR(k)

d ln k
(456)

and

nT =
d ln pT(k)

d ln k
(457)

scale invariance of the scalar power spectrum is characterized by ns − 1 = 0⇒ ns = 1. De-
viations from the scale invariance in an inflationary model gives it specific features. In this
case, the spectral indices to their lowest order can be described in terms of potential slow
roll parameters εV and ηV . In case of large field model, a general polynomial potential is

V(φ) = Λ4
(

φ

µ

)p
(458)

and we find
r = 4

( p
N

)
(459)

ns − 1 = − 1
N

(
1 +

p
2

)
(460)

For a particular inflationary model p must be assigned a value greater than unity [53].

11.6. ΛCDM

The standard model of cosmology describes a universe that evolves from a singularity
at t = 0. This singularity is known as the big bang and marks the instant when the universe
begins its evolution in time. A detailed discussion of big bang theory of creation is presented
in Appendix D. The kinematics of it is described by FLRW spacetime, and its dynamics is
governed by the Friedmann equations in the framework of general relativity. The standard
model is usually known as big bang model [54] due to extrapolation of redshift towards
big bang singularity. The observational parameters are not fixed by the standard model or
big bang which means that the big bang is parameterizable. ΛCDM model constitutes one
of such parameterizations and shows remarkable consistency with the recent observations.
That is why it has gathered support by majority of cosmologists. It incorporates the
ingredients, namely, cosmological constant Λ and cold matter (CDM), in addition to
ordinary matter. It is interesting to note that the nature of both ingredients contained
in it are colossally unknown for which theoretical and observational developments are
underway. It is also called the Concordance model for being it in agreement with the
recent measurements of parameters. Obviously the dynamics of ΛCDM is governed by
general relativity. Λ was introduced by Einstein himself [3] to balance the gravitational
effect of the ordinary matter in order to show a static model of the universe. Therefore, the
energy density of Λ is contained in the structure of spacetime itself or in other words it is
vacuum energy of space. However, it was dropped by Einstein after the expansion was
confirmed in 1929 calling it as the biggest blunder of his life ever made. After the accelerated
expansion was discovered in 1998, Λ is coming back once again to accommodate the effect
of accelerated expansion, but this time it is expected to have a dynamic nature. According
to the recent observations [35,36], dark energy is ~70%, dark matter constitutes 25%, and
the ordinary matter (baryonic) is 5% only. In the framework of the ΛCDM model, the nature
of dark energy presents one of the most challenging issues to the present day cosmology.
In ΛCDM, space is spatially flat and the radius of curvature, therefore becomes infinitely
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large. The ΛCDM adapts a minimum number of parameters to describe the universe that is
six. The recent measurements of these parameters from different sources are given [35,55]
below in the Table. 1.

Table 1. Values of six parameters of ΛCDM from different sources.

Sr. No Parameters
ΛCDM

Planck-2018 Planck-Low` + SPT Planck-Low` + SPT + BOSS Planck-Low` + SPT + BOSS + SHOES

1 Ωbh2 0.02233 ± 0.00015 0.02269 ± 0.00025 0.02250 ± 0.00021 0.02255 ± 0.00020

2 Ωch2 0.1198 ± 0.0012 0.1143 ± 0.0020 0.1166 ± 0.0012 0.1159 ± 0.0010

3 ns 0.9652 ± 0.0042 0.9785 ± 0.0074 0.9716 ± 0.0056 0.9735 ± 0.0054

4 ln
(

1010 AS

)
3.043 ± 0.014 3.021 ± 0.017 3.014 ± 0.017 3.008 ± 0.017

5 τ 0.0540 ± 0.0074 0.0510 ± 0.0086 0.0456 ± 0.0082 0.0437 ± 0.0087

6 100θMC 1.04089 ± 0.00031 - - -

From these six free parameters, we can deduce other parameters like Hubble constant
with some assumption about the cosmological model. The detail can be found in [35]. In
the context of ΛCDM we can find how the energy densities is related with the parameters
like scale factor at, time t, Hubble parameter, etc. in the corresponding sectors namely
radiation, matter (cold matter), and dark energy. Using Equations (96) and (108), we find
for the radiation sector for which ρ = 3p⇒ w = 1

3

ρr(a) = ρr0 a−4(t) = 3M2
pl H

2
0 Ωr0 a−4(t) (461)

Ωr(a) =
(

H0

H

)2
Ωr0 a−4(t) (462)

and
a(t) ∝ t

1
2 (463)

for the matter sector incorporating baryonic and cold dark matter for which ρ = 3p⇒ w = 1
3

we have
ρm(a) = ρm0 a−3(t) = 3M2

pl H
2
0 Ωm0 a−3(t) (464)

Ωm(a) =
(

H0

H

)2
Ωm0 a−3(t) (465)

and
a(t) ∝ t

2
3 (466)

for the dark energy sector for which ρΛ = −p⇒ wΛ = −1, we have

ρΛ = constant (467)

and

a(t) ∝ exp

√
Λ
3

t (468)

Using Friedmann equation and total energy density of all forms, we can determine
the background dynamics in the form of two very significant parameters

H2(a) = H2
0

(
Ωm0

a3 +
Ωr0

a4 +
ΩΛ0

a0

)
(469)

q(z) =
1
2
{Ωm(z) + 2Ωr(z)−ΩΛ(z)} (470)
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The observations of Planck collaboration on cosmic microwave background radiation
(CMB) give [35] the values of these parameters to be Ωm0 = 0.3089, Ωr0 = 5.38916× 10−5

and ΩΛ0 = 0.691046 and for a flat ΛCDM model, the observations from Type SNe Ia
supernovae give [3] Ωm0 = 0.295 and for other we can estimate from ΩΛ = 1−ΩDM −Ωb.
The Figure 20 gives the dark energy and cold matter densities [56] in terms of density
parameters ΩΛ and Ωm.

Figure 20. Plot of data for ΛCDM form SNe Ia, CMB, and BAO between ΩΛ and Ωm.

11.7. Inflation and Dark Energy in f (R) Modified Gravity

Einstein Field Equation (EFE) of general relativity is well known

Gµν = Rµν −
1
2

gµνR = 8πTµν (471)

Equation (471) corresponds to Einstein-Hilbert action

SEH =
1

16πG

∫
d4x
√
−gR +

∫
d4x
√
−gLm (472)

In scalar field models we usually modify RHS, i.e., energy-momentum tensor (matter
sector) and accordingly add some terms for a scalar field. If the RHS is kept unaltered
and LHS is modified that stands for the geometry of spacetime mimicking the role of
gravity. Due to this reason, it is called the model of modified gravity. The LHS of EFE
is derived merely from the curvature term, i.e., Ricci Scalar R, however in the modified
gravity we replace it by a general function of it [57–60]. Replacing the Ricci scalar R in the
Einstein–Hilbert action given in Equation (471) by a general function of R, that is, f (R), i.e.,
R→ f (R), we have

SEH( f (R)) =
1

16πG

∫
d4x
√
−g f (R) +

∫
d4x
√
−gLM (473)
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The variation of Equation (473) would be

δSEH( f (R)) =
∫

d4xδ
(√
−g f (R)

)
+
∫

d4xδ(L) (474)

Equation (474) yields through tedious calculations the following modified grav-
ity equation

F(R)Rµν −
1
2

f (R)gµν −∇µ∇νF(R) + gµν�F(R) = kTµν (475)

where � = ∇ν∇ν and F(R) = f,R(R) In Equation (474), the LHS is the modified form of
Rµν − 1

2 gµνR = Gµν. We contract Equation (475) with gµν to find the trace of modified EFE

F(R)R + 3�F(R)− 2 f (R) = kT (476)

For a vacuum solution T = 0, the de Sitter space with curvature term R to be constant

F(R)R + 3�F(R)− 2 f (R) = 0 (477)

Equation (477) represents an inflationary solution with the term 3�F(R) = 0.

F(R)R− 2 f (R) = 0 (478)

If the condition in Equation (478) is fulfilled, the late time de Sitter solution can be
obtained in a f (R)-based dark energy model. The Friedmann Equations for the modified
gravity can be determined in the following way by a spatially flat expanding FLRW universe

ds2 = −dt2 + a2(t)ηµνdxµdxν (479)

now going through the lengthy calculations, we find

R00 = −3
(

Ḣ + H2
)

(480)

Rjj = 2ȧ2 + aä (481)

and
R = 6

(
Ḣ + 2H2

)
(482)

Equation (480) can be further re-expressed using Equation (482)

R00 = −1
2

R + 3H2 (483)

for
Tµν = diag(−ρM, pM, pM, pM) (484)

where the trace of Tµνis (−ρM + 3pM). Now µ = ν = 0 in Equation (475) gives

F(R)R00 −
1
2

f (R)g00 −∇0∇0F(R) + g00�F(R) = kT00 (485)

solving through tedious calculations by making use of Equation (480) and Equation (484),
we reach at the result

3H2F =
1
2
(FR− f )− 3HḞ + kρM (486)

again for µ = ν = j in Equation (475), we have

F(R)Rjj −
1
2

f (R)gjj −∇j∇jF(R) + gjj�F(R) = k2Tjj (487)
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we find
gjj�F(R) = −2a2HḞ− a2 F̈ +∇j∇jF (488)

Using Equations (481), (484) and (488) in Equation (487), we obtain

2ḢF = −F̈ + HḞ− k(ρM + pM) (489)

Equations (486) and (489) together determine the background dynamics of a flat FLRW
universe governed by f (R). From Equation (486), dividing by 3H2F and for ρ = ρR + ρM,
we can construct a dynamical system in the framework of f (R), that is,

− Ḟ
HF

+

(
− f

6H2F

)
+

R
6H2 +

kρR

3H2F
+

kρM

3H2F
= 1 (490)

here we can define the following parameters

x1 = − Ḟ
HF

(491)

x2 = − f
6H2F

(492)

x3 =
R

6H2 (493)

x4 = ΩR =
kρR

3H2F
(494)

x5 = ΩM =
kρM

3H2F
(495)

Equation (493) can be recast by using Equation (482)

x3 =
Ḣ
H2 + 2 =

R
6H2 (496)

we have
x1 + x2 + x3 + x4 + x5 = 1 (497)

Now for pM = 4
3 ρR, N = ln aand Ḣ = H′H, we can determine the following dynami-

cal system:
dx1

dN
= x2

1 − x1x3 − 3x2 − x3 + x4 − 1 (498)

dx2

dN
= x1x2 − 2x2(x3 − 2) +

x1

m
(499)

where

m =
R f,RR

f,R
(500)

dx3

dN
= −2x3(x3 − 2)− x1x3

m
(501)

dx4

dN
= x4(x1 − 2x3) (502)

dx5

dN
= x5(x1 − 2x3) (503)

The effective equation of state can also be written form Equations (486) and (489)
by division

we f f = −1− 2ḢF
3H2F

(504)
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Or using Equation (496)

we f f = −
1
3
(−1 + 2x3) (505)

Another form can also be written as

we f f = −1 +
F̈− HḞ + k(ρ + p)

1
2 (FR− f )− 3HḞ + kρM

(506)

Now we find f (R) inflation by considering first a general form of f (R) and determine
its dynamics. Afterwards, Starobinsky inflation in f (R) will be discussed. Let us consider

f (R) = R + bRn (507)

we have
F = f,R(R) = 1 + nbRn−1 (508)

and
Ḟ =

∂F
∂t

= n(n− 1)bRn−2 ∂R
∂t

(509)

and
FR = R + nbRn (510)

substituting Equations (507)–(510) in Equation (486) where the kρM vanishes during infla-
tionary phase, we have

3H2
(

1 + nbRn−1
)
=

1
2
(nb− 1)Rn − 3n(n− 1)HbRn−2 ∂R

∂t
(511)

The cosmological acceleration could be realized in the regime F >> 1 ⇒ 1 +
nbRn−1 >> 1 and nbRn−1 >> 0, which implies 1 + nbRn−1 ≈ nbRn−1. Dividing
Equation (511) by 3nbRn−1, we obtain after simplification

H2 =
1
6

(
n− 1

n

)(
R− 6Hn

R
∂R
∂t

)
(512)

also taking the time derivative of Equation (482)

Ṙ = 6
(

Ḧ + 4HḢ
)

(513)

finding the ratio

1
R

∂R
∂t

=
HḢ
H2

(
4 + Ḧ

HḢ

2 + Ḣ
H2

)
(514)

In Equation (514), the following approximations are validated during the inflation era

Ḣ
H2 << 1⇒ Ḣ

H2 → 0 (515)

and
Ḧ

HḢ
<< 1⇒ Ḧ

HḢ
→ 0 (516)

Equation (514) takes the form

1
R

∂R
∂t

= 2
Ḣ
H

(517)
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Using Equation (482) and Equation (517) in Equation (512), we get

H2 =
n− 1

n

[
H2
(

2 + (1− 2n)
Ḣ
H2

)]
(518)

Or
Ḣ
H2 = − 2− n

(n− 1)(2n− 1)
(519)

Let
2− n

(n− 1)(2n− 1)
= ε (520)

then Equation (519) becomes
Ḣ
H2 = −ε (521)

Equation (519) gives the slow roll parameter. Integrating Equation (521), we get

H =
1
εt

(522)

Equation (522) gives the expansion rate. We can determine the evolution of the scale
factor a(t)

a(t) = (t)
1
ε (523)

Equation (523) implies that the inflationary period is the one during which cosmic
expansion is very fast in a very short span of time. Now to find out the condition on n, we
use the condition ε < 1. From Equation (520) we have

2− n
(n− 1)(2n− 1)

< 1 (524)

which gives

n >
1
2

(
1±
√

3
)

(525)

We observe here that for n = 2, the slow roll parameter ε = 0, which means the
Hubble parameter H remains nearly constant in the limit F >> 1. For n > 2 it implies
super-inflation with Ḣ > 0. It means that the viable condition to achieve a phase of
standard inflation must be

1
2

(
1 +
√

3
)
< n < 2 (526)

For the Starobinsky R2-inflation, we put n = 2 and b = 1
6M2 in Equation (507)

f (R) = R +
1

6M2 R2 (527)

using Equations (482) and (513), after substituting for n and b in Equation (511), we get
after simplification

Ḧ − 1
2

Ḣ2

H
+

1
2

M2H + 3HḢ = 0 (528)

as the Hubble parameter remains almost constant during inflation or varies very slowly,
therefore the first two terms Ḧ and − 1

2
Ḣ2

H can be neglected, and we get

Ḣ = −1
6

M2 (529)
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Integration of above Equation (529) between the limits Hi, H f and ti, t f gives

H f − Hi = −
1
6

M2
(

t f − ti

)
(530)

For H f = H = ∂ta, we have on integrating again

a(t) = ai(t) exp
(

Hi(t− ti)−
1
12

(t− ti)
2M2

)
(531)

Equation (482) becomes on making use of Equation (529)

R = −M2 + 12H2 (532)

The slow roll parameter on using Equation (529) takes the form

ε =
M2

6H2 < 1 (533)

for ε ≤ 1, we have from Equation (533)

H2 ≥ 1
6

M2 ⇒ 6H2 ≥ M2 ⇒ H2 ≥ M2 (534)

for t = t f ⇒ ε ∼ 1, from Equations (521) and (529) for H = H f we obtain

H f =
1√
6

M (535)

substituting Equation (535) in Equation (530) we have

t f − ti =
6Hi
M2 (536)

where the term 1
6 M2 is ignored. In addition, Equation (532) reduces to R ' −M2 when

the inflationary phase approaches towards its ending. The number of e-folds for the
inflationary phase turns out to be

N =
∫ t f

ti

Hdt =
1
2ε

(537)

12. The Line Element of the Perturbed Universe

When the perturbations of inflaton field φ are considered the energy momentum
tensor Tµν is also perturbed. The perturbations of the inflaton field are thus consequently
reflected through the metric tensor gµν such that δφ ⇔ δgµν. We discuss here only the
scalar perturbations for which the metric takes the form as

ds2 = a2(t)
[

(−1− 2A)dτ2 + 2∂iBdτdxi + (1− 2ψ)δij
+DijE)dxidxj

]
(538)

δgµν = a2(t)
(

δg00 δg0i
δgi0 δgij

)
= a2(t)

(
1− 2A ∂iB

∂iB
(
(1− 2ψ)δij + DijE

)) (539)

12.1. Inverse of δgµν

Let the inverse of δgµν be δgµν and we write
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δgµν = 1
a2(t)

(
δg00 δg0i

δgi0 δgij

)
=

( 1
a2(t) (−1 + X) 1

a2(t)∂iY
1

a2(t)∂iY 1
a2(t)

(
(1 + 2Z)δij + DijK

)) (540)

We find the inverse of Equation (454) that is gµν, so that we have

gµζ gζν = gµζ
0 g0

ζν = δ
µ
ν(

gµζ
0 + δgµζ

)(
g0

ζν + δgζν

)
= δ

µ
ν

gµζ
0 g0

ζν + gµζ
0 δgζν + δgµζ g0

ζν + δgµζδgζν = δ
µ
ν

(541)

where δ
µ
ν is the Kronecker delta function and is defined as

δ
µ
ν =

{
1, if µ = ν
0, if µ 6= ν

(542)

and gζν is the simply unperturbed FLRW line element described as

ds2 = a2(t)
[
−dt2 + δijdxidxj

]
(543)

g0
µν = gµν = a2(t)

(
g00 g0i
gi0 gij

)
= a2(t)

(
−1 0
0 δij

)
(544)

The inverse of g0
µν = gµν is simply gµν

0 = gµν since for diagonal unperturbed metric
gµν = 1

gµν
, so that we can write

gµν
0 = gµν =

1
a2(t)

(
g00 g0i

gi0 gij

)
=

( 1
a2(t) 0

0 1
a2(t) δij

)
(545)

For µ = 0, ν = 0 in Equation (541), we have(
g00

0 g(0)00 + g0i
0 g(0)i0

)
+
(

g00
0 δg00 + g0i

0 δgi0
)
+
(

δg00g(0)00 + δg0ig(0)i0

)
+
(
δg00δg00 + δg0iδg0i

)
= δ0

0

(546)

which give
δg00δg00 + δg0iδgi0 = 1 (547)

substituting the values, we have

− 1
a2(t)

(−1 + X)a2(t)(−1− 2A) +
1

a2(t)
∂iY
(

a2(t)∂iB
)
= 1 (548)

Simplifying and neglecting second order product terms −2AX and ∂iY · ∂iB, we get

X = 2A (549)

Again from Equation (541) for µ = 0, ν = i, we have after simplification(
g00

0 g(0)0i + g0i
0 g(0)ji

)
+
(

g00
0 δg0i + g0i

0 δgji
)
+
(

δg00g(0)0i + δg0ig(0)ji

)
+
(
δg00δg0i + δg0iδgji

)
= δ0

i

(550)

δg00δg0i + δg0jδgji = 0 (551)

Substituting the values
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1
a2(t)

(−1 + X)a2(t)∂iB +
1

a2(t)
∂jY
(

a2(t)(1− 2ψ)δji + DjiE
)
= 0 (552)

neglecting the higher product terms 2A · ∂iB, ∂iY · 2ψ and ∂jDjiY · E, we have

− ∂iB + ∂iY = 0 (553)

On integrating, we get
Y = B (554)

Now from Equation (541) for µ = i, ν = j, we have(
gi0

0 g(0)0j + gij
0 g(0)ij

)
+
(

gi0
0 δg(0)0j + gij

0 δg(0)ij

)
+
(

δgi0g(0)0j + δgijg(0)ij

)
+
(
δgi0δg0j + δgijδgij

)
= δi

j
(555)

The non-vanishing terms are

δgi0δg0j + δgikδgkj = δi
j (556)

substituting values suitable change of indices

1
a2(t)

(
∂iY
)
a2(t)∂iB + 1

a2(t)

(
(1 + 2z)δik + DikE

)
·a2(t)

(
(1− 2ψ)δkj + DkjE

)
= δi

j

(557)

using properties δikδkj = δi
j, δikDkj = Di

j, δkjDik = Di
k and neglecting the higher order

product terms ∂iB · ∂jB, −4Zψ, 2ZDi
jE, −2ψ · Di

jK and Di
jKE, we have

(1− 2ψ + 2Z)δi
j + (E + K)Di

j = δi
j + 0Di

j (558)

Comparing the coefficients of δi
j and Di

j, we get Z = ψ and K = −E, so that inverse
metric of the perturbed line element becomes

δgµν = 1
a2(t)

(
δg00 δg0i

δgi0 δgij

)
=

( 1
a2(t) (−1 + 2A) 1

a2(t)∂iB
1

a2(t)∂iB 1
a2(t)

(
(1 + 2ψ)δij − DijE

)) (559)

12.2. The Unperturbed Line Element

The unperturbed line element is given by

ds2 = a2(t)
[
−dt2 + δijdxidxj

]
(560)

or

g0
µν = gµν = a2(t)

(
g00 g0i
gi0 gij

)
= a2(t)

(
−1 0
0 δij

)
(561)

The inverse of g0
µν = gµν is simply gµν

0 = gµν as for diagonal unperturbed metric
gµν = 1

gµν
, so that we can write

gµν
0 = gµν =

1
a2(t)

(
g00 g0i

gi0 gij

)
=

( 1
a2(t) 0

0 1
a2(t) δij

)
(562)

We calculate now affine connections-the 2nd kind of Christoffel symbols
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Γσ
µν = gσλΓµνλ =

1
2

gσλ
(

gµλ ,ν + gνλ ,µ + gµν ,λ

)
(563)

We can compute the following possible components

Γ0
00 Γi

ii Γj
jj Γi

00

Γj
00 Γi

0j Γj
i0 Γ0

ij

Γ0
0i Γ0

0j Γi
jk Γj

ik
Γk

ij

(564)

For σ = µ = ν = 0, we have

Γ0
00 = − 1

2a2(t)
∂,0g00 =

ȧ
a

(565)

For σ = i, µ = 0, ν = j, we have

Γi
0j =

1
2a2(t)

δik∂,0

(
a2(t)δjk

)
=

ȧ
a

δi
j (566)

For σ = 0, µ = i, ν = j, we have

Γ0
ij =

1
2a2(t)

∂,0

(
a2(t)δij

)
=

ȧ
a

δij (567)

For σ = i, µ = 0, ν = 0, we have

Γi
00 = 0 (568)

and
For σ = 0, µ = 0, ν = i, we have

Γ0
0i = 0 (569)

and for σ = i, µ = j, ν = k, we have
Γi

jk = 0 (570)

Now, we can calculate perturbed element when we have necessary components of
perturbed and unperturbed metric and its inverse metric tensor components,

δΓσ
µν = δ

(
gσλΓµνλ

)
= 1

2 δ
(

gσλ
(

gµλ ,ν + gνλ ,µ + gµν ,λ

))
= 1

2 δgσλ
(

gµλ ,ν + gνλ ,µ − gµν ,λ

)
+ 1

2 gσλ
((

δgµλ

)
,ν + (δgνλ),µ +

(
δgµν

)
,λ

) (571)

We are on our stake now to calculate the following components:

δΓ0
00 δΓi

ii δΓj
jj

δΓi
00 δΓj

00 δΓi
0j

δΓj
i0 δΓ0

ij δΓ0
0i

δΓ0
0j δΓi

jk δΓj
ik

δΓk
ij

(572)

The non-vanishing components are For σ = µ = ν = 0, we have

δΓ0
00 = Ȧ (573)
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For σ = i, µ = 0, ν = j, we have

δΓi
0j = −ψ̇δi

j +
1
2

DijĖ (574)

For σ = 0, µ = i, ν = j, we have

δΓ0
ij = −2

ȧ
a

Aδij − ∂i∂jB− 2
ȧ
a

ψδij − ψ′δij −
ȧ
a

DijE +
1
2

DijĖ (575)

For σ = i, µ = 0, ν = 0, we have

δΓi
00 =

ȧ
a

∂iB + ∂i Ḃ + ∂i A (576)

and For σ = 0, µ = 0, ν = i, we have

δΓ0
0i = ∂i A +

ȧ
a

∂iB (577)

and for σ = i, µ = j, ν = k, we have

δΓi
jk = −∂jψδi

k − ∂kψδi
j + ∂iψδjk − ȧ

a ∂iBδjk +
1
2 ∂jDi

kE
+ 1

2 ∂kDi
jE−+ 1

2 ∂iDjkE
(578)

Now the unperturbed Ricci tensor is given

Rµν = gλσRσ
µνλ = ∂,νΓσ

µλ − ∂,λΓσ
µν + Γn

µλΓσ
nν − Γn

µνΓσ
nλ (579)

For µ = 0, ν = 0, we have

R00 = ∂,σΓσ
00 − ∂,0Γσ

0σ + Γn
µλΓσ

nν − Γn
µνΓσ

nλ = 0 (580)

For µ = 0, ν = i, we have

R0i = ∂,σΓσ
00 − ∂,0Γσ

0σ + Γn
µλΓσ

nν − Γn
µνΓσ

nλ = 0 (581)

For µ = i, ν = j, we have

Rij = ∂,σΓσ
00 − ∂,0Γσ

0σ + Γn
µλΓσ

nν − Γn
µνΓσ

nλ = 0 (582)

Now. we calculate the perturbed Ricci tensor components:

δRµν = ∂,νδΓσ
µλ − ∂,λδΓσ

µν + δΓn
µλΓσ

nν + Γn
µλδΓσ

nν − δΓn
µνΓσ

nλ

−Γn
µνδΓσ

nλ

(583)

For µ = 0, ν = 0, we have

δR00 = ∂,νδΓσ
µλ − ∂,λδΓσ

µν + δΓn
µλΓσ

nν + Γn
µλδΓσ

nν − δΓn
µνΓσ

nλ

−Γn
µνδΓσ

nλ = ȧ
a ∂i∂

iB + ∂i∂
iB′ + ∂i∂

i A + 3ψ′′ + 3 ȧ
a ψ′ + 3 ȧ

a A′
(584)

For µ = 0, ν = i, we have

δR0i = ∂,νδΓσ
µλ − ∂,λδΓσ

µν + δΓn
µλΓσ

nν + Γn
µλδΓσ

nν − δΓn
µνΓσ

nλ

−Γn
µνδΓσ

nλ = ä
a ∂iB +

( ȧ
a
)2

∂iB + 2∂iψ
′ + 2 ȧ

a ∂i A + 1
2 ∂kDk

i E′
(585)

For µ = i, ν = j, we have
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δRij = ∂,νδΓσ
µλ − ∂,λδΓσ

µν + δΓn
µλΓσ

nν + Γn
µλδΓσ

nν − δΓn
µνΓσ

nλ − Γn
µνδΓσ

nλ

=

(
− ȧ

a Ȧ− 5 ȧ
a ψ̇− 2 ä

a A− 2
( ȧ

a
)2 A− 2 ä

a ψ− 2
( ȧ

a
)2

ψ− ψ̈

+∂k∂kψ− ȧ
a ∂k∂kB

)
δij

−∂i∂j Ḃ + ȧ
a DijĖ + ä

a DijE +
( ȧ

a
)2DijE + 1

2 DijË + ∂i∂jψ− ∂i∂j A
−2 ȧ

a ∂i∂jB + 1
2 ∂k∂iDk

j E + 1
2 ∂k∂jDk

i E− 1
2 ∂k∂kDijE

(586)

Unperturbed Ricci scalar is obtained by contracting the unperturbed Ricci tensor

R = gµνRµν (587)

Using double sum and simplifying, we have

R = g00R00 + g11R11 + g22R22 + g33R33 = 6
ä
a3 (588)

and perturbed Ricci scalar, using double sum and simplifying, we have

δR = δgµνRµν + gµνδRµν = δg00R00 + δg11R11 + δg22R22
+δg33R33 + g00δR00 + g11δR11 + g22δR22 + g33δR33
= −6 ȧ

a3 ∂i∂
iB− 2

a2 ∂i∂
iB− 2

a2 ∂i∂
i A− 6

a2 ψ̈− 6 ȧ
a3 Ȧ− 18 ȧ

a3 ψ̇

−12 ä
a3 A + 4

a2 ∂i∂
iψ + 1

a2 ∂k∂iDk
i E

(589)

now unperturbed Einstein tensor is

Gµν = Rµν +
1
2

gµνR (590)

For µ = 0, ν = 0, we have

G00 = R00 +
1
2

g00R = 3
(

ȧ
a

)2
(591)

For µ = 0, ν = i, we have

G0i = R0i +
1
2

g0iR = 0 (592)

For µ = i, ν = j, we have

Gij = Rij +
1
2

gijR =

(
−2

ä
a
+

(
ȧ
a

)2
)

δij (593)

Now, the perturbed Einstein tensor at first order of perturbation is

δGµν = δRµν −
1
2
(
δgµνR + gµνδR

)
(594)

For µ = 0, ν = 0, we have

δG00 = δR00 − 1
2 (δg00R + g00δR) = −2 ȧ

a ∂i∂
iB− 6 ȧ

a ψ̇

+2∂i∂
iψ + 1

2 ∂k∂iDk
i E

(595)

For µ = 0, ν = i, we have

δG0i = δR0i − 1
2 (δg0iR + g0iδR) = −2 ä

a ∂iB +
( ȧ

a
)2

∂iB
+2∂iψ̇ + 1

2 ∂kDk
i Ė

+2 ȧ
a ∂i A

(596)
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For µ = i, ν = j, we have

δGij = δRij − 1
2
(
δgijR + gijδR

)
=

(
2 ȧ

a Ȧ + 4 ȧ
a ψ̇ + 4 ä

a A− 2
( ȧ

a
)2 A + 4 ä

a ψ− 2
( ȧ

a
)2

ψ + 2ψ̈

−∂k∂kψ + 2 ȧ
a ∂k∂kB + ∂k∂k Ḃ + ∂k∂k A + 1

2 ∂k∂ρDk
ρE

)
δij

−∂i∂j Ḃ + ȧ
a DijĖ− 2 ä

a DijE− ∂i∂j A + ∂i∂jψ +
( ȧ

a
)2DijE

+ 1
2 DijË− 2 ȧ

a ∂i∂jB + 1
2 ∂k∂iDk

j E + 1
2 ∂k∂jDikE− 1

2 ∂k∂kDijE

(597)

Now, the unperturbed stress energy tensor is

Tµν = ∂µφ∂νφ− gµν

(
1
2

gσρ∂σφ∂ρφ−V(φ)

)
(598)

For µ = 0, ν = 0, we have

T00 = ∂0φ∂0φ− g00

(
1
2

gσρ∂σφ∂ρφ−V(φ)

)
=

1
2

φ̇2 + a2(t)V(φ) (599)

For µ = 0, ν = i, we have

T0i = ∂0φ∂iφ− g0i

(
1
2

gσρ∂σφ∂ρφ−V(φ)

)
= 0 (600)

For µ = i, ν = j, we have

Tij = ∂iφ∂jφ− gij

(
1
2

gσρ∂σφ∂ρφ−V(φ)

)
=

(
1
2

φ̇2 − a2(t)V(φ)

)
δij (601)

Now, the perturbed stress energy tensor at first order of perturbation is

δTµν =
∂µ(δφ)∂νφ + ∂µφ∂ν(δφ)− δgµν

(
1
2 gσρ∂σφ∂ρφ + V(φ)

)
−gµν

( 1
2 δgσρ∂σφ∂ρφ + gσρ∂σ(δφ)∂ρφ + gσρ∂σφ∂ρ(δφ)
+∂φδV(φ) + ∂φV(φ)δφ

) (602)

For µ = 0, ν = 0, we have

δT00 = φ̇δφ̇ + 2a2(t)AV(φ) + δφa2(t)Vφ(φ) (603)

For µ = 0, ν = i, we have

δT0i = φ̇∂i(δφ) +
φ̇2

2
∂iB− a2(t)V(φ)∂iB (604)

For µ = i, ν = j, we have

δTij =
(
φ̇δφ̇− φ̇2 A− a2(t)Vφ(φ)δφ− φ̇2ψ + 2a2(t)V(φ)ψ

)
δij

−a2(t)V(φ)DijE + 1
2 φ̇2DijE

(605)

Therefore, the perturbed Einstein field equations are

δGµν = 8πδTµν (606)

comparing the corresponding components, we have

−2 ȧ
a ∂i∂

iB− 6 ȧ
a ψ̇ + 2∂i∂

iψ + 1
2 ∂k∂iDk

i E
= 8πφ̇δφ̇ + 2a2(t)AV(φ) + δφa2(t)Vφ(φ)

(607)

−2 ä
a ∂iB +

( ȧ
a
)2

∂iB + 2∂iψ̇ + 1
2 ∂kDk

i Ė + 2 ȧ
a ∂i A

= 8π
(

φ̇∂i(δφ) +
φ̇2

2 ∂iB− a2(t)V(φ)∂iB
) (608)
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(
2 ȧ

a Ȧ + 4 ȧ
a ψ̇ + 4 ä

a A− 2
( ȧ

a
)2 A + 4 ä

a ψ− 2
( ȧ

a
)2

ψ + 2ψ̈

−∂k∂kψ + 2 ȧ
a ∂k∂kB + ∂k∂k Ḃ + ∂k∂k A + 1

2 ∂k∂ρDk
ρE

)
δij

−∂i∂j Ḃ + ȧ
a DijĖ− 2 ä

a DijE− ∂i∂j A + ∂i∂jψ +
( ȧ

a
)2DijE

+ 1
2 DijË− 2 ȧ

a ∂i∂jB + 1
2 ∂k∂iDk

j E + 1
2 ∂k∂jDikE− 1

2 ∂k∂kDijE

= 8π

( (
φ̇δφ̇− φ̇2 A− a2(t)Vφ(φ)δφ− φ̇2ψ + 2a2(t)V(φ)ψ

)
δij

−a2(t)V(φ)DijE

)
+ 1

2 φ̇2DijE

(609)

perturbed equations can also be determined in mixed tensor form. Expressing Equation (606)
in mixed form and working out on the same lines as we did earlier

δGν
µ = 8πδTν

µ (610)

13. Summary

Relativistic cosmology was founded on the general theory of relativity with the
introduction of the cosmological principle and Weyl’s principle implicitly implied. In the
beginning, Einstein’s and de Sitter’s cosmological models were presented, though now
of historical interest, yet they both are very significant as the first initiates the modern
cosmology relativistically and scientifically and the latter, later on, was used to provide the
initial conditions of the big bang model with a slight change. The first theoretical models
for the possibility of dynamic universe evolved beginning with Friedmann, Lemaitre and
were observationally determined by E. Hubble. In 1929, E. Hubble found exactly the
same expanding universe that Friedmann did theoretically in 1922. Therefore, it was
Friedmann who championed the cause of dynamical universes; however, his work was
recognized later when he was no more in the world. The theory of big bang based on the
standard cosmological model faces Horizon, Flatness, Entropy problems etc. To resolve
these problems a phase of exponentially expanding universe was introduced in its very
early history which occurred in a very small fraction of time (about 1

1043 s of the very 1st
second after time creation) known as inflation. The inflation is identified as the initial
conditions under which the big bang might have taken place. The introduction of inflation
caused the name inflationary cosmology and it is about forty years since its birth to date.
The inflationary paradigm stands now on firm observational footing and is accepted
irrevocably in cosmology as the viable description for the early universe. Starobinsky,
Guth, and Linde are credited with setting the foundations of inflationary cosmology. The
inflationary cosmology is being hailed as successful in explaining the origin of structure
formation through cosmological quantum fluctuations as relicts of cosmic inflation. The
observations conducted on microwave background radian and the recent discoveries of
gravitational waves and black holes lend the confirmatory support to the underlying
principles of the inflationary cosmology. Dark energy is the one of most challenging
issues of the standard cosmology both on theoretical and observational grounds. In the
framework of ΛCDM it has equation of state (EoS) w = −1, however δ is facing fine-tuning
problem. An alternative remedy to tackle the problems of δ are the model consisting of
canonical and non-canonical scalar fields. The scalar field models modify matter sector
of EFE on the right hand side, nonetheless in f (R) geometry is modified as curvature
of spacetime. ΛCDM model is accepted for its being in good agreement with the recent
observations. Note that there exists well-elaborated scenario to unify inflation with Dark
Energy in modified gravity which was first proposed in S. Nojiri and S.D. Odintsov [61].
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Appendix A. Space, Time and Spacetime

A background arena of space and time is necessarily required for all the physical
phenomena to play over it and the compatibility of the known physical laws is made with
structure of space and time. Space, time, and motion are concomitant ingredients cohered
to matter and can never be disengaged from each other. The universe exists in space and
evolves in time so that universe, space and time are in separable from each other and are
coherently related to each other. Space is understood as possessing three dimensions and
time is speculated to have only one dimension. Therefore, Newtonian Mechanics has been
formulated in such a way to consider the spatial dimensions existing independently from
the only one dimension of time. The Euclidean geometry provides necessary mechanism
in dealing with such notions of space and time. In this regard Euclidean space becomes
important which proposes three independent perpendicular dimensions of space and the
dimension of time does not get affected by it. Space and time are envisaged as independent
absolute entities which are not affected by each other. The Euclidean structure of space
is flat and distances are measured by using the standard Pythagoras theorem for three
dimensions as

ds2 = x2 + y2 + z2, (A1)

or in differential of the distances

ds2 = dx2 + dy2 + dz2, (A2)

where ds = (x, y, z) or ds = (dx, dy, dz), respectively. The time coordinate does appear
anywhere in this distance-measuring formula which means in the geometry of space, the
dimension of time will be dealt separately. Newton’s notions of space and time as described
in Principia Mathematica are given as “Absolute space, in its own nature, without regard
to anything external, remains always similar and immovable. Relative space is some
movable dimension or measure of the absolute spaces which our senses determine by its
position to bodies: and which is vulgarly taken for immovable space. Absolute motion
is the translation of a body from one absolute place into another: and relative motion,
the translation from one relative place into another” and absolute time is defined in these
words “Absolute, true and mathematical time, of itself, and from its own nature flows
equably without regard to anything external, and by another name is called duration.
Relative, apparent and common time, is some sensible and external (whether accurate or
inequable) measure of duration by the means of motion, which is commonly used instead
of true time”.

In 1905, Einstein’s paper entitled “On the electrodynamics of moving bodies” put
forth on the base of two postulates that time might be dealt on equal footing with space as
one of the dimensions of space. Minkowski (1864–1909) translated the mixing of space and
time coordinates as requiring a four-dimensional scenario where physical phenomena take
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place and the geometry of such four dimensional spacetime, where time is one dimension,
is described by spacetime interval which is the generalized form of Pythagoras theorem

ds2 = −dt2 + dx2 + dy2 + dz2 (A3)

or
ds2 = ηµνdxµdxν (A4)

where

ηµν =


η00 η01 η02 η03
η10 η11 η12 η13
η20 η21 η22 η23
η30 η31 η32 η33

 =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (A5)

Minkowski first understood that the spacetime interval given in Equation (A3) remains
invariant for all the observers and carries the similar meaning for all the observers in
uniform relative motion, however, Einstein considered either with respect time or space the
interval does not remain identical for all relative observers in uniform motion. Minkowski
avowedly said in a conference addressing to the German scientists that “Ladies and
gentlemen! the views of space and time which i wish to lay before you have sprung from
the soil of experimental physics, therein lies their strength, they are radical. Henceforth
space by itself and time by itself are doomed to fade away into mere shadows and only
a union of the two will preserve an independent reality” [42]. General relativity was
formulated on the base of four dimensional spacetime as Minkowski has laid it but in order
to incorporate the gravity into it Einstein utilized the power of tensors and modeled the
curved geometry of spacetime describing its curvature as gravity. The geometry of curved
spacetime is encoded into a two rank symmetric tensor known as fundamental tensor and
given as the spacetime metric or line element as

ds2 = gµνdxµdxν (A6)

where gµν is given by

gµν =


g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33

 =


g00 0 0 0
0 g11 0 0
0 0 g22 0
0 0 0 g33

 (A7)

In the absence of matter, the curvature of spacetime vanishes and the geometry of space-
time becomes flat, i.e., gµν = µµν, yet non-Euclidean that is required by the special relativity.

Appendix B. Maximally Symmetric 3-Space (Spherically Symmetric Space)

In order to have a space more symmetrical we require comparatively lesser number of
functions as much as possible to determine its properties. It is the curvature of a space and
its nature that determines how much the space is symmetric maximally. If the curvature
K of a space under consideration does not depend upon the coordinates of the points
constituting it and has a constant value, then the space shall be maximally symmetric and
the spaces possessing the curvature of this kind logically entail cosmological principle,
i.e., homogeneity and isotropy. Spacelike coordinates

(
x1, x2, x3) obviously span 3-space

which we require to be maximally symmetric. The Riemann curvature tensor Rσ
µνρ in three

dimensional space has 34 = 81 components which depend on the coordinates. From these,
only six components are independent and are the functions of coordinates and require six
functions to be described in order to specify intrinsically the geometric properties of the
three dimensional space. The Riemann curvature tensor Rσ

µνρ depends on curvature K and
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the metric tensor gµν for the maximally symmetric spaces which is the simplest form for it
to adopt. It is given by

Rµνζπ = K
(

gµζ gνπ − gµπ gνζ

)
(A8)

gµπ Rµνζπ = Kgµπ
(

gµζ gνπ − gµπ gνζ

)
= K

(
gµπ gµζ gνπ − gµπ gµπ gνζ

)
(A9)

Rνζ = K
(

δπ
ζ gνπ − δ

ζ
ζ gνζ

)
= K

[
gνζ −

(
δ1

1 + δ2
2 + δ3

3

)
gνζ

]
(A10)

Rνζ = K
[
gνζ − 3gνζ

]
= K

(
−2gνζ

)
(A11)

Then, Ricci scalar or curvature scalar from above Equation (A11) can be had by
contraction with inverse metric tensor gνζ

gνζ Rνζ = −2gνζ gνζ K (A12)

R = −2δ
ζ
ζ K = −2

(
δ1

1 + δ2
2 + δ3

3

)
K = −2(1 + 1 + 1)K = −6K (A13)

The metric of an isotropic 3-space must depend on rotational invariants given by

~x ·~x = r2

d~x · d~x,~x · d~x (A14)

and in spherical polar coordinates (r, θ, φ), it should take the form

dσ2 = C(r)(~x · d~x)2 + D(r)(d~x · d~x)2 (A15)

dσ2 = C(r)r2dr2 + D(r)
(

dr2 + r2dθ2 + r2sin2θdθ2
)

(A16)

Redefining the radial coordinate r̄2 = r2D(r) and dropping the bars on the variables,
we can write the above Equation (A16) in the form

dσ2 = B(r)dr2 + r2dθ2 + r2sin2θdθ2 (A17)

where B(r) is an arbitrary function of r. Solving the metric in Equation (A17), the compo-
nents are

g11 = B(r)
g22 = r2

g33 = r2sin2θ

(A18)

The non-vanishing Christoffel symbols we find, are

Γ1
11 = Γr

rr =
1

2B(r)
dB(r)

dr
Γ1

22 = Γr
θθ = − r

B(r)

Γ1
33 = Γr

φφ = − rsin2θ
B(r)

Γ2
13 = Γθ

rφ = 1
r

Γ3
13 = Γφ

rφ = 1
r

Γ2
33 = Γθ

φφ = − sin θ cos θ

Γ2
32 = Γφ

φθ = cot θ

(A19)

Now, from the Ricci tensor

Rµν = ∂νΓρ
µρ − ∂ρΓρ

µν + Γσ
µρΓρ

σν + Γσ
µνΓρ

σρ (A20)

We calculate non-vanishing components
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R11 = Rrr = − 1
rB

dB
dr

R22 = Rθθ = −1 + 1
B −

r
2B2

dB
dr

R33 = Rφφ = Rθθsin2θ =
(
−1 + 1

B −
r

2B2
dB
dr

)
sin2θ

(A21)

and the Ricci scalar is
R = −2δ

ζ
ζ K (A22){

1
rB

dB
dr = 2KB(r)

1 + r
rB2

dB
dr −

1
B = 2Kr2 (A23)

Integrating 1st part of Equation (A23), we obtain

B(r) =
1

A− Kr2 (A24)

where A being a constant of integration can be found by substituting Equation (A24) into
2nd part of Equation (A23), we get

1− A + Kr2 = Kr2

A = 1
(A25)

so we obtain the metric

dσ2 =
dr2

1− Kr2 dr2 + r2dθ2 + r2sin2θdθ2 (A26)

Equation (A26) incorporates a hidden symmetry characterized by homogeneity and
isotropy, and represents the line element of a maximally symmetric 3-space. Due to
arbitrary origin of radial coordinate system, we considered and due to symmetry of space
we can take all the points of this space equivalent and the origin of this coordinate system
can be chosen arbitrarily at any point which means that there exists no center in this space.
Therefore the maximally symmetric space is infinite and open. Further the line element is
equivalent perfectly to the metric of a 3-sphere embedded in a four dimensional Euclidean
space which has spherical symmetry as well.

Appendix C. Spectrum of the Black Body

A blackbody can absorb hypothetically radiation of all wavelengths falling on it and
reflecting nothing at all. How at the different wavelengths distribution of radiation occurs
in a blackbody is given below in Figure A1:

Figure A1. Radiation distribution of blackbody at different wavelengths.

In the early universe when matter and radiation decoupled from each other, the so-
called decoupling, the primordial radiation given off gives a snapshot of the universe at
that time and is known as cosmic microwave background radiation (CMBR) observed acci-
dentally in the 60 s. The recent observations conducted on cosmic microwave background
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radiation reveals the fact that this is the perfect black body radiation with a temperature of
2.7255 Kelvin on average. We know that the wavelength distribution of a black body is
given by

u(λ, T)dλ =
8πhc

λ5

(
1

e
hc

λkBT−1

)
dλ (A27)

where u(λ, T)dλ is the energy per unit volume of the radiation with wavelength between
λ and λ + dλ emitted by a blackbody at temperature T. We consider now a black body
radiation from the big bang when the universe first became transparent to photons after
400,000 years after big bang to this time about 4,000,000,000 years. The wavelength of
the primordial photons λ is Doppler shifted to λ′ due to expansion of universe, certainly
λ′ > λ. Let f (λ′, T′)dλ′ be the current per unit volume of the residual big bang radiation
as measured from the earth. As the shell of charged particles that emitted the radiation is
moving away from the Earth at extremely relativistic speed so we should use the relativistic
Doppler shift for light from a receding source to relate λ′ to λ that is

λ′ =

√
1 + v/c√
1− v/c

λ = Bλ (A28)

where we put B =
√

1+v/c√
1−v/c

, and v is the speed of recession of the charged shell. As v < c,

clearly λ′ > λ by a factor √
1 + v/c√
1− v/c

(A29)

Equation (A29) can be interpreted by generalization that all the distances have grown
since first radiation emitted. In order to have a relation between currently observed
spectrum f (λ′, T′)dλ′ and original black body radiation distribution

u(λ, T)dλ (A30)

we put from Equation (A28) λ = λ′
B into Equation (A27)

u(λ, T)dλ =
8πhc(

λ′
B

)5

 1

e
hc

λ′
B kBT

−1

dλ′

B
(A31)

u(λ, T)dλ

B4 =
8πhc
λ′5

(
1

e
hc

λ′kBT′ −1

)
dλ′ (A32)

where T′ = T
B and RHS of Equation (A32) can be identified with current black body

spectrum f (λ′, T′)dλ′ which has standard functional form of a blackbody spectrum with
wavelength λ′ and temperature T′. Equation (A30) becomes

u(λ, T)dλ

B4 = f
(
λ′, T′

)
dλ′ (A33)

Equation (A33) says that the radiation from a receding blackbody has same spectral
distribution as yet but its temperature T′ and energy

u(λ, T)dλ (A34)

dropped by factors of B and B4 respectively.

Appendix D. Big Bang Theory of Creation

Historically the name of this theory as big bang is due to Fred Hoyle (1915–2001),
one of the inventors and staunch proponents of steady state theory who coined the term
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accidentally with showing abhorrence towards it. The steady-state theory, once a rival
theory of the big bang, lends support to an eternally evolving universe without a beginning
and an end. The big bang theory explains the evolutionary phases of the universe beginning
with a very small span of a fraction of very first second to the present age. The warp and
woof of the theory is woven by equation of general relativity and the developments made
in its context. The theory traces its theoretical origin back to Friedmann equations and the
discovery of expansion of the universe by Edwin Hubble in thirties. Further it rests upon
the relative abundance of light elements by George Gamow forties and CMB accidental
discovery in seventies by Penzias and Wilson. The theory comes forth on the base of
standard cosmological model and describes that our universe had had a beginning and
had erupted from an extremely dense, point-like singularity about 14 billion years ago. At
the singularity state, all basic interactions of nature had coalesced symmetrically where
all the matter-energy melted down into an indistinguishable quark-gluon primordial
soup. Einstein has expressed his views on the nature of this singularity in his later years:
“The theory is based on a separation of the concepts of the gravitational field and matter.
While this may be a valid approximation for weak fields, it may presumably be quite
inadequate for very high densities of matter. One may not therefore assume the validity
of the equations for very high densities and it is just possible that in a unified theory
there would be no such singularity” [62]. It is speculated that during the Planck time of
the order of 10−43 s all the forces of nature, namely, electroweak nuclear, strong nuclear,
electromagnetic, and gravitational, were so merged into one another such that they were
indistinguishable bearing perfect symmetry. From the beginning of time, t = 0 s to Planck
time tp ∼ 10−43 s within the time span of very first second is known as the Trans-Planckian
era whose physics is yet incomplete and is open hitherto to investigation. It is being
conjectured that during the time ranging from 10−43 s to 10−35 s, the gravitational force
freed itself from the rest of interactions, and during this period there exist the particles
that supersymmetry predicts and are known as quarks, leptons, their antiparticles, and
some certain massive particles. After the time interval that begins with 10−35 s to some
shortly later time 10−32 s, the universe expanded exponentially and gradually cooled down
where the strong and electroweak forces get separated from the rest. As the universe
continues to cool after the big bang, around the time 10−10 s, the electroweak force splits
into weak force and electromagnetic force and within few minutes after it, protons and
neutrons start to condense out of the cooling quark–gluon plasmic soup. During the first
half of creation, the universe can be viewed as a thermonuclear bomb fusing protons
and neutrons into deuterium and then helium producing most of the helium nuclei that
exist now. After the big bang until about 400,000 years radiation-dominated era prevailed.
Vibrant photonic radiation halted itself to become a clumped matter rather even forming
single atom hydrogen or helium due to photon–atom collisions which would result in
ionization instantly in the case if any atom happened to form, therefore no chance occurs for
the formation of atoms and the universe remains opaque to electromagnetic radiation due
to incessant Compton scattering experienced by photons with free electrons that abound in.
On further cooling electrons could bind to protons forming helium nuclei with the reduction
in the number of charged particles, absorption or scattering of photons consequently the
universe suddenly became transparent to photons and radiation dominated era diminishes
and neutral matter domination begins in the form of atoms, molecules, gas clouds, stars
and in the end galaxies-the universe today. This is the whole saga of the big bang theory
of creation.
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