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Abstract: We study the impact of a non-vanishing (positive) cosmological constant on the innermost
and outermost stable circular orbits (ISCOs and OSCOs, respectively) within massive gravity in four
dimensions. The gravitational field generated by a point-like object within this theory is known,
generalizing the usual Schwarzschild–de Sitter geometry of General Relativity. In the non-relativistic
limit, the gravitational potential differs by the one corresponding to the Schwarzschild–de Sitter
geometry by a term that is linear in the radial coordinate with some prefactor γ, which is the only
free parameter. Starting from the geodesic equations for massive test particles and the corresponding
effective potential, we obtain a polynomial of fifth order that allows us to compute the innermost
and outermost stable circular orbits. Next, we numerically compute the real and positive roots of the
polynomial for several different structures (from the hydrogen atom to stars and globular clusters
to galaxies and galaxy clusters) considering three distinct values of the parameter γ, determined
using physical considerations, such as galaxy rotation curves and orbital precession. Similarly to
the Kottler spacetime, both ISCOs and OSCOs appear. Their astrophysical relevance as well as the
comparison with the Kottler spacetime are briefly discussed.

Keywords: massive gravity; orbital precession; perturbative potential; ISCOs and OSCOs of astro-
physical objects

1. Introduction

Current observational data in astrophysics and cosmology indicate that the present
Universe is dominated by dark matter and dark energy [1], the origin and nature of
which still remain a mystery. The dark sector comprises one of the major challenges in
modern theoretical cosmology. A positive cosmological constant, Λ, [2] is the simplest
and most economical way to explain the current cosmic acceleration, while, in the past,
galaxy rotation curves provided some of the first and strongest evidence in favor of dark
matter [3].

Einstein’s General Relativity (GR) [4] may be extended in several different ways, either
in four or in higher dimensions—for instance, the f (R) theories of gravity [5,6], the Brans–
Dicke [7–9] and more generically scalar-tensor theories of gravity in four dimensions,
brane models [10,11], and Lovelock theory [12] in higher dimensional spacetimes. In
four dimensions, the Einstein tensor is the only second-rank tensor with the following
properties: (i) it is symmetric, (ii) it is divergence free, (iii) it depends only on the metric
and its first and second derivatives, and (iv) it is linear in second derivatives of the metric.

However, in higher dimensions, Lovelock’s theorem states that more complicated
tensors with the above properties exist. Of particular interest is massive gravity [13,14]
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in which a static, spherically symmetric solution to the vacuum field equations exists [15],
generalizing the well-known Schwarzschild solution [16] of GR, and which is character-
ized by two new scales, Λ and γ. The former is relevant for the current acceleration of
the Universe, while the latter may be explain the galaxy rotation curves provided that
γ ∼ 10−28 m−1 [17].

The impact of a non-vanishing cosmological constant on black hole physics has been
extensively investigated over the decades in an effort to determine whether or not new
effects appear [18]. Certainly, such a study has been extended to other topics into General
Relativity, astrophysics, and cosmology. In particular, as was recently pointed out by
M. Visser and collaborators [19], new features emerge, such as outermost stable circular
orbits (OSCOs), when a positive cosmological constant (no matter how small) is taken into
account.

In this respect, OSCOs has been investigated in alternative contexts, for instance: (i) ac-
cretion disks [20,21], (ii) galaxies [22,23], and in (iii) modified theories of gravity [24,25].
There is a vast literature where models in the context of extended theories of gravity
have been studied. To name a few, within the context of scalar-tensor theories of gravita-
tion, the Brans–Dicke theory is considered one of the most natural extensions of General
Relativity [7–9].

Based on similar ideas, scale-dependent gravity is an alternative approach, where the
coupling constants of the theory are allowed to vary [26–43]. In addition to that, in higher
dimensions, another possibility is the well-known Gauss–Bonnet gravity [44], and, more
generically, Lovelock gravity [12] in which higher order curvature corrections are natural.

In this work, our goal is twofold: First, we shall use the recent data reported by
the GRAVITY Collaboration to place limits on the parameters of massive gravity. Next,
assuming those values, we shall investigate the existence and nature of the stable circular
orbits of several different structures in the Universe from the atomic level to clusters of
galaxies. In this paper, we will investigate whether OSCOs are also present in light in
massive gravity [14,17] taking into account real values of the massive gravity parameter γ.

Our work is organized as follows: In the next section, we review the field equations
and the vacuum solution of massive gravity. In the third section, we obtain the allowed
range of the scale γ using data on the periastron advance of the planet Mercury in our
Solar System as well as of the star S2 orbiting around the supermassive black hole at the
Galactic center. In Section 4, we discuss the geodesic equations and the effective potential
for test massive particles, while, in the fifth section, we compute the ISCOs and OSCOs of
several different structures in the Universe.

Finally, we summarize our work in the last section with some concluding remarks.
We adopt the mostly negative metric signature (+,−,−,−), and we work mostly in
geometrized units where we set the speed of sound in a vacuum as well as Newton’s
constant to unity, G = 1 = c.

2. Field Equations and Vacuum Solution in Massive Gravity

We will start by considering the theory of dRGT massive gravity, defined by the
action [13,14], and we closely follow [17]

S[gµν, fµν] =
M2

Pl
2

∫
d4x
√
−g
[

R + m2
gU (g, f )

]
+Sm , (1)

where Sm is the part of the action coming from the matter content, and we use the conven-
tional definitions, i.e., (i) MPl is the reduced Planck mass, (ii) R is the Ricci scalar, (iii) g is
the determinant of the metric tensor gµν, (iv) mg is the graviton mass, and finally (v) U is
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the self-interacting potential of the gravitons. In order to avoid the Boulware–Deser ghost,
the self interactions U(g, f ) must be split as follows

U ≡ U2 + α3U3 + α4U4 ,

U2 ≡ [K]2 − [K2] ,

U3 ≡ [K]3 − 3[K][K2] + 2[K3] ,

U4 ≡ [K]4 − 6[K]2[K2] + 3[K2]2 + 8[K][K3]− 6[K4] ,

where the tensor Kµ
ν is, then,

Kµ
ν ≡ δ

µ
ν −

√
gµλ∂λ ϕa∂ν ϕb fab , (2)

and [K] = Kµ
µ and (Ki)

µ
ν = Kµ

ρ1K
ρ1
ρ2 ...Kρi

ν . At this point, we have two different met-
rics: (i) the physical metric, gµν, and (ii) the fiducial metric, fµν. In addition, ϕa are the
Stückelberg fields. In what follows, we use the unitary gauge, ϕa = xµδa

µ, thus√
gµλ∂λ ϕa∂ν ϕb fab =

√
gµλ fλν .

The gravitational field equations are obtained taking the variation with respect to gµν,
and they are found to be [17]

Gµ
ν + m2

gXµ
ν = 8πGTµ(m)

ν (3)

where Tµ(m)
ν is the corresponding energy–momentum tensor obtained from the matter

Lagrangian. The massive graviton tensor [15,45], labeled as Xµ
ν , is given by

Xµ
ν = Kµ

ν − [K]δµ
ν − α

[
(K2)

µ
ν − [K]Kµ

ν +
1
2

δ
µ
ν ([K]2 − [K2])

]
+ 3β

[
(K3)

µ
ν − [K](K2)

µ
ν +

1
2
Kµ

ν ([K]2 − [K2])

−1
6

δ
µ
ν ([K]3 − 3[K][K2] + 2[K3])

]
, (4)

where we can redefine the parameters as follows:

α3 =
α− 1

3
(5)

α4 =
β

4
+

1− α

12
(6)

The terms of order O(K4) disappear when taking into account the fiducial metric
ansatz [17]:

fµν =


0 0 0 0
0 0 0 0
0 0 C2 0
0 0 0 C2 sin2 θ

 , (7)

where C is a positive constant. It is known that the massive gravitons can be treated as an
effective fluid where density, ρg, and pressures, {Pr

g, Pθ,φ
g }, depend on the radial coordinate

r only. The pressures are generically anisotropic with Pr
g 6= Pθ,φ

g , and thus there is a stress
generated by the massive gravitons, as was indicated in Refs. [46,47].
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Within massive gravity, static, spherically symmetric black hole solutions with mass
M in Schwarzschild-like coordinates (t, r, θ, φ) are given by the following line element

ds2 = A(r)dt2 − A(r)−1dr2 − r2(dθ2 + sin2 θdφ2) (8)

where the corresponding lapse function, A(r), is found to be [17]:

A(r) = 1− 2M
r
− 1

3
Λr2 + γr + η (9)

and where Λ acts like a cosmological constant, while the set {γ, η} are two new parameters
coming from massive gravity, which are computed in terms of the graviton mass, mg,
and the other parameters of the theory as follows [17]

Λ = −3m2
g(1 + α + β) (10)

γ = −m2
gC(1 + 2α + 3β) (11)

η = m2
gC2(α + 3β) (12)

Clearly, when mg is taken to be zero, the solution reduces to the usual Schwarzschild
geometry of General Relativity. The corresponding metric A(r) has been obtained, for in-
stance, in [15,48]. It is important to mention that the strong coupling scale of the dRGT
massive gravity theory was estimated in [48].

Following [17], to obtain flat space with η = 0, we impose the following condition on
α, β

α + 3β = 0. (13)

To guarantee that the cosmological constant is positive and tiny, in the following, we
set

β− 1
2
= ζ (14)

with ζ > 0 being a very small number. It is now easy to verify that Λ plays the role of a
positive and tiny cosmological constant, Λ ≡ 3

l2 , with l being a length scale.
In the non-relativistic limit, the following relation holds [49,50]:

2Φ(r) + 1 = g00(r) = 1− 2M
r
− Λr2

3
− 2a0r (15)

with Φ(r) being the gravitational potential, and we set γ = −2a0. Thus, in this modified
theory of gravity, the total gravitational potential consists of three terms

Φ(r) = Φ(r)N −
1
6

Λr2 − a0r (16)

and the gravitational potential energy, V, is simply given by V(r) = mΦ(r), with m being
the mass of a test particle in the fixed gravitational background. Therefore, there are two
perturbing potentials, namely one due to the cosmological constant term, and another due
to the linear term in r.

Before we continue with our discussion, a comment is in order here. Within GR, the
Birkhoff theorem ensures that the only static, spherically symmetric solution in empty
space is given by the Schwarzschild geometry. Within massive gravity, however, contrary
to GR, the theorem does not hold [51], and consequently more than one class of solutions
may be obtained [51–54]. This implies that the gravitational field generated by extended
mass distributions depends on the shape of the distribution.
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This is an interesting and, at the same time, tricky issue, which requires a very careful
examination. In the present work, however, we can imagine that we restrict ourselves
to some class of certain finite mass distributions for which the solution considered here
always holds. Therefore, in the discussion to follow, we assume that, for all the structures
shown in Tables 1 and 2 below, the gravitational field outside the distribution is described
by the solution considered in this work.

Table 1. OSCOs and ISCOs as a function of mass (in parsecs). We take (l = 5 Gpc) for three different values of the parameter
γ. Thus, we have: (i) γ1 = 3.09× 10−12 pc−1, (ii) γ2 = 2.58× 10−13 pc−1 and (iii) γ3 = −5.16× 10−14 pc−1.

Object M rKottler
OSCO rγ1

OSCO rγ1
ISCO/6M rγ2

OSCO rγ2
ISCO/6M rγ3

OSCO rγ3
ISCO/6M

Hydrogen atom 4.03× 10−71 6.31× 10−18 2.89× 107 1.00 2.42× 106 1.00 2.28× 10−29 1.00
Earth 1.44× 10−19 9.65× 10−1 2.89× 107 1.00 2.42× 106 1.00 1.36× 10−3 1.00
Sun 4.79× 10−14 6.69× 10 2.89× 107 1.00 2.42× 106 1.00 7.86× 10−1 1.00

Stellar association 4.79× 10−13 1.44× 102 2.89× 107 1.00 2.42× 106 1.00 2.49 1.00
Open stellar cluster 4.79× 10−12 3.10× 102 2.89× 107 1.00 2.42× 106 1.00 7.86 1.00

Globular cluster 4.79× 10−9 3.10× 103 2.89× 107 1.00 2.42× 106 1.00 2.49× 102 1.00
Saggitarius A* 2.06× 10−7 1.09× 104 2.89× 107 1.00 2.42× 106 1.00 1.63× 103 1.00
Dwarf galaxies 4.79× 10−5 6.69× 104 2.89× 107 1.00 2.42× 106 1.00 2.43× 104 1.00
Spiral galaxies 4.79× 10−2 6.69× 105 2.89× 107 1.00 2.47× 106 1.00 5.40× 105 1.00
Galaxy clusters 4.79× 101 6.69× 106 2.93× 107 1.00 7.60× 106 1.00 6.53× 106 1.00

Table 2. OSCOs as a function of mass (in parsecs) for γ3 = −5.16× 10−14 pc−1. We take (l = 5 Gpc),
and link the corresponding rOSCO with typical astrophysical scales.

Object M rγ3
OSCO Astrophysical Relevance?

Hydrogen atom 4.03× 10−71 2.28× 10−29 Subatomic scales
Earth 1.44× 10−19 1.36× 10−3 Size of Solar System
Sun 4.79× 10−14 7.86× 10−1 Rogue planets

Stellar association 4.79× 10−13 2.49 Rogue planets
Open stellar cluster 4.79× 10−12 7.86 Size of most globular clusters

Globular cluster 4.79× 10−9 2.49× 102 Open cluster spacing
Saggitarius A* 2.06× 10−7 1.63× 103 Globular cluster spacing
Dwarf galaxies 4.79× 10−5 2.43× 104 Size of galaxy
Spiral galaxies 4.79× 10−2 5.40× 105 Inter-galactic spacing
Galaxy clusters 4.79× 101 6.53× 106 Size of galaxy cluster

3. Periastron Advance in Massive Gravity

In this section, we present the first part of the analysis performed in the present
work, namely how to constrain the parameter γ using observational data coming from the
periastron advance of the planet Mercury around the Sun as well as the S2 star around
Saggitarius A∗.

A generic and useful expression for the periastron advance, ∆θp, due to any perturba-
tive potential energy, V(r), beyond the Newtonian one, is found to be (setting G = 1) [55]

∆θp =
−2L
Mme

∫ +1

−1

dz z√
1− z2

dV(z)
dz

(17)

where L = a(1− e2), the perturbing potential energy is evaluated at r = L/(1 + ez), and e,
and a are the eccentricity and the semi-major axis of the orbit, respectively.

Let us mention that, as was indicated in [56], the above expression is still valid in
modified theories of gravity. The study of the motion of test particles in a given gravitational
background (geodesic equations via the Christoffel symbols) remains the same in all metric
theories of gravity, irrespective of the underlying theory. The general expression for the
precession angle in terms of the perturbing potential has been derived considering the
orbit u(θ), where u = 1/r, and this expression does not depend on the underlying theory
of gravity.

In the present work, clearly there are two contributions beyond the Newtonian poten-
tial, namely (i) the cosmological constant (∆θp(CC)), and (ii) the linear term coming from
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massive gravity (∆θp(MG)) as well as the contribution from General Relativity (∆θp(GR)),
and they are computed to be (setting G = 1 = c) [55]

∆θp(GR) =
6πM

a(1− e2)
(18)

∆θp(CC) =
3πa3

Ml2

√
1− e2 (19)

∆θp(MG) =
2πa2a0

M

√
1− e2 (20)

where the total contribution is

∆θp ≡ ∆θp(GR) + ∆θp(CC) + ∆θp(MG). (21)

From the observational point of view, here, we shall use the precession angle of the
planet Mercury [57,58]

∆θp − ∆θp(GR) = (−0.002± 0.003)′′ per century (22)

as well as the precession angle of the S2 star around Saggitarius A∗ [57,59]

f ≡
∆θp

∆θp(GR)
= 1.10± 0.19. (23)

Finally, regarding the details of the orbit, in the case of Mercury, we use the following
numerical values [57]

M = 1.99× 1030 kg (24)

a = 5.79× 107 km (25)

e = 0.20563 (26)

while, in the case of the S2 star, we use the following numerical values [57]

M = 4.261× 106 M� (27)

a = 1.54× 1014 m (28)

e = 0.884649. (29)

In the two panels of Figure 1, we show, both for Mercury and for the S2 star, the
prediction of the theory for the periastron advance as a function of a0 as well as the
corresponding observational strip. An allowed window from a lower (negative) to an
upper bound (positive) for a0 is obtained. This is the first main result of the present work.
The a0 = 0, corresponding to GR with a non-vanishing cosmological constant, is included
as expected. The strongest limits come from Mercury, and those are the ones we shall be
using in the discussion to follow.

The bound on a0 induces a corresponding bound on γ, which is computed to be

− 5.16× 10−14 pc−1 ≤ γ ≤ 2.58× 10−13 pc−1. (30)

Previously, an analysis based on galaxy rotation curves showed that, within the dRGT
massive gravity, γ ∼ 10−28 m−1 [17]. Finally, we also report on the constraint obtained
here using the orbital precession of the S2 star around Saggitarius A∗, since, to the best of
our knowledge, this is the first attempt to constrain γ, or equivalently a0, upon comparison
to the results of GRAVITY Collaboration. We find

− 2.62× 10−6 m/s2 ≤ a0 ≤ 8.43× 10−6 m/s2. (31)
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although, as already mentioned before, in the discussion to follow we shall use the tighter
limits from Mercury.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

a0 (*105 m/s2)

f(
a 0
)

-6 -4 -2 0 2 4 6
-0.008

-0.006

-0.004

-0.002

0.000

0.002

0.004

a0 (*1013 m/s2)

Δ
θ p
(C
C
)
+
Δ
θ p
(M
G
)

Figure 1. Precession angle against a0 assuming l = 5 Gpc. (i) Left Panel: Dimensionless ratio
f (a0) for S2 data and its bounds. (ii) Right Panel: Precession angle (deviation from GR) ∆θp(CC) +
∆θp(MG) for Mercury data and its bounds.

4. Geodesic Equations and Effective Potential

In this section, we will determine the ISCOs and OSCOs following the steps previously
discussed in [19]. First, we assume a fixed static, spherically symmetric gravitational
background of the form

ds2 = gttdt2 − grrdr2 − r2[dθ2 + sin2 θdφ2] (32)

Now, following [60], the equations of motion for test particles are given by

d2xµ

ds2 + Γµ
ρσ

dxρ

ds
dxσ

ds
= 0 (33)

with s as the proper time. The corresponding Christoffel symbols, Γµ
ρσ, are computed

by [49]

Γµ
ρσ =

1
2

gµλ

(
∂gλρ

∂xσ
+

∂gλσ

∂xρ −
∂gρσ

∂xλ

)
. (34)

The mathematical treatment is simplified taking advantage of the fact that there are
two conserved quantities (two first integrals of motion), precisely as in the Keplerian
problem in classical mechanics. In practice, for µ = 1 = t and µ = 4 = φ, the geodesic
equations acquire the form

0 =
d
ds

(
gtt

dt
ds

)
(35)

0 =
d
ds

(
r2 dφ

ds

)
. (36)

With the above in mind, we then introduce the corresponding conserved quantities as

E ≡ gtt
dt
ds

, L ≡ r2 dφ

ds
. (37)

The last two quantities, {E, L}, are usually identified as the energy and angular
momentum, respectively.

Assuming a motion on the (x− y) plane (i.e., studying motions on the equatorial plane:
θ = π/2), the geodesic equation for the θ index is also satisfied automatically. Therefore,
the only non-trivial equation is obtained for µ = 2 = r (see [60] for further details)(

dr
ds

)2
=

1
gttgrr

[
E2 − gtt

(
ε +

L2

r2

)]
(38)
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which may be also obtained from [60]

gµν
dxµ

ds
dxν

ds
= ε (39)

where ε = 1 for massive test particles, and ε = 0 for light rays. In the discussion to follow,
we shall consider the case where ε = 1 (massive test particle with mass m) and gttgrr = 1.
Then, the non-trivial geodesic equation takes the simpler form(

dr
ds

)2
=

[
E2 − gtt

(
1 +

L2

r2

)]
(40)

and we now introduce the corresponding effective potential, which, as usual, is defined
to be

V(r) = gtt(r)
(

1 +
L2

r2

)
, (41)

where gtt is the lapse function, which will now be identified to A(r) reported in Equation (9)
(setting η = 0).

5. ISCOs/OSCOs in Massive Gravity

From now on, we will investigate the case of massive particles (which means ε = 1).
The effective potential in this case looks like

V(r) =
(

1− 2M
r
− 1

3
Λr2 + γr

)(
1 +

L2

r2

)
(42)

and the first and second derivatives of the potential are

V′(r) =
6L2M

r4 − 2L2

r3 +
2M
r2 −

2r
l2 +

(
1− L2

r2

)
γ (43)

V′′(r) = − 2
l2 −

24L2M
r5 +

6L2

r4 −
4M
r3 +

2L2

r3 γ (44)

The circular orbits are obtained demanding that

ṙ = 0, and r̈ = 0, (45)

as function of the rest of parameters. The latter means that we need to find the roots of V′(r)
for r ≡ r(L, m, l, γ). In general, it is not possible to obtain an analytic solution, which is the
present case. In order to make progress, we can take an alternative route. From V′(r) = 0,
we find L2 and evaluate it on V′′(r) to find the rISCO and rOSCO. Thus, we have

L2 = −
r2(2l2M + γl2r2 − 2r3)

l2(6M− γr2 − 2r)
(46)

Similarly to the Kottler spacetime, we reinforce that the angular momentum is real
and finite for r ∈ (rICCO, rOCCO]. Now, replacing L2 into V′′(r), we have

V′′(r) =2
−6l2M + l2r− 3r3

l2r3 +
2γ

r
−

4
(
24l2M2 − 10l2Mr + l2r2 − 6Mr3 + r4)

l2r3(−6M + γr2 + 2r)
(47)

To obtain the corresponding roots of V′′(r), we have to solve the polynomial expres-
sion

P5(r) = b5r5 + b4r4 + b3r3 + b2r2 + b1r + b0 (48)
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where the parameters are defined as

b5 = −3γ (49)

b4 = γ2l2 − 8 (50)

b3 = 3γl2 + 30M (51)

b2 = −12γl2M (52)

b1 = 2l2M (53)

b0 = −12l2M2 (54)

where all lengths are expressed in parsec setting l = 5 Gpc. There are five roots in total,
which, in general, include real (positive or negative) as well as complex roots. We recall
that, in the case of the Schwarzschild geometry, there is only one root, rISCO = 6M [19].
Given that there is no analytic expression for the roots of a fifth order polynomial, we shall
compute the roots numerically once the numerical values of the parameters are specified.

Thus, we consider three numerical values of the massive gravity parameter γ to
exemplify how rISCO and rOSCO vary for different structures in the Universe. The first value
of γ is taken from [17], γ ∼ 10−28 m−1, whereas the remaining two values are obtained in
Section 3. This is the second main result of the present work summarized in Table 1.

Similarly to the Kottler spacetime, both ISCOs and OSCOs appear. Their numerical
values are shown in Table 1, while the astrophysical relevance is shown in Table 2, consid-
ering typical values of the mass and size of known structures in the Universe. In particular,
our numerical results show that, in all cases, the ISCOs equal 6M, which is precisely the
Schwarzschild result. As far as the OSCOs are concerned, in two of the cases (γ1 and
γ2), they do not depend on the mass of the astrophysical object. Despite the fact that the
OSCOs obtained in those cases are not cosmologically large, their sizes (2.89× 107 pc and
2.42× 106 pc, respectively) are similar to the size of cluster of galaxies, which is very large
compared to the dimensions of the astrophysical objects displayed in Table 1.

In the third case (γ3), the OSCOs computed here increase with the mass of the astro-
physical object. In addition, their sizes are lower than the ones obtained in the Kottler
spacetime [19]. In this sense, the OSCOs analysis within the framework of four-dimensional
massive gravity reinforces their astrophysical importance. Finally, the fact that the numeri-
cal values of the OSCOs obtained here are significantly different than the ones presented
in [19] indicates that the γ term is the dominant one, rather than the cosmological con-
stant term.

6. Conclusions

In summary, we studied the impact of a non-vanishing (positive) cosmological con-
stant on the innermost and outermost stable circular orbits (ISCOs and OSCOs, respectively)
within four-dimensional massive gravity. The gravitational field generated by a point-like
object is known, and, at the non-relativistic limit, the gravitational potential differs by
the Schwarzschild–de Sitter geometry by a term that is linear in the radial coordinate.
The numerical value of parameter γ of the new, additional term may be determined either
using data from the galaxy rotation curves or using data from the periastron advance in
the solar system (planet Mercury) and in the Galactic center (S2 star).

Starting from the geodesic equations for massive test particles, and the corresponding
effective potential, we obtained a polynomial of fifth order that allowed us to compute
the innermost and outermost stable circular orbits. We computed its roots numerically for
several different structures in the Universe of increasing mass (from the hydrogen atom to
stars and globular clusters to galaxies and galaxy clusters) considering three distinct values
of the parameter γ, determined using physical considerations.

Similarly to the Kottler spacetime, both ISCOs and OSCOs appeared. In particular,
our numerical results showed that the ISCOs equaled 6M (the Schwarzschild result) in
all cases; whereas, for OSCOs, in two of the cases (γ1 and γ2), this did not depend on the
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mass of the astrophysical object. In spite of the fact that the OSCOSs obtained in those
cases were not cosmologically large, their sizes (2.89× 107 and 2.42× 106, respectively)
were similar to the supercluster size, which is very large compared to the dimensions of
the astrophysical objects displayed in Table 1.

In the third case (γ3), the OSCOs obtained in the present work increased with the
mass of the astrophysical object. In addition, their sizes were lower than those obtained
in the Kottler spacetime. In this sense, the OSCOs analysis within the framework of
four-dimensional massive gravity reinforces their astrophysical importance.

Finally, our numerical results indicate that, within massive gravity, the parameter γ
played a crucial role in the determination of ISCOs and, more importantly, for OSCOs.
Thus, it is γ, rather than Λ, as the term that mainly modifies the stable circular orbits,
contrary to the Kottler spacetime, where Λ is the term producing the new features as far as
the OSCOs are concerned.
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