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Abstract: This article, which is a review with substantial original material, is meant to offer a
comprehensive description of the superfield representations of BRST and anti-BRST algebras and
their applications to some field-theoretic topics. After a review of the superfield formalism for gauge
theories, we present the same formalism for gerbes and diffeomorphism invariant theories. The
application to diffeomorphisms leads, in particular, to a horizontal Riemannian geometry in the
superspace. We then illustrate the application to the description of consistent gauge anomalies
and Wess–Zumino terms for which the formalism seems to be particularly tailor-made. The next
subject covered is the higher spin YM-like theories and their anomalies. Finally, we show that
the BRST superfield formalism applies as well to the N = 1 super-YM theories formulated in the
supersymmetric superspace, for the two formalisms go along with each other very well.

Keywords: gauge invariant theories; BRST and anti-BRST symmetry; superfield formalism; diffeo-
morphism invariance; consistent gauge anomalies; HS gauge symmetry; N = 1 super-Yang-Mills

1. Introduction

The discovery of the BRST symmetry in gauge field theories, refs. [1–4], is a funda-
mental achievement in quantum field theory. This symmetry is not only the building block
of the renormalization programs, but it has opened the way to an incredible number of
applications. Besides gauge field theories, all theories with a local symmetry are charac-
terized by a BRST symmetry: theories of gerbes, sigma models, topological field theories,
string and superstring theories, to name the most important ones. Whenever a classical
theory is invariant under local gauge transformations, its quantum counterpart has a
BRST-type symmetry that governs its quantum behavior. Two main properties characterize
the BRST symmetry. The first is its group theoretical nature: performing two (different)
gauge transformations one after the other and then reversing the order of them does not
lead to the same result (unless the original symmetry is Abelian), but the two different
results are related by a group theoretical rule. This is contained in the nilpotency of the
BRST transformations.

The second important property of the BRST transformations is nilpotency itself. It
is inherited, via the Faddeev–Popov quantization procedure, from the anticommuting
nature of the ghost and anti-ghost fields. This implies that, applying twice the same
transformation, we obtain 0. The two properties together give rise to the Wess–Zumino
consistency conditions, a fundamental tool in the study of anomalies. It must be noted
that while the first property is classical, the second is entirely quantum. In other words,
the BRST symmetry is a quantum property.

It was evident from the very beginning that the roots of BRST symmetry are geometri-
cal. The relevant geometry was linked at the beginning to the geometry of the principal
fiber bundles [5–8] (see also [9]). Although it is deeply rooted in it, the BRST symmetry is
rather connected to the geometry of infinite dimensional bundles and groups, in particular,
the Lie group of gauge transformations [10,11]. One may wonder where this infinite dimen-
sional geometry is stored in a perturbative quantum gauge theory. The answer is, in the
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anticommutativity of the ghosts and in the nilpotency of the BRST transformations them-
selves, together with their group theoretical nature. There is a unique way to synthesize
these quantum properties, and this is the superfield formalism. The BRST symmetry calls
for the introduction of the superfield formulation of quantum field theories. One might
even dare say that the superfield formalism is the genuine language of a quantum gauge
theory. This is the subject of the present article, which is both a review of old results
and a collection of new ones, with the aim of highlighting the flexibility of the superfield
approach to BRST symmetry (it is natural to extend it to include also the anti-BRST symme-
try [12–14]). Here, the main focus is on the algebraic aspects and on the ample realm of
applications, leaving the more physical aspects (functional integral and renormalization)
for another occasion. We will meet general features—we can call them universal—which
appear in any application and for any symmetry. One is the so-called horizontality con-
ditions, i.e., the vanishing of the components along the anticommuting directions, which
certain quantities must satisfy. Another is the so-called Curci–Ferrari conditions [12], which
always appear when both (non-Abelian) BRST and anti-BRST symmetries are present.

Before passing to a description of how the present review is organized, let us com-
ment on the status of anti-BRST. It is an algebraic structure that comes up naturally as a
companion to the BRST one, but it is not necessarily a symmetry of any gauge-fixed action.
It holds, for instance, for linear gauge fixing, and some implications have been studied to
some extent in [14] and also in [15–17]. However, it is fair to say that no fundamental role
for this symmetry has been uncovered so far, although it is also fair to say that the research
in this field has never overcome a preliminary stage1. In this review, we consider BRST
and anti-BRST together in the superfield formalism but whenever it is more convenient
and expedient to use only the BRST symmetry, we focus only on it.

We start in Section 2 with a review of the well-known superfield formulation of BRST
and anti-BRST of non-Abelian gauge theories, which is obtained by enlarging the spacetime
with two anticommuting coordinates, ϑ and ϑ̄. Section 3 is devoted to gerbe theories, which
are close to ordinary gauge theories. After a short introduction, we show that it is simple
and natural to reproduce the BRST and anti-BRST symmetries with the superfield formal-
ism. As always, when both BRST and anti-BRST are involved, we come across specific
CF conditions. The next two sections are devoted to diffeomorphisms. Diffeomorphisms
are a different kind of local transformation; therefore, it is interesting to see, first of all, if
the superfield formalism works. In fact, in Section 4, we find horizontality and CF con-
ditions for which BRST and anti-BRST transformations are reproduced by the superfield
formalism. We show, however, that the super-metric, i.e., the metric with components in
the anticommuting directions, is not invertible. So a super-Riemannian geometry is not
possible in the superspace but, in exchange, we can define a horizontal super-geometry,
with Riemann and Ricci tensors defined on the full superspace. In Section 5 we deal with
frame superfields and define fermions in superspace. In summary, there are no obstructions
to formulate quantum gravitational theories in the superspace.

The second part of the paper concerns applications of the superfield method to some
practical problems, notably to anomalies. Consistent anomalies are a perfect playground for
the superfield method, as we show in Section 6. We show that not only are all the formulas
concerning anomalies in any even dimension easily reproduced, but in fact, the superfield
formalism seems to be tailor-made for them. A particularly sleek result is the way one
can extract Wess–Zumino terms from it. In Section 7, we apply the superfield formalism
to HS-YM-like theories. After a rather detailed introduction to such novel models, we
show that the superfield method fits perfectly well and is instrumental in deriving the
form of anomalies, which would otherwise be of limited access. Section 8 is devoted to
the extension of the superfield method in still another direction—that of supersymmetry.
We show, as an example, that the supersymmetric superspace formulation of N = 1 SYM
theory in 4D can be easily enlarged by extending the superspace with the addition of ϑ, ϑ̄,
while respecting the supersymmetric geometry (constraints). In Section 9, we make some
concluding remarks and comments on some salient features of our present work.
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The appendices contain auxiliary materials, except the first (Appendix A), which
might seem a bit off topic with respect to the rest of the paper. We deem it useful to report
in order to clarify the issue of the classical geometric description of the BRST symmetry.
As mentioned above, this description is possible. However, one must formulate this
problem in the framework of the geometry of the infinite dimensional groups of gauge
transformations (which are, in turn, rooted in the geometry of principal fiber bundles).
The appropriate mathematical tool is the evaluation map. One can easily see how the
superfield method formulation parallels the geometrical description.

Finally, let us add that this review covers only a part of the applications of the super-
field approach that have appeared in the literature. We must mention [21–35] for further
extensions of the method and additional topics not presented here. A missing subject in this
paper, as well as, to the best of our knowledge, in the present literature, is the exploration
of the possibility to extend the superfield method to the Batalin–Vilkovisky approach to
field theories with local symmetries.

Notations and Conventions. The superspace is represented by super-coordinates
XM = {xµ, ϑ, ϑ̄}, where xµ (µ = 0, 1, . . . , d− 1) are ordinary commuting coordinates, while
ϑ and ϑ̄ are anticommuting: ϑ2 = ϑ̄2 = ϑϑ̄ + ϑ̄ϑ = 0, but commute with xµ. We make
use of a generalized differential geometric notation: the exterior differential d = ∂

∂xµ dxµ is
generalized to d̃ = d + ∂

∂ϑ dϑ + ∂
∂ϑ̄

dϑ̄. Correspondingly, mimicking the ordinary differential
geometry, we introduce super-forms; for instance, ω̃ = ωµ(x)dxµ + ωϑ(x)dϑ + ωϑ̄(x)dϑ̄,
where ωµ are ordinary commuting intrinsic components, while ωϑ, ωϑ̄ anticommute with
each other and commute with ωµ. In the same tune, we introduce also super-tensors,
such as the super-metric; see Section 4.4. As far as commutativity properties (gradings)
are concerned, the intrinsic components of forms and tensors on one side and the symbols
dµ, dϑ, dϑ̄, on the other constitute separate, mutually commuting sets. When d̃ acts on a
super-function F̃(X), it is understood that the derivatives act on it from the left to form the
components of a 1-super-form:

d̃F̃(X) =
∂

∂xµ F̃(X)dxµ +
∂

∂ϑ
F̃(X)dϑ +

∂

∂ϑ̄
F̃(X)dϑ̄ (1)

When it acts on a 1-super-form, it is understood that the derivatives act on the intrinsic
components from the left, and the accompanying symbol dxµ, dϑ, dϑ̄ becomes juxtaposed
to the analogous symbols of the super-form from the left to form the combinations dxµ ∧
dxν, dxµ ∧ dϑ, dϑ∧ dϑ, dϑ∧ dϑ̄, . . ., with the usual rule for the spacetime symbols, and dxµ ∧
dϑ = −dϑ ∧ dxµ, dxµ ∧ dϑ̄ = −dϑ̄ ∧ dxµ, but dϑ ∧ dϑ̄ = dϑ̄ ∧ dϑ, and dϑ ∧ dϑ and dϑ̄ ∧ dϑ̄
are non-vanishing symbols. In a similar way, one proceeds with higher degree super-forms.
More specific notations will be introduced later when necessary.

2. The Superfield Formalism in Gauge Field Theories

The superfield formulation of the BRST symmetry in gauge field theories was pro-
posed in [15]; for an earlier version, see [36,37]. Here, we limit ourselves to a summary. Let
us consider a generic gauge theory in d dimensional Minkowski spacetime M, with connec-
tion Aa

µTa (µ = 0, 1, . . . , d− 1), valued in a Lie algebra g with anti-hermitean generators
Ta, such that [Ta, Tb] = f abcTc . In the following, it is convenient to use the more compact
form notation and represent the connection as a one-form A = Aa

µTadxµ. The curvature
and gauge transformation are as follows:

F = dA +
1
2
[A, A] and δλ A = dλ + [A, λ], (2)

with λ(x) = λa(x)Ta and d = dxµ ∂
∂xµ . The infinite dimensional Lie algebra of gauge

transformations and its cohomology can be formulated in a simpler and more effective
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way if we promote the gauge parameter λ to an anticommuting ghost field c = caTa and
define the BRST transform as follows2:

sA ≡ dc + [A, c], s c = −1
2
[c, c]. (3)

As a consequence of this, we have the following:

F ≡ (d− s)(A + c) +
1
2
[A + c, A + c] = F, (4)

which is sometime referred to as the Russian formula [7,15,38,39] . Equation (A10) is true,
provided we assume the following:

[A, c] = [c, A]. (5)

i.e., if we assume that c behaves like a one-form in the commutator with ordinary forms
and with itself. It can be, in fact, related to the Maurer–Cartan form in G. This explains its
anticommutativity.

A very simple way to reproduce the above formulas and properties is by enlarging
the space to a superspace with coordinates (xµ, ϑ), where ϑ is anticommuting, and pro-
moting the connection A to a one-form superconnection Ã = φ(x, ϑ) + φϑ(x, ϑ)dϑ with the
following expansions:

φ(x, ϑ) = A(x) + ϑΓ(x), φϑ(x, ϑ) = c(x) + ϑG(x), (6)

and two-form supercurvature

F̃ = d̃Ã +
1
2
[Ã, Ã], F̃ = Φ(x, ϑ) + Φϑ(x, ϑ)dϑ + Φϑϑ(x, ϑ)dϑ ∧ dϑ, (7)

with Φ(x, ϑ) = F(x) + ϑΛ(x) and d̃ = d + ∂
∂ϑ dϑ. Notice that since ϑ2 = 0, dϑ ∧ dϑ 6= 0,

while dxµ ∧ dϑ = −dϑ ∧ dxµ. Then, we impose the ‘horizontality’ condition:

F̃ = Φ(x, ϑ), i.e., Φϑ(x, ϑ) = 0 = Φϑϑ(x, ϑ). (8)

The last two conditions imply the following:

Γ(x) = dc(x) + [A(x), c(x)], G(x) = −1
2
[c(x), c(x)].

Moreover, Λ(x) = [F(x), c(x)].
This means that we can identify c(x) ≡ c(x), A ≡ A, F ≡ F, and the ϑ translation

with the BRST transformation s, i.e., s ≡ ∂
∂ϑ . In this way all the previous transformations,

including Equation (5)—which, at first sight, is strange looking—are naturally explained.
It is also possible to push further the use of the superfield formalism by noting that, after
imposing the horizontality condition, we have the following:

Ã = e−ϑc A eϑc + e−ϑcd̃eϑc, F̃ = e−ϑcF eϑc. (9)

A comment is in order concerning the horizontality condition (HC). This condition
is suggested by the analogy with the principal fiber bundle geometry. In the total space
of a principal fiber bundle, one can define horizontal (or basic) forms. These are forms
with no components in the vertical direction: for instance, given a connection, its curvature
is horizontal. In our superfield approach, the ϑ coordinate mimics the vertical direction,
as the curvature F̃ does not have components in that direction. This horizontality principle
can be extended also to other quantities, for instance, to covariant derivatives of matter
fields and, in general, to all quantities that are invariant under local gauge transformations.
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2.1. Extension to Anti-BRST Transformations

The superfield representation of the BRST symmetry with one single anticommuting
variable is, in general, not sufficient for ordinary Yang–Mills theories because gauge fixing
requires, in general, other fields besides Aµ and c. For instance, in the Lorenz gauge, the
Lagrangian density takes the following form:

LYM = −tr
(

1
4g2 FµνFµν + Aµ∂µB− ∂µ c̄Dµc +

α

2
B2
)

, (10)

where two new fields are introduced, the antighost field c̄(x) and the Nakanishi–Lautrup
field B(x). It is necessary to enlarge the algebra (3) as follows:

s c̄ = B, sB = 0, (11)

in order to obtain a symmetry of (10). At this point, LYM is invariant under a larger
symmetry, whose transformations, besides (3) and (11), are the anti-BRST ones:

s̄ A = dc̄ + [A, c̄], s̄ c̄ = −1
2
[c̄, c̄], s̄ c = B̄, s̄ B̄ = 0, (12)

provided the following:

B + B̄ + [c, c̄] = 0. (13)

This is the Curci–Ferrari condition, ref. [12].
The BRST and anti-BRST transformation are nilpotent and anticommute:

s2 = 0, s̄2 = 0, s s̄+ s̄ s = 0. (14)

The superfield formalism applies well to this enlarged symmetry, provided we in-
troduce another anticommuting coordinate, ϑ̄: ϑ̄2 = 0, ϑϑ̄ + ϑ̄ϑ = 0. Here, we do not
repeat the full derivation as in the previous case but simply introduce the supergauge
transformation [15,40–43]:

U(x, ϑ, ϑ̄) = exp [ϑc̄(x) + ϑ̄c(x) + ϑϑ̄(B(x) + [c(x), c̄(x)])], (15)

and generate the following superconnection:

Ã(x, ϑ, ϑ̄) = U(x, ϑ, ϑ̄)†
(

d̃ + A(x)
)

U(x, ϑ, ϑ̄), (16)

where d̃ = d + dϑ ∂
∂ϑ + dϑ̄ ∂

∂ϑ̄
and the hermitean operation is defined as follows:

ϑ† = ϑ, ϑ̄† = −ϑ̄, (ca)† = ca, (c̄a)† = −c̄a,

while the Ba(x), B̄a(x) are real. Then, the superconnection is the following:

Ã(x, ϑ, ϑ̄) = Φ(x, ϑ, ϑ̄) + η(x, ϑ, ϑ̄)dϑ̄ + η̄(x, ϑ, ϑ̄)dϑ. (17)

The one-form Φ is the following:

Φ(x, ϑ, ϑ̄) = A(x) + ϑDc̄(x) + ϑ̄Dc(x) + ϑϑ̄(DB(x) + [Dc(x), c̄(x)]), (18)
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where D denotes the covariant differential: Dc = dc + [A, c], etc., and the anticommuting
functions η, η̄ are the following:

η(x, ϑ, ϑ̄) = c(x) + ϑ B̄(x)− 1
2

ϑ̄ [c(x), c(x)] + ϑϑ̄ [B̄(x), c(x)], (19)

η̄(x, ϑ, ϑ̄) = c̄(x)− 1
2

ϑ [c̄(x), c̄(x)] + ϑ̄ B(x) + ϑϑ̄ [c̄(x), B(x)], (20)

together with the condition (13). One can verify that the supercurvature F̃ satisfies the
following horizontality condition:

F̃(x, ϑ, ϑ̄) = dΦ(x, ϑ, ϑ̄) +
1
2
[Φ(x, ϑ, ϑ̄), Φ(x, ϑ, ϑ̄)]. (21)

The BRST transformation correspond to ϑ̄ translations and the anti-BRST to ϑ ones:

s =
∂

∂ϑ̄

∣∣∣∣
ϑ=0

, s̄ =
∂

∂ϑ

∣∣∣∣
ϑ̄=0

. (22)

At the end of this short review, it is important to highlight an important fact. As
anticipated, above the Lagrangian density, (10) is invariant under both the BRST and anti-
BRST transformations—(3), (11) and (12)—provided that (13) is satisfied. However, while
the Lagrangian density contains a specific gauge fixing, the BRST and anti-BRST algebras
(when they hold) are independent of any gauge-fixing condition. We can change the
gauge fixing, but the BRST and anti-BRST algebras (when they are present), as well as
their superfield representation, are always the same. These algebras can be considered the
quantum versions of the original classical gauge algebra. A classical geometrical approach
based on fiber bundle geometry was originally proposed in [5,8]. Subsequently, the nature
of the BRST transformations was clarified in [10,11]. In fact, it is possible to uncover
the BRST algebra in the geometry of principal fiber bundles, particularly in terms of the
evaluation map as shown in Appendix A. However, while classical geometry is certainly
the base of classical gauge theories, it becomes very cumbersome and actually intractable
for perturbative quantum gauge theories. On the other hand, in dealing with the latter,
anticommuting ghost and antighost fields and (graded) BRST algebra seem to be the natural
tools. Therefore, as noted previously, one may wonder whether the natural language for
a quantum gauge field theory is, in fact, the superfield formalism. We leave this idea for
future developments.

Here ends our short introduction of the superfield formalism in gauge field theories,
which was historically the first application. Later on, we shall see a few of its applications.
Now, we would like to explore the possibility to apply this formalism to other local
symmetries. The first example, and probably the closest to the one presented in this section,
is a theory of gerbes. A gerbe is a mathematical construct, which, in a sense, generalizes
the idea of gauge theory. From the field theory point of view, the main difference with the
latter is that it is not based on a single connection but, besides one-forms, it contains also
other forms. Here, we consider the simplest case, an Abelian 1-gerbe; see [44,45].

3. 1-Gerbes

Let us recall a few basic definitions. A 1-gerbe [46–53] is a mathematical object that
can be described with a triple (B, A, f ), formed by the 2-form B, 1-form A and 0-form f ,
respectively. These are related in the following way. Given a covering {Ui} of the manifold
M, we associate to each Ui a 2-form Bi. On a double intersection Ui ∩Uj, we have Bi − Bj =
dAij. On the triple intersections Ui ∩Uj ∩Uk, we must have Aij + Ajk + Aki = d fijk (Bi
denotes B in Ui, Aijdenotes A in Ui ∩Uj, etc.). Finally, on the quadruple intersections
Ui ∩Uj ∩Uk ∩Ul , the following integral cocycle condition must be satisfied by f :

fijl − fijk + f jkl − fikl = 2 π n, n = 0, 1, 2, 3 . . . . . . . . . (23)
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This integrality condition does not concern us in our Lagrangian formulation but it
has to be imposed as an external condition.

Two triples, represented by (B, A, f ) and (B′, A′, f ′), respectively, are said to be gauge
equivalent if they satisfy the following relations:

B′i = Bi + dCi on Ui, (24)

A′ij = Aij + Ci − Cj + dλij on Ui ∩Uj, (25)

f ′ijk = fijk + λij + λki + λjk on Ui ∩Uj ∩Uk, (26)

for the 1-form C and the 0-form λ.
Let us now define the BRST and anti-BRST transformations corresponding to these

geometrical transformations. It should be recalled that, while the above geometric trans-
formations are defined on (multiple) neighborhood overlaps, the BRST and anti–BRST
transformations, in quantum field theory, are defined on a single local coordinate patch.
These (local, field-dependent) transformations are the means for QFT to record the under-
lying geometry.

The appropriate BRST and anti-BRST transformations are as follows:

s B = dC, s A = C + dλ, s f = λ + µ,
sC = −dh, sλ = h, s µ = −h,
s C̄ = −K, s K̄ = dρ, s µ̄ = −g,
s β̄ = −ρ̄, s λ̄ = g, s ḡ = ρ,

(27)

together with s [ρ, ρ̄, g, Kµ, β] = 0, and

s̄ B = dC̄, s̄ A = C̄ + dλ̄, s̄ f = λ̄ + µ̄,

s̄ C̄ = +dh̄, s̄ λ̄ = −h̄, s̄ µ̄ = −h̄,

s̄C = +K̄, s̄K = −dρ̄, s̄ µ̄ = ḡ,

s̄ β = +ρ, s̄λ = −ḡ, s̄ g = −ρ̄, (28)

while s̄ [β̄, ḡ, K̄, µ, ρ, ρ̄] = 0.
In these formulas, C, C̄ are anticommuting 1-forms, and K, K̄ are commuting 1-forms.

The remaining fields are scalars, which are commuting if denoted by Latin letters and
anticommuting if denoted by Greek letters.

It can be easily verified that (s+ s̄)2 = 0 if the following constraint is satisfied:

K̄− K = d ḡ− d g. (29)

This condition is both BRST and anti-BRST invariant. It is the analogue of the Curci–
Ferrari condition in non-Abelian 1-form gauge theories, and we refer to it with the same
name.

Before we proceed to the superfield method, we would like to note that the above
realization of the BRST and anti-BRST algebra is not the only possibility. In general, it may
be possible to augment it by the addition of a sub-algebra of elements that are all in the
kernel of both s and s̄, or, if it contains such a sub-algebra, the latter could be moded out.
For instance, in Equations (27) and (28), ρ and ρ̄ form an example of this type of subalgebra.
It is easy to see that ρ and ρ̄ can be consistently set equal to 0.
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The Superfield Approach to Gerbes

We introduce superfields, whose lowest components are B, A and f .

B̃ = B̃MN(X)dXM ∧ dXN = Bµν(X)dxµ ∧ dxν + Bµϑ(X)dxµ ∧ dϑ + Bµϑ̄(X)dxµ ∧ dϑ̄,

+Bϑϑ(X)dϑ ∧ dϑ + Bϑ̄ϑ̄(X)dϑ̄ ∧ dϑ̄ + Bϑϑ̄(X)dϑ ∧ ϑ̄, (30)

Ã = ÃM(X)dXM = Aµ(X)dxµ +Aϑ(X)dϑ +Aϑ̄(X)dϑ̄, (31)

f̃(X) = f (x) + ϑφ̄(x) + ϑ̄φ(x) + ϑϑ̄F(x). (32)

where X denotes the superspace point and XM = (xµ, ϑ, ϑ̄), the superspace coordinates.
All the intrinsic components are to be expanded like (32). Then, we impose the horizontality
conditions. There are two, which are as follows:

d̃ B̃ = dB, B = Bµν(X)dxµ ∧ dxν, (33)

B̃ − d̃ Ã = B − dA, A = Aµ(X)dxµ. (34)

The first is suggested by the invariance of H = dB under B → B + dΛ, where
Λ is a 1-form, and the second by the invariance of B − dA due to the transformations
B→ B + dΣ, A→ A + Σ, where Σ is also a 1-form.

Using the second, we can eliminate many components of B̃ in favor of the components
of Ã:

Aµ(X) = Aµ(x) + ϑ ᾱµ(x) + ϑ̄ αµ(x) + ϑϑ̄Aµ(x), (35)

Aϑ(X) = γ(x) + ϑ ē(x) + ϑ̄ e(x) + ϑϑ̄ Γ(x), (36)

Aϑ̄(X) = γ̄(x) + ϑ ā(x) + ϑ̄ a(x) + ϑϑ̄ Γ̄(x). (37)

Imposing (34), B̃ takes the following form:

Bµν(X) = Bµν(x) + ϑ β̄µν(x) + ϑ̄ βµν(x) + ϑϑ̄ Mµν(x), (38)

Bµϑ(X) =
(
−ᾱµ(x) + ∂µγ(x)

)
+ ϑ ∂µ ē(x) + ϑ̄

(
∂µe(x)−Aµ(x)

)
+ ϑϑ̄ ∂µΓ(x), (39)

Bµϑ̄(X) =
(
−αµ(x) + ∂µγ̄(x)

)
+ ϑ ∂µ

(
ā(x) +Aµ(x)

)
+ ϑ̄ ∂µa(x) + ϑϑ̄ ∂µΓ̄(x), (40)

Bϑϑ(X) = ē(x) + ϑ̄ Γ(x), (41)

Bϑ̄ϑ̄(X) = a(x)− ϑ Γ̄(x), (42)

Bϑϑ̄(X) = (e(x) + ā(x)) + ϑ̄ Γ̄(x)− ϑΓ(x), (43)

where all the component fields on the RHSs are so far unrestricted. If we now impose (33),
we obtain the following further restrictions:

β̄µν(x) = −(dβ)µν(x) = (dᾱ)µν(x), (44)

βµν(x) = −(dβ̄)µν(x) = (dα)µν(x), (45)

Mµν(x) = (dA)µν(x), (46)

where β, β̄,A denote 1-forms with components βµ(x), β̄µ(x),Aµ(x), respectively.
We also consider, instead of Ã, the superfield Ã − d̃ f̃, and, in particular, we replace A

with A′ = A− d f .
From the previous equations, we can read off the BRST transformations of the inde-

pendent component fields. Dropping the argument (x) and using the form notation for the
BRST transformations, we have the following:

sB = dᾱ, sA′ = ᾱ− dφ̄, s f = φ̄,
sα = −dA, sγ = ē, se = −Γ,
sγ̄ = ā, sa = −Γ̄, sφ = −F,

(47)
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all the other s transformations being trivial. For the anti-BRST transformations, we have
the following:

s̄B = dα, s̄A′ = α− dφ, s̄ f = φ,
s̄ᾱ = A, s̄γ̄ = a, s̄ā = Γ̄,
s̄γ = e, s̄ē = Γ̄, s̄φ̄ = F,

(48)

All the other anti-BRST transformations are trivial.
The system (47) and (48) differs from (27) and (28) only by field redefinitions. Let us

set the following:

C = ᾱ + dγ, λ = −γ− φ̄, (49)

C = α− dγ̄, λ̄ = γ̄− φ. (50)

Then, the first equation of (47) and the first of (48) become the following:

sB = dC, sA′ = C + dλ, s f = λ + γ,
s̄B̄ = dC, s̄A′ = C + dλ̄, s̄ f = λ̄− γ̄.

(51)

Next, we define the following:

Kµ = Aµ + ∂µ ā, Kµ = Aµ + ∂µe. (52)

The remaining s and s̄ transformations become the following:

sC = dē, sλ = −ē, sγ = ē,
sC = −K, sK = −dΓ, sγ̄ = ā,
sa = −Γ, sλ̄ = ā + F, sa = −Γ̄,

(53)

and

s̄C = −da, s̄λ̄ = a, s̄γ̄ = a,
s̄C = K, s̄K = −dΓ, s̄γ = e,
s̄ē = Γ, s̄λ = −e− F, s̄ā = Γ̄.

(54)

Moreover, we have the following CF-like condition:

K− K = d(e− ā). (55)

These relations coincide with those of the 1-gerbe, provided that we make the follow-
ing replacements: γ→ µ, γ̄→ −µ̄, a→ −β̄, ā→ g, e→ ḡ, ē→ −β and Γ→ −ρ, Γ→ ρ̄.

There is only one difference: the presence of F in two cases in the last lines of both (53)
and (54). This is an irrelevant term, as it belongs to the kernel of both s and s̄.

Remark 1. One can also impose the horizontality condition Ã − d̃ f̃ = A− d f, but this does not
change much the final result: in fact, the resulting 1-gerbe algebra is the same.

4. Diffeomorphisms and the Superfield Formalism

After the successful extension of the superfield formalism to gerbes, we wish to deal
with an entirely different type of symmetry: the diffeomorphisms. Our aim is to answer a
few questions:

• Is the superfield formalism applicable to diffeomorphisms?
• What are the horizontality conditions for the latter?
• What are the CF conditions?
• Can we generalize the Riemannian geometry to the superspace?
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In the sequel, we will answer all these questions. The answer to the last question
will be partly negative, because an inverse supermetric does not exist. Nevertheless, it is
possible to develop a superfield formalism in the horizontal (commuting) directions.

The first proposal of a superfield formalism for diffeomorphisms was made
by [54–56]. Here, we present another approach, presented in [57], closer in spirit to the
standard (commutative) geometrical approach.

Diffeomorphisms, or general coordinate transformations, are given in terms of generic
(smooth) functions of xµ:

xµ → x
′µ = f µ(x).

An infinitesimal diffeomorphism is defined by means of a local parameter ξµ(x):
f µ(x) = xµ − ξµ(x). In a quantized theory, this is promoted to an anticommuting field,
and the BRST transformations for a scalar field, a vector field, the metric and ξ, respectively,
are the following:

δξ ϕ = ξλ∂λ ϕ, (56)

δξ Aµ = ξλ∂λ Aµ + ∂µξλ Aλ, (57)

δξ gµν = ξλ∂λgµν + ∂µξλgλν + ∂νξλgµλ, (58)

δξ ξµ = ξλ∂λξµ, (59)

It is easy to see that these transformations are nilpotent. We wish now to define the
analogs of anti-BRST transformations. To this end, we introduce another anticommuting
field, ξ̄, and a δξ̄ transformation, which transforms a scalar, vector, the metric and ξ̄ in just
the same way as δξ (these transformations are not rewritten here). In addition, we have the
following cross-transformations:

δξ ξ̄µ = bµ, δξ̄ ξµ = b̄µ, (60)

δξ bµ = 0, δξ b̄µ = −b̄·∂ξµ + ξ ·∂b̄µ, (61)

δξ̄ b̄µ = 0, δξ̄bµ = −b·∂ξ̄µ + ξ̄ ·∂bµ, (62)

It follows that the overall transformation δξ + δξ̄ is nilpotent:

(δξ + δξ̄)
2 = 0.

4.1. The Superfield Formalism

Our aim now is to reproduce the above transformations by means of the superfield
formalism. The superspace coordinates are XM = (xµ, ϑ, ϑ̄), where ϑ, ϑ̄ are the same anti-
commuting variables as above. A (super)diffeomorphism is represented by a superspace
transformation XM = (xµ, ϑ, ϑ̄)→ X̃M = (Fµ(XM), ϑ, ϑ̄), where3,

Fµ(XM) = f µ(x)− ϑ ξ̄µ − ϑ̄ ξµ(x) + ϑϑ̄ hµ(x). (63)

Here, f µ(x) is an ordinary diffeomorphism, ξ, ξ̄ are the generic anticommuting func-
tions introduced before, and hµ is a generic commuting one.

The horizontality condition is formulated by selecting appropriate invariant geometric
expressions in ordinary spacetime and identifying them with the same expressions extended
to the superspace. To start, we work out explicitly the case of a scalar field.

4.2. The Scalar

The diffeomorphism transformation properties of an ordinary scalar field are as
follows:

ϕ̃( f µ(x)) = ϕ(xµ). (64)



Universe 2021, 7, 280 11 of 51

Now, we embed the scalar field ϕ in a superfield4

Φ(X) = ϕ(x) + ϑ β̄(x) + ϑ̄ β(x) + ϑϑ̄ C(x), (65)

The BRST interpretation is δξ = ∂
∂ϑ̄

∣∣∣
ϑ=0

, δξ̄ = ∂
∂ϑ

∣∣∣
ϑ̄=0

. The horizontality condition,

suggested by (64), is the following:

Φ(F(X)) = ϕ(x). (66)

Using (63) with f (xµ) = xµ, this becomes the following:

Φ(F(X)) = ϕ(x)− (ϑ ξ̄(x) + ϑ̄ ξ(x)− ϑϑ̄ h(x))·∂ϕ(x) + ϑ
(

β̄(x)− ϑ̄ξ(x)·∂β̄(x)
)

(67)

+ϑ̄
(

β(x)− ϑξ̄ ·∂β(x)
)
+ ϑϑ̄

(
C(x)− ξ̄µξν∂µ∂ν ϕ(x)

)
= ϕ(x) + ϑ

(
β̄(x)− ξ̄ ·∂ϕ(x)

)
+ ϑ̄(β(x)− ξ ·∂ϕ(x))

+ϑϑ̄
(
C(x)− ξ ·∂β̄(x) + ξ̄ ·∂β(x) + h(x)·∂ϕ(x)− ξ̄µξν∂µ∂ν ϕ(x)

)
,

where · denotes index contraction. Then, (66) implies the following:

β(x) = ξ ·∂ϕ(x), β̄(x) = ξ̄ ·∂ϕ(x),

C(x) = ξ ·∂β̄(x)− ξ̄ ·∂β(x)− ξξ̄∂2 ϕ(x)− h(x)·∂ϕ(x), (68)

where ξξ̄∂2 ϕ(x) = ξµ ξ̄ν∂µ∂ν ϕ(x).
Now, the BRST interpretation implies the following:

δξ̄ ϕ(x) = β̄(x) = ξ̄ ·∂ϕ(x), δξ ϕ(x) = β(x) = ξ ·∂ϕ(x), (69)

and δξ β̄(x) = C(x), δξ̄ β(x) = −C(x).
Inserting β and β̄ into C in (68), we obtain the following:

δξ δξ̄ ϕ = b·∂ϕ− ξ̄ ·∂ξ ·∂ϕ− ξ̄ξ∂2 ϕ. (70)

This coincides with the expression of C, (68), if

hµ = −bµ + ξ · ∂ξ̄µ. (71)

Likewise,

δξ̄ δξ ϕ = b̄·∂ϕ− ξ ·∂ξ̄ ·∂ϕ− ξξ̄∂2 ϕ, (72)

which coincides with the expression of −C, (68), if the following holds:

hµ = b̄µ − ξ̄ · ∂ξµ. (73)

Equating (71) with (73) we obtain the following:

hµ(x) = −bµ(x) + ξ(x)·∂ξ̄µ(x) = b̄µ(x)− ξ̄(x)·∂ξµ(x), (74)

which is possible if and only if the following CF condition is satisfied:

bµ + b̄µ = ξλ∂λ ξ̄µ + ξ̄λ∂λξµ,

This condition is consistent, for applying δξ and δξ̄ to both sides produces the same
result. As we shall see, this condition is, so to speak, universal: it appears whenever BRST
and anti-BRST diffeomorphisms are involved, and it is the only required condition.
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4.3. The Vector

We now extend the previous approach to a vector field. In order to apply the horizon-
tality condition, we must first identify the appropriate expression. This is a 1-superform:

A ≡ AM(X)dXM = Aµ(X)dxµ + Aϑ(X)dϑ + Aϑ̄(X)dϑ̄, (75)

where

Aµ(X) = Aµ(x) + ϑ φ̄µ(x) + ϑ̄φµ(x) + ϑϑ̄Bµ(x), (76)

Aϑ(X) = χ(x) + ϑC̄(x) + ϑ̄C(x) + ϑϑ̄ψ(x), (77)

Aϑ̄(X) = ω(x) + ϑD̄(x) + ϑ̄D(x) + ϑϑ̄ρ(x). (78)

According to our prescription, horizontality means the following:

AM(X̃)d̃X̃M = Aµ(x)dxµ, (79)

where d̃ = ∂
∂xµ dxµ + ∂

∂ϑ dϑ + ∂
∂ϑ̄

dϑ̄. Thus, we obtain the following:

d̃X̃M =
(

dxµ − ϑ ∂λ ξ̄µdxλ − ϑ̄ ∂λξµdxλ + ϑϑ̄∂λhµdxλ

−(ξ̄µ − ϑ̄hµ)dϑ− (ξµ + ϑhµ)dϑ̄, dϑ, dϑ̄
)

. (80)

It remains for us to expand the LHS of (79). The explicit expression can be found in
Appendix B. The commutation prescriptions are the following: xµ, ϑ, ϑ̄, ξµ commute with
dxµ and dϑ, dϑ̄; and ξµ, ξ̄µ anticommute with ϑ, ϑ̄. From (A21), we obtain the following
identifications:

φµ = ξ ·∂Aµ + ∂µξλ Aλ, (81)

φ̄µ = ξ̄ ·∂Aµ + ∂µ ξ̄λ Aλ, (82)

Bµ = ξ ·∂φ̄µ − ξ̄ ·∂φµ − ξξ̄ ·∂2 Aµ + ∂µ ξ̄λξ ·∂Aλ − ∂µξλ ξ̄ ·∂Aλ

−∂µ ξ̄λφλ + ∂µξλφ̄λ − h·∂Aµ − ∂µh·A, (83)

χ = Aµ ξ̄µ, (84)

C = −ξ ·∂Aµ ξ̄µ + φµ ξ̄µ + ξ ·∂χ− h·A, (85)

C̄ = −ξ̄ ·∂Aµ ξ̄µ + φ̄µ ξ̄µ + ξ̄ ·∂χ, (86)

ψ = ξξ̄ ·∂2 Aµ ξ̄µ − ξ ·∂φ̄µ ξ̄µ + ξ̄ ·∂φµ ξ̄µ + Bµ ξ̄µ − ξξ̄ ·∂2χ + ξ ·∂C̄− ξ̄ ·∂C (87)

−ξ̄ ·∂A·h + φ̄·h− h·∂χ + h·∂Aµ ξ̄µ,

and

ω = Aµξµ, (88)

D = −ξ ·∂Aµξµ + φµξµ + ξ ·∂ω, (89)

D̄ = −ξ̄ ·∂Aµξµ + φ̄µξµ + ξ̄ ·∂ω + h·A, (90)

ρ = ξξ̄ ·∂2 Aµξµ − ξ ·∂φ̄µξµ + ξ̄ ·∂φµξµ + Bµξµ − ξξ̄ ·∂2ω + ξ ·∂D̄− ξ̄ ·∂D. (91)

−ξ ·∂A·h + φ·h− h·∂ω + h·∂Aµξµ.

One can see that

φµ = δξ Aµ, φ̄µ = δξ̄ Aµ, Bµ = δξ̄φµ = −δξ φ̄µ. (92)

D = δξω, D̄ = δξ̄ω, ρ = −δξ̄ D = δξ D̄, (93)
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and

C = δξ χ, C̄ = δξ̄ χ, ψ = −δξ̄C = δξ C̄, (94)

provided

hµ(x) = −bµ(x) + ξ(x)·∂ξ̄µ(x) = b̄µ(x)− ξ̄(x)·∂ξµ(x), (95)

which is possible if and only if the following CF condition is satisfied:

bµ + b̄µ = ξλ∂λ ξ̄µ + ξ̄λ∂λξµ,

In particular, ρ can be rewritten as follows:

ρ = ξ ·∂ξ̄ ·∂Aµξµ − ξ̄ ·∂ξ ·∂Aµξµ + ξ̄ ·∂ξµ ξ ·∂Aµξµ

−ξ ·∂ξ̄µ ξ ·∂Aµξµ + ξξ̄ ·∂2 Aµξµ − ξ ·∂A·h + φ·h− h·∂ω.

4.4. The Metric

The most important field for theories invariant under diffeomorphisms is the metric
gµν(x). To represent its BRST transformation properties in the superfield formalism, we
embed it in a supermetric GMN(X) and form the symmetric 2-superdifferential as follows:

G = GMN(X)d̃XM ∨ d̃XN , (96)

where ∨ denotes the symmetric tensor product and

Gµν(X) = gµν(x) + ϑ Γ̄µν(x) + ϑ̄Γµν(x) + ϑϑ̄Vµν(x),

Gµϑ(X) = γµ(x) + ϑ ḡµ(x) + ϑ̄gµ(x) + ϑϑ̄Γµ(x) = Gϑµ(X),

Gµϑ̄(X) = γ̄µ(x) + ϑ f̄µ(x) + ϑ̄ fµ(x) + ϑϑ̄Γ̄µ(x) = Gϑ̄µ(X), (97)

1
2

Gϑϑ̄(X) = g(x) + ϑ γ̄(x) + ϑ̄γ(x) + ϑϑ̄G(x) = −1
2

Gϑ̄ϑ(X), (98)

while Gϑϑ(X) = 0 = Gϑ̄ϑ̄(X), because the symmetric tensor product becomes antisymmet-
ric for anticommuting variables: dϑ ∨ dϑ = 0 = dϑ̄ ∨ dϑ̄, dϑ ∨ dϑ̄ = −dϑ̄ ∨ dϑ.

The horizontality condition is obtained by requiring the following:

G̃MN(X̃)d̃X̃M ∨ d̃X̃N = gµν(x)dxµ ∨ dxν. (99)

The explicit expression of the LHS of this equation can be found again in Appendix B,
from which the following identification follows:

Γµν = ξ ·∂gµν + ∂µξλgλν + ∂νξλgµλ = δξ gµν, (100)

Γ̄µν = ξ̄ ·∂gµν + ∂µ ξ̄λgλν + ∂ν ξ̄λgµλ = δξ̄ gµν, (101)

Vµν = −ξξ̄ ·∂2gµν + ξ ·∂Γ̄µν + ∂µξλΓ̄λν + ∂νξλΓ̄µλ − ξ̄ ·∂Γµν − ∂µ ξ̄λΓλν − ∂ν ξ̄λΓµλ (102)

+∂µ ξ̄λξ ·∂gλν + ∂ν ξ̄λξ ·∂gµλ − ∂µξλ ξ̄ ·∂gλν − ∂νξλ ξ̄ ·∂gµλ + ∂µ ξ̄λ∂νξρgλρ

+∂ν ξ̄λ∂µξρgλρ − h·∂gµν − ∂µhλgλν − ∂νhλgµλ

= δξ Γ̄µν = −δξ̄ Γµν.

Moreover,
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γµ = gµν ξ̄ν, (103)

gµ = ∂µξλgλν ξ̄ν + ∂νξλgµλ ξ̄ν + ξ ·∂gµν ξ̄ν + gµνξ ·∂ξ̄ν − gµνhν = δξ γµ, (104)

ḡµ = ξ̄ ·∂gµν ξ̄ν + ∂µ ξ̄λgλν ξ̄ν = δξ̄ γµ, (105)

Γµ = −ξξ̄ ·∂2γµ + ξ ·∂ḡµ − ∂µ ξ̄λgλ − ξ̄ ·∂gµ + ∂µξλ ḡλ + ∂µ ξ̄λξ ·∂γλ − ∂µξλ ξ̄ ·∂γλ

−ξ̄ ·∂hνgµν − ∂µhλgλν ξ̄ν + Γ̄µνhν − h·∂γµ − gνλhν∂µ ξ̄λ

+∂νξλΓµλ ξ̄ν − ∂ν ξ̄λΓµλ ξ̄ν + ξ̄ ·∂ξ̄λ ξ ·∂gµλ

−ξ̄ ·∂ξλ ξ̄ ·∂gµλ − ξ̄ ·∂ξλ gλρ∂µ ξ̄ρ + ξ̄ ·∂ξ̄λ gλρ∂µξρ = −δξ̄ gµ = δξ ḡµ, (106)

and

γ̄µ = gµνξν, (107)

f̄µ = ∂µ ξ̄λgλνξν + ∂ν ξ̄λgµλξν + ξ̄ ·∂gµνξν + gµν ξ̄ ·∂ξν + gµνhν = δξ̄ γ̄µ, (108)

fµ = ξ ·∂gµνξν + ∂µξλgλνξν = δξ γ̄µ, (109)

Γ̄µ = −ξ ·∂gµνhν − ∂µhλgλνξν + Γµνhν − h·∂γ̄µ − ∂µhλγ̄λ − ξ ·∂hλgλµ

+∂µξλ f̄ λ + ξ ·∂ f̄µ − ξ̄ ·∂ fµ − ξλ ξ̄ρ∂λ∂ργ̄µ − ∂µ ξ̄λ∂λξργ̄ρ

−ξ̄ ·∂γ̄λ∂µξλ + ∂µ ξ̄λξ ·∂ξρgλρ − ξ ·∂ξ̄ρ∂ρξλgλµ + ξ ·∂ξρ∂ρ ξ̄λgλµ

= δξ f̄µ = −δξ̄ fµ. (110)

Finally, we obtain the following:

g = gµν
(
ξ̄µξν − ξµ ξ̄ν

)
= 2gµν ξ̄µξν, (111)

γ = 2ξ ·∂gµν ξ̄µξν + 2gµν
(
ξ ·∂ξ̄µ − ξ̄ ·∂ξµ

)
ξν − 2γ̄µhµ = δξ g, (112)

γ̄ = 2ξ̄ ·∂gµν ξ̄µξν + 2gµν
(
ξ ·∂ξ̄µ − ξ̄ ·∂ξµ

)
ξ̄ν − 2γµhµ = δξ̄ g, (113)

G = 2bµ∂µg + 2bµgµ − 2ξ̄ ·∂γ− 2ξ̄ ·∂ξ̄µ fµ − 2b·∂ξ̄ργ̄ρ − 2ξ̄ ·∂bργ̄ρ = δξ γ̄ = −δξ̄ γ. (114)

This completes the verification of the horizontality condition. As expected, it leads to
identifying the ϑ̄-and ϑ-superpartners of the metric as BRST and anti-BRST transforms.

4.5. Inverse of Gµν(X)

A fundamental ingredient of Riemannian geometry is the inverse metric. Therefore, in
order to see whether a super-Riemannian geometry can be introduced in the supermanifold,
we have to verify whether an inverse supermetric exists. We start by the inverse of Gµν(X),
which is defined by first writing it as follows:

Gµν(X) = gµλ(x)
[
δλ

ν + gλρ
(
ϑ Γ̄ρν(x) + ϑ̄Γρν(x) + ϑϑ̄Vρν(x)

)]
≡ gµλ(x)(1 + X)λ

ν,

then in matrix terms as follows:

Ĝ−1 =
(

1− X + X2
)

ĝ−1,

where ĝ−1 is the inverse of g, i.e., the following:

Ĝµν =
(

1− X + X2
)µ

λ ĝλν (115)

=
(
δ

µ
λ − ĝµρ

(
ϑ Γ̄ρλ(x) + ϑ̄Γρλ(x) + ϑϑ̄Vρλ(x)

)
+ ϑϑ̄ ĝµρ

(
Γρσ gστ Γ̄τλ − Γ̄ρσ gστΓτλ

))
ĝλν

≡ ĝµν(x) + ϑ ̂̄Γµν
(x) + ϑ̄Γ̂µν(x) + ϑϑ̄V̂µν(x),
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and ĝµν is the ordinary metric inverse. Moreover,

Γ̂µν = −ĝµλΓλρ ĝρν, (116)̂̄Γµν
= −ĝµλΓ̄λρ ĝρν, (117)

V̂µν = ĝµλ
(
−Vλρ + Γλσ ĝστ Γ̄τρ − Γ̄λσ ĝστΓτρ

)
ĝρν. (118)

This contains the correct BRST transformation properties. For instance, we have the
following:

Γ̂µν = −ĝµλ
(
ξ ·∂gλρ + ∂λξτ gτρ + ∂ρξτ gλτ

)
ĝρν (119)

= ξ ·∂ĝµν − ∂λξµ ĝλν − ∂λξν ĝνλ = δξ ĝµν.

Similarly, we obtain

̂̄Γµν
= δξ̄ ĝµν, (120)

V̂µν = δξ δξ̄ ĝµν. (121)

The simplest way to obtain (121) is to proceed as follows:

δξ δξ̄ ĝµν = δξ δξ̄

(
ĝµλgλρ ĝρν

)
(122)

= δξ

(
−ĝµλδξ̄ gλρ ĝρν

)
= −ĝµλδξ δξ̄ gλρ ĝρν + ĝµλδξ gλρ ĝρσδξ̄ gστ ĝτν − ĝµλδξ̄ gλρ ĝρσδξ gστ ĝτν

= −ĝµλVλρ ĝρν + ĝµλΓλρ ĝρσΓ̄στ ĝτν − ĝµλΓ̄λρ ĝρσΓστ ĝτν.

4.6. ĜMN

Now, we are ready to tackle the problem of the supermetric inverse. In ordinary
Riemannian geometry, the inverse ĝµν of the metric is defined by the following: ĝµλgλν =
δ

µ
ν . However, ĝµν can also be considered as a bi-vector such that

ĝ = ĝµν ∂

∂xµ ∨
∂

∂xν
, (123)

is invariant under diffeomorphisms.
We can try to define the analog of (123) in the superspace, i.e.,

Ĝ = ĜMN(X)
∂̃

∂̃XM
∨ ∂̃

∂̃XN
, (124)

where ∂̃
∂̃XM =

(
∂

∂xµ , ∂
∂ϑ , ∂

∂ϑ̄

)
, and

Ĝµν(X) = ĝµν(x) + ϑ ̂̄Γµν
(x) + ϑ̄Γ̂µν(x) + ϑϑ̄V̂µν(x),

Ĝµϑ(X) = γ̂µ(x) + ϑ ˆ̄gµ(x) + ϑ̄ĝµ(x) + ϑϑ̄Γ̂µ(x) = Ĝϑµ(X),

Ĝµϑ̄(X) = ˆ̄γµ(x) + ϑ ˆ̄f µ(x) + ϑ̄ f̂ µ(x) + ϑϑ̄̂̄Γµ
(x) = Ĝϑ̄µ(X),

1
2

Ĝϑϑ̄(X) = ĝ(x) + ϑ ˆ̄γ(x) + ϑ̄γ̂(x) + ϑϑ̄Ĝ(x) = −1
2

Ĝϑ̄ϑ(X). (125)

This suggests immediately the horizontality condition Ĝ = ĝ, i.e.,

˜̂GMN
(X̃)

∂

∂̃X̃M
∨ ∂̃

∂̃X̃N
= ĝµν(x)

∂

∂xµ ∨
∂

∂xν
. (126)
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The partial derivative ∂
∂̃X̃M can be derived from d̃X̃ by inverting the relation as follows:

d̃X̃M =

δ
µ
ν − ϑ∂ν ξ̄µ − ϑ̄∂νξµ + ϑϑ̄∂νhµ −ξ̄µ + ϑ̄hµ −ξµ − ϑhµ

0 1 0
0 0 1

dxν

dϑ
dϑ̄

. (127)

The matrix has the structure
(

A B
C D

)
, where A, D are commuting square matrices,

while B, C are anticommuting rectangular ones (in this case C = 0 and D = 1). Its inverse

is
(

A−1 −A−1B
0 1

)
. Therefore, we have the following:

∂̃

∂̃x̃µ
=

∂

∂xµ +
(

ϑ∂µ ξ̄ν + ϑ̄∂µξν − ϑϑ̄
(

∂µhν + ∂µ ξ̄λ∂λξν − ∂µξλ∂λ ξ̄ν
)) ∂

∂xν
, (128)

∂̃

∂̃ϑ̃
=

∂

∂ϑ
+
(
−ξ̄ν + ϑξ̄ ·∂ξ̄ν + ϑ̄

(
−hν + ξ̄ ·∂ξν

)
+ ϑϑ̄

(
h·∂ξ̄ν − ξ̄ ·∂hν − ξ̄ ·∂ξ̄ ·∂ξν + ξ̄ ·∂ξ ·∂ξ̄ν

)) ∂

∂xν
,

∂̃

∂̃ ˜̄ϑ
=

∂

∂ϑ̄
+
(
−ξν + ϑ̄ξ ·∂ξν + ϑ

(
hν + ξ ·∂ξ̄ν

)
+ ϑϑ̄

(
h·∂ξν − ξ ·∂hν − ξ ·∂ξ̄ ·∂ξν + ξ ·∂ξ ·∂ξ̄ν

)) ∂

∂xν
.

The explicit form of the RHS can be found on Appendix B (see (A23)) from which we
can now proceed to identify the various fields in (125).

From the ∂
∂ϑ ∨

∂
∂ϑ̄

term, we obtain the following equation:

ĝ−
(
ϑξ̄ + ϑ̄ξ − ϑϑ̄h

)
·∂ĝ + ϑϑ̄ ξξ̄ ·∂2 ĝ + ϑ

(
ˆ̄γ− ϑ̄ξ ·∂ ˆ̄γ

)
+ ϑ̄(γ̂− ϑξ ·γ̂) + ϑϑ̄Ĝ = 0. (129)

from which we deduce the following:

ĝ = 0, γ̂ = 0, ˆ̄γ = 0, Ĝ = 0. (130)

Similarly, from the ∂
∂xµ ∨ ∂

∂ϑ term we deduce the following:

γ̂µ = 0, ĝµ = 0, ˆ̄gµ = 0, Γ̂µ = 0, (131)

and from ∂
∂xµ ∨ ∂

∂ϑ̄

ˆ̄γµ = 0, f̂ µ = 0, ˆ̄f µ = 0, Γ̂
µ
= 0. (132)

Therefore, only the components of Ĝµν(X) do not vanish. Equation (A23) becomes
the following:

ĝµν(x)
∂

∂xµ ∨
∂

∂xν
= ˜̂GMN

(X̃)
∂

∂̃X̃M
∨ ∂̃

∂̃X̃N
(133)

=
(

ĝµν −
(
ϑξ̄ + ϑ̄ξ − ϑϑ̄h

)
·∂ĝµν + ϑϑ̄ ξξ̄ ·∂2 ĝµν + ϑ

(
Γ̂

µν
− ϑ̄ξ ·∂Γ̂

µν)
+ϑ̄
(

Γ̂µν − ϑξ̄ ·∂Γ̂µν
)
+ ϑϑ̄ V̂µν(x)

)
·
(

∂

∂xµ +
(

ϑ∂µ ξ̄λ + ϑ̄∂µξλ − ϑϑ̄
(

∂µhλ + ∂µ ξ̄σ∂σξλ − ∂µξσ∂σ ξ̄λ
)) ∂

∂xλ

)
∨
(

∂

∂xν
+
(
ϑ∂ν ξ̄ρ + ϑ̄∂νξρ − ϑϑ̄

(
∂νhρ + ∂ν ξ̄τ∂τξρ − ∂νξτ∂τ ξ̄ρ

)) ∂

∂xρ

)
.

This implies the following:

Γ̂µν = ξ ·∂ĝµν − ∂λξµ ĝλν − ∂λξν ĝµλ = δξ ĝµν,

Γ̂
µν

= ξ̄ ·∂ĝµν − ∂λ ξ̄µ ĝλν − ∂λ ξ̄ν ĝµλ = δξ̄ ĝµν,

V̂µν = δξ δξ̄ ĝµν. (134)
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If we impose ĝµν(x) to be the inverse of gµν(x), these are identical to Equations (116)–(118).

4.7. Super-Christoffel Symbols and Super-Riemann Tensor

From the previous results and from Appendix B.5, it is clear that we cannot define
an inverse of GMN(X); therefore, we must give up the idea of mimicking Riemannian
geometry in the superspace. However, no obstacles exist if we limit ourselves to Gµν(X).
We have seen that its inverse exists. Therefore, we can introduce a horizontal Riemannian
geometry in the superspace, that is, a Riemannian geometry where the involved tensors
are horizontal, i.e., they do not have components in the anticommuting directions. To start
with, we can define the super-Christoffel symbol as follows:

Γλ
µν =

1
2

Ĝλκ
(
∂µGνκ + ∂νGµκ − ∂κGµν

)
(135)

= Γλ
µν + ϑKλ

µν + ϑ̄Kλ
µν + ϑϑ̄Hλ

µν, (136)

where

Kλ
µν =

1
2

(
Γ̂

λρ(
∂µgρν + ∂νgµρ − ∂ρgµν

)
+ ĝλρ

(
∂µΓρν + ∂νΓµρ − ∂ρΓµν

))
(137)

=
1
2

(
δξ̄ ĝλρ

(
∂µgρν + ∂νgµρ − ∂ρgµν

)
+ ĝλρ

(
∂µδξ̄ gρν + ∂νδξ̄ gµρ − ∂ρδξ̄ gµν

))
= δξ̄ Γλ

µν.

Similarly, we note the following:

Kλ
µν = δξ Γλ

µν, (138)

and

Hλ
µν =

1
2

(
V̂λρ

(
∂µgρν + ∂νgµρ − ∂ρgµν

)
+ ĝλρ

(
∂µVρν + ∂νVµρ − ∂ρVµν

)
(139)

+ Γ̂λρ
(
∂µΓρν + ∂νΓµρ − ∂ρΓµν

)
− Γ̂

λρ(
∂µΓρν + ∂νΓµρ − ∂ρΓµν

))
=

1
2

(
δξ δξ̄ ĝλρ

(
∂µgρν + ∂νgµρ − ∂ρgµν

)
+ ĝλρ

(
∂µδξ δξ̄ gρν + ∂νδξ δξ̄ gµρ − ∂ρδξ δξ̄ gµν

)
+ δξ ĝλρ

(
∂µδξ̄ gρν + ∂νδξ̄ gµρ − ∂ρδξ̄ gµν

)
− δξ̄ ĝλρ

(
∂µδξ gρν + ∂νδξ gµρ − ∂ρδξ gµν

))
= δξ δξ̄ Γλ

µν,

in agreement with (136).
The super-Riemann curvature is

Rµνλ
ρ = −∂µΓ

ρ
νλ + ∂νΓ

ρ
µλ − Γ

ρ
µσΓσ

νλ + Γ
ρ
νσΓσ

µλ

= Rµνλ
ρ + ϑ Ωµνλ

ρ + ϑ̄ Ωµνλ
ρ + ϑϑ̄ Sµνλ

ρ, (140)

where

Ωµνλ
ρ = −∂µKρ

νλ + ∂νKρ
µλ − Γρ

µσKσ
νλ + Γρ

νσKσ
µλ − Kρ

µσΓσ
νλ + Kρ

νσΓσ
µλ

= −∂µδξ̄ Γρ
νλ

+ ∂νδξ̄ Γρ
µλ
− Γρ

µσδξ̄ Γσ
νλ

+ Γρ
νσδξ̄ Γσ

µλ
− δξ̄ Γρ

µσ
Γσ

νλ + δξ̄ Γρ
νσ

Γσ
µλ

= δξ̄ Rµνλ
ρ. (141)

Likewise,

Ωµνλ
ρ = δξ Rµνλ

ρ, (142)
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and

Sµνλ
ρ = ∂µ Hρ

νλ + ∂ν Hρ
µλ − Hρ

µσΓσ
νλ + Hρ

νσΓσ
µλ − Γρ

µσ Hσ
νλ + Γρ

νσ Hσ
µλ

+Kρ
µσKσ

νλ − Kρ
µσKσ

νλ − Kρ
νσKσ

µλ + Kρ
νσKσ

µλ

= −∂µδξ δξ̄ Γρ
νλ

+ ∂νδξ δξ̄ Γρ
µλ
− δξ δξ̄ Γρ

µσ
Γσ

νλ + δξ δξ̄ Γρ
νσ

Γσ
µλ − Γρ

µσδξ δξ̄ Γσ
νλ

+ Γρ
νσδξ δξ̄ Γσ

µλ

+δξ̄ Γρ
µσ

δξ Γσ
νλ
− δξ Γρ

µσ
δξ̄ Γσ

νλ
− δξ̄ Γρ

νσ
δξ Γσ

µλ
+ δξ Γρ

νσ
δξ̄ Γσ

µλ

= δξ δξ̄ Rµνλ
ρ. (143)

This gives immediately the super-Ricci tensor

Rµλ ≡ Rµνλ
ν = Rµλ + ϑ Ωµλ + ϑ̄ Ωµλ + ϑϑ̄ Sµλ, (144)

with Ωµλ = Ωµνλ
ν, Ωµλ = Ωµνλ

ν and Sµλ = Sµνλ
ν. Of course,

Ωµλ = δξ̄ Rµλ, Ωµλ = δξ Rµλ, and Sµλ = δξ δξ̄ Rµλ. (145)

The super-Ricci scalar is the following:

R ≡ Ĝµν Rµν = R + ϑ Ω + ϑ̄ Ω + ϑϑ̄ S. (146)

It is easy to show the following:

Ω = δξ̄ R, Ω = δξ R, S = δξ δξ̄ R. (147)

5. The Vielbein

If we want to include fermions in a theory in curved spacetime, we need frame
fields. This section is devoted to introducing vielbein in the superspace. We define the
supervierbein as the following d-vector 1-form:

Ea = Ea
M(X)d̃XM, (148)

where

Ea
µ(X) = ea

µ(x) + ϑφ̄a
µ(x) + ϑ̄φa

µ(x) + ϑϑ̄ f a
µ(x),

Ea
ϑ(X) = χa(x) + ϑC̄a(x) + ϑ̄Ca(x) + ϑϑ̄ψa(x),

Ea
ϑ̄
(X) = λa(x) + ϑD̄a(x) + ϑ̄Da(x) + ϑϑ̄ρa(x). (149)

The natural horizontality condition is the following:

Ẽa
M(X̃)d̃X̃M = ea

µ(x)dxµ. (150)

This is the same condition as for a vector field. So, we immediately obtain the following
results:

φa
µ = ξ ·∂ea

µ + ∂µξλea
λ = δξea

µ, (151)

φ̄a
µ = ξ̄ ·∂ea

µ + ∂µ ξ̄λea
λ = δξ̄ea

µ, (152)

f a
µ = ξ ·∂φ̄a

µ − ξ̄ ·∂φa
µ − ξξ̄ ·∂2ea

µ + ∂µ ξ̄λξ ·∂ea
λ − ∂µξλ ξ̄ ·∂ea

λ

−∂µ ξ̄λφa
λ + ∂µξλφ̄a

λ − h·∂ea
µ − ∂µh·ea = −δξ̄ φa

µ = δξ φ̄a
µ, (153)
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χa = ea
µ ξ̄µ, (154)

Ca = −ξ ·∂ea
µ ξ̄µ + φa

µ ξ̄µ + ξ ·∂χa − h·ea = δξ χa, (155)

C̄a = −ξ̄ ·∂ea
µ ξ̄µ + φ̄a

µ ξ̄µ + ξ̄ ·∂χa = δξ̄χa, (156)

ψa = ξξ̄ ·∂2ea
µ ξ̄µ − ξ ·∂φ̄a

µ ξ̄µ + ξ̄ ·∂φa
µ ξ̄µ + f a

µ ξ̄µ − ξξ̄ ·∂2χa + ξ ·∂C̄a − ξ̄ ·∂Ca (157)

−ξ̄ ·∂ea ·h + φ̄a ·h− h·∂χa + h·∂ea
µ ξ̄µ = δξ C̄a = −δξ̄Ca,

and

λa = ea
µ ξµ, (158)

Da = −ξ ·∂ea
µξµ + φa

µξµ + ξ ·∂λa = δξ λa, (159)

D̄a = −ξ̄ ·∂ea
µξµ + φ̄a

µξµ + ξ̄ ·∂λa + h·ea = δξ̄ λa, (160)

ρa = ξξ̄ ·∂2ea
µξµ − ξ ·∂φ̄a

µξµ + ξ̄ ·∂φa
µξµ + f a

µξµ − ξξ̄ ·∂2λa + ξ ·∂D̄a − ξ̄ ·∂Da (161)

−ξ ·∂ea ·h + φa ·h− h·∂λa + h·∂ea
µξµ = δξ D̄a = −δξ̄ Da.

5.1. The Inverse Vielbein Êµ
a

Here, we introduce the inverse vielbein Êµ
a . Let us write it as the following:

Ea
µ(X) = ea

λ(x)
(

δλ
µ + ϑφ̄λ

µ(x) + ϑ̄φλ
µ(x) + ϑϑ̄ f λ

µ (x)
)
= ea

λ(1 + X)λ
µ , (162)

where φλ
µ = eλ

a φa
µ, φ̄λ

µ = eλ
a φ̄a

µ and f λ
µ = eλ

a f a
λ, and eλ

a (x)eb
λ(x) = δb

a . Then we define

Êµ
a = (1− X + X2)

µ
λ eλ

a . (163)

The following is evident:

Êµ
a Eb

µ = δb
a . (164)

In terms of components, we have the following:

φ̂
µ
a = −êµ

b φb
λ êλ

a = −êµ
b δξ eb

λ êλ
a = δξ êµ

a , (165)
ˆ̄φµ

a = −êµ
b φ̄b

λ êλ
a = −êµ

b δξ̄ eb
λ êλ

a = δξ̄ êµ
a , (166)

and

f̂ µ
a = êµ

b

(
− f b

λ − φ̄b
ρeρ

c φc
λ + φb

ρ eρ
c φ̄c

λ

)
êλ

a = δξδξ̄ êµ
a . (167)

A simple way to prove the last step is as follows:

δξδξ̄ êµ
a = δξ

(
−êµ

b δξ̄ eb
λ êλ

a

)
= −δξ êµ

b δξ̄ eb
λ êλ

a − êµ
b δξδξ̄eb

λ êλ
a + êµ

b δξ̄ eb
λδξ̄ êλ

a

= êµ
b

(
− f b

λ − φ̄b
ρeρ

c φc
λ + φb

ρ eρ
c φ̄c

λ

)
êλ

a = f̂ µ
a . (168)

5.2. The Inverse Supervielbein ÊM
a

In this subsection, as we did for the supermetric, we try to define the inverse of the
supervielbein. Analogous with what we did for the metric, we define the following:

Êa = ÊM
a (X)

∂

∂XM , (169)
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where

Êµ
a (X) = êµ

a (x) + ϑ ˆ̄φµ
a (x) + ϑ̄φ̂

µ
a (x) + ϑϑ̄ f̂ µ

a (x),

Êϑ
a (X) = χ̂a(x) + ϑ ˆ̄Ca(x) + ϑ̄Ĉa(x) + ϑϑ̄ψ̂a(x),

Êϑ̄
a (X) = λ̂a(x) + ϑ ˆ̄Da(x) + ϑ̄D̂a(x) + ϑϑ̄ρ̂a(x), (170)

and impose the following horizontality condition:

˜̂EM
a (X)

∂

∂X̃M
= êµ

a
∂

∂xµ . (171)

The explicit form of the LHS of this equation can be found in Appendix B, see Equation (A24).
In the latter, the coefficient of ∂

∂ϑ leads to the following:

χ̂a = Ĉa = Ĉa = ψ̂a = 0, (172)

and the equation proportional to ∂
∂ϑ̄

to the following:

λ̂a = D̂a = D̂a = ρ̂a = 0. (173)

Therefore, only the components of Êµ
a (X) are nonvanishing. The remaining equa-

tions give the following:

φ̂
µ
a = ξ ·êµ

a − ∂λξµ êλ
a = δξ êµ

a ,
ˆ̄φµ

a = ξ̄ ·êµ
a − ∂λ ξ̄µ êλ

a = δξ̄ êµ
a ,

f̂ µ
a = −ξξ̄ ·∂2 êµ

a − h·∂eµ
a + ∂λhµeλ

a + ξ ·∂ ˆ̄φµ
a + ∂λξµ ˆ̄φλ

a − ξ̄ ·∂φ̂
µ
a − ∂λ ξ̄µφ̂λ

a ,

+êλ
a ∂λ ξ̄ ·∂ξµ + ξ ·∂êλ

a ∂λ ξ̄µ − êλ
a ∂λξ ·∂ξ̄µ − ξ̄ ·∂êλ

a ∂λξµ = δξ δξ̄ êµ
a . (174)

If êµ
a is the inverse of ea

µ, these formulas coincide with those of the previous subsection.
The results of this section confirm what was found in the previous subsection. In the

superspace, it makes sense to consider only horizontal tensors, i.e., tensors whose compo-
nents in the anticommuting directions vanish. We continue, therefore, to define a frame
geometry with this characteristic.

5.3. The Spin Superconnection

The spin superconnection is defined as follows:

Ωab
µ =

1
2

[
Êaν
(

∂µEb
ν − ∂νEb

µ

)
− Êbν

(
∂µEa

ν − ∂νEa
µ

)
− Êaν Êbλ(∂νEc

λ − ∂λEc
ν)Ecµ

]
(175)

= ωab
µ + ϑPab

µ + ϑ̄Pab
µ + ϑϑ̄Qab

µ ,

where ωab
µ is the usual spin connection and the following holds:

Pab
µ =

1
2

[
êaν∂µφb

ν + φ̂aν∂µeb
ν − êbν∂µφa

ν − φ̂bν∂µea
ν −

(
êaνφ̂bλ + φ̂aν êbλ

)
(∂νec

λ − ∂λec
ν)ecµ

−êaνebλ(∂νφc
λ − ∂λφc

ν)ecµ − êaνebλ(∂νec
λ − ∂λec

ν)φcµ

]
=

1
2

[
êaν∂µδξ eb

ν + δξ êaν∂µeb
ν − êbν∂µδξ ea

ν − δξ êbν∂µea
ν −

(
êaνδξ êbλ + δξ êaν êbλ

)
(∂νec

λ − ∂λec
ν)ecµ

−êaνebλ
(
∂νδξ ec

λ − ∂λδξ ec
ν

)
ecµ − êaνebλ(∂νec

λ − ∂λec
ν)δξ ecµ

]
= δξ ωab

µ . (176)

where ea
µ, φa

µ, êaµ, φ̂aµ were explained earlier in Sections 5.1 and 5.2.
Similarly, we have the following:
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Pab
µ = δξ̄ ωab

µ , (177)

Qab
µ = δξ δξ̄ ωab

µ . (178)

Thus, we have recovered the complete set of (anti)BRST transformations for the spin
superconnection.

5.4. The Curvature

The 2-form supercurvature is the following:

Rab = Rab
µνdxµ ∧ dxν, (179)

where

Rab
µν = ∂µΩab

ν − ∂νΩab
µ + Ωa

µcΩcb
ν −Ωa

νcΩcb
µ (180)

= Rab
µν + ϑΣab

µν + ϑ̄Σab
µν + ϑϑ̄Sab

µν.

Rab
µν is the usual spin connection curvature. Next, we have the following:

Σab
µν = ∂µPab

ν − ∂νPab
µ + Pac

µ ωνc
b + ωac

µ Pνc
b − Pac

ν ωµc
b −ωac

ν Pµc
b

= ∂µδξ ωab
ν − ∂νδξ ωab

µ + δξ ωac
µ ωνc

b + ωac
µ δξ ωνc

b − δξ ωac
ν ωµc

b −ωac
ν δξ ωµc

b

= δξ Rab
µν. (181)

At the same time, we have the following identifications:

Σab
µν = δξ̄ Rab

µν, (182)

Sab
µν = δξ δξ̄ Rab

µν. (183)

5.5. Fermions

Fermion fields, under diffeomorphisms, behave like scalars. A Dirac fermion super-
field has the following expansion:

Ψ(X) = ψ(x) + ϑF(x) + ϑ̄F(x) + ϑϑ̄Θ(x, (184)

ψ, F, F and Θ are four-component complex column vector fields. The horizontality condi-
tion is the following:

Ψ̃(X̃) = ψ(x). (185)

Repeating the analysis of the scalar superfield, we obtain the following:

F(x) = δξψ(x), F(x) = δξ̄ ψ(x), Θ(x) = δξδξ̄ ψ(x). (186)

The covariant derivative of a vector superfield is as follows:

DµΨ =

(
∂µ +

1
2

Ωµ

)
Ψ,

where Ωµ = Ωab
µ Σab, and Σab = 1

4 [γa, γb] are the Lorentz generators.
The Lagrangian density for a Dirac superfield is the following:

L =
√

g i Ψγ̂µDµΨ, (187)

with γ̂µ = Êµ
a γa. The Lagrangian density L is invariant under Lorentz transformations and,

up to total derivatives, under diffeomorphisms.
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5.6. The Super-LORENTZ Transformations

The fermion superfield transforms under local Lorentz transformations as follows:

δΛΨ =
1
2

ΛΨ, Λ = Λab(X)Σab, (188)

where Λab(X) is an infinitesimal antisymmetric supermatrix with arbitrary entries:

Λab(X) = λab(x) + ϑh̄ab(x) + ϑ̄hab(x) + ϑϑ̄Λab(x). (189)

Local Lorentz transformations act on the supervielbein as follows:

δΛEa
µ = Eb

µΛb
a, δΛÊµ

a = Êµ
b Λb

a. (190)

Using the definition (175), one finds the following:

δΛΩµ = ∂µΛ +
1
2
[Ωµ, Λ], (191)

or

δΛΩab
µ = ∂µΛab + Ωcb

µ Λc
a + Ωac

µ Λc
b. (192)

With this and

[γ̂µ, Λ] = 2Eµ
a Λabγb, (193)

one can easily prove that (187) is invariant under local Lorentz transformations.

6. Superfield Formalism and Consistent Anomalies

The superfield formalism nicely applies to the description of consistent anomalies.
In this section, we first summarize the definitions and properties of gauge anomalies and
then we apply to them the superfield description. Basic material for the following algebraic
approach to anomalies can be found in [11,38,39,57–59].

Here, formulas refer to a d-dimensional spacetime M without boundary.

6.1. BRST, Descent Equations and Consistent Gauge Anomalies

The BRST operation s in (3) is nilpotent. We represent with the same symbol s the
corresponding functional operator, i.e.,

s =
∫

ddx

(
sAa

µ(x)
∂

∂Aa
µ(x)

+ sca(x)
∂

∂ca(x)

)
. (194)

To construct the descent equations, we start from a symmetric polynomial in the Lie
algebra of degree n, i.e., Pn(Ta1 , ..., Tan), invariant under the adjoint transformations:

Pn([X, Ta1 ], ..., Tan) + . . . + Pn(Ta1 , ..., [X, Tan ]) = 0, (195)

for any element X of the Lie algebra g. In many cases, these polynomials are symmetric
traces of the generators in the corresponding representation as follows:

Pn(Ta1 , ..., Tan) = Str(Ta1 ...Tan), (196)

(Str denotes the symmetric trace). With this, one can construct the 2n-form

∆2n(A) = Pn(F, F, . . . F), (197)
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where F = dA + 1
2 [A, A]. It is easy to prove the following:

Pn(F, F, . . . F) = d
(

n
∫ 1

0
dt Pn(A, Ft, . . . , Ft)

)
≡ d∆(0)

2n−1(A), (198)

where we have introduced the symbols At = tA and its curvature Ft = dAt +
1
2 [At, At],

where 0 ≤ t ≤ 1. In the above expressions, the product of the forms is understood to be the
exterior product. It is important to recall that in order to prove Equation (198), one uses in
an essential way the symmetry of Pn and the graded commutativity of the exterior product
of forms.

∆(0)
2n−1(A) is often denoted also as TPn(A). The following is known as the transgression

formula:

TPn(A) = n
∫ 1

0
dt Pn(A, Ft, . . . , Ft), (199)

Equation (198) is the first of a sequence of equations that can be proven:

∆2n(A)− d∆(0)
2n−1(A) = 0, (200)

s∆(0)
2n−1(A) + d∆(1)

2n−2(A, c) = 0, (201)

s∆(1)
2n−2(A, c) + d∆(2)

2n−3(A, c) = 0, (202)

. . . . . .

s∆(2n−1)
0 (c) = 0. (203)

All the expressions ∆(p)
k (A, c) are polynomials of and A, c, cdA, cdc and their commu-

tators. The lower index k is the form degree, and the upper one p is the ghost number,
i.e., the number of c factors. The last polynomial ∆(2n−1)

0 (c) is a 0-form and clearly a
function only of c. All these polynomials have an explicit compact form. For instance, the
next interesting case after Equation (200) is the following:

s ∆2n−1(A) = −d
(

n(n− 1)
∫ 1

0
dt(1− t)Pn(dc, A, Ft, . . . Ft)

)
. (204)

This means, in particular, that integrating ∆2n−1(A) over spacetime in d = 2n−1
dimensions, we obtain an invariant local expression. This gives the gauge CS action in any
odd dimension. What matters here is that the RHS contains the general expression of the
consistent gauge anomaly in d = 2n−2 dimension. Integrating (202) over spacetime, one
obtains the following:

sA[c, A] = 0, (205)

A[c, A] =
∫

ddx ∆(1)
d (c, A), where

∆1
d(c, A) = n(n− 1)

∫ 1

0
dt(t− 1)Pn(dc, A, Ft, . . . Ft), (206)

where A[c, A] identifies the anomaly up to an overall numerical coefficient.
Thus, the existence of chiral gauge anomalies relies on the existence of the adjoint–

invariant polynomials Pn. One can prove that the so-obtained cocycles are non-trivial.
Although the above formulas are formally correct, one should remark that, in order to

describe a consistent anomaly in a d = 2n−2 dimensional spacetime, we need two forms,
Pn(F, . . . , F) and ∆(0)

2n−1(A), which are identically vanishing. This is an unsatisfactory
aspect of the previous purely algebraic approach. The superfield formalism overcomes this
difficulty and gives automatically the anomaly as well as its descendants [60].
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6.2. Superfield Formalism, BRST Transformations and Anomalies

For simplicity, we introduce only one anticommuting variable ϑ and consider the
superconnection (where d̃ = d + ∂

∂ϑ dϑ) as follows:

A = e−ϑc(d̃ + A)eϑc = A + ϑ(dc + [A, c]) +
(

c− ϑ
1
2
[c, c]

)
dϑ ≡ φ + η dϑ. (207)

The supercurvature is the following:

F = e−ϑcFeϑc = F + ϑ[F, c]. (208)

From these formulas, it is immediately visible that the derivative with respect to ϑ
corresponds to the BRST transformation:

∂

∂ϑ
φ = dc + [A, c] = DAc = sA,

∂

∂ϑ
η = −1

2
[c, c] = sc,

∂

∂ϑ
F = [F, c] = sF.

Let us now consider the transgression formula as follows:

TPn(A) = n
∫ 1

0
dt Pn(A,Ft, . . . ,Ft), (209)

in which we have replaced A everywhere with A, and Ft with Ft = t d̃A+ t2

2 [A,A] (t is
an auxiliary parameter varying from 0 to 1).

The claim is that (209) contains all the information about the gauge anomaly, including
the explicit form of all its descendants. To see this, it is enough to expand the polyform
TPn(A) in component forms as follows:

TPn(A) =
2n−1

∑
i=0

∆̃(i)
2n−i−1(φ, η) dϑ ∧ . . . ∧ dϑ︸ ︷︷ ︸

i factors

, (210)

where 2n− i− 1 is the spacetime form degree. Notice that the wedge product is commu-
tative for the dϑ factors. Of course, both ∆̃(0)

2n−1(φ)|ϑ=0 = TPn(A) and ∆̃(0)
2n−1(φ) vanish in

dimension d = 2n− 2. However, the remaining forms are nonvanishing.
Let us extract the term ∆̃(1)

2n−2(A, c):

∆̃(1)
2n−2(φ, η) = n

∫ 1

0
dt
(

Pn(η, F̃t, . . . , F̃t) + (n− 1)Pn(φ, t(dη − ∂ϑφ) + t2[φ, η], F̃t, . . . , F̃t)
)

, (211)

where F̃t = tdφ + t2

2 [φ, φ]. Let us take the ϑ = 0 part of this.

∆̃(1)
2n−2(A, c) = n

∫ 1

0
dt
(

Pn(c, Ft, . . . , Ft) + (n− 1)Pn(A, (t2 − t)[A, c], Ft, . . . , Ft)
)

. (212)

Using
∫ 1

0 dt(1− t) d
dt f (t) =

∫ 1
0 dt f (t) when f (0) = 0, we can rewrite this as follows:

∆̃(1)
2n−2(A, c) = n(n− 1)

∫ 1

0
dt (1− t)

(
Pn(c,

dFt

dt
, . . . , Ft)− Pn(A, [tA, c], Ft, . . . , Ft)

)
. (213)
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Using dFt
dt = DtA A and the ad invariance of Pn, we obtain finally the following:

∆̃(1)
2n−2(A, c) = d

(
n(n− 1)

∫ 1

0
dt (1− t)

(
Pn(c, A, . . . , Ft)

)
−n(n− 1)

∫ 1

0
dt (1− t)Pn(dc, A, Ft, . . . , Ft). (214)

Therefore ∆̃(1)
2n−2(A, c) coincides with the opposite of ∆(1)

2n−2(A, c) up to a total space-
time derivative, which is irrelevant for the integrated anomaly.

The ϑ derivative of ∆̃(1)
2n−2(φ, η) is the BRST transformation of ∆̃(1)

2n−2(A, c), and turns
out to be a total spacetime derivative. This can be checked with an explicit calculation.

Remark 2. The cocycles ∆ and ∆̃ may differ. For instance, in the case d = 2, n = 2, we obtain the
following:

∆̃(1)
2 (A, c) = P2(c, dA), ∆̃(2)

1 (A, c) =
1
2

P2(A, [c, c]), ∆̃(3)
0 (c) =

1
6

P2(c, [c, c]), (215)

while

∆(1)
2 (A, c) = P2(dc, A), ∆(2)

1 (c) = P2(dc, c), ∆(3)
0 (c) =

1
6

P2(c, [c, c]). (216)

This originates from the difference of a total derivative between ∆̃(1)
2 (A, c) and ∆(1)

2 (A, c).

6.3. Anomalies with Background Connection

The expressions of anomalies introduced so far are generally well defined in a local
patch of spacetime, but they may not be globally well defined on the whole spacetime (they
may not be basic forms in the language of fiber bundles, i.e., they may be well-defined
forms in the total space but not in the base spacetime). To obtain globally well defined
anomalies, we need to introduce a background connection A0, which is invariant under
BRST transformations: sA0 = 0. The dynamical connection transforms, instead, in the
usual way; see (3). We call F and F0 the curvatures of A and A0. Since the space of
connections is affine, also Ât = tA + (1− t)A0, with 0 ≤ t ≤ 1 is a connection. We call F̂t
its curvature, which takes the values F and F0 for t = 1 and t = 0, respectively.

The relevant connection is now the following:

Ât = te−ϑc(d̃ + A)eϑc + (1− t)A0 = tA+ (1− t)A0

= t
(

A + ϑ(dc + [A, c]) +
(

c− ϑ
1
2
[c, c]

)
dϑ

)
+ (1− t)A0 ≡ φ̂t + η̂t dϑ, (217)

where φ̂t = tφ + (1− t)A0 and η̂t = tη. We call F̂t the curvature of Ât. Notice that F̂1 = F
and F̂0 = F0, which is straightforward to be checked.

We start again from the transgression formula as follows:

T Pn(A, A0) = n
∫ 1

0
dt Pn(A− A0, F̂t, . . . , F̂t). (218)

In the same way as before, one can prove that, if we assume the spacetime dimension
is d = 2n−2, we have the following:

d̃ T Pn(A, A0) = Pn(F , . . . ,F )− Pn(F0, . . . , F0) = Pn(F, . . . , F)− Pn(F0, . . . , F0) = 0. (219)
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As before, we decompose the following:

T Pn(A, A0) =
2n−1

∑
i=0

∆̂(i)
2n−i−1(φ, η, A0) dϑ ∧ . . . ∧ dϑ︸ ︷︷ ︸

i factors

. (220)

The relevant term for the anomaly is ∆(1)
2n−2(φ, η, A0), i.e.,

∆̂(1)
2n−2(φ, η, A0) = n

∫ 1

0
dt
[

Pn

(
φ, Φ̂t, . . . , Φ̂t

)
+ Pn

(
A− A0,

(
dφ̂t

η̂t −
∂

∂ϑ
φ̂t

)
, Φ̂t, . . . , Φ̂t

)
+ . . . + Pn

(
A− A0, Φ̂t, . . . , Φ̂t,

(
dφ̂t

η̂t −
∂

∂ϑ
φ̂t

))]
, (221)

where dφ̂t
= d + [φ̂t, ·], and Φ̂t = dφ̂t +

1
2 [φ̂t, φ̂t]. We have to select the ϑ = 0 part

∆̂(1)
2n−2(φ, η, A0)

∣∣∣
ϑ=0

= n
∫ 1

0
dt
[

Pn

(
c, F̂t, . . . , F̂t

)
− t(1− t)Pn

(
A−A0, [A−A0, c], F̂t, . . . , F̂t

)
− . . .− t(1− t)Pn

(
A−A0, F̂t, . . . , F̂t, [A−A0, c]

)]
. (222)

This is the chiral anomaly with background connection. It can be written in a more
familiar form by rewriting the first term on the RHS, using

∫ 1
0 dt(1− t) d

dt f (t) + f (0) =∫ 1
0 dt f (t):

∆̂(1)
2n−2(φ, η, A0)

∣∣∣
ϑ=0

= nPn(c, F0, . . . , F0)− n(n− 1)
∫ 1

0
dt (1− t)Pn(dA0 c, A− A0, F̂t, . . . , F̂t)

+d
(

n(n− 1)
∫ 1

0
dt (1− t)Pn(c, A− A0, F̂t, . . . , F̂t)

)
. (223)

Integrating over the spacetime M, the last term drops out. If we set A0 = 0, we recover
the formula (214). We notice that, as expected, the RHS of (223) is a basic quantity.

6.4. Wess-Zumino Terms in Field Theories with the Superfield Method

In a gauge field theory with connection A, valued in a Lie algebra with generators
Ta and structure constants f abc, an anomaly Aa must satisfy the WZ consistency condi-
tions [61]:

Xa(x)Ab(y)− Xb(y)Aa(x) + f abcAc(x)δ(x− y) = 0, (224)

where

Xa(x) = ∂µ
δ

δAa
µ(x)

+ f abc Ab
µ(x)

δ

δAc
µ(x)

. (225)

Equation (224) is integrability conditions. This means that one can find a functional of
the fields BWZ such that the following holds:

Xa(x)BWZ = Aa(x). (226)

In this section, we show how to construct a term BWZ which, upon BRST variation,
generates the following anomaly:

A = −
∫
M

ca(x)Aa(x) = n(n− 1)
∫
M

∫ 1

0
dt (1− t)Pn(dc, A, Ft, . . . , Ft), (227)

where M is the spacetime of dimension d = 2n− 2, and Ft = tdA + t2

2 [A, A].
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This is possible provided we enlarge the set of fields of the theory by adding new
fields as follows. Let us introduce a set of auxiliary fields σ(x) = σa(x)Ta, which under a
gauge transformations with parameters λ(x) = λa(x)Ta, transform as the following:

eσ(x) −→ eσ′(x) = e−λ(x)eσ(x). (228)

Using the Campbell–Hausdorff formula, this means δσ(x) = −λ(x)− 1
2 [λ(x), σ(x)] +

. . .. Next, we pass to the infinitesimal transformations and replace the infinitesimal pa-
rameter λ(x) with anticommuting fields c(x) = ca(x)Ta. We have the following BRST
transformations:

seσ(x) = −c(x)eσ(x), sσ(x) = −c(x) +
1
2
[σ(x), c(x)]− 1

12
[σ(x), [σ(x), c(x)]] + . . . (229)

Now, we use a superspace technique by adding to the spacetime coordinates xµ

and the anticommuting one ϑ, but, simultaneously, we enlarge the spacetime with the
addition of an auxiliary commuting parameter, s, 0 ≤ s ≤ 1. So the local coordinates in the
superspace are (xµ, s, ϑ). In particular, we have the following:

e−s(σ+ϑsσ) = e−sσ + ϑ se−sσ. (230)

On this superspace, the superconnection is the following:

Ã(x, s, ϑ) = e−s(σ+ϑsσ)e−ϑc(d̃ + A
)
eϑces(σ+ϑsσ) (231)

= e−s(σ+ϑsσ)

(
A+ d +

∂

∂s
ds
)

es(σ+ϑsσ),

where d̃ = d + ∂
∂s ds + ∂

∂ϑ dϑ, and A = A + ϑ(dc + [A, c]) + (c− ϑcc)dϑ. We decompose Ã

as follows:

Ã(x, s, ϑ) = φ(x, s, ϑ) + φs(x, s, ϑ)ds + φϑ(x, s, ϑ)dϑ, (232)

φ(x, s, ϑ) = As + ϑ(dcs + [As, cs]),

φs(x, s, ϑ) = σ + ϑsσ,

φϑ(x, s, ϑ) = cs − ϑcscs,

where

As = e−sσ A esσ + e−sσdesσ,

cs = e−sσc esσ + e−sσsesσ. (233)

In particular, A0 = A and cs interpolates between c and 0. Since the derivative with
respect to ϑ corresponds to the BRST transformation, we deduce the following:

sAs = dcs + [As, cs], scs = −cscs. (234)

Moreover, if we denote by F̃,F and F the curvatures of Ã,A and A, respectively,
we have the following:

F̃ = e−s(σ+ϑsσ)F es(σ+ϑsσ) = e−s(σ+ϑsσ)e−ϑc A es(σ+ϑsσ)eϑc. (235)

Now, suppose the spacetime M has dimension d; choose any ad-invariant polynomial
Pn with n = d

2 − 1. Then, the following holds:

Pn(F̃, . . . , F̃) = Pn(F, . . . ,F) = Pn(F, . . . , F) = 0, (236)
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where the last equality holds for dimensional reasons. Now, we can write the following:

Pn(F̃, . . . , F̃) = d̃
(

n
∫ 1

0
dt Pn(Ã, F̃t, . . . , F̃t)

)
≡ d̃

(
TPn(Ã)

)
. (237)

For notational simplicity, let us set Q̃(Ã) ≡ TPn(Ã) and decompose it in the various
components according to the form degree as follows:

Q̃ = ∑
k,i,j

k+i+j=2n−1

Q̃j
(k,i), Q̃j

(k,i) =
(

Qj
(k,i) + ϑQ̂j

(k,i)

)
(dϑ)j(ds)i, (238)

where k denotes the form degree in spacetime, j is the ghost number, and i is either 0 or 1.
Next, let us decompose the equation d̃Q̃ = 0 into components, and select, in particular, the
component (2n− 2, 1, 1), i.e., the following:

0 = dQ̃1
(2n−3,1) +

∂

∂ϑ
Q̃0

(2n−2,1)dϑ +
∂

∂s
Q̃1

(2n−2,0)ds, (239)

and let us integrate it over M and s. We obtain the following:

0 =
∫
M

∫ 1

0
ds sQ0

(2n−2,1) +
∫
M

∫ 1

0
ds

∂

∂s
Q1

(2n−2,0). (240)

Since Q1
(2n−2,0) is linear in cs and c0 = c, c1 = 0, we obtain finally the following:

∫
M

Q1
(2n−2,0) = s

∫
M

∫ 1

0
ds Q0

(2n−2,1). (241)

Now, we remark that
∫
M Q1

(2n−2,0) is linear in c and coincides precisely with the

anomaly. On the other hand, Q0
(2n−2,1) has the same expression as the anomaly with c

replaced by σ and A by As, i.e., the following:

Q0
(2n−2,1)(σ, As) = n(n− 1)

∫ 1

0
dt (1− t) Pn(dσ, As, Fs,t, . . . , Fs,t), (242)

where Fs,t = tdAs +
t2

2 [As, As]. We call

BWZ =
∫
M

∫ 1

0
ds Q0

(2n−2,1), (243)

the Wess–Zumino term.
The existence of BWZ for any anomaly seems to contradict the non-triviality of anoma-

lies. This is not so because the price we have to pay to construct the term (243) is the
introduction of the new fields σa, which are not present in the initial theory. The proof
of the non-triviality of anomalies is based on a definite differential space formed by c, A
and their exterior derivatives and commutators, which constrains the anomaly to be a
polynomial in these fields. Of course, in principle, it is not forbidden to enlarge the theory
by adding new fields plus the WZ term. However, the resulting theory is different from the
initial one. Moreover, the σa fields have zero canonical dimension. This means that, except
in 2d, it is possible to construct new invariant action terms with more than two derivatives,
which renders renormalization problematic.

7. HS-YM Models and Superfield Method

In this section, we apply the superfield method to higher-spin5 Yang–Mills (HS-YM)
models. These models are characterized by a local gauge symmetry, the higher spin
symmetry, with infinite parameters, encompassing, in particular, both ordinary gauge
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transformations and diffeomorphisms. In a sense, they unify ordinary gauge and grav-
itational theories. This makes them interesting in themselves but particularly for the
superfield method, to whose bases they seem to perfectly adhere. These models were only
recently introduced in the literature, and they are largely unexplored. For this reason, we
devote a rather long and hopefully sufficiently detailed introduction .

HS-YM models in Minkowski spacetime are formulated in terms of master fields
ha(x, p), which are local in the phase space (x, p), with [x̂µ, p̂ν] = ih̄δ

µ
ν (h̄ will be set to the

value 1), where x̂, p̂ are the operators whose classical symbols are x, p, according to the
Weyl–Wignar quantization. The master field can be expanded in powers of p as follows:

ha(x, p) =
∞

∑
n=0

1
n!

hµ1 ...,µn
a (x)pµ1 . . . pµn

= Aa(x) + χ
µ
a (x)pµ +

1
2

bµν
a (x)pµ pν +

1
6

cµνλ
a (x)pµ pν pλ + . . . , (244)

where hµ1 ...µn
a (x) are ordinary tensor fields, symmetric in µ1, . . . , µn. The indices µ1, . . . , µn

are upper (contravariant) Lorentz indices, µi = 0, . . . , d− 1. The index a is also a vector
index, but it is of a different nature. In fact, it will be interpreted as a flat index and ha will
be referred to as a frame-like master field. Of course, when the background metric is flat, all
indices are on the same footing, but it is preferable to keep them distinct to facilitate the
correct interpretation.

The master field ha(x, p) can undergo the following (HS) gauge transformations,
whose infinitesimal parameter ε(x, p) is itself a master field:

δεha(x, p) = ∂x
a ε(x, p)− i[ha(x, p) ∗, ε(x, p)] ≡ D∗xa ε(x, p), (245)

where we have introduced the following covariant derivative:

D∗xa = ∂x
a − i[ha(x, p) ∗, ]. (246)

The ∗ product is the Moyal product, defined by the following:

f (x, p) ∗ g(x, p) = f (x, p)e
i
2

(←
∂ x
→
∂ p−

←
∂ p
→
∂ x

)
g(x, p), (247)

between two regular phase-space functions f (x, p) and g(x, p).
Like in ordinary gauge theories, we use the compact notation d = ∂a dxa, h = hadxa

and write (245) as the following:

δεh(x, p) = dε(x, p)− i[h(x, p) ∗, ε(x, p)] ≡ Dε(x, p), (248)

where it is understood that [h(x, p) ∗, ε(x, p)] = [ha(x, p) ∗, ε(x, p)]dxa.
Next, we introduce the curvature notation as follows:

G = dh− i
2
[h ∗, h], (249)

with the transformation property δεG = −i[G ∗, ε].
The action functionals we consider are integrated polynomials of G or of its compo-

nents Gab. To imitate ordinary non-Abelian gauge theories, we need a ‘trace property’,
similar to the trace of polynomials of Lie algebra generators. In this framework, we have
the following:

〈〈 f ∗ g〉〉 ≡
∫

ddx
∫ dd p

(2π)d f (x, p) ∗ g(x, p) =
∫

ddx
∫ dd p

(2π)d f (x, p)g(x, p) = 〈〈g ∗ f 〉〉. (250)
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From this, plus associativity, it follows that

〈〈 f1 ∗ f2 ∗ . . . ∗ fn〉〉 = 〈〈 f1 ∗ ( f2 ∗ . . . ∗ fn)〉〉
= (−1)ε1(ε2+...+εn)〈〈( f2 ∗ . . . ∗ fn) ∗ f1〉〉 = (−1)ε1(ε2+...+εn)〈〈 f2 ∗ . . . ∗ fn ∗ f1〉〉, (251)

where εi is the Grassmann degree of fi (this is usually referred to as cyclicity property).
This property holds also when the fi is valued in a (finite dimensional) Lie algebra,

provided that the symbol 〈〈 〉〉 includes also the trace over the Lie algebra generators.
The HS Yang-Mills action. The curvature components, see (249), are as follows:

Gab = ∂ahb − ∂bha − i[ha ∗, hb], (252)

with the following transformation rule:

δεGab = −i[Gab
∗, ε]. (253)

If we consider the functional 〈〈Gab ∗ Gab〉〉, it follows from the above that

δε〈〈Gab ∗ Gab〉〉 = −i〈〈Gab ∗ Gab ∗ ε− ε ∗ Gab ∗ Gab〉〉 = 0. (254)

Therefore,

YM(h) = − 1
4g2 〈〈G

ab ∗ Gab〉〉, (255)

is invariant under HS gauge transformations and it is a well-defined functional. This is the
HS-YM-like action.

From (255), we obtain the following eom:

∂bGab − i[hb
∗, Gab] ≡ D∗b Gab = 0, (256)

which is covariant by construction under HS gauge transformations

δε

(
D∗b Gab

)
= −i[D∗b Gab, ε]. (257)

We recall that D∗b is the covariant ∗-derivative and ε, the HS gauge parameter.
All that has been said so far can be repeated for non-Abelian models with minor

changes. For simplicity, here, we limit ourselves to the Abelian case.
Gravitational interpretation. The novel property of HS YM-like theories is that,

nothwithstanding their evident similarity with ordinary YM theories, they can describe
also gravity. To see this, let us expand the gauge master parameter ε(x, p):

ε(x, p) = ε(x) + ξµ(x)pµ +
1
2

Λµν(x)pµ pν +
1
3!

Σµνλ(x)pµ pν pλ + . . . (258)

In Appendix C, we show that the parameter ε(x) is the usual U(1) gauge parameter
for the field Aa(x), while ξµ(x) is the parameter for general coordinate transformations,
and χ

µ
a (x) can be interpreted as the fluctuating inverse vielbein field.

Scalar and spinor master fields. To HS YM-like theories, we can couple matter-type
fields of any spin, for instance, a complex multi-index boson field,

Φ(x, p) =
∞

∑
n=0

1
n!

Φµ1µ2 ...µn(x)pµ1 pµ2 . . . pµn , (259)

which, under a master gauge transformation (245), transforms like δεΦ = iε ∗Φ. The covari-
ant derivative is D∗a Φ = ∂aΦ− iha ∗Φ with the property δεD

∗
a Φ = i ε ∗D∗a Φ. With these
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properties, the kinetic action term 1
2 〈〈(Da

∗Φ)† ∗D∗a Φ〉〉 and the potential terms 〈〈(Φ† ∗Φ)n
∗〉〉

are HS-gauge invariant.
In a quite similar manner, we can introduce master spinor fields,

Ψ(x, p) =
∞

∑
n=0

1
n!

Ψµ1 ...µn
(n) (x)pµ1 . . . pµn , (260)

where Ψ(0) is a Dirac field. The HS gauge transformations are δεΨ = iε ∗ Ψ, and the
covariant derivative is D∗a Ψ = ∂aΨ− iha ∗Ψ with δε(D∗a Ψ) = iε ∗ (D∗a Ψ).

With these properties, the following action integral is invariant.

S(Ψ, h) = 〈〈ΨiγaDaΨ〉〉 = 〈〈Ψγa(i∂a + ha∗)Ψ〉〉, (261)

BRST quantization of HS Yang-Mills. Fixing the Lorenz gauge with parameter α
and applying the standard Faddeev–Popov approach, the quantum action becomes the
following:

YM(ha, c, B) =
1
g2 〈〈−

1
4

Gab ∗ Gab − ha ∗ ∂aB− i∂ac ∗ D∗a c +
α

2
B ∗ B〉〉, (262)

where c, c and B are the ghost, antighost and Nakanishi–Lautrup master fields, respectively.
c, c are anticommuting fields, while B is commuting.

The action (262) is invariant under the following BRST transformations:

sha = D∗a c, sc = ic ∗ c =
i
2
[c ∗, c], sc = iB, sB = 0, (263)

which are nilpotent. In particular, s(D∗a c) = 0 and s(c ∗ c) = 0.

7.1. Anomalies in HS Theories

The effective action of HS-YM theories is functional of the master field ha(x, p) defined
as follows:

W[h] = W[0] (264)

+
∞

∑
n=1

in−1

n!

∫ n

∏
i=1

ddxi
dd pi

(2π)d 〈Ja1 (x1, p1) . . . Jan (xn, pn)〉 ha1 (x1, p1) . . . han (xn, pn),

where Ja(x, p) are fermion master currents coupled to ha(x, p). In a quantum theory, it may
happen that the HS symmetry is not preserved (the Ward identity is violated):

δεW[h] = A[ε, h] 6= 0, (265)

but in this case, we have a consistency condition. Since the following holds,

(δε2 δε1 − δε1 δε2)ha(x, p) = i(∂x[ε1
∗, ε2](x, p)− i[ha(x, p) ∗, [ε1

∗, ε2](x, p)]])
= iD∗xa [ε1

∗, ε2](x, p), (266)

we must have the following:

δε2A[ε1, h]− δε1A[ε2, h] = A[[ε1
∗, ε2], h]. (267)

If we exclude the possibility that A[ε, h] is trivial (i.e., A[ε, h] = δεC[h], for an integrated
local counterterm C[h]), then we are faced with a true anomaly, which breaks the covariance
of the effective action.

As illustrated above, in ordinary gauge theories, the form of chiral anomalies (and the
CS action) is given by elegant formulas: the descent equations. It is natural to inquire
whether in HS-YM theories there are similar formulas. We would be tempted to derive the
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relevant descent equations by mimicking the constructions of the previous sections. For in-
stance, besides (249), we can introduce the standard (ordinary gauge theory) definitions as
follows:

Gt = dht −
i
2
[ht ∗, ht], ht = th, h = hadxa, d = ∂adxa. (268)

The difference in the HS case is that, unlike in ordinary gauge theories, we cannot use
graded commutativity. There is also another difficulty: the already signaled trace problem.
We can use Equations (250) and (251), but we have to integrate over the full phase-space.
Therefore, it is impossible to reproduce the unintegrated descent equations in the same
way as in the ordinary gauge theories. The best we can do is try to reproduce each equation
separately in integrated form. While it is rather simple, starting from the expression with n
G entries,

〈〈G ∗ G ∗ . . . ∗ G〉〉, (269)

to derive the Chern–Simons action in 2n− 1 dimension

CS(h) = n
∫ 1

0
dt〈〈h ∗ Gt ∗ . . . ∗ Gt〉〉, (270)

and prove that δεCS(h) = 0, the remaining derivations are unfortunately lengthy and very
cumbersome.

It is at this point that the superfield formulation of HS-YM theories comes to our
rescue and gives us all these relations for free.

7.2. Superfield Formulation of HS YM

We introduce the master superfield 1-form as follows:

H = ha(x, p, ϑ, ϑ̄)dxa + φ(x, p, ϑ, ϑ̄)dϑ̄ + φ(x, p, ϑ, ϑ̄)dϑ, (271)

where all the component masterfields ha, φ, φ are valued in the Lie algebra with generators
Tα. The component master fields are as follows:

ha(x, p, ϑ, ϑ̄) = ha(x, p) + ϑζ̄a(x, p) + ϑ̄ζa(x, p) + ϑϑ̄ta(x, p), (272)

φ(x, p, ϑ, ϑ̄) = c(x, p) + ϑB̄(x, p) + ϑ̄R(x, p) + ϑϑ̄ς(x, p), (273)

φ(x, p, ϑ, ϑ̄) = c̄(x, p) + ϑR̄(x, p) + ϑ̄B(x, p) + ϑϑ̄ς̄(x, p). (274)

The supercurvature is as follows:

G = d̃H− i
2
[H ∗, H], (275)

where d̃ = d + d
dϑ dϑ + d

dϑ̄
dϑ̄. Notice that the ∗ commutator on the RHS persists also in the

Abelian case. Setting the following,

G ≡ dh− i
2
[h ∗, h], h = ha(x, p, ϑ, ϑ̄)dxa, (276)

the horizontality condition in this case is as follows:

G = G. (277)
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The procedure is the same as in the ordinary YM case, except that the ordinary
products are replaced by ∗ products. From the vanishing of the dxµ ∧ dϑ and dxµ ∧ dϑ̄
component of G, we obtain the following:

ζa(x, p) = D∗a c(x, p), ζa(x, p) = D∗a c̄(x, p), (278)

ta(x, p) = D∗a B(x, p) + i[D∗a c(x, p) ∗, c̄(x, p)], (279)

where D∗a = ∂x
a − i[ha(x, p) ∗, ]; see (246). From the dϑ ∨ dϑ̄, dϑ ∨ dϑ and dϑ̄ ∨ dϑ̄ compo-

nents, we obtain the CF restriction as follows:

B(x, p) + B(x, p)− i[c(x, p) ∗, c̄(x, p)] = 0, (280)

and

R(x, p) =
i
2
[c(x, p) ∗, c(x, p)], R(x, p) =

i
2
[c̄(x, p) ∗, c̄(x, p)], (281)

ς(x, p) = −i[B(x, p) ∗, c(x, p)], ς̄(x, p) = i[B(x, p) ∗, c̄(x, p)].

Let us recall again that the ∗-commutators are present also in the Abelian case we are
considering. Expanding, for instance, the c ghost master field in ordinary field components
according to Equation (258), we obtain the following:

c(x, p) = c(x) + cµ(x)pµ +
1
2

cµν(x)pµ pν +
1
3!

cµνλ(x)pµ pν pλ + . . . , (282)

where now all the component fields are anticommuting. c is the gauge ghost field, cµ is the
diffeomorphism ghost, and the subsequent are the HS ghost fields. For instance, the BRST
transformations of Aa and χ

µ
a are the following:

sAa = ∂a c− c·∂Aa − ∂λ cλ
a + . . . , (283)

sχ
µ
a = ∂acµ + c·χµ

a − ∂ρcµχ
ρ
a + ∂ρ Aacρ

µ − ∂ρc ba
ρµ + . . . (284)

For later use, we introduce the following notations:

d
dt
Gt = d̃H− it[H ∗, H] = d̃tH, d̃t = d̃− i[Ht ∗, ], (285)

d̃Gt = i[Ht ∗, Gt], δGt = d̃δHt − i[Ht ∗, δHt] = d̃tδHt, (286)

and analogous formulas for Gt = t
(
d̃ h− i t

2 [h
∗, h]

)
and Gt = t

(
d̃ h− i t

2 [h
∗, h]
)
.

7.3. Derivation of HS-YM Anomalies

In order to limit the size and complication of the formulas, we limit ourselves to only
one anticommuting variable ϑ and consider the following superderivation (d̃ = d + ∂

∂ϑ dϑ):

H = eiϑc ∗ (id̃ + h∗)e−iϑc = h + ϑ(dc− i[h ∗, c]) +
(

c + iϑ
1
2
[c ∗, c]

)
dϑ ≡ h + φ dϑ, (287)

where c = c(x, p). It follows that the supercurvature is the following:

G = eiϑc ∗ G ∗ e−iϑc = G ≡ G− iϑ[F ∗, c]. (288)
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From these formulas, it is immediately visible that the derivative with respect to ϑ
corresponds to the BRST transformations:

∂

∂ϑ
h = dc− i[h ∗, c] = D∗hc = sh,

∂

∂ϑ
φ =

i
2
[c ∗, c] = sc,

∂

∂ϑ
G = −i[G ∗, c] = sG.

Let us start from the phase space integral with n G entries:

〈〈G ∗G ∗ . . . ∗G〉〉, (289)

where 〈〈 〉〉 means integration over a phase space of dimension < 4n. Let us introduce the
following notations:

d
dt
Gt = d̃H− it[H ∗, H] = d̃t H, d̃t = d̃− i[Ht ∗, ], d̃Gt = i[Ht ∗, Gt]. (290)

Then, consider the expression with n− 1 Gt entries:

∫ 1

0
dt〈〈d̃(H ∗Gt ∗ . . . ∗Gt)〉〉 =

∫ 1

0
dt〈〈d̃H ∗Gt ∗ . . . ∗Gt〉〉 −

∫ 1

0
dt〈〈H ∗ d̃Gt ∗ . . . ∗Gt〉〉 − . . .

· · · −
∫ 1

0
dt〈〈H ∗Gt ∗ . . . ∗ d̃Gt〉〉 =

∫ 1

0
dt
(
〈〈d̃H ∗Gt ∗ . . . ∗Gt〉〉 − i〈〈H ∗ [Ht ∗, Gt] ∗ . . . ∗Gt〉〉 − . . .

. . .− i〈〈H ∗Gt ∗ . . . ∗ [Ht ∗, Gt]
)
〉〉, (291)

using the last of (290). Then, using the first of (290) together with (251), this becomes the
following:

=
∫ 1

0
dt〈〈(d̃H− i[Ht ∗, H]) ∗Gt ∗ . . . ∗Gt〉〉 =

∫ 1

0
dt〈〈( d

dt
Gt ∗Gt ∗ . . . ∗Gt〉〉 (292)

=
1
n

∫ 1

0
dt

d
dt
〈〈Gt ∗Gt ∗ . . . ∗Gt〉〉 =

1
n
〈〈G ∗G ∗ . . . ∗G〉〉 = 1

n
〈〈G ∗G ∗ . . . ∗G〉〉 = 0.

Since they are integrated over a spacetime of dimension d < 2n, these expressions
vanish. However, this is the way we identify the primitive functional action for HS CS (if the
spacetime dimension is d = 2n− 1). In other words, the HS CS action is the following:

CS(h) = n
∫ 1

0
dt〈〈h ∗Gt ∗ . . . ∗Gt〉〉

∣∣∣∣
ϑ=0

= n
∫ 1

0
dt〈〈h ∗ Gt ∗ . . . ∗ Gt〉〉, (293)

where 〈〈 〉〉means now integration over a phase space of dimension 4n − 2.
Expressions relevant to anomalies appear if the spacetime dimension is d = 2n − 2

and the phase space one is d = 4n − 4. In this case, the (unintegrated) expression∫ 1

0
dt(H ∗Gt ∗ . . . ∗Gt +Gt ∗H ∗ · · · ∗Gt + . . . +Gt ∗Gt ∗ . . . ∗H)

=
2n−1

∑
i=0

Q(i)
2n−i−1(h, φ) dϑ ∧ . . . ∧ dϑ︸ ︷︷ ︸

i factors

, (294)

is a spacetime polyform of degree 2n − 1, . . . , 1, 0: i represents the ghost number and
2n− i− 1 is the spacetime form degree. Of course, its components of degree 2n and 2n− 1
vanish for dimensional reasons. Then, excluding vanishing factors and recalling that ∂

∂ϑ
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corresponds to the BRST transform s, the integrand of Equation (294) can be written as
follows:

2n−1

∑
i=2

dQ(i)
2n−i−1(h, φ) dϑ ∧ . . . ∧ dϑ︸ ︷︷ ︸

i factors

+
2n−1

∑
i=1

∂

∂ϑ
Q(i)

2n−i−1(h, φ) dϑ ∧ . . . ∧ dϑ︸ ︷︷ ︸
i+1 factors

=

(
2n−1

∑
i=2

dQ(i)
2n−i−1(h, φ) +

2n−2

∑
i=2

sQ(i−1)
2n−i (h, φ)

)
dϑ ∧ . . . ∧ dϑ︸ ︷︷ ︸

i factors

. (295)

Now, this decomposition must be inserted inside the integration symbol 〈〈·〉〉. This sym-
bol needs a specification and must be interpreted as follows: any form Q(i)

2n−i−1 ∼ dxµ1 ∧
dµ2n−i−1 is understood to be multiplied by a trivial factor dxµ2n−i ∧ . . . ∧ dxµ2n−2 , so that
integration over spacetime makes sense. In conclusion, the following equation∫ 1

0
dt〈〈d̃(H ∗Gt ∗ . . . ∗Gt)〉〉 = 0, (296)

means the following:

s〈〈Q(1)
2n−2(h, φ)〉〉 = 0, (297)

s〈〈Q(2)
2n−3(h, φ)〉〉 = 0, (298)

. . . = . . .

s〈〈Q(2n−1)
0 (φ)〉〉 = 0. (299)

The anomaly is given by 〈〈Q(1)
2n−2(h, φ)〉〉

∣∣∣
ϑ=0

, and the following:

〈〈Q(1)
2n−2(h, φ)〉〉 = n

∫ 1

0
dt
(
〈〈φ ∗Gt ∗ . . . ∗Gt〉〉+ 〈〈h ∗ (dtφ− ∂ϑh) ∗Gt ∗ . . . ∗Gt〉〉

+ . . . + 〈〈h ∗Gt ∗ . . . ∗ (dtφ− ∂ϑh)
)

, (300)

where dt = d− it[h, ]. It follows that

〈〈Q(1)
2n−2(h, φ)〉〉|ϑ=0 = n

∫ 1

0
dt
(
〈〈c ∗ Gt ∗ . . . ∗ Gt〉〉 − it(1− t)〈〈h ∗ [h ∗, c] ∗ Gt ∗ . . . ∗ Gt〉〉

+ . . .− it(1− t)〈〈h ∗ Gt ∗ . . . ∗ Gt ∗ [h ∗, c]
)

. (301)

Now, using d
dt Gt = dthh = dh− it[h ∗, h] and dGt = it[h, Gt], one can easily find the

more familiar expression of the anomaly as follows:

〈〈Q(1)
2n−2(h, φ)〉〉|ϑ=0 = −n

∫ 1

0
dt
(
〈〈dc ∗ h ∗ Gt ∗ . . . ∗ Gt〉〉+ . . . + 〈〈dc ∗ Gt ∗ . . . ∗ Gt ∗ h〉〉

)
. (302)

8. The Superfield Formalism in Supersymmetric Gauge Theories

To conclude this review, we present the ‘BRST supergeometry’ of an N = 1 supersym-
metric gauge theory formulated in the superspace. Let us start with a summary of the
superspace presentation of this theory.

8.1. The Supermanifold Formulation of SYM

From ch. XIII of [68], a supersymmetric gauge theory can be introduced as follows.
One starts from a torsionful (but flat) superspace with supercoordinates zM = (zm, θµ, θ̄µ̇)
and introduces a supervielbein basis as follows:

eA(z) = dzM eM
A(z)
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where A = (a, α, α̇) are flat indices. The vielbein satisfy the following:

eA
MeM

B = δA
B, eM

AeA
N = δM

N , δM
N =

δm
n 0 0

0 δµ
ν 0

0 0 δµ̇
ν̇

.

The vielbein are chosen to be the following:

eA
M =

 δa
m 0 0

iσm
αα̇θα̇ δα

µ 0
iθ̄ασm

αβ̇
εβ̇α̇ 0 δα̇

µ̇

, eM
A =

 δm
a 0 0

−iσa
µµ̇ θ̄µ̇ δµ

α 0
−iθνσa

νν̇εν̇µ̇ 0 δµ̇
α̇

.

In such a type of supergeometry, one has the following:

deA = dzMdzN ∂

∂zN eM
A(z), i.e.,

dea = −2ieασa
αα̇eα̇, (303)

deα = 0,

deα̇ = 0.

The flat indices derivatives DA = eA
M∂M correspond to the following:

Da = em
a ∂m = ∂a, Dα =

∂

∂θα
+ iσm

αα̇ θ̄α̇∂m, D̄α̇ = − ∂

∂θ̄α̇
− iθασm

αα̇∂m,

because in flat space, em
a = δm

a . Moreover, we have the following:

{Dα, D̄α̇} = −2iσm
αα̇∂m, {Dα, Dβ} = {D̄α̇, D̄β̇} = 0.

The superconnection is defined by the following:

φ = eA φA, φA = iTrφr
A, φr

m

∣∣∣
θ=θ̄=0

= vr
m, (304)

where vr
m is the ordinary non-Abelian potential and Tr are the Hermitean generators of the

gauge Lie algebra.
The gauge curvature is given by the following superform:

F = dφ− φφ =
1
2

eAeBFBA.

On the flat basis, this becomes the following:

F = deAφA +
1
2

eAeB
(

DBφA − (−)abDAφB − φBφA + (−)abφAφB

)
, (305)

where the torsion term is the first on the RHS. We have the following6:

Fab
∣∣
θ=θ̄=0 = iTrvr

ab.

The dynamics are determined by the super-Bianchi identity, DF = dF− [φ, F] = 0.
They are solved by the following conditions:

Fαβ = Fα̇β̇ = Fαβ̇ = 0, (306)

with further restrictions stemming from the following:

σa
αγ̇Faβ + σa

βγ̇Faα = 0, σa
γβ̇Faα̇ + σa

γα̇Faβ̇ = 0. (307)
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This allows us to write the following:

Faα = −iσaαβ̇W̄ β̇, W̄ α̇ = − i
4

σ̄aα̇αFaα. (308)

Similarly, we have the following:

Faα̇ = −iWβσaβα̇, Wα = − i
4

Faα̇σ̄aα̇α. (309)

Moreover the Ws must satisfy the following:

D̄W̄ −DW = D̄α̇W̄ α̇ −DαWα = 0, DαW̄α̇ = 0, D̄α̇Wα = 0, (310)

where we have introduced the covariant super-derivative DA = DA − [φA, ].

8.2. The ϑ, ϑ̄ Superfield Formalism

Now, we switch on two anticommuting coordinates, ϑ and ϑ̄, and call super-superfield
(ss-field) a superfield that is a function also of these coordinates. In terms of Z̃M̃ =
(xm, θµ, θµ̇, ϑ, ϑ̄) = (zM, ϑ, ϑ̄) we have the following:

f̃ (Z̃) = f̃ (z, ϑ, ϑ̄) = f (z) + ϑ ḡ(z) + ϑ̄g(z) + ϑϑ̄h(z),

where f (z), g(z), ḡ(z) and h(z) are ordinary supersymmetric superfields. The BRST-anti-
BRST interpretation is the following:

g = s f , ḡ = s̄ f , h = s̄g = −sḡ. (311)

We introduce also the ss-exterior derivative d̃ = dZ̃M̃ ∂
∂Z̃M̃ = d+ dϑ ∂

∂ϑ + dϑ̄ ∂
∂ϑ̄

. The super-
super-connection (ss-connection) is the following:

Φ̃ = ẽÃΦ̃Ã. (312)

We choose the following:

ẽÃ(Z̃) =

eA(z) 0 0
0 dϑ 0
0 0 dϑ̄

.

So we have the following:

Φ̃ = φ̃ + dϑφ̃ϑ + dϑ̄φ̃ϑ̄,

where

φ̃ = eAφ̃A = eA(φA + ϑψ̄A + ϑ̄ψA + ϑϑ̄πA
)
,

φ̃ϑ = ϕϑ + ϑψ̄ϑ + ϑ̄ψϑ + ϑϑ̄vϑ, (313)

φ̃ϑ̄ = ϕϑ̄ + ϑψ̄ϑ̄ + ϑ̄ψϑ̄ + ϑϑ̄vϑ̄.

In the above, φA, ψA, . . . , vϑ̄ are ordinary superfields valued in the gauge Lie algebra
with generators Tr.

The ss-curvature can be written as follows:

F̃ = d̃Φ̃− Φ̃Φ̃

= F̃ + dϑ((∂ϑ − φ̃ϑ)φ̃− (d− φ̃)φ̃ϑ) + dϑ̄((∂ϑ̄ − φ̃ϑ̄)φ̃− (d− φ̃)φ̃ϑ̄)

+dϑdϑ(∂ϑφ̃ϑ − φϑφ̃ϑ) + dϑ̄dϑ̄(∂ϑ̄φ̃ϑ̄ − φϑ̄φ̃ϑ̄)

+dϑdϑ̄(∂ϑφ̃ϑ̄ + ∂ϑ̄φ̃ϑ − φ̃ϑφ̃ϑ̄ − φ̃ϑ̄φ̃ϑ), (314)
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where F̃ has nonzero components only in the xµ, θµ, θµ̇ directions. The horizontality
condition is the following:

d̃Φ̃− Φ̃Φ̃ = F̃. (315)

It gives rise to the following set of equations:

F̃
∣∣
dϑ=0=dϑ̄

= F̃, (316)

(∂ϑ − φ̃ϑ)φ̃− (d− φ̃)φ̃ϑ = 0, (317)

(∂ϑ̄ − φ̃ϑ̄)φ̃− (d− φ̃)φ̃ϑ̄ = 0, (318)

∂ϑφ̃ϑ − φϑφϑ = 0, (319)

∂ϑ̄φ̃ϑ̄ − φϑ̄φϑ̄ = 0, (320)

∂ϑφ̃ϑ̄ + ∂ϑ̄φ̃ϑ − φϑφϑ̄ − φϑ̄φϑ = 0. (321)

Equations (319) and (320) yield the identifications7

[A, B] = AB− (−1)ε(A)εBBA. (322)

The total Grassmannality ε includes both the one related to supersymmetry and to
the BRST symmetry.

ψ̄ϑ = ϕϑ ϕϑ, ψϑ̄ = ϕϑ̄ ϕϑ̄, (323)

vϑ = [ψϑ, ϕϑ], vϑ̄ = −[ψ̄ϑ̄, ϕϑ̄]. (324)

(325)

The following remaining equations are identically satisfied:

ψ̄ϑ ϕϑ = ϕϑψ̄ϑ, ψϑ̄ ϕϑ̄ = ϕϑ̄ψϑ̄,

vϑ ϕϑ + ϕϑvϑ + ψ̄ϑψϑ − ψϑψ̄ϑ = 0, vϑ̄ ϕϑ̄ + ϕϑ̄vϑ̄ + ψ̄ϑ̄ψϑ̄ − ψϑ̄ψ̄ϑ̄ = 0, (326)

The lowest component of ϕϑ is an anticommuting scalar valued in the gauge Lie
algebra, and is to be identified with the ghost field c = cr(x) Tr. Its BRST transform is ψ̄ϑ,
where ϕϑ is the BRST transform parameter. The lowest component of ϕϑ̄ is to be identified
with the dual ghost field c̄ = c̄r(x) Tr. Its anti-BRST transform is ψϑ̄.

Equation (321) gives the following relation:

ψϑ + ψ̄ϑ̄ = ϕϑ ϕϑ̄ + ϕϑ̄ ϕϑ, (327)

which is to be interpreted as the Curci–Ferrari relation, ref. [12], and ψϑ, ψ̄ϑ̄ are the
Nakanishi–Lautrup superfields. Using (327), the following remaining relations turn out to
be identically verified:

vϑ = [ϕϑ, ψ̄ϑ̄] + [ϕϑ̄, ψ̄ϑ],

vϑ̄ = −[ϕϑ, ψϑ̄]− [ϕϑ̄, ψϑ],

[ψ̄ϑ, ψϑ̄] + [ψ̄ϑ̄, ψϑ] + [vϑ, ϕϑ̄] + [vϑ̄, ϕϑ] = 0, (328)

Let us come next to the constraint (317). It implies the following definitions:

ψ̄A = DA ϕϑ − [φA, ϕϑ] = DA ϕϑ, (329)

πA = DAψϑ − [ψA, ϕϑ], (330)
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and the following identities:

DAψ̄ϑ − [ψ̄A, , ϕϑ] = 0,

DAvϑ − [πA, ϕϑ] + [ψ̄A, , ψϑ]− [ψA, , ψ̄ϑ] = 0, (331)

while, from (318), we obtain the following definitions:

ψA = DA ϕϑ̄ − [φA, ϕϑ̄] = DA ϕϑ̄, (332)

πA = −DAψ̄ϑ̄ + [ψ̄A, ϕϑ̄], (333)

as well as the following identities:

DAψϑ̄ − [ψA, ϕϑ̄] = 0,

DAvϑ̄ − [πA, ϕϑ̄] + [ψ̄A, , ψϑ̄]− [ψA, , ψ̄ϑ̄] = 0. (334)

The superfield ψA, ψ̄A, πA are easily recognized as the (anti)BRST transform. The equiv-
alence of (330) and (333) can be proven by means of the CF condition. Next, let us come to
(316). In general, using (305), one can show the following:

F̃AB = FAB − ϑ[FAB, ϕϑ]− ϑ̄[FAB, ϕϑ̄]− ϑϑ̄([FAB, ψϑ]− [[FAB, ϕϑ̄], ϕϑ]). (335)

In proving this, particular attention must be paid to the (A, B) = (α, β̇) case. The defi-
nition (305) includes in this case also a contribution from the supertorsion, but this contri-
bution is exactly canceled by an analogous term coming from the first commutator (304).

From (335) it is evident that the constraints (306) can be covariantly implemented in
the BRST formalism. Next, we have to consider the constraints (307). However, instead of
solving the ss-Bianchi identity, we prefer to covariantize the constraints extracted from it in
chapter XIII of [68]. In the same way as (306), we can covariantly implement also (307) in
the BRST formalism. To this end, we introduce the BRST covariant definitions of Wα, W α̇

W̃α = − i
4

F̃aα̇σ̄aα̇α, W̃
α̇
== − i

4
σ̄aα̇α F̃aα. (336)

Therefore, the ss-field expression for W̃α is the following:

W̃α = Wα − ϑ[Wα, ϕϑ]− ϑ̄[Wα, ϕϑ̄]− ϑϑ̄([Wα, ψϑ]− [[Wα, ϕϑ̄], ϕϑ]), (337)

and an analogous one for W̃ α̇. The next issue is now to BRST-covariantize the con-
straints (310).

Let us use the compact notation α to denote both α and α̇ and introduce the BRST
super-covariant derivative as follows:

D̃αW̃β = DαW̃β − [φ̃α, W̃β], (338)

then, it is lengthy but straightforward to prove the following:

D̃αW̃β = DαWβ − ϑ[DαWβ, ϕϑ]− ϑ̄[DαWβ, ϕϑ̄]− ϑϑ̄
(
[DαWβ, ψϑ]− [[DαWβ, ϕϑ̄], ϕϑ]

)
. (339)

This allows us to write down the constraints (310) in a BRST covariant form. They
combine perfectly with the BRST superfield formalism.

This section shows that the BRST formalism can be consistently embedded in a
supermanifold that encompasses also the supersymmetric spinorial directions.

9. Conclusions and Comments

In this paper, we have reviewed (or proposed for the first time) several applications
of the superfield method to represent the BRST and anti-BRST algebra in field theories
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with both gauge and diffeomorphism symmetries8. We have shown, in many examples,
that it correctly reproduces the transformations and, in more complicated cases, it helps
finding them. Beyond that, we have shown that it is instrumental in practical applications,
such as in the subject of consistent gauge anomalies and their integration (Wess–Zumino
terms). In such instances, it can be of invaluable help as an effective algorithmic method,
as opposed to laborious alternative trial and error methods.

In Appendix A, we have reported a geometrical description of the BRST and anti-BRST
algebras based on the geometry of principal fiber bundles and infinite dimensional groups
of gauge transformations. Although elegant and with the appeal of classical geometry,
this description can hardly be extended to the full quantum theory as defined by the
perturbative expansion. The superfield description, which incorporates gauge, ghosts and
auxiliary fields in a unique expression, seems instead to be more apt for this purpose,
although a full attempt to exploit this possibility, to our best of knowledge, has never
been made.

Elementary examples, in this sense, are the gauge-fixing action terms. Gauge fixing
is a necessary step of quantization. There is freedom in choosing the gauge-fixing terms,
except for a few obvious limitations: they must break completely the relevant gauge
symmetry, have a zero ghost number, and then they must be real and of a canonical
dimension not larger than 4 (in 4D) in order to guarantee unitarity and renormalizability.
However, of course, they must be BRST (and, if possible, anti-BRST) invariant. Having
at our disposal the superfield method, it is relatively easy to construct such terms. For
instance, a well-known case is that of non-Abelian gauge theories. With reference to
the notation in Section 2.1, one such term is the trace of ∂

∂ϑ
∂

∂ϑ̄

(
ΦµΦµ

)
, which, being the

coefficient of ϑϑ̄, is automatically BRST and anti-BRST invariant. It gives rise to the action

term tr(Aµ∂µB− ∂µ c̄Dµc). Another possibility is the trace of
(

∂η̄
∂ϑ

)2
and

(
∂η

∂ϑ̄

)2
, which give

rise to the action terms tr(B̄2) and tr(B2), respectively, and so on.
Against the backdrop of these well known examples, we would like to produce a

few analogous terms in the case of gravity. The Einstein–Hilbert action for gravity in the
superfield formalism can be written as follows [54]:

S = κ
∫

d4xdϑ̄dϑ ϑϑ̄
√

G R = κ
∫

d4x R. (340)

On the same footing, we easily add matter fields and their interaction with gravity.
Then, gauge-fixing terms invariant under BRST and anti-BRST transformations can be easily
produced with the superfield formalism of Sections 4 and 5, for instance, the coefficients of
ϑϑ̄ in any local expression of the superfields of dimension 4. One such term is the following:

L(1)
g. f . = (∂ϑ∂ϑ̄Gµν(X)) (∂ϑ∂ϑ̄Ĝµν(X)) = Vµν(x)V̂µν(x). (341)

The dimensional counting is based on assigning to XM dimension -1: [xµ] = [ϑ] =
[ϑ̄] = −1 and to d̃XM dimension 0. Of course, [GMN ] = 0. This fixes the dimensions of
all the component fields. For instance [h] = 1, [ξµ] = 0, etc. Another possible term is the
following:

L(2)
g. f . = (∂ϑ∂ϑ̄Gϑϑ̄(X))4 = G(x)4, (342)

which is, however, quadratic in h.
Another way to obtain the BRST invariant term is to consider the following:

ηµν(∂ϑ∂ϑ̄Gµϑ(X)) (∂ϑ∂ϑ̄Gνϑ(X)),

where ϑ stands either for ϑ or ϑ̄. The only nonvanishing term is the following:

L(3)
g. f . = ηµνΓµ(x)Γν(x). (343)
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Using the supervierbein, one can construct the following:

L(4)
g. f . = (∂ϑ∂ϑ̄Ea

µ(X))(∂ϑ∂ϑ̄Êµ
a (X)) = f a

µ(x) f̂ µ
a (x), (344)

and

L(5)
g. f . = ηab(∂ϑ∂ϑ̄Ea

ϑ(X))(∂ϑ∂ϑ̄Eb
ϑ̄
(X)) = ηabψa(x)ρb(x). (345)

It is remarkable that these gauge-fixing terms are generally more than quadratic in the
fields, which implies, in particular, that not only linear gauge-fixing terms enjoy both BRST
and anti-BRST symmetry. We see from this that aspects of BRST quantization of gauge and
gravity field theories need further investigation and may reserve surprises. We plan to
return to them.
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Appendix A. Evaluation Map and BRST

The purpose of this appendix is to present an interpretation of the BRST transforma-
tions within the framework of the geometry of a principal fiber bundle [11] so that one is
in the condition to appreciate the remarkable similarity between this geometry and the
superfield formalism.

Let P(M, G) be a principal bundle with a d-dimensional manifold M as base, structure
group G, which we suppose to be compact, and total space P. π will denote the projection
π : P → M. An automorphism is a diffeomorphism of P, ψ : P → P, such that ψ(pg) =
ψ(p)g, for any p ∈ P and any g ∈ G. A vertical automorphism does not move the base point:
π(ψ(p)) = π(p). Vertical authomorphisms form a group denoted as Autv(P). The latter
is to be identified with the group G of gauge transformations. The corresponding Lie
algebra will be denoted by autv(P) ≡ Lie(G); it is a space of vector fields in P generated by
one-parameter subgroups of Autv(P). The reason for this identification is clear from the
way a connection transforms under vertical automorphisms. Let A be a connection with
curvature F = dA + 1

2 [A, A]. In local coordinates, it takes the form A = Aa
µTadxµ, where

Ta are the generators of Lie(G). Let ψ be a vertical automorphism: we can associate to it
a map γ : P→ G defined by ψ(p) = p γ(p) satisfying γ(pg) = g−1γ(u)g. Then, one can
show that the following holds:

ψ∗A = γ−1 Aγ + γ−1dγ, ψ∗F = γ−1Fγ.

Next, we introduce the evaluation map:

ev : P× G → P, ev(p,  ) =  (p). (A1)

We suppose that P×G is a principal fiber bundle over M×G with group G. This means
that pulling back a connection A from P, we obtain a connection A = ev∗A in P × G.



Universe 2021, 7, 280 42 of 51

This connection contains all information about FP-ghosts and BRST transformations. Let us
see how this comes about.

We evaluate ev∗A over a couple (X, Y). Here X ∈ TpP and Y ∈ TψG, where TpP, TψG
denote the tangent space of P at p and of G at ψ, respectively. Since G is a Lie group,
there exists a Z ∈ TidG, such that ψ∗Z = Y. If ψt (t ∈ R) with ψ0 = ψ generates Y,
i.e., given f ∈ C∞(G), we have the following:

Y f =
d
dt

f (ψt)

∣∣∣∣
t=0

, (A2)

then ψ̊t = ψ−1ψt generates Z:

Z f =
d
dt

f
(
ψ̊t
)∣∣∣∣

t=0
= (ψ−1

∗ Y) f . (A3)

Now, it is useful to introduce two auxiliary maps:

evp : G → P, evp(ψ) = ψ(p),

evψ : P→ P, evψ(p) = ψ(p).

For any h ∈ C∞(P), we have the following:

(evp∗Y)h =
d
dt

h(evp ◦ ψt)

∣∣∣∣
t=0

=
d
dt

h(ψt(p))
∣∣∣∣
t=0

= Yψ(p)h. (A4)

It follows that

(ev∗A)p,ψ(X, Y) = Aψ(p)
(
evψ∗X

)
+ Aψ(p)

(
evp∗Y

)
= Aψ(p)(ψ∗X) + Aψ(p)

(
Yψ(p)

)
= (ψ∗A)p(X) + (ψ∗A)p

(
Zp
)
= (ψ∗A)p(X) +

(
iψ−1
∗ (Y)ψ

∗A
)

ψ(p)

= (ψ∗A)p(X) +
(

iψ−1
∗ (·)ψ

∗A
)

ψ(p)
(Y). (A5)

At ψ = id, the identity of G, this formula can be written in the compact form

ev∗A = A + i(·)A, (A6)

where i is the interior product, and i(·)A denotes the map Z → iZ A that associates to
every Z ∈ Lie(G) the map ξZ = A(Z) : P → Lie(G). Here, ξZ is an infinitesimal gauge
transformation, for let us recall that the action of Z over the connection A is given by the
Lie derivative LZ, which takes the following form:

LZ A = (diZ + iZd)A = d(iZ A) + iZ(dA) = d(iZ A) + iZ

(
F− 1

2
[A, A]

)
= iZF + d(iZ A) + [A, iZ A] = dξZ + [A, ξZ], (A7)

because iZF = 0, Z being a vertical vector, while F is a basic (i.e., horizontal) two-form.
The above means, in particular, that i(·)A behaves like the Maurer–Cartan form on the

group G. From now on, our purpose is to justify the fact that i(·)A can play the role of the
ghost field c.

If Q(A) is a polynomial of A, dA and the exterior product A ∧ A, the formula (A6) is
generalized to the following expression:

ev∗Q(A) = Q(A) + i(·)Q(A)− i(·)i(·)Q(A)− . . . + (−1)
k(k−1)

2 i(·) . . . i(·)︸ ︷︷ ︸
k terms

Q(A) + . . . , (A8)
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where the interior products are understood with respect to vectors in Lie(G). Of course,
we have also the following:

ev∗Q(A) = Q(ev∗A) = Q(A + i(·)A), (A9)

because the pull-back ‘passes through’ exterior product and differential. So the RHS of this
equation equals the RHS of (A8). This allows us to read off the meaning of the expression
Q(A + i(·)A).

Let us consider an example. A remarkable consequence of (A6) is the following:

F = ev∗F = F, (A10)

because iZF = 0 for any Z ∈ Lie(G). Let us write down the explicit form of ev∗F:

ev∗F = F + i(·)F + i(·)i(·)F = F + i(·)dA + [i(·)A, A] + i(·)i(·)dA +
1
2
[i(·)A, i(·)A]. (A11)

On the other hand, if δ̂ is the exterior differential in G, we have the following:

F(ev∗A) = (d + δ̂)A+
1
2
[A,A] (A12)

= F + δ̂A + di(·)A +
1
2
[A, i(·)A] +

1
2
[i(·)A, A] + δ̂i(·)A +

1
2
[i(·)A, i(·)A],

which means, splitting it according to the form degree,

δ̂A = −di(·)A− 1
2
[A, i(·)A]− 1

2
[i(·)A, A], (A13)

δ̂i(·)A = −1
2
[i(·)A, i(·)A]. (A14)

The first equation must correspond with the term i(·)F in Equation (A11). However,

i(·)F = i(·)dA + [i(·)A, A] = L(·)A− di(·)A− [A, i(·)A] = 0. (A15)

Therefore, we must understand that δ̂ = (−1)ks, where k is the order of the form in P
it acts on, and s is the ordinary BRST variation. Moreover [i(·)A, A] = [A, i(·)A], i.e., A and
i(·)A behave like one-forms (remember Equation (5)!). Finally, we have the following:

sA = di(·)A + [A, i(·)A], (A16)

si(·)A = −1
2
[i(·)A, i(·)A]. (A17)

On the other hand, Equation (A14) must correspond to the last two terms in Equation (A11).
To see that this is the case, one must recall some basic formulas in differential geometry
where, for any one-form ω and any two vector fields X, Y, we have the following:

dω(X, Y) =
1

2

(
X !(Y)− Y !(X)

)
− !([X, Y]), (A18)

and

LXω(Y) = X ω(Y)−ω([X, Y]). (A19)
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The skew double interior product i(·)i(·)dA in (A11) must be understood as follows:

iZ2 iZ1 dA = dA(Z1, Z2) =
1
2
(
Z1 A(Z2)− Z2 A(Z1)

)
− A([Z1, Z2]) = LZ1 A(Z2)− LZ2 A(Z1).

In other words, i(·)i(·)dA is to be understood as the Lie derivative of i(·)A, or its BRST
transform, once we interpret i(·)A as the FP ghost, in agreement with (A17).

From the above formulas we see that the evaluation map provides a geometrical
interpretation of the BRST transformations. Let us see now the relation with the superfield
formalism. To start, let us remark that the geometrical formula (A6) corresponds to the
superfield expression:

Ã|ϑ=0 = A + c dϑ, (A20)

where ϑ is our anticommuting variable (see Section 2). The expression i(·)A is the compo-
nent of A in the direction of G in the product P× G. Therefore, we see that ϑ represents
this direction, rather than the vertical direction in P. The ϑ partners of A, F and c are
nothing but the Lie derivatives in this direction with respect to the vector fields Z ∈ Lie(G).
Therefore, the superfield method captures the geometry of the principal fiber bundles:
A → A/G where A is the space of connections.

Appendix B. Auxiliary Formulae

In this appendix, we collect a few cumbersome formulas in expanded form with the
aim of clarifying the main text of the paper.

Appendix B.1. Expansion of Equation (79)

We start by expanding the LHS of (79):

ÃM(X̃)d̃X̃M =
(

Aµ −
(
ϑξ̄ + ϑ̄ξ − ϑϑ̄h

)
·∂Aµ + ϑϑ̄ ξξ̄ ·∂2 Aµ + ϑ

(
φ̄µ − ϑ̄ξ ·∂φ̄µ

)
+ϑ̄
(
φµ − ϑξ̄ ·∂φµ

)
+ ϑϑ̄ Bµ(x)

)
·
(

dxµ − ϑ ∂λ ξ̄µdxλ − ϑ̄ ∂λξµdxλ + ϑϑ̄∂λhµdxλ − (ξ̄µ − ϑ̄hµ)dϑ− (ξµ + ϑhµ)dϑ̄
)

(A21)

+

(
χ(x)−

(
ϑξ̄ + ϑ̄ξ − ϑϑ̄h

)
·∂χ(x) + ϑϑ̄ ξξ̄ ·∂2χ(x)

+ϑ
(
C̄(x)− ϑ̄ξ ·∂C̄(x)

)
+ ϑ̄

(
C(x)− ϑξ̄ ·∂C(x)

)
+ ϑϑ̄ψ(x)

)
dϑ

+

(
λ(x)−

(
ϑξ̄ + ϑ̄ξ − ϑϑ̄h

)
·∂λ(x) + ϑϑ̄ ξξ̄ ·∂2λ(x)

+ϑ
(

D̄(x)− ϑ̄ξ ·∂D̄(x)
)
+ ϑ̄

(
D(x)− ϑξ̄ ·∂D(x)

)
+ ϑϑ̄ρ(x)

)
dϑ̄ = Aµ(x)dxµ,

where ξξ̄ ·∂2 = ξµ ξ̄ν∂µ∂ν.

Appendix B.2. Expansion of Equation (99)

The next auxiliary formula is the explicit expression of the LHS of (99):
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gµν(x)dxµ ∨ dxν = G̃MN(X̃)d̃X̃M ∨ d̃X̃N (A22)

=
(

gµν −
(
ϑξ̄ + ϑ̄ξ − ϑϑ̄h

)
·∂gµν + ϑϑ̄ ξξ̄ ·∂2gµν + ϑ

(
Γ̄µν − ϑ̄ξ ·∂Γ̄µν

)
+ϑ̄
(
Γµν − ϑξ̄ ·∂Γµν

)
+ ϑϑ̄ Vµν(x)

)
(

dxµ − (ϑ ∂λ ξ̄µ + ϑ̄ ∂λξµ − ϑϑ̄∂λhµ)dxλ − (ξ̄µ − ϑ̄hµ)dϑ− (ξµ + ϑhµ)dϑ̄
)

∨
(
dxν − (ϑ ∂ρ ξ̄ν + ϑ̄ ∂ρξν − ϑϑ̄∂ρhν)dxρ − (ξ̄ν − ϑ̄hν)dϑ− (ξν + ϑhν)dϑ̄

)
+2
(

γµ −
(
ϑξ̄ + ϑ̄ξ − ϑϑ̄h

)
·∂γµ + ϑϑ̄ ξξ̄ ·∂2γµ + ϑ

(
ḡµ − ϑ̄ξ ·∂ḡµ

)
+ϑ̄
(

gµ − ϑξ̄ ·∂gµ
)
+ ϑϑ̄ Γµ(x)

)
(

dxµ − (ϑ ∂λ ξ̄µ + ϑ̄ ∂λξµ − ϑϑ̄∂λhµ)dxλ − (ξ̄µ − ϑ̄hµ)dϑ− (ξµ + ϑhµ)dϑ̄
)
∨ dϑ

+2
(

γ̄µ −
(
ϑξ̄ + ϑ̄ξ

)
·∂γ̄µ + ϑϑ̄ ξξ̄ ·∂2γ̄µ + ϑ

(
f̄µ − ϑ̄ξ ·∂ f̄µ

)
+ϑ̄
(

fµ − ϑξ̄ ·∂ fµ
)
+ ϑϑ̄ Γ̄µ(x)

)
(

dxµ − (ϑ ∂λ ξ̄µ + ϑ̄ ∂λξµ − ϑϑ̄∂λhµ)dxλ − (ξ̄µ − ϑ̄hµ)dϑ− (ξµ + ϑhµ)dϑ̄
)
∨ dϑ̄

+
(

g−
(
ϑξ̄ + ϑ̄ξ − ϑϑ̄h

)
·∂g + ϑϑ̄ ξξ̄ ·∂2g + ϑ

(
γ̄− ϑ̄ξ ·∂γ̄

)
+ ϑ̄(γ− ϑξ ·γ) + ϑϑ̄G

)
dϑ ∨ dϑ̄,

where all the fields on the RHS are function of x.

Appendix B.3. Expansion of Equation (126)

Here, we expand the horizontality condition for the inverse supermetric Equation (126):
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ĝµν(x)
∂

∂xµ ∨
∂

∂xν
= ˜̂GMN

(X̃)
∂

∂̃X̃M
∨ ∂̃

∂̃X̃N
(A23)

=
(

ĝµν −
(
ϑξ̄ + ϑ̄ξ − ϑϑ̄h

)
·∂ĝµν + ϑϑ̄ ξξ̄ ·∂2 ĝµν + ϑ

(
Γ̂

µν
− ϑ̄ξ ·∂Γ̂

µν)
+ϑ̄
(

Γ̂µν − ϑξ̄ ·∂Γ̂µν
)
+ ϑϑ̄ V̂µν(x)

)
·
(

∂

∂xµ +
(

ϑ∂µ ξ̄λ + ϑ̄∂µξλ − ϑϑ̄
(

∂µhλ + ∂µ ξ̄σ∂σξλ − ∂µξσ∂σ ξ̄λ
)) ∂

∂xλ

)
∨
(

∂

∂xν
+
(
ϑ∂ν ξ̄ρ + ϑ̄∂νξρ − ϑϑ̄

(
∂νhρ + ∂ν ξ̄τ∂τξρ − ∂νξτ∂τ ξ̄ρ

)) ∂

∂xρ

)
+2
(

γ̂µ −
(
ϑξ̄ + ϑ̄ξ − ϑϑ̄h

)
·∂γ̂µ + ϑϑ̄ ξξ̄ ·∂2γ̂µ + ϑ

(
ˆ̄gµ − ϑ̄ξ ·∂ ˆ̄gµ

)
+ϑ̄(ĝµ − ϑξ ·∂ĝµ) + ϑϑ̄ Γ̂µ(x)

)
·
(

∂

∂xµ +
(

ϑ∂µ ξ̄λ + ϑ̄∂µξλ − ϑϑ̄
(

∂µhλ + ∂µ ξ̄σ∂σξλ − ∂µξσ∂σ ξ̄λ
)) ∂

∂xλ

)
∨
(

∂

∂ϑ
+
(
−ξ̄ρ + ϑξ̄ ·∂ξ̄ρ + ϑ̄

(
− hρ + ξ̄ ·∂ξρ

)
+ϑϑ̄

(
h·∂ξ̄ρ − ξ̄ ·∂hρ − ξ̄ ·∂ξ̄ ·∂ξρ + ξ̄ ·∂ξ ·∂ξ̄ρ

)) ∂

∂xρ

)
+2
(

ˆ̄γµ −
(
ϑξ̄ + ϑ̄ξ

)
·∂ ˆ̄γµ + ϑϑ̄ ξξ̄ ·∂2 ˆ̄γµ + ϑ

(
ˆ̄f µ − ϑ̄ξ ·∂ ˆ̄f µ

)
+ϑ̄
(

f̂ µ − ϑξ ·∂ f̂ µ
)
+ ϑϑ̄ Γ̂

µ
(x)
)

·
(

∂

∂xµ +
(

ϑ∂µ ξ̄λ + ϑ̄∂µξλ − ϑϑ̄
(

∂µhλ + ∂µ ξ̄σ∂σξλ − ∂µξσ∂σ ξ̄λ
)) ∂

∂xλ

)
∨
(

∂

∂ϑ̄
+
(
− ξρ + ϑ̄ξ ·∂ξρ + ϑ

(
hρ + ξ ·∂ξ̄ρ

)
+ ϑϑ̄

(
h·∂ξρ − ξ ·∂hρ − ξ ·∂ξ̄ ·∂ξρ + ξ ·∂ξ ·∂ξ̄ρ

)) ∂

∂xρ

)
+
(

ĝ−
(
ϑξ̄ + ϑ̄ξ − ϑϑ̄h

)
·∂ĝ + ϑϑ̄ ξξ̄ ·∂2 ĝ + ϑ

(
ˆ̄γ− ϑ̄ξ ·∂ ˆ̄γ

)
+ ϑ̄(γ̂− ϑξ ·γ̂) + ϑϑ̄Ĝ

)
·
(

∂

∂ϑ
+
(
−ξ̄λ + ϑξ̄ ·∂ξ̄λ + ϑ̄

(
− hλ + ξ̄ ·∂ξλ

)
+ϑϑ̄

(
h·∂ξ̄λ − ξ̄ ·∂hλ − ξ̄ ·∂ξ̄ ·∂ξλ + ξ̄ ·∂ξ ·∂ξ̄λ

)) ∂

∂xλ

)
∨
(

∂

∂ϑ̄
+
(
− ξρ + ϑ̄ξ ·∂ξρ + ϑ

(
hρ + ξ ·∂ξ̄ρ

)
+ ϑϑ̄

(
h·∂ξρ − ξ ·∂hρ − ξ ·∂ξ̄ ·∂ξρ + ξ ·∂ξ ·∂ξ̄ρ

)) ∂

∂xρ

)
.
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Appendix B.4. Expansion of Equation (171)

Finally, we consider the explicit form of the LHS of (171), which can be expanded as
follows:

êµ
a

∂

∂xµ =
(

êµ
a −

(
ϑξ̄ + ϑ̄ξ − ϑϑ̄h

)
·∂êµ

a + ϑϑ̄ ξξ̄ ·∂2 êµ
a + ϑ

(
ˆ̄φµ

a − ϑ̄ξ ·∂ ˆ̄φµ
a

)
+ϑ̄
(

φ̂
µ
a − ϑξ̄ ·∂φ̂

µ
a

)
+ ϑϑ̄ f̂ µ

a )
)

·
(

∂

∂xµ +
(

ϑ∂µ ξ̄λ + ϑ̄∂µξλ − ϑϑ̄
(

∂µhλ + ∂µ ξ̄σ∂σξλ − ∂µξσ∂σ ξ̄λ
)) ∂

∂xλ

)
+
(

χ̂a −
(
ϑξ̄ + ϑ̄ξ − ϑϑ̄h

)
·∂χ̂a + ϑϑ̄ ξξ̄ ·∂2χ̂a + ϑ

(
Ĉa − ϑ̄ξ ·∂Ĉa

)
+ϑ̄
(

Ĉa − ϑξ̄ ·∂Ĉa

)
+ ϑϑ̄ ψ̂a)

)
·
(

∂

∂ϑ
+
(
−ξ̄λ + ϑξ̄ ·∂ξ̄λ + ϑ̄

(
− hλ + ξ̄ ·∂ξλ

)
+ϑϑ̄

(
h·∂ξ̄λ − ξ̄ ·∂hλ − ξ̄ ·∂ξ̄ ·∂ξλ + ξ̄ ·∂ξ ·∂ξ̄λ

)) ∂

∂xλ

)
+
(

λ̂a −
(
ϑξ̄ + ϑ̄ξ − ϑϑ̄h

)
·∂λ̂a + ϑϑ̄ ξξ̄ ·∂2λ̂a + ϑ

(
D̂a − ϑ̄ξ ·∂D̂a

)
+ϑ̄
(

D̂a − ϑξ̄ ·∂D̂a

)
+ ϑϑ̄ ρ̂a)

)
·
(

∂

∂ϑ̄
+
(
− ξρ + ϑ̄ξ ·∂ξρ + ϑ

(
hρ + ξ ·∂ξ̄ρ

)
+ϑϑ̄

(
h·∂ξρ − ξ ·∂hρ − ξ ·∂ξ̄ ·∂ξρ + ξ ·∂ξ ·∂ξ̄ρ

)) ∂

∂xρ

)
. (A24)

Appendix B.5. Inverse Supermetric

Here is an additional argument (in 4D) that shows that the inverse of GMN does not
exist. Suppose that the inverse ĜMN of GMN exists. We have the expansions (125), which
involve 76 component functions. The inversion condition is the following:

ĜMLGLN = δM
N , (A25)

where δµ
ν = δν

µ = δ
µ
ν while 1 = δϑ

ϑ̄ = −δϑ̄
ϑ. Decomposing the condition (A25) into

components, one realizes that it implies 88 quadratic equations. This is to be compared
with the ordinary inverse metric ĝµν in 4D, which has 10 independent components, while
the independent inversion conditions are also 10. It is clear that (A25) cannot be satisfied
without imposing constraints on the supermetric components. For instance, one of the
equations is the following:

γ̂µγλ + ˆ̄γµγ̄λ = 0, (A26)

which means that either γ̂µ and ˆ̄γµ vanish or they are constrained to one another (no such
constraint exists for γµ and γ̄µ).

Appendix C. Gauge Transformations in HS-YM

In this subsection, we examine in more detail the gauge transformation (245) and
propose an interpretation of the lowest spin fields. Let us expand the master gauge
parameter as in (258) and consider the first few terms in the transformation law of the
lowest spin fields ordered in such a way that component fields and gauge parameters are
infinitesimals of the same order. To the lowest (δ(0)) order, the transformation (245) reads
as follows:
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δ(0)Aa = ∂aε,

δ(0)χν
a = ∂aξν,

δ(0)ba
νλ = ∂aΛνλ. (A27)

To the first (δ(1)) order, we have the following:

δ(1)Aa = ξ ·∂Aa − ∂ρε χ
ρ
a , (A28)

δ(1)χν
a = ξ ·∂χν

a − ∂ρξνχ
ρ
a + ∂ρ AaΛρ

ν − ∂λε ba
λν,

δ(1)bνλ
a = ξ ·∂ba

νλ − ∂ρξνba
ρλ − ∂ρξλba

ρν + ∂ρχν
aΛρλ + ∂ρχλ

a Λρν − χ
ρ
a∂ρΛνλ.

The next orders contain three and higher derivatives.
These transformation properties allow us to associate the first two component fields

of ha to an ordinary U(1) gauge field and to a vielbein. To see this, let us denote by
Ãa and Ẽµ

a = δ
µ
a − χ̃

µ
a the standard gauge and vielbein fields. The standard gauge and

diffeomorphism transformations are the following:

δÃa ≡ δ
(

Ẽµ
a Ãµ

)
≡ δ

(
(δ

µ
a − χ̃

µ
a )Ãµ

)
(A29)

=
(
−∂aξµ − ξ ·∂χ̃

µ
a + ∂λξµχ̃λ

a

)
Ãµ + (δ

µ
a − χ̃

µ
a )
(

∂µε + ξ ·∂Ãµ + Ãλ∂µξλ
)

= ∂aε + ξ ·∂Ãa − χ̃
µ
a ∂µε,

and

δẼµ
a ≡ δ(δ

µ
a − χ̃

µ
a ) = ξ ·∂ẽµ

a − ∂λξµ ẽλ
a = −ξ ·∂χ̃

µ
a − ∂aξµ + ∂λξµχ̃λ

a , (A30)

so that

δχ̃
µ
a = ξ ·∂χ̃

µ
a + ∂aξµ − ∂λξµχ̃λ

a , (A31)

where we have retained only the terms at most linear in the fields.
Now, it is important to understand the derivative ∂a in Equations (245) and (A27) in

the appropriate way: the derivative ∂a means ∂a = δ
µ
a ∂µ, not ∂a = Eµ

a ∂µ =
(

δ
µ
a − χ

µ
a

)
∂µ.

In fact, the linear correction −χ
µ
a ∂µ is contained in the term −i[ha(x, p) ∗, ε(x, p)]; see,

for instance, the second term on the RHS of the first Equation (A28).
From the above, it is now immediate to make the following identifications:

Aa = Ãa, χ
µ
a = χ̃

µ
a . (A32)

The transformations (A27) and (A28) allow us to interpret χ
µ
a as the fluctuation of

the inverse vielbein; therefore, the HS-YM action may accommodate gravity. However,
a gravitational interpretation requires also that the frame field transforms under local
Lorentz transformations. Therefore, we expect that the master field ha transforms and the
action be invariant under local Lorentz transformations. In [69], it was shown that this
symmetry can actually be implemented.

Notes
1 But there seem to exist models where the anti-BRST symmetry is of particular interest, for instance the one of the

vector supersymmetry (combining with BRST and anti-BRST symmetries) in certain topological field theories like
Chern-Simons theory [18] for which this symmetry is at the origin of the finiteness of models [19]. More recently, the
fundamental role of the anti-BRST symmetry in the construction of Hodge-type theories was pointed out in [20].

2 The symbol [·, ·] denotes an ordinary commutator when both entries are non-anticommuting, and an anticommutator
when both entries are anticommuting.

3 There are also more general superdiffeomorphisms, which we ignore here.
4 Whenever possible we use Greek letters for anticommuting auxiliary fields and Latin letters for commuting ones.
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5 Basic literature on higher spin theories can be found in [62–67].
6 A reviewer of this paper pointed out to us that this result holds in the gauge-real representation of SYM theory.
7 In this section the square bracket notation [ , ] denotes a graded commutator, with grading according to the total

Grassmannality ε of the two entries
8 For recent applications of the superspace/supervariable approach to (non-)susy 1d and 2d diffeomorphism invariant

theories, see [31].
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