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Abstract: We consider maximal gauged supergravity in 4D with the ISO(7) gauge group, which
arises from a consistent truncation of massive IIA supergravity on a six-sphere. Within its G2-
invariant sector, the theory is known to possess a supersymmetric AdS extremum, as well as two
non-supersymmetric ones. In this context, we provide a first-order formulation of the theory by
making use of the Hamilton–Jacobi (HJ) formalism. This allows us to derive a positive energy theorem
for both non-supersymmetric extrema. Subsequently, we also find novel non-supersymmetric domain
walls (DWs) interpolating between the supersymmetric extremum and each of the other two. Finally,
we discuss a perturbative HJ technique that may be used in order to solve for curved DW geometries.

Keywords: quantum gravity; anti-de Sitter space; string compactifications

1. Introduction

One of the most controversial aspects of string phenomenology is the possible existence
of a huge landscape of vacua of the theory, covering a wide range of lower-dimensional
features. In the original argument of [1], the string landscape was estimated to contain
O(10500) different vacua, while a more recent F-theory analysis extends it even further to
O(10272000) [2]. However, these estimations are usually thought of as very rough, since
they try to count all distinct sets of topological data of the compact manifold, together
with all possible internal flux configurations, without though really taking the dynamics
into account.

On the other hand, regardless of what the exact order of magnitude may be, the
concept itself of such a wide landscape seems to spoil the predictivity of string theory
and, moreover, appears to be in tension with the idea of a theory of everything with no
free parameters. By adopting a proper top-down approach, one might say that the only
lower-dimensional constructions that have all rights to be in the landscape are those that
can be directly obtained by a string compactification within the right perturbative corner,
i.e., where quantum loop, higher derivative, and instanton corrections are all under control.

This way, one would naturally exclude any other kind of lower-dimensional EFT that
seems perfectly consistent from a low energy viewpoint, and yet, it has no known string
theory origin. All such constructions should then be relegated to the so-called swampland.
Nevertheless, since there might be constructions that do admit a stringy embedding that
is simply very difficult to find or just not yet fully understood, it may be worthwhile to
look for a set of purely bottom-up criteria that one can use to distinguish the landscape from
the swampland. This was exactly the philosophy proposed by the authors of [3] when
they formulated the weak gravity conjecture (WGC) as the first swampland criterion. This
criterion states that any consistent EFT must retain gravity as the weakest force in the game,
at any energy scale. As a consequence, within an EFT with gauge interactions controlled by
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a coupling g, the existence of microscopic particles (with mass smaller than the charge in
Planck units) is needed in order to obstruct taking the ungauged limit of the theory g→ 0.

In more recent years, a whole string swampland program [4] has been developing with
the aim of defining an entire set of swampland criteria based on quantum gravity principles,
which should help us select good stringy EFT’s from the rest. Of course, to start with, these
criteria are formulated as conjectures, which are supported by stringy insights, and only
checked explicitly in some specific string theory setups. This way, we came to conceive of
a web of different swampland criteria, which become more and more refined and better
understood as time goes by, and interesting relations among all of them arise. For a
complete review of the topic, we address the reader to [5] and the references therein.

In this paper, we want to focus our attention on the so-called AdS swampland conjecture
proposed by [6], according to which all non-supersymmetric AdS vacua must be ultimately
unstable in string theory. The intuition behind this relies on a stronger version of the
WGC applied to membranes (see also [7] for a similar logic). According to this, if the
vacuum is supported by flux (which is generically the case), it will be unstable against
spontaneous nucleation of microscopic membranes (tension smaller than the charge), which
will eventually discharge the flux and, hence, destroy the associated AdS vacuum. Note that
such a process is intrinsically non-perturbative, and it does not affect supersymmetric vacua,
since the corresponding spectrum only has BPS membranes (tension equal to the charge).

Though the intuitive picture is very clear, there are still very few explicit examples of
such stringy constructions within a controlled setup (see, e.g., the one in [8], where spherical
D3 brane nucleation is found to destroy the non-supersymmetric and, yet, tachyon-free
orbifolds of AdS5 × S5). In this paper, we study non-supersymmetric AdS4 × S6 vacua of
massive IIA supergravity. Such solutions are captured by a 4D gauged supergravity theory
with gauge group ISO(7) [9] and, in particular, its G2-invariant subsector. Remarkably, its
G2-preserving non-supersymmetric vacuum has already passed all perturbative checks,
including the computation of the full KK spectrum [10], as well as brane jet instabilities
of different sorts [11]. One really needs a non-perturbative analysis to explicitly check the
validity of the AdS swampland conjecture in this case.

In this paper, we try to take a complementary approach and check for the possible ex-
istence of a dynamical protection mechanism for the aforementioned non-supersymmetric
vacuum, by trying to derive a positive energy theorem, analogous to the one protecting
supersymmetric AdS [12]. We will study the problem within a 4D N = 1 supergravity
model capturing both the supersymmetric extremum, as well as the non-supersymmetric
one. The technical tool we will use is the Hamilton–Jacobi (HJ) formalism, which will allow
us to derive the aforementioned positive energy theorem. It is worth stressing that this has
no direct implications concerning full non-perturbative stability of the above vacuum. The
reason for this is that what we conventionally refer to as the 4D reduced model is not a
good EFT in a Wilsonian sense; it simply captures a self-contained sector of the theory in
a mathematical sense. Therefore, the existence of a positive energy theorem will simply
tell us that potential non-perturbative instabilities, if any, must be looked for elsewhere.
Indeed, while the vacuum is found to be non-perturbatively stable by virtue of the positive
energy theorem within this sector, a non-perturbative instability completely analogous to
the one in [8] is found in the companion paper [13], where the role of D3 branes is taken
there by D2 branes.

The paper is organized as follows. In Section 2, we introduce our setup, i.e., a particu-
lar 4D minimal supergravity model admitting SUSY, as well as non-SUSY AdS extrema.
In Section 3, we discuss the central role of first-order flows when studying bubble nucle-
ation and positive energy theorems. In Section 4, we focus on radial flows featuring a
codimensional one flat slicing of the metric and introduce their HJ formulation. In Section 5,
we review a general positive energy theorem and give a constructive proof thereof in our
reduced 4D model. This will imply a dynamical protection from decay for the non-SUSY
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vacua within our model. In Section 6, we briefly discuss radial flows involving a curved
slicing of the 4D metric. Within this context, we present a viable algorithm that allows
one to perturbatively integrate the HJ problem at any desired order. Finally, we collect in
Appendix A some details concerning the massive IIA supergravity origin of the 4D reduced
model studied here.

2. The Setup: G2-Invariant ISO(7) Gauged Maximal Supergravity

ISO(7) gaugedN = 8 supergravity [14] is a consistent gauging of maximal supergrav-
ity in D = 4 belonging to the CSO(p, q, 8− p− q) class, i.e., all gauge groups obtained from
SO(8) [15] by performing analytic continuations, as well as Inönü–Wigner contractions [16].
In these gaugings, the gauge group is embedded in the full E7(7) global symmetry of the
ungauged theory through its maximal SL(8,R) subgroup. The corresponding embedding
tensor of the theory lies within the 36⊕ 36 of SL(8,R):

E7(7) ⊃ SL(8,R),
912 → 36︸︷︷︸

Q(MN)

⊕ 36︸︷︷︸
P(MN)

⊕ 420⊕ 420, (1)

All consistent CSO(p, q, 8− p− q) gaugings are then parametrized by the two symmetric
8× 8 matrices Q and P solving the following quadratic constraint:

Tr(QP) = QMN PMN
!
= 0. (2)

The standard ISO(7) theory as arising from the reduction of massless IIA supergravity on a
six-sphere [17] corresponds to the choice:

Q =

(
0

q I7

)
and P = O8. (3)

However, one may turn on an extra parameter within this gauging, which essentially also
takes a possible symplectic deformation [18] into account. This gives rise to

Q =

(
0

q I7

)
and P =

(
p

O7

)
, (4)

which of course solves the quadratic constraint (2), as well as the standard ISO(7) theory did.
In type IIA language, the new p parameter controlling the symplectic deformation turns
out to correspond to Romans’ mass, and hence, the theory can be obtained as a consistent
truncation of massive IIA supergravity on a six-sphere [19]. Some details concerning the
truncation to its G2-invariant sector are collected in Appendix A. As we will see later on,
contrary to its massless counterpart, this theory contains non-trivial AdS4 vacua.

The 32 real supercharges of the theory are organized into the fundamental representa-
tion of the R-symmetry group SU(8)R. When restricting to the G2-invariant sector, these
decompose as

SU(8)R ⊃ SO(8) ⊃ SO(7)+ ⊃ G2

8 → 8v → 8 → 1⊕ 7
(5)

Hence, the truncated theory enjoys N = 1 supersymmetry. The 70 physical scalars of
maximal supergravity decompose as

70 → 35v ⊕ 35s → 1⊕ 7⊕ 27⊕ 35 → 1⊕ 1︸ ︷︷ ︸
one C scalar

⊕14⊕ 27⊕ 27 , (6)
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where the G2 singlet scalars are organized into one complex field named S. The correspond-
ing embedding tensor deformations contain four real G2 singlets in total, two coming from
the A1 piece of the T-tensor and the remaining two coming from the A2 piece. However,
out of these four parameters, only two remain independent when specifying to the ISO(7)
gauging. In terms of minimal supergravity language, these two parameters generate the
following superpotential deformation:

W = 14g S3 + 2m. (7)

The Kähler potential determining the scalar kinetic coupling reads:

K(S, S̄) = −7 log(−i(S− S̄)). (8)

The corresponding action is given by [19]

SG2 [gµν, S, S̄] =
∫

d4x
√
−g4

(
R4

2κ2
4
− KSS̄ (∂S)(∂S̄) − V(S, S̄)

)
, (9)

where κ4 denotes the 4D gravitational coupling, KSS̄ ≡ ∂S∂S̄K, and the scalar potential V
is determined by the superpotential through1

V = eK
(
−3|W|2 + |DW|2

)
, (10)

where D denotes the Kähler covariant derivative, e.g., DSW ≡ ∂SW + ∂SKW . After
fixing the specific scalar parametrization given by

S = χ + ie−ϕ, (11)

the explicit expression of the scalar potential reads2

V =
m2

8
eϕ
(
−35− 21e2ϕχ2 + 63e4ϕχ4 + e6ϕ(1 + 7χ3)2

)
. (12)

This potential admits three different critical points, one of which is supersymmetric, while
the remaining ones have spontaneously broken SUSY. With this choice of embedding tensor
normalization, the three critical points are illustrated in Table 1, while in Figure 1, we show
the level curves of the scalar potential around the three critical points.

Table 1. The three different AdS critical points of ISO(7) gauged supergravity preserving at least G2

as residual symmetry. The squared masses of the G2 singlet modes are normalized to the absolute
value of the cosmological constant. In these units, the BF bound [20] lies at m2

BF = − 3
4 .

ID SUSY Gres. χ e−ϕ m2
G2

1 N = 0 SO(7) 0 5−1/6 2; − 2
5

2 N = 1 G2 2−7/3 31/251/22−7/3 1
3

(
4±
√

6
)

3 N = 0 G2 −2−4/3 31/22−4/3 2; 2



Universe 2022, 8, 293 5 of 15

non-SUSY G2

SUSY G2

non-SUSY SO(7)

-0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

Figure 1. The level curves of the scalar potential for the G2-invariant sector of ISO(7) gauged
supergravity. The horizontal axis represents the ϕ direction, while the vertical axis represents χ.
Both the SUSY and non-SUSY G2 extrema are local minima, while the SO(7) critical point is actually
a saddle.

In [11], the complete mass spectra for the entire set of scalar fields within maximal
supergravity was computed, and while the SO(7) invariant critical point exhibits the
presence of modes below the BF bound, the non-SUSY G2 extremum remains completely
tachyon free. In addition to this perturbative analysis, still in [11], a different stability
analysis was performed, i.e., the one with respect to brane jets by making use of the probe
approximation. As a result, the G2 point was found to be also protected from this type of
instability. Finally, in [10], the full KK spectrum was checked by using ExFT techniques,
and even this calculation showed no signs of instabilities for this vacuum.

As a consequence, one might argue that this special example of the non-SUSY AdS
vacuum of massive IIA supergravity poses a challenge to the common lore brought up
by the swampland program, which generically expects instabilities to arise, both at a
perturbative [21,22] and non-perturbative level [6], whenever SUSY is broken. In the fol-
lowing sections, we aim at studying possible dynamical protection mechanisms preventing
non-perturbative instabilities, at least within controlled EFT setups such as the 4D N = 1
description at hand.

We will indeed be able to derive a positive energy theorem for all vacua in this
truncated theory that will exclude the occurrence of non-perturbative decays within this
universal sector. As already stressed in the Introduction though, this will of course not
imply the full stability of the corresponding vacua, but will only tell us that possible non-
perturbative decay channels should be searched for within a more general setup. In analogy
with [23], the technical tool used here for our scope will be the HJ formalism, which will
allow us to translate the problem of the (non-)existence of certain radial flows into the
(non-)existence of HJ generating functions with certain local and global properties.
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3. First-Order Flows: Bubbles, DWs, and Positive Energy

The instabilities of a classical gravitational vacuum at a non-perturbative level have
been studied since the 1980s by adopting a semiclassical approach. The relevant object in
this context is the Euclidean path integral, which describes the nucleation probability of
instantons. Within such a description, viable gravitational instantons are given by smooth
bubble geometries that asymptote to a given false vacuum and have a finite Euclidean
action. In more recent years, with the aid of string theory completions, also singular bubble
solutions started to be considered in situations where the singularity can be resolved by a
brane in string theory. In these cases, the corresponding non-perturbative decay process
described by the associated geometry is the spontaneous nucleation of a charged spherical
brane. Therefore, in a more general sense, non-perturbative instabilities of a given AdS
vacuum may be seen as solutions to the reduced dynamics of gravity coupled to scalars,
which describe a foliation of the lower-dimensional metric (4D, in our case) with an FRW
slice in one dimension lower (3D, in our case):

ds2
4 = e2Ads2

FRW3
+ e2Bdr2, (13)

where A, B, and the scalar fields are suitable functions of the radial coordinate r.
In order for this to actually represent a viable decay channel, one must of course make

sure that the following requirements are met:

• The effective FRW cosmology on the bubble wall is of an expanding type;
• The asymptotic geometry is our (putative) AdS vacuum;
• The difference in Euclidean action 0 < SE(Bubble)− SE(AdS) < ∞.

First of all, one can easily check that the dynamics of the system in the absence of cou-
pling with extra matter implies the slicing to be maximally symmetric, hence AdS3, Mkw3, or
dS3, depending on the value of the curvature on the 3D slices. As a consequence, expanding
bubbles will necessarily correspond to dS slicings of our AdS4. Then, the specific type of
instability will crucially depend on the global properties of the solution, and especially
on its asymptotic behavior at the other boundary of the r coordinate. If it asymptotes
to a different AdS geometry, what we have is a CDL bubble [24] describing decay to a
true vacuum through bubble nucleation. If it approaches a singular metric, we need to
look at its UV description in terms of string/M-theory in order to understand the physics
behind it. It could be a bubble of nothing (BoN) [25] if the singularity becomes resolved in
higher dimensions into a smoothly shrinking Euclidean geometry, or conversely, it could
correspond to a spherical brane nucleation process if there turns out to be a stringy source
placed at the singularity, or again, it could instead correspond to a decompactification limit.

Secondly, the last condition given in terms of the variation of the Euclidean action may
be viewed as a zero-energy condition for the bubble geometry. In other words, the Euclidean
action is extremized at a finite value only if its asymptotically AdS geometry has zero
energy with respect to empty AdS itself. For a CDL bubble in the thin wall limit, i.e., where
the scalar fields are approximated by step functions and, hence, carry no kinetic energy
along the radial flow, this zero-energy condition is understood as a bound on the tension of
the (thin) bubble wall, which is usually referred to as the CDL bound. This condition was
directly interpreted in [26] as a consequence of energy conservation in a bubble nucleation
process. Later, in the classification of [27], bubble walls respecting the CDL bound were
called ultra-extremal walls and were indeed found to lead to instabilities [28].

In this context, flat domain wall (DW) geometries represent a limit of the aforemen-
tioned bubble walls when the Euclidean action can only be extremized at an infinite value
of the bubble radius, and this happens in turn when the CDL bound is exactly saturated.
However, these do not correspond to real instabilities, but rather to walls of marginal stability
separating two phases that would require infinite time to decay into each other. In some
sense, one might already expect that the existence of interpolating solutions with flat slicing
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(Mkw3) could in itself exclude the existence of actual bubbles with the same initial and
final points.

More precisely, it is within the same context of flows with flat slices that one can
find the objects proving a positive energy theorem for a given AdS vacuum. By this, we
mean that the existence of some special flat radial flows automatically implies that any
bulk perturbations of the AdS asymptotic geometry will necessarily have positive energy,
and hence no finite Euclidean action, and therefore no significant contribution to the path
integral. In the next sections, we will first formulate HJ for flat flows and show its relation
to fake supergravity, and subsequently use it to give a constructive proof of the positive
energy theorem for the G2-invariant vacua of ISO(7) gauged supergravity, as well as to
find interpolating flat DWs.

4. Flat First-Order Flows: Separable HJ Treatment

Flat radial flows within the G2-invariant sector of ISO(7) gauged supergravity may be
found by exploiting the first-order formulation through the HJ formalism. These flows are
solutions of the form

ds2
4 = e2Ads2

Mkw3
+ e2Bdr2, (14)

where A and B, as well as the scalar fields ϕ and χ are functions of the radial coordinate
r. It is worth mentioning that B is actually pure gauge. However, as often in these cases,
it may be useful to make use of this gauge-fixing freedom in order to better integrate the
first-order flow.

When plugging Ansatz (14) into the action (9), one obtains the following 1D reduced
Lagrangian3:

Leff = e3A−B
(

3(A′)2 − 7
4
(ϕ′)2 − 7

4
e2ϕ(χ′)2

)
− e3A+BV(ϕ, χ), (15)

where ′ denotes differentiation with respect to r, and V is the scalar potential introduced
in (12). It is worth stressing that evaluating the supergravity action on a specific ansatz as
we do here does not lead to a consistent set of field equations in general. Nevertheless, in
this particular case, it has been checked explicitly that the 1D Lagrangian (15) yields exactly
the same set of field equations as those obtained from the 4D equations of motion evaluated
on (14). Now, we introduce the conjugate momenta for our dynamical fields (A, ϕ, χ):

πA =
∂Leff
∂A′

= 6 e3A−B A′,

πϕ =
∂Leff
∂ϕ′

= −7
2

e3A−B ϕ′,

πχ =
∂Leff
∂χ′

= −7
2

e3A−B+2ϕχ′.

(16)

By performing the usual Legendre transform, we obtain the following 1D Hamiltonian4

Heff = e−3A

(
π2

A
3
− 4

7
π2

ϕ −
4
7

e−2ϕπ2
χ

)
+ e3A V(ϕ, χ) . (17)

According to the HJ formalism, the second-order dynamics associated with the La-
grangian (15) turns out be equivalent to the following first-order flow defined by a suitable
generating function F(A, ϕ, χ):
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πA =
∂F
∂A
≡ FA,

πϕ =
∂F
∂ϕ
≡ Fϕ,

πχ =
∂F
∂χ
≡ Fχ,

(18)

when supplemented with the HJ constraint Heff|πI→FI
!
= 0, which fixes the form of

the generating function F(A, ϕ, χ). In this case, the HJ constraint takes the following
explicit form:

e−3A

(
F2

A
3
− 4

7
F2

ϕ −
4
7

e−2ϕF2
χ

)
+ e3A V(ϕ, χ)︸ ︷︷ ︸

Veff(A,ϕ,χ)

!
= 0. (19)

Since the effective potential has a factorized dependence of the warp factor A, the corresponding
generating functional may be found by casting a separable ansatz F(A, ϕ, χ) = e3A f (ϕ, χ),
where the function f of the scalar fields satisfies the following non-linear PDE:

− 3 f 2 + 2Kij∂i f ∂j f !
= V(ϕ, χ) , (20)

where Kij ≡ diag
( 2

7 , 2
7 e−2ϕ

)
is nothing but the inverse kinetic metric. This identity manifestly

shows the interpretation of these first-order flows as a realization of fake supergravity [29].
Indeed, one can show that

fSUSY ≡ eK/2 |W| = m
e7ϕ/2

√(
14e−3ϕ − 42e−ϕχ2

)2
+ 4
(
7χ
(
χ2 − 3e−2ϕ

)
+ 1
)2

8
√

2
(21)

is a global solution to the PDE (20), corresponding to the actual superpotential of the theory.
Thanks to the existence of the superpotential, one may construct a globally bounding
function as −3 f 2

SUSY, which dynamically protects the SUSY vacuum from non-perturbative
decay by virtue of the positive energy theorem for supersymmetry [12] (see also [30,31]).

5. Positive Energy Theorems for Non-SUSY Vacua

Now, because the PDE (20) characterizing the function f is non-linear, fSUSY may not
be the only global solution. In [32], it was studied how solutions of the aforementioned
PDE can imply dynamical protection from non-perturbative decay. The claim can be
summarized into the following theorem [33].

Theorem 1. If a scalar potential V(φi) in a given EFT can be written as

V = −3 f 2 + 2Kij∂i f ∂j f , (22)

for a suitable globally defined function f of the scalars such that

• (i) ∂i f |φ0 = 0 ,
• (ii) V(φ) ≥ −3 f (φ)2, ∀ φ ∈ Mscalar,

then other points in the scalar manifoldMscalar have higher energy than φ0 itself, whence φ0 is
stable against non-perturbative decay within the given EFT.

As remarked earlier, due to the non-linearity of the defining PDE, multiple global f s
might exist. Moreover, since any critical point would represent a singular initial condition,
multiple solutions are possible even at a local level. By following the analysis in [23], one
may construct all of the local solutions of (20) by perturbatively expanding around each of
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the critical points of the scalar potential. This way, we may look for explicit solutions of
the form5

f =
∞

∑
k=0

f (k)(φ0)
(φ− φ0)

k

k!
, (23)

where the numerical coefficients f (k)(φ0) of the above expansion are in fact rank k tensors.
After fixing the zeroth- and first-order coefficients to be

f (0) =

√
−V(φ0)

3
, and f (1) = 0, (24)

the second-order coefficients satisfy second-degree algebraic equations admitting 22 = 4
different branches of solutions. After fixing this discrete choice at second order, the whole
tower of higher-order coefficients will be completely and uniquely determined by just
solving degree-one algebraic equations.

As required by the above argument, the particular choice of local f having a global
extremum at a given φ0 is relevant for discussing positive energy theorems and the non-
perturbative stability of the related vacuum. Different choices of local branches turn out to
define flat DW solutions interpolating between different vacua. The correct discrete choice
for the SUSY extremum labeled by “2” proving the positive energy theorem turns out be6

f (2)(φ2) =

 − 7 22/3
4√3 55/6`

− 56
5 4√3 55/6`

− 56
5 4√3 55/6`

2912 3√2
75 4√3 55/6`

, (25)

the above values exactly matching the entries of the Hessian matrix of fSUSY, evaluated
at φ2. For the SO(7) and the G2-invariant non-SUSY critical points, these are respectively
given by

f (2)(φ1) =

 7(3+
√

33)
8` 0

0
7(15+

√
105)

8 52/3`

, f (2)(φ3) =

 7(3+
√

33)
3√2 33/457/12`

0

0
28 3√2(3+

√
33)

3 33/457/12`

. (26)

The perturbative analysis has been carried out up to order 15, where all equations are
solved with impressively great accuracy in the region where all three critical points are
located. We illustrate the results in Figure 2, where the scalar potential is plotted against the
globally bounding functions −3 f 2, for the three different choices of solutions for f , each of
which satisfies all the hypotheses of the above positive energy theorem.

Further one-dimensional sections of the full plot are shown in Figures 3 and 4, where
pairs of critical points can be studied together, and besides the existence of globally bound-
ing functions for each of the critical points, we may find evidence for the existence of
interpolating DW solutions.
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Figure 2. The profile of the scalar potential of G2-invariant ISO(7) gauged supergravity (orange
surface), against the three globally bounding functions −3 f 2, obtained by solving the PDE (20)
through a perturbative expansion around each critical point. The plot is drawn in ` = 1 units.
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Figure 3. The profile of the scalar potential restricted to the straight line connecting vacua “1” and “2”
(blue curve). Besides the previously determined globally bounding functions (in yellow and green),
we also plot −3 f 2

DW12
(orange curve), having both critical points as local extrema, and thus defining

the interpolating flow (zoomed on the right). The plots are both drawn in ` = 1 units.
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Figure 4. The profile of the scalar potential restricted to the straight line connecting vacua “1” and “3”
(blue curve). Besides the previously determined globally bounding functions (in orange and green),
we also plot −3 f 2

DW13
(yellow curve), having both critical points as local extrema, and thus defining

the interpolating flow (zoomed on the right). The plots are both drawn in ` = 1 units.
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Interpolating Flat DW Solutions

As far as interpolating DWs are concerned, there turn out to exist solutions connecting
the SO(7) vacuum with both G2-preserving ones, while the only way of connecting these
last two together seems to be the one going through the SO(7) saddle. The corrected
discrete choices for the branches of second derivatives to find the DWs are

f (2)(φ2) =

 7 4√3(4
√

6−19)
5 105/6`

− 14
√

2
5 33/455/6`

− 14
√

2
5 33/455/6`

56 3√2(8
√

3−13
√

2)
25 33/455/6`

, f (2)(φ3) =

 − 7(
√

33−3)
3√2 33/457/12`

0

0 − 28 3√2(
√

33−3)
3 33/457/12`

,

respectively, for the DW connecting “1” and “2” and the one connecting “1” and “3”. The
corresponding non-supersymmetric extremal flows were found by first determining the
corresponding f ’s up to order 15 in perturbation theory, and subsequently by numerically
integrating the first-order HJ flow Equation (18), with initial conditions obtained by linearly
perturbing the SO(7) vevs at large radial distance. The corresponding scalar radial profiles
are plotted in Figures 5 and 6.
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Figure 5. The profiles of ϕ(r) (left) and χ(r) (right), plotted against r
` . The scalar vevs asymptote to

the ones in the SUSY-G2 vacuum as r → −∞, while they approach those in the non-SUSY SO(7) as
r → +∞.
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Figure 6. The profiles of ϕ(r) (left) and χ(r) (right), plotted against r
` . The scalar vevs asymptote to

the ones in the non-SUSY-G2 vacuum as r → −∞, while they approach those in the non-SUSY SO(7)
as r → +∞.

It may be worth mentioning that such profiles need not be monotic. What has to satisfy
monotonicity is the function f when projected along the flow, and indeed, in both situations,
this turns out to be the case.

6. Curved DW Geometries: A Non-Separable HJ Treatment

Let us now conclude by making some comments concerning the case of a curved
DW. While the study of flat flows may be (besides being easier) useful in order to exclude
non-perturbative decay, when looking for explicit bubble solutions, it is dS curved DWs
what we should look for. Indeed, with a suitable choice of boundary conditions, when the
3D slices of our 4D geometry are positively curved, they may describe expanding bubbles
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and non-perturbative instabilities of different sorts, as highlighted in Section 3. The relevant
4D ansatz now becomes

ds2
4 = e2AL2ds2

dS3
+ e2Bdr2, (27)

where we explicitly pulled out the dS radius L in such a way that the exponential warp
factors appearing in the above metric are dimensionless.

The whole Hamiltonian formulation goes through almost identically to the previous
flat case studied in Section 4, and the resulting Hamiltonian precisely coincides with the
one in (17), except that the effective potential now has an extra term induced by the dS
curvature, namely7

V(curved)
eff = V(flat)

eff − 3
L2 eA. (28)

It may be worth commenting that, even though it seems a very marginal complication, it is
in fact rather a drastic one. The reason for this is that adding such a potential term spoils the
factorized structure of the A dependence, which allowed us to decouple A from the system,
when studying the flat case. Thus, we will now have to face a genuine three-field situation.

We propose here an appropriate generalization of the perturbative procedure intro-
duced in [23] and applied here in Section 4, which in principle allows one to determine
F(A, φi) at arbitrarily high orders. Due to the non-separability of our effective potential,
we have to cast a more general ansatz for F:

F =
∞

∑
k=0

F(k)(A)
(φ− φ0)

k

k!
, (29)

where the coefficients of our perturbative expansion are now promoted to functions of A.
The HJ constraint (19) specified for the ansatz (29) will now impose a set of ODEs (each

for any perturbative order) for the functions F(k)(A) rather than algebraic conditions, as it
was in the separable case. Nevertheless, the condition F(1)(A) = 0 still makes sure that
the whole perturbative tower remains decoupled. At zeroth-order, one finds:

1
3

e−3A(Ḟ(0))
2
− 3

`2 e3A − 3
L2 eA = 0 , (30)

where the dot denotes differentiation with respect to A, and we set V(φ0) ≡ − 3
`2 . The

above ODE is then easily solved by8

F(0) =
e3A

`

(
1 +

`2

L2 e−2A
)3/2

. (31)

Subsequently, in analogy with the flat case, the only crucial step in the whole algorithm is
determining F(2), as it satisfies a non-linear ODE. Generically, this will admit a continuous
family of solutions depending on the choice of the integration constants cij (each for every
independent component of F(2)). Once that one is fixed, higher perturbative orders will
give rise to linear ODEs fixing each F(k)(A) in terms of the previously determined ones.

For our specific case,

F(2) =

(
F(2)

ϕϕ F(2)
ϕχ

F(2)
χϕ F(2)

χχ

)
, (32)

whose entries are fixed by the following system of first-order ODEs:
2
3 Ḟ(0) Ḟ(2)

ϕϕ − 8
7 (F(2)

ϕϕ )
2
− 8

7 e−2ϕ0(F(2)
ϕχ )

2
+ e6AVϕϕ(ϕ0, χ0) = 0,

2
3 Ḟ(0) Ḟ(2)

χχ − 8
7 (F(2)

ϕχ )
2
− 8

7 e−2ϕ0(F(2)
χχ )

2
+ e6AVχχ(ϕ0, χ0) = 0,

2
3 Ḟ(0) Ḟ(2)

ϕχ − 8
7 F(2)

ϕϕ F(2)
ϕχ − 8

7 e−2ϕ0 F(2)
χϕ F(2)

χχ + e6AVχϕ(ϕ0, χ0) = 0,

(33)
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where Vij(ϕ0, χ0) and ϕ0 are known data concerning the AdS vacuum and the function
F(0)(A) was determined in (31) by solving the HJ constraint at zeroth order. After choosing
a particular solution to the above first-order system, all higher-order coefficients F(k)(A)

for k > 2 will be fixed by solving linear ODEs. This concrete procedure offers a viable
numerical method to integrate the HJ PDE defining F, even in the case of curved flows, i.e.,
where the separable ansatz no longer works.

7. Concluding Remarks

In this paper, we discussed positive energy theorems for non-SUSY AdS extrema
within the G2-invariant sector of maximal supergravity with the ISO(7) gauge group.
Given the massive IIA origin of the theory, this analysis is directly relevant to the issue
of the non-perturbative stability of non-SUSY AdS. Our results show the existence of a
dynamical protection mechanism against non-perturbative decay of the non-SUSY vacua,
enforced by the validity of a positive energy theorem. We were able to prove this by using
HJ techniques.

However, it is worth remarking that this result by no means guarantees full non-
perturbative stability of the non-SUSY vacua at hand. If nothing else, this is because the
N = 1 model we adopted is not a good effective description in a physical sense, since it does
not capture the lightest modes. Of course, it is still a valid description in a mathematical
sense, meaning that it describes a consistent set of 10D deformations of the metric and the
rest of the IIA fields. In this context then, a fair conclusion to our analysis is the statement
that possible non-perturbative instabilities of the non-SUSY G2 vacuum have to be searched
for within a different setup, because the positive energy theorem proven in this paper
prevents the existence of any expanding bubble solutions within this truncation.

Thinking along the lines of [8], we actually know that, if an instability exists, it will
be of a brane nucleation type, due to the presence of a Freund–Rubin flux F(6) that fills
internal space completely. The source for this flux singularity has to be a D2 brane. The
corresponding metric and dilaton would then be of the form

ds2
10 = H−1/2

D2 ds2
3 + H1/2

D2

(
dr2 + r2 ds2

S6

)
,

eΦ = H1/4
D2 ,

(34)

where HD2 is a function of r. Now, for a fully localized D2 within the transverse R7,
this function must be given by (1 + QD2

r5 ), which behaves as r−5 close to the source. It
is straightforward to check that this behavior respects the truncation ansatz in (A1). In
particular, a near-horizon D2 solution is given by the following 4D scalar configuration:

eϕ ∼ r−1/2, χ = const. (35)

As a consequence, any brane nucleation process involving a fully localized D2 should
be captured by our minimal supergravity model. Because we have just proven that such
instabilities cannot occur in our model, we have to conclude that an instability of this
vacuum must necessarily involve non-spherically symmetric D2 charge distributions.

Indeed, in [13], the non-perturbative instability that the non-SUSY vacua are found to
suffer from corresponds to D2 brane charge, which is smeared over S6. Note that this requires
scaling the internal components of the metric along S6 and the 10D dilaton independently,
and this goes manifestly beyond the truncation ansatz in (A1).
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Appendix A. Consistent Truncations of Massive Type IIA Supergravity on S6

In this Appendix, we include some details concerning the 10D origin of G2-invariant
ISO(7) gauged supergravity in four dimensions. Massive type IIA supergravity admits
a consistent truncation on the six-sphere, for which the full non-linear KK ansatz was
determined in [19]. When restricting to the G2-invariant sector thereof, this reduction
precisely turns out to yield the minimal supergravity theory discussed in Section 2. Its field
content is simply given by the 4D metric gµν and the complex scalar field S = χ + ie−ϕ.

The full reduction Ansatz for the 10D fields in the string frame reads

ds2
10 = e2ϕ ds2

4 + g−2eϕ
(

1 + e2ϕχ2
)−1

ds2
S6 ,

eΦ = e5ϕ/2
(

1 + e2ϕχ2
)−3/2

,

B(2) = g−2e2ϕ χ
(

1 + e2ϕχ2
)−1

J ,

C(1) = 0 ,

C(3) = C̃(3) + g−3 χ ΩI ,

(A1)

where ds2
4 denotes the 4D metric, ds2

S6 the unit six-sphere metric, while J and Ω define the
nearly Kähler (NK) structure of S6, and C̃(3) represents a 4D three-form field satisfying

dC̃(3)
!
=

(
g eϕ

(
1 + e2ϕχ2

)2(
5− 7e2ϕχ2

)
+ m e7ϕχ3

)
vol4. (A2)

The above expressions also contain the constant g, which appears in the effective scalar
potential (12) together with Romans’ mass m and is identified with the gauge coupling.

The consistency of the truncation automatically guarantees the equivalence between
the 4D equations of motion obtained from the reduced Lagrangian (9) of ISO(7) gauged
supergravity and the 10D equations of motion of massive IIA supergravity. In particular, by
virtue of the uplift formulae given in (A1), the three-vacuum solution collected in Table 1
may be directly interpreted as AdS4 × S6 solutions of massive IIA supergravity. More
specifically, the SO(7)-preserving vacuum is simply of a Freund–Rubin type, i.e., where the
only non-vanishing flux (besides of course F(0) = m) is the (magnetic) six-form flux filling
internal space completely. In the G2-invariant vacua, on the other hand, the S6 retains its
round metric, while non-trivial lower-form internal fluxes such as F(2), F(4), and H(3) are
turned on by exploiting the fundamental two- and three-forms defined by its NK structure.

Notes
1 From now on, we set κ4 = 1.
2 From now on, we will fix g = m.
3 It is worth mentioning that, to obtain this reduced 1D Lagrangian, an integration by parts is required in order to eliminate the

term with the second derivative A′′.
4 We may set B = 0 here, since it is a completely irrelevant overall factor. However, as pointed out earlier, the first-order flow

equations are sensitive to the choice of B and may simplify significantly in particularly clever gauge choices.
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5 In this general formalism, we collectively denote the scalar fields by φ ≡ (ϕ, χ). As a consequence, the kth derivative of a scalar
function f is represented by a rank k tensor field.

6 We have fixed m = 2
57/12 `

−1 in such a way that the value of the cc in the SO(7) vacuum equals − 3
`2 .

7 We still stick to the B = 0 gauge for the sake of simplicity here.
8 Note that it correctly reproduces the flat result F(0) = e3A

` in the limit where L� `.
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