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Abstract: A challenging problem from a technological viewpoint is to send a spacecraft at a distance
of about 600 au from the Sun, comparable with that of the Sun’s gravitational focus (that is, the
general relativistic focusing of light rays, whose minimum solar distance is obtained when the light
rays are assumed to graze the Sun’s surface), and reach it in a time interval on the order of a human
working lifetime. A suitably oriented telescope at that distance would be theoretically able to observe
exoplanets tens of light years far away and possibly to discover new life forms. The transfer trajectory
of this mission is rather complex and requires a close selection of a suitable propulsion system, which
must be able to provide the probe with the necessary energy to cruise at a velocity greater than
10 au/year. An effective outline of the these concepts is given by the Hesperides mission, originally
proposed by Matloff in 2014. An interesting aspect of this mission proposal is the combination of
a nuclear electric propulsion system and a classical solar sail that are jointly exploited to reach the
necessary solar system escape velocity. However, the trajectory analysis reported by Matloff is very
simplified and is essentially concentrated on a rough estimate of the time required by the spacecraft
to reach a distance of 600 au. Starting from the Hesperides baseline mission proposal, including the
vehicle mass distribution, the aim of this work is to give a detailed mission analysis in an optimal
framework. In particular, the spacecraft minimum time trajectory is calculated with indirect methods
and a parametric analysis is made to highlight the impact of the main design parameters on the total
flight time. The simulations show a substantial reduction of the mission time when compared with
the original study.

Keywords: Hesperides mission; sun’s gravitational focus; solar sail; hybrid propulsion system; solar
system escape

1. Introduction

Reaching the boundaries and escaping from the solar system within a time interval on
the order of the human working lifetime is currently one of the most complex space mission
scenarios from a trajectory analysis viewpoint [1]. Such a fascinating and advanced mission
would be of great scientific interest to obtain information and solve fundamental physical
questions about the formation mechanism of the heliospheric boundary, the nature of the
nearby interstellar medium [2], the structure and dynamics of the heliosphere, and the
distribution of matter in this part of interplanetary space [3]. Many, if not all, of these issues
can only be solved through in situ measurements such as plasma density, ionization state,
dust composition and magnetic field strength [4]. However, missions towards (and even
beyond) the heliopause region represent a technological challenge [5], as they require the
use of advanced propulsion systems [6] to guarantee a cruise velocity of at least 10 au/year
if the spacecraft has to be able to reach the desired (very long) distance, greater than 100 au,
in a reasonable time interval.

An even more futuristic and hard to manage project from a technological side is the
dream to arrive at the Sun’s gravitational focus (SGF). According to general relativity theory,
a massive object such as the Sun is able to deflect the light beams passing around it and
to converge them at a focus. This effect implies that the Sun might be used as a sort of
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gravitational lens. However, differently from what happens in classical optics where the
lens focus coincides with a single point, the gravitational effect causes the light beams
passing at different distances from the Sun’s surface to converge at different points aligned
along a straight line, which theoretically extends from about 550 au to the interstellar space
(infinity), see Figure 1.

Sun’s gravitational lens (550 AU)

Figure 1. Sun’s gravitational lens position. Background image courtesy of Johns Hopkins APL.

A light sensor placed at the focal region could therefore obtain images of exoplanets,
some tens of light years far away, with a surface resolution of about 10 km for an Earth-like
planet [7]. Note, however, that such a scenario requires staring almost at the Sun, with evi-
dent limitations for practical astronomy. This concept, first proposed by Eshleman [8] in
1979, has much attracted the attention of the scientific community, with many proposals
for possible (and exotic) future missions [9–11]. A number of advances that could be
obtained from a robotic mission to the SGF are in depth discussed by Maccone [12]. Such
a fascinating mission concept may also be thought of as a necessary first step toward a
future interstellar mission [13,14]. Even though a number of technical difficulties exist in
translating the original idea into feasible achievements, including severe problems related
to the telescope pointing requirements, the signal to noise ratio due to the solar corona and
the focal blur [15], new studies on advanced missions to SGF continue to appear [16,17].

A possible way to address these complex problems is to decrease the mass of the
scientific probe to be launched by distributing the whole payload among a fleet of smaller
spacecraft, which could be deployed along an Einstein ring as illustrated in Figure 2.
Among other advantages, a vehicle mass reduction implies higher spacecraft accelerations
(assuming the thrust magnitude is unchanged) as well as increased escape velocities.

The enormous distances to reach during a (very long) space journey to the SGF make
the transfer trajectory a very challenging task to plan, and so is the selection of a suitable
propulsion system, capable of providing the required demanding ∆V and, more in general,
the design of a space vehicle that must effectively operate along flight times of some tens
of years [17]. An effective outline of the above ideas is offered by the Hesperides mission
proposal [18], originally suggested by Matloff in 2014 as an evolution of a previous Helios
and Prometheus concept, which dates back to 2007 [19]. The main aim of Hesperides
mission is to reach a distance of about 600 au from the Sun, comparable with that of the SGF,
within approximately five decades. An interesting aspect of the Hesperides mission is the
combination of a nuclear electric propulsion system and a solar sail that are jointly exploited
to reach the required solar system escape velocity. However the trajectory analysis reported
in [18] is very simplified and is essentially concentrated on obtaining a rough estimate of
the main design parameters necessary to meet the mission requirements, that is, mission
times and final distances.
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Figure 2. Clusters of small satellites in a string-of-pearls arrangement towards the Sun’s gravitational
lens. Courtesy of and reprinted with permission of The Aerospace Corporation.

The aim of this paper is to revisit the Hesperides mission concept and to analyze it in
an optimal and parametric way, by obtaining a more accurate estimate of both the (optimal)
transfer trajectory and the flight times. It will be shown that a substantial performance
improvement with respect to the original study [18] is a feasible result.

2. Spacecraft Characteristics and Baseline Mission Description

For illustrative purposes, the spacecraft arrangement and the baseline mission concept
are taken from the original Hesperides proposal [18]. In particular, the solar sail is approxi-
mated as a thin disc with a radius of 146 m and a mass-to-area ratio equal to 0.003 kg/m2.
The electric propulsion system uses xenon propellant exhausted at a constant mass flow
rate and its specific impulse is Isp = 4000 s. An estimate of the masses of the main spacecraft
subsystems is reported in Table 1 and is illustrated in the pie chart of Figure 3.

Table 1. Hesperides spacecraft subsystems mass [18].

Subsystem Mass (kg)

Solar sail 201
Ion thruster 10

Radioisotope electric generator 40
Propellant 100
Payload 99

Total 450

solar sail [201 kg]

ion thruster [10 kg]
radioisotope eg [40 kg]

propellant [100 kg]

payload [99 kg]

Figure 3. Mass breakdown model for Hesperides spacecraft [18].

The baseline mission [18] may be divided into the following four main phases:
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1. Pre-perihelion phase. The spacecraft is launched from Earth toward an heliocentric
orbit with perihelion distance rP = 0.2 au and aphelion distance rA = 2.5 au. The re-
quired initial hyperbolic excess velocity is provided by an upper stage of the launcher,
and the spacecraft reaches the target orbit with a flight time of about 2 years without
using the solar sail or the electric thruster. In particular, the spacecraft mass in this
phase is constant and equal to 450 kg.

2. Solar sail acceleration. When the spacecraft is at the perihelion of the heliocentric
orbit (end of phase 1) the solar sail is unfurled with a Sun-facing attitude [20–23],
that is, its nominal plane is oriented normal to the Sun. In this phase, the spacecraft
is continuously accelerated by the solar sail induced thrust until it reaches a solar
distance of 5 au, when the sail propulsive acceleration becomes ineffective and is
therefore jettisoned. During this whole phase, the spacecraft mass remains equal to
450 kg. The flight time of this phase is about 1 year.

3. Radioisotope-electric propulsion. This phase starts when the solar sail is discarded,
so that the spacecraft mass suddenly reduces to 249 kg. The radioisotope-electric
thruster is switched on and is continuously operated until the whole available xenon
propellant is exhausted at a constant mass flow rate τ = 3.17× 10−7 kg/s. Since
the total propellant mass is 100 kg, the phase (time) length is 10 years. During this
phase the induced thrust is nearly along the radial direction, so that the spacecraft
(heliocentric) hyperbolic excess velocity increases from about 35.5 km/s to 56 km/s,
at a distance of about 100 au away from the Sun. At the end of this phase, the spacecraft
mass is reduced to 149 kg.

4. Cruise to 600 au. The last (baseline) trajectory part is a coasting phase with a con-
stant velocity (with respect the Sun), equal to that reached at the end of phase 3.
The spacecraft continues its (Keplerian) flight for about 42.5 years until it reaches a
target distance of 600 au from the Sun. The spacecraft mass in this phase is constant
and equal to 149 kg.

Accordingly, the total mission length is the sum of the flight times required to complete
the previous four phases, that is, 2 + 1 + 10 + 42.5 = 55.5 years. Figure 4 summarizes the
spacecraft mass variation during the four phases and the mission flight times.

0 10 20 30 40 50 60
0

100

200

300

400

time [years]

m
as

s
[k

g]

launch

arrival (600 AU)

cruise phase (100 AU - 600 AU)

electric propulsion phase (5 AU - 100 AU)

solar sail drop (5 AU)

solar sail acceleration phase (0.2 AU - 5 AU)

pre-perihelion phase (1 AU - 0.2 AU)

Figure 4. Graphical sketch and spacecraft mass variation of Hesperides baseline mission [18].

3. Mission Optimization

The baseline mission is now reassessed within an optimal framework with the aim of
investigating to what extent it may be improved. To that end, according to [18], a simplified
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two-dimensional model is used to describe the heliocentric spacecraft dynamics. More
precisely, introduce a (heliocentric) polar reference frame T (O; r, θ), where O is the Sun’s
center of mass, with orthogonal radial and transverse unit vectors îr and ît, respectively;
see Figure 5. In this reference frame, the polar angle θ is measured counterclockwise from
the Sun-spacecraft line at time t0 , 0.

ˆ

t
i

p
a

start

�

r

spacecraft

to Sun

parking orbit

forbidden
region (0.2 au)

ˆ

r
i

�

Figure 5. Reference frame and unit vectors.

The spacecraft equations of motion in T may be written as

ṙ = u (1)

θ̇ =
v
r

(2)

u̇ = −µ�
r2 +

v2

r
+ ar (3)

v̇ = −u v
r

+ at (4)

where r is the distance from the Sun, µ� is the Sun’s gravitational parameter, u and v are the
radial and transverse component of the spacecraft velocity, while ar , ap · îr and at , ap · ît
are the radial and transverse component of the spacecraft propulsive acceleration vector
ap.

When the spacecraft is propelled by the solar sail, the propulsive acceleration compo-
nents are

ar = ac

( r⊕
r

)2
cos3 α (5)

at = ac

( r⊕
r

)2
cos2 α sin α (6)

where ac is the spacecraft characteristic acceleration, that is, the acceleration magnitude
induced by the solar sail when its nominal plane is perpendicular to the Sun-spacecraft
line at a distance r = r⊕ , 1 au, and α ∈ [−90, 90]deg is the sail pitch angle measured
counterclockwise from the Sun-spacecraft line; see Figure 5. The solar sail is here described
through an augmented ideal force model [24,25] without degradation [26–28] or wrin-
kles [29]. In this context, the sail is assumed to maintain a flat surface, and the direction of
the propulsive acceleration vector is normal to the sail nominal plane in the direction oppo-
site to the Sun. The non-complete reflectivity of the sail film [30] is modeled by introducing
a sort of sail efficiency factor η < 1, which quantifies the amount of reflected rays when
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compared to an ideal (specular) reflection case. Accordingly, the spacecraft characteristic
acceleration may be written as

ac = 2 η
P⊕ A

m
(7)

where P⊕ = 4.563× 10−6 Pa is the solar radiation pressure at 1 au, A = 66,966 m2 is the sail
area and m is the spacecraft mass. In the simulations it has been assumed [18] that η = 0.9.
With the aid of Equation (7) and using the data of Table 1, the spacecraft characteristic
acceleration is therefore ac = 1.22 mm/s2.

When the spacecraft is propelled by the electric thruster, the propulsive acceleration
vector components are instead written as

ar =
τ g0 Isp

m
cos αe (8)

at =
τ g0 Isp

m
sin αe (9)

where g0 = 9.81 m/s2 is the standard gravitational acceleration, and αe ∈ [0, 360)deg is the
classical thrust angle measured counterclockwise from the radial direction. The spacecraft
mass variation with time is therefore

ṁ = −τ (10)

For comparative purposes, the mission has been divided into the same phases as
the baseline proposal, and each phase has been individually optimized using an indirect
approach. Details about the optimization method may be found in previous works by the
authors [31–33]. In particular, the spacecraft equations of motion have been numerically
integrated using a variable order Adams–Bashforth–Moulton solver scheme, with absolute
and relative errors of 10−12, while the associated two-point boundary value problem has
been solved (with an absolute error less than 10−8) through gradient-based methods.

The main difference with respect to [18] is that the spacecraft is now assumed to leave
the Earth’s sphere of influence with zero hyperbolic excess velocity relative to the planet
and the required thrust in the pre-perihelion phase is provided by the solar sail, which is
therefore unfurled at the beginning of phase 1.

3.1. Phase 1

This phase has been analyzed under the assumption that the spacecraft is propelled
by the solar sail only. Three possible cases have been considered, which vary according to
the different strategy used to reach a desired perihelion distance rP = 0.2 au.

3.1.1. Case a

The first strategy is to minimize the transfer time t1 necessary for the spacecraft to reach
the heliocentric desired orbit (that is, the elliptic orbit with rP = 0.2 au and rA = 2.5 au).
In this case, the arrival point along the desired orbit is left free and is an output of the
optimization process. The time required to complete this phase is t1a = t1 + t1P, where t1P
is the time interval to coast from the insertion point, where the spacecraft enters into the
desired orbit, to the orbit perihelion.

Figure 6 shows the transfer trajectory, where the black square coincides with the arrival,
that is, the insertion point along the desired heliocentric orbit. The spacecraft true anomaly
at insertion point is roughly ν = 151 deg. The minimum time to reach the desired orbit is
about 336 days and the characteristics of the spacecraft osculating orbit during the transfer
trajectory are illustrated in Figure 7 along with the optimal sail steering law α = α(t).
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Figure 6. Minimum-time transfer trajectory to reach the heliocentric desired orbit (case a).
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Figure 7. Osculating parameters of the transfer orbit and optimal (sail) steering law (case a).

Since the insertion point along the desired orbit is placed forward the perihelion,
the spacecraft needs a long time, that is, about 498 days, to reach the perihelion with a coasting
flight. The total time necessary to complete this phase is roughly t1a = 834 days ∼= 2.28 years.

3.1.2. Case b

The second strategy is to look for the transfer trajectory to the desired orbit with the
constraint that the arrival point coincides just with the (desired) orbit perihelion. In this
case, the minimum time to reach the perihelion is t1b ' 461 days, which is, of course, greater
than t1 of the previous case. Note, however, that t1b < t1a because the final point coincides
by assumption with the perihelion and no additional coasting phase is required. Figure 8
shows the transfer trajectory, while the characteristics of the spacecraft osculating orbit
along the transfer trajectory and the optimal sail steering law are illustrated in Figure 9.
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Figure 8. Minimum-time transfer trajectory to the perigee of the desired orbit (case b).
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Figure 9. Osculating parameters of the transfer orbit and optimal steering law (case b).

3.1.3. Case c

The third strategy is to minimize the flight time to reach a minimum distance from the
Sun of rP = 0.2 au with zero radial velocity, while the transverse velocity is left free. In this
case, the minimum transfer time is t1c ' 276 days, with a remarkable time saving (about
184 days) with respect to t1b. However, the final osculating orbit (in red color in Figure 10)
has an eccentricity equal to 0.22 only. Therefore, the transverse velocity at the arrival point,
equal to 73.75 km/s, is substantially smaller than that of cases a and b, where the perihelion
velocity is about 91 km/s. Since a high transversal velocity is a fundamental requirement
for minimizing the flight time in the succeeding phases, this case actually does not offer
an useful option for the whole mission viewpoint. For the sake of completeness Figure 11
shows the characteristics of the spacecraft osculating orbit along the transfer trajectory,
the radial and circumferential velocity components and the optimal sail steering law. Note,
in particular, that the velocity at the end of the phase is purely circumferential, since the
radial component is zero.
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Figure 10. Minimum-time transfer trajectory to reach a heliocentric distance of 0.2 au with zero radial
velocity (case c).
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Figure 11. Osculating parameters of the transfer orbit, spacecraft velocity components and optimal
steering law to reach a distance of 0.2 au with zero radial velocity (case c).
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3.2. Phase 2

This phase starts when the spacecraft is at a distance equal to 0.2 au from the Sun and,
according to the previous analysis, we consider the case 1b, with a starting velocity equal
to 90.63 km/s (fully along the transverse direction). For comparative purposes with the
baseline mission, this phase has been studied by minimizing the time required to reach a
distance of 5 au with the same hyperbolic excess velocity as that reported in [18], that is,
V∞ = 35.5 km/s. The osculating parameters and the spacecraft velocity components are
shown in Figure 12 along with the sail optimal steering law. The flight time in this phase is
t2 = 188 days. Note that the final absolute velocity is nearly radial, that is, the transverse
component is v = 3.54 km/s, while the radial component is about 40 km/s. The total flight
time to reach a distance of 5 au from the Sun is therefore t1b + t2 = 648.84 days ∼= 1.78 years.

0 50 100 150 200
0
1
2
3
4
5

0 50 100 150 200
0

20

40

60

0 50 100 150 200
0

20
40
60
80

100

0 50 100 150 200
−90
−60
−30

0
30
60
90

Figure 12. Osculating parameters of the transfer orbit, spacecraft velocity components and optimal
steering law to reach a distance of 5 au with V∞ = 35.5 km/s.

3.3. Single Optimization of Phases 1 and 2

The previous two phases may be also analyzed within a single optimization problem,
by looking for the minimum time trajectory that transfers the spacecraft from the Earth’s
(circular) orbit to a heliocentric distance of 5 au, where the vehicle arrives with a hyperbolic
excess velocity V∞ = 35.5 km/s. In this case, the spacecraft initially tends to approach the
Sun to exploit a solar photonic assist maneuver that dramatically increases its available
thrust [34–37]. It is therefore necessary to add a constraint on the minimum distance
at which the spacecraft pass by the Sun. Details about the practical implementation of
such constraint within an optimization problem may be found in [38]. For compatibility
purposes with the previous analysis, such a minimum distance is set to 0.2 au, which is
equal to the perigee distance of the heliocentric target orbit described in phase 1.

Figure 13 shows that the resulting trajectory is actually tangent to a circle with radius
equal to 0.2 au (the forbidden region). The spacecraft reaches the minimum distance from
the Sun after about 370 days when the transverse velocity takes its maximum value and
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then quickly decreases, as is shown in Figure 14. Note that in the post-perihelion trajectory
the sail is nearly normal to the Sun-spacecraft direction (that is, α ∼= 0) and the spacecraft
velocity is almost radial. The total flight time to complete the whole phase is 563.5 days,
which is smaller than the sum of the times necessary to complete phases 1 and 2 alone
(the time saving is about 85 days). Note that such time saving may be used to increase the
hyperbolic excess velocity when the spacecraft reaches the distance of 5 au. For example,
by solving an optimization problem that maximizes V∞ for a fixed flight time, it is possible
to look for solutions that provide important improvements over the whole mission time.
This parametric analysis will be discussed later on.
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Figure 13. Minimum-time transfer trajectory to reach a heliocentric distance of 5 au with a hyperbolic
excess velocity V∞ = 35.5 km/s.
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Figure 14. Heliocentric distance, velocity components and optimal steering law to reach a distance of
5 au with V∞ = 35.5 km/s.
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3.4. Phase 3

At the end of phase 2 the solar sail becomes ineffective and is therefore jettisoned.
The spacecraft is accelerated by the radioisotope-electric thruster that continuously operates
for a time length of 10 years until the whole xenon propellant is exhausted at a constant
mass flow rate. In this part of the mission, the optimization consists in maximizing the
hyperbolic excess speed at the phase end. Figure 15 shows the main characteristics of the
spacecraft trajectory along with the optimal steering law. The spacecraft eventually reaches
a solar distance of 101.38 au with a final hyperbolic excess velocity V∞(t3) = 56 km/s,
equal to that of the baseline mission [18].
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Figure 15. Heliocentric distance, velocity components and optimal steering law in phase 3.

3.5. Phase 4

The last trajectory part is a coasting phase with constant velocity in which the space-
craft continues its flight until it reaches a distance of 600 au from the Sun. The spacecraft
mass in this phase remains constant and equal to 149 kg. Since the initial hyperbolic excess
velocity is the same as that reported in the baseline mission, the time interval necessary to
complete this phase is also the same.

The total mission time, that is, the sum of the times necessary to complete the four
phases, is equal to 53.78 years. This time interval should be compared with that estimated in
the baseline mission, that is 55 years. Note that the difference between the optimal time and
the flight time in the baseline mission is only due to the time saving obtained in phases 1
and 2. This is a consequence of the assumption according to which the hyperbolic excess
velocity at the end of phase 2 is the same as that of the baseline mission. However, the total
mission time may be substantially reduced by increasing the value of the hyperbolic excess
velocity, as will be shown in the parametric analysis of the next section.
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4. Parametric Analysis

Since the longer part of the travel involves the electric-based propulsion phase and
the final coasting phase, it is reasonable to look for a different strategy aimed at reducing
the flight times in these two mission stages. This is possible by maximizing V∞(t2), that is,
the hyperbolic excess velocity at the end of phase 2. The results are shown in Figure 16,
where each point in the graph is the solution of an optimal problem in which the final time
t2 is fixed.

35 36 37 38 39 40 41 42 43 44 45 46 47
550

600

650

700

750

800

850

900

950

Figure 16. Flight time necessary to complete phases 1 and 2 as a function of the hyperbolic excess
velocity at the end of phase 2.

Note that the results start from V∞(t2) = 35.5 km/s (when t2 = 563.5 days), which
corresponds to the optimization point of phases 1 and 2. It is clear from the figure that the
hyperbolic excess speed may be substantially increased by extending the time interval that
exploits the solar photonic assist maneuver. Figure 17 shows how the hyperbolic excess
velocity at the end of phase 3 linearly increases with V∞(t2). The effect of a change in the
hyperbolic speed is better appreciated in Figure 18, which reports the total mission time as
a function of V∞(t2).
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Figure 17. Hyperbolic excess velocity at the end of phase 3 as a function of that at the end of phase 2.
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Figure 18. Total mission time as a function of the hyperbolic excess velocity at the end of phase 2.

The minimum value of the hyperbolic excess velocity in the figure coincides with
the one chosen in the baseline mission. When V∞(t2) is increased up to 47 km/s the total
mission time is 46 years, that is, about 7.8 years smaller than that estimated with the baseline
mission. Further performance improvements (that is, additional decrease of total mission
times) are of course possible by additionally increasing V∞(t2) with a prolonged action
of the solar sail within phase two. The corresponding trajectories are characterized by
multiple revolutions around the Sun to gain as much energy as possible before reaching
the required distance of 5 au.

5. Conclusions

In this paper, we have analyzed the times necessary to reach the Sun’s gravitational
focus with a baseline reference mission taken from Hesperides proposal. To that end, the
problem has been studied in an optimal framework, by dividing the mission into a phase in
which the spacecraft is propelled by a solar sail, one in which the spacecraft is propelled by
an electric thruster, and a final Keplerian arc. The optimal use of a high-performance solar
sail in the first phase of the trajectory allows the spacecraft to obtain a hyperbolic excess
velocity of 47 km/s in about 2.6 years. The spacecraft is then further accelerated by means
of a radioisotope-electric thruster that continuously operates for a time length of 10 years
and the required distance of 600 au is reached in about 46 years.

Further performance improvements (in terms of total flight time) are of course possible
by additionally increasing the hyperbolic excess velocity using a prolonged phase of solar
photonic assist maneuver. The flight times estimated in this study suggest that the Sun’s
gravitational focus may be reached in a time interval well below 50 years with a near future
technology. The natural extension of this paper is to analyze the performance of such a
hybrid propulsion system in a more classical (robotic) mission scenario, in which a deep
space probe reaches the outer region of the Solar System and the heliopause.

Author Contributions: Conceptualization, G.M. and A.Q.; methodology, G.M. and A.Q.; software,
A.Q.; writing—original draft preparation, G.M.; writing—review and editing, G.M. and A.Q. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Universe 2022, 8, 364 15 of 16

References
1. Matloff, G.L. Von Neumann probes: Rationale, propulsion, interstellar transfer timing. Int. J. Astrobiol. 2022, 1–7. [CrossRef]
2. Uchaikin, V.V.; Kozhemyakin, I.I. A Mesofractal Model of Interstellar Cloudiness. Universe 2022, 8, 249. [CrossRef]
3. Kezerashvili, R.Y.; Matloff, G.L.; Long, K.F. Anomalous stellar acceleration: Causes and consequences. JBIS J. Br. Interplanet. Soc.

2021, 74, 269–275.
4. Miteva, R.; Samwel, S.W.; Zabunov, S. Solar Radio Bursts Associated with In Situ Detected Energetic Electrons in Solar Cycles 23

and 24. Universe 2022, 8, 275. [CrossRef]
5. Huo, M.; Mengali, G.; Quarta, A.A. Mission Design for an Interstellar Probe with E-Sail Propulsion System. JBIS J. Br. Interplanet.

Soc. 2015, 68, 128–134.
6. Mengali, G.; Quarta, A.A.; Janhunen, P. Considerations of electric sailcraft trajectory design. JBIS J. Br. Interplanet. Soc. 2008,

61, 326–329.
7. Turyshev, S.; Shao, M.; Alkalai, L.; Freidman, L.; Arora, N.; Weinstein-Weiss, S.; Toth, V. Direct multipixel imaging of an exo-earth

with a solar gravitational lens telescope. JBIS J. Br. Interplanet. Soc. 2018, 71, 361–368.
8. Eshleman, V.R. Gravitational lens of the sun: Its potential for observations and communications over interstellar distances.

Science 1979, 205, 1133–1135. [CrossRef]
9. Heidmann, J.; Maccone, C. ASTROSAIL and SETISAIL: Two extrasolar system missions to the Sun’s gravitational focuses. Acta

Astronaut. 1994, 32, 409–410. [CrossRef]
10. Genta, G.; Vulpetti, G. Some considerations on Sun gravitational lens missions. JBIS J. Br. Interplanet. Soc. 2002, 55, 131–136.
11. Maccone, C. Realistic targets at 1000 AU for interstellar precursor missions. Acta Astronaut. 2010, 67, 526–538. [CrossRef]
12. Maccone, C. Deep Space Flight and Communications Exploiting the Sun as a Gravitational Lens; Springer Praxis Books; Springer:

Berlin/Heidelberg, Germany, 2009. [CrossRef]
13. Friedman, L.; Turyshev, S. First stop on the interstellar journey: The solar Gravity Lens Focus. JBIS J. Br. Interplanet. Soc. 2018,

71, 275–279.
14. Matloff, G.L. The Solar-Electric Sail: Application to Interstellar Migration and Consequences for SETI. Universe 2022, 8, 252.

[CrossRef]
15. Landis, G.A. Mission to the Gravitational Focus of the Sun: A Critical Analysis. In Proceedings of the AIAA SciTech Forum—55th

AIAA Aerospace Sciences Meeting, Grapevine, TX, USA, 9–13 January 2017. [CrossRef]
16. Murzionak, P.; Welch, C.; Matloff, G.L. The oculus project: Gravitational lensing, earth-like exoplanets and solar sailing. JBIS J. Br.

Interplanet. Soc. 2016, 69, 439–449.
17. Turyshev, S.G.; Shao, M.; Toth, V.T.; Friedman, L.D.; Alkalai, L.; Mawet, D.; Shen, J.; Swain, M.R.; Zhou, H.; Helvajian, H.; et al.

Direct Multipixel Imaging and Spectroscopy of an Exoplanet with a Solar Gravity Lens Mission. arXiv 2020, arXiv:2002.11871.
[CrossRef]

18. Matloff, G.L. Hesperides: Solar/nuclear missions to the Sun’s inner gravity focus. Acta Astronaut. 2014, 104, 477–479. [CrossRef]
19. Matloff, G.L.; Johnson, L.; Maccone, C. Helios and prometheus: A solar/nuclear outer-solar system mission. JBIS J. Br. Interplanet.

Soc. 2007, 60, 439–442.
20. Quarta, A.A.; Mengali, G. Analytical Results for Solar Sail Optimal Missions with Modulated Radial Thrust. Celest. Mech. Dyn.

Astron. 2011, 109, 147–166. [CrossRef]
21. Bassetto, M.; Caruso, A.; Quarta, A.A.; Mengali, G. Optimal heliocentric transfers of a Sun-facing heliogyro. Aerosp. Sci. Technol.

2021, 119, 107094. [CrossRef]
22. Bassetto, M.; Quarta, A.A.; Mengali, G.; Cipolla, V. Trajectory Analysis of a Sun-Facing Solar Sail with Optical Degradation.

J. Guid. Control. Dyn. 2020, 43, 1727–1732. [CrossRef]
23. Bassetto, M.; Niccolai, L.; Boni, L.; Mengali, G.; Quarta, A.A.; Circi, C.; Pizzurro, S.; Pizzarelli, M.; Pellegrini, R.C.; Cavallini, E.

Sliding Mode Control for Attitude Maneuvers of Helianthus Solar Sail. Acta Astronaut. 2022, 198, 100–110. [CrossRef]
24. Wright, J.L. Space Sailing; Gordon and Breach Science Publishers: London, UK, 1992; pp. 223–233. ISBN 978-2881248429.
25. McInnes, C.R. Solar Sailing: Technology, Dynamics and Mission Applications; Springer-Praxis Series in Space Science and Technology;

Springer: Berlin, Germany, 1999; Chapter 2, pp. 46–54. [CrossRef]
26. Dachwald, B.; Macdonald, M.; McInnes, C.R.; Mengali, G.; Quarta, A.A. Impact of optical degradation on solar sail mission

performance. J. Spacecr. Rocket. 2007, 44, 740–749. [CrossRef]
27. Dachwald, B.; Mengali, G.; Quarta, A.A.; Macdonald, M. Parametric model and optimal control of solar sails with optical

degradation. J. Guid. Control. Dyn. 2006, 29, 1170–1178. [CrossRef]
28. Niccolai, L.; Quarta, A.A.; Mengali, G. Trajectory Approximation of a Solar Sail with Constant Pitch Angle and Optical

Degradation. IEEE Trans. Aerosp. Electron. Syst. 2022, in press. [CrossRef]
29. Bianchi, C.; Niccolai, L.; Mengali, L.; Quarta, A.A. Collinear artificial equilibrium point maintenance with a wrinkled solar sail.

Aerosp. Sci. Technol. 2021, 119, 107150. [CrossRef]
30. Mengali, G.; Quarta, A.A.; Circi, C.; Dachwald, B. Refined solar sail force model with mission application. J. Guid. Control. Dyn.

2007, 30, 512–520. [CrossRef]
31. Mengali, G.; Quarta, A.A. Optimal three-dimensional interplanetary rendezvous using nonideal solar sail. J. Guid. Control. Dyn.

2005, 28, 173–177. [CrossRef]

http://doi.org/10.1017/S1473550422000027
http://dx.doi.org/10.3390/universe8050249
http://dx.doi.org/10.3390/universe8050275
http://dx.doi.org/10.1126/science.205.4411.1133
http://dx.doi.org/10.1016/0094-5765(94)90163-5
http://dx.doi.org/10.1016/j.actaastro.2010.03.012
http://dx.doi.org/10.1007/978-3-540-72943-3
http://dx.doi.org/10.3390/universe8050252
http://dx.doi.org/10.2514/6.2017-1679
https://doi.org/10.48550/arXiv.2002.11871
http://dx.doi.org/10.1016/j.actaastro.2014.06.039
http://dx.doi.org/10.1007/s10569-010-9319-x
http://dx.doi.org/10.1016/j.ast.2021.107094
http://dx.doi.org/10.2514/1.G005214
http://dx.doi.org/10.1016/j.actaastro.2022.05.043
http://dx.doi.org/10.1007/978-1-4471-3992-8
http://dx.doi.org/10.2514/1.21432
http://dx.doi.org/10.2514/1.20313
http://dx.doi.org/10.1109/TAES.2021.3124867
http://dx.doi.org/10.1016/j.ast.2021.107150
http://dx.doi.org/10.2514/1.24779
http://dx.doi.org/10.2514/1.8325


Universe 2022, 8, 364 16 of 16

32. Mengali, G.; Quarta, A.A. Solar Sail Trajectories with Piecewise-Constant Steering Laws. Aerosp. Sci. Technol. 2009, 13, 431–441.
[CrossRef]

33. Quarta, A.A.; Mengali, G. Minimum-Time Space Missions with Solar Electric Propulsion. Aerosp. Sci. Technol. 2011, 15, 381–392.
[CrossRef]

34. Leipold, M.; Wagner, O. ‘Solar Photonic Assist’ Trajectory Design for Solar Sail Missions to the Outer Solar System and Beyond. In
Proceedings of the Spaceflight Dynamics 1998, Advances in Astronautical Sciences, Greenbelt, MD, USA, 11–15 May 1998; Stengle,
T.H., Ed.; AAS/GSFC International Symposium on Space Flight Dynamics, Univelt: Greenbelt, MD, USA, 1998; Volume 100,
Part 1, pp. 1035–1046.

35. Lyngvi, A.; Falkner, P.; Kemble, S.; Leipold, M.; Peacock, A. The Interstellar Heliopause Probe. Acta Astronaut. 2005, 57, 104–111.
[CrossRef]

36. Sauer, C.G., Jr. Solar Sail Trajectories for Solar Polar and Interstellar Probe Missions. In Proceedings of the AAS/AIAA
Astrodynamics Specialist Conference, Girdwood, AK, USA, 15–19 August 1999.

37. Wallace, R.A.; Ayon, J.A.; Sprague, G.A. Interstellar Probe Mission/System Concept. In Proceedings of the 2000 IEEE Aerospace
Conference, Big Sky, MT, USA, 25 March 2000; Volume 7, pp. 385–396. [CrossRef]

38. Quarta, A.A.; Mengali, G. Electric Sail Mission Analysis for Outer Solar System Exploration. J. Guid. Control. Dyn. 2010,
33, 740–755. [CrossRef]

http://dx.doi.org/10.1016/j.ast.2009.06.007
http://dx.doi.org/10.1016/j.ast.2010.09.003
http://dx.doi.org/10.1016/j.actaastro.2005.03.042
http://dx.doi.org/10.1109/AERO.2000.879304
http://dx.doi.org/10.2514/1.47006

	Introduction
	Spacecraft Characteristics and Baseline Mission Description
	Mission Optimization
	Phase 1
	Case a
	Case b
	Case c

	Phase 2
	Single Optimization of Phases 1 and 2
	Phase 3
	Phase 4

	Parametric Analysis
	Conclusions
	References

